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Talk Outline

Mainly Valiant

Mainly stability and obstructions

Mainly Representations

Largely hard
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The satisfiability problem

Boolean variables x1, . . . , xn

Term t1 = (¬x1 ∨ x3 ∨ x7), and so on upto tm.

Formula t1 ∧ t2 ∧ . . . ∧ tm

Question: Decide if there is a satisfying assignment to the formula.

There is no known algorithm which works in time polynomial in n and
m.

Harder Question: Count the number of satisfying assignments.
Thus we have the decision problem and its counting version.

() April 19, 2007 3 / 47



Matchings

Question: Given a bipartite
graph on n, n vertices, check
if the graph has a complete
matching.

This problem has a known
polynomial time algorithm.

Harder Question: Count the number of complete matchings.

There is no known polynomial time algorithm to compute this
number.

Even worse, there is no proof of its non-existence.

Thus, there are decision problems whose counting versions are hard.
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The permanent

If X is an n × n matrix, then the permanent function is:

permn(X ) =
∑

σ

∏
i

xi ,σ(i)

The relationship with the matching problem is obvious. When X is
0-1 matrix representing the bipartite graph, then perm(X ) counts the
number of matchings.

There is no known polynomial time algorithm to compute the
permanent, and worse, no proof of its non-existence.

The function permn is #P-complete. In other words, it is the
hardest counting problem whose decision version is easy to solve.
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Our Thesis

Non-existence of algorithm =⇒ existence of a mathematical
structure (obstructions)

These happen to arise in the GIT and Representation Theory of
Orbits.

CAUTION: There are plenty of NP-complete problems in
Representation Theory. But thats not what we are saying.

Example
Hilbert Nullstellensatz : Either polynomials f1, . . . , fn have a
common zero, or there are g1, . . . , gn such that

f1g1 + . . . + fngn = 1

Thus g1, . . . , gn obstruct f1, . . . , fn from having a common zero.
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Other #P-complete problems

Compute the Kostka number Kλµ.

Compute the Littlewood-Richardson number cν
λ,µ.

Note that there are polynomial time algorithms to check
non-zero-ness.

We will stick with the permanent.

homogeneous polynomial, i.e., in Symn(X ),

Distinguished stabilizer within GL(X ):

perm(X ) = perm(PXQ) perm(X ) = perm(D1XD2)

I P,Q permutation matrices, D1,D2 diagonal matrices.
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Computation Model-Formula Size

Let p(X1, . . . , Xn) be a polynomial.
A formula is a particular way of writing it using ∗ and +.

formula = formula*formula | formula+formula

Thus the same function may have different ways of writing it.

The number of operations required may be different.

Example:

a3 − b3 = (a − b)(a2 + a ∗ b + b2).

Van-der-Monde (λ1, . . . , λn) =
∏

i 6=j(λi − λj).

Formula size: the number of ∗ and + operations.

LHS1 is 5, RHS1 is 7, RHS2 is 2n.
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Formula size

A formula gives a
formula tree.

This tree yields an
algorithm which takes
time proportional to
formula size.

3a

a b b

* *

*

−

2 2
3a −b 

Does permn have a formula of size polynomially bounded in n?
(This also implies a polynomial time algorithm)

Valiant’s construction: converts the tree into a determinant.
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Valiant’s Construction
If p(Y1, . . . , Yk) has a formula of size m/2 then,

There is an inductively constructed graph Gp with atmost m
nodes, with edge-labels as (i) constants, or (ii) variable Yi .

The determinant det(Ap) of the adjacency matrix of Gp equals p.

s1 s2

t2t1

s

t

s

ty

1

s

t

A simple formula. The general case. Addition
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The Matrix

In other words:
p(Y1, . . . , Yk) = detm(A)

where Aij(Y ) is a degree-1 expression on Y .
For our example, we have:

y

1

s

t
A =

 0 1 0
0 1 y
1 0 0

 det(A) = y

Note that in Valiant’s construction Aij = Yr or Aij = c .

formula size = m/2 =⇒ p(Y ) = detm(A)

() April 19, 2007 11 / 47



The homogenization

Lets homogenize the above construction:

Add an extra variable Y0.

Let pm(Y0, . . . , Yk) be the degree-m homogenization of p.

Homogenize the Aij using Y0 to A′
ij .

We then have: pm(Y0, . . . , Yk) = detm(A′)

For our small example:

A =

 0 1 0
0 1 y
1 0 0

 A′ =

 0 y0 0
0 y0 y
y0 0 0

 det(A′) = y 2
0 y
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Valiant-conclusion

If a form p(Y ) has a formula of size m/2 then

There is an m ×m-matrix A with linear entries

det(A) = p(Y )

There is an m ×m-matrix A′ with homogeneous linear entries

det(A′) = pm(Y )

where pm is the m-homogenization of p.
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The �hom

Let X = {X1, . . . , Xr}.
For two form f , g ∈ Symd(X ), we say that f �hom g , if
f (X ) = g(B · X )) where B is a fixed r × r -matrix.

Note that:

B may even be singular.

�hom is transitive. Linear
X’form

Program 
for 
g(X)

(y) (x)

O O’

Program for f(Y)

If there is an efficient algorithm to compute g then we have such for
f as well.
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The insertion

Suppose that permn(Y ) has a formula of size m/2. How is one to
interpret Valiant’s construction?

Let Y be n × n.

Build a large m ×m-matrix X .

Identify Y as its submatrix.

Y

X

n

m
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The ”inserted” permanent

For m > n, we construct a new function permm
n ∈ Symm(X ).

Let Y be the principal
n × n-matrix of X .

permm
n = xm−n

mm permn(Y )

Y

X

n

m

Thus permn has been inserted into Symm(X ), of which detm(X ) is a
special element.

formula of size m/2
implies
permn = detm(A)

Use xmm as the
homogenizing variable

Conclusion
permm

n = detm(A′)

permm
n �hom detm
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Group Action and �hom

Let V = Symm(X ). The
group GL(X ) acts on V as
follows. For T ∈ GL(X ) and
g ∈ V

gT (X ) = g(T−1X )

Two notions:

The orbit: O(g) =
{gT |T ∈ SL(X )}.
The projective orbit
closure
∆(g) = cone(O(g)).

If f �hom g then
f = g(B · X ), whence

If B is full rank then f is
in the GL(X )-orbit of g .

If not, then A is
approximated by
elements of GL(X ).

Thus, in either case,

f �hom g =⇒ f ∈ ∆(g)
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The ∆

Thus, we see that if permn has a formula of size m/2 then
permm

n ∈ ∆(detm).

On the other hand, permm
n ∈ ∆(detm) implies that for every

ε > 0, there is a T ∈ GL(X ) such that ‖(detm)T − permm
n ‖ < ε.

This yields a poly-time approximation algorithm for the
permanent

Thus, we have an almost faithful algebraization of the formula size
construction.
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The Obstruction and its existence

To show that perm5 has no formula of size 20/2, it suffices to show:

perm20
5 6∈ ∆(det20)

In other words:

V is a GL(X )-module.

f and g are special points.

What is the witness to f 6∈ ∆(g)?

It is clear that such witnesses or obstructions exist in the coordinate
ring k[V ].

What is the structure of such obstructions?
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The Obstruction

So let g , f ∈ V = Symd(X ). How do we show that f 6∈ ∆(g).

Exhibit a homogeneous polynomial µ ∈ Symr (V ∗) which
vanishes on ∆(g) but not on f .

This µ is then the required obstruction. We would need to show
that:

µ(f ) 6= 0.

µ(gT ) = 0 for all T ∈ SL(X ).

Check µ on every point of Orbit(g)

False start: Use the SL(X )-invariant elements of Symd(V ∗) for
constructing such a µ.
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Invariants

V is a space with a group G acting on V .

Orbit(v) = {g .v |G ∈ G}.
Invariant is a function f : V → C which is constant on orbits.

Existence and constructions of invariants has been an enduring
interest for over 150 years.

Example:

V is the space of all m ×m-matrices.

G = GLm and g .v = gvg−1.

Invariants are the coefficients of the characteristic polynomial.
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Invariants and orbit separation

To show that f 6∈ ∆(g)

Exhibit a homogeneous invariant µ which vanishes on g but not on f .
This µ would then be the desired obstruction.

Easy to check if a form is an invariant.

Easy to construct using age-old recipes.

Easy to check that µ(g) = 0 and µ(f ) 6= 0.

µ(g) = 0 =⇒ µ(gT ) = 0 =⇒ µ(∆(g)) = 0

Important Fact

If g and f are stable and f 6∈ ∆(g), then there is a homogeneous
invariant µ such that µ(g) 6= µ(f ).
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Stability

g is stable iff
SL(X )-Orbit(g) is
Zariski-closed in V.

Most polynomials are
stable.

It is difficult to show
that a particular form is
stable.

Hilbert : Classification of
unstable points.

For matrices under
conjugation, precisely
the diagonal matrices
are stable.

permm and detn are stable.

Proof:

Kempf’s criteria.

Based on the stabilizers
of the determinant and
permanent.
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Rich Stabilizers

The stabilizer of the
determinant:

The form detm(X ):
I X → AXB
I X → XT

detm ∈ Symm(X )
determined by its
stabilizer.

The stabilizer of the
permanent:

The form permm(X ):
I X → PXQ
I X → D1XD2

I X → XT

permm ∈ Symm(X )
determined by its
stabilizer.

Tempting to conclude that the homogeneous obstructing
invariant µ now exists.
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The Main Problem

Recall we wish to show

permm
n 6∈ ∆(detm)

where
permm

n = xm−n
mm perm(Y ).

permm
n is unstable, in fact in

the null-cone, for very trivial
reasons.

Added an extra degree
equalizing variable.

Treated as a polynomial
in a larger redundant
set of variables.

Y

X

n

m
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Two Questions

Thus every invariant µ will vanish on permm
n .

There is no invariant µ such that µ(detm) = 0 and
µ(permm

n ) 6= 0.

Homogeneous invariants will never serve as obstructions.

Two Questions:

Is there any other system of functions which vanish on ∆(detm)?

Can anything be retrieved from the superficial instability of
permm

n ?
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Part II

Is there any other system of functions which vanish on ∆(detm)?

Yes. The admissibility argument.

Can anything be retrieved from the superficial instability of
permm

n ?

Yes. Partial or parabolic stability.

Representations as obstructions
Stabilizers
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Question 1

Is there any other system of functions which vanish on ∆(detm) and
enter the null-cone?

We use the stabilizer H ⊆ SL(X ) of detm.

For a representation Vλ of SL(X ), we say that Vλ is
H-admissible iff V ∗

λ |H contains the trivial representation 1H .

For g stable:

Fact: k[Orbit(g)] ∼= k[G/H] ∼=
∑

λ H-admissible nλVλ

Thankfully: k[∆(g)] ∼=
∑

λ H-admissible mλVλ

Thus a fairly restricted class of G -modules will appear in k[∆(g)].
We use this to generate some elements of the ideal for ∆(g).
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G and H

Consider next the G -equivariant surjection:

φ : k[V ]→ k[∆(g)]

We see that (i) φ is a graded surjection, and (ii) if Vµ ⊆ k[V ]d is not
H-admissible, then Vµ ∈ ker(φ).

Let ΣH be the ideal generated by such Vµ within k[V ].
Clearly ΣH vanishes on ∆(g).

How good is ΣH?
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The Local Picture

G-separability: We say that H ⊆ G is G -separable, if for every
non-trivial H-module Wα such that:

Wα appears in some restriction Vλ|H .

then there exists a H-non-admissible Vµ such that Vµ|H contains Wα.

Theorem: Let g and H be as above, with (i) g stable, (ii) g only
vector in V with stabilizer H , and (iii) H is G -separable. Then for an
open subset U of V , U ∩∆(g) matches (k[V ]/ΣH)U .
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Applying this ...

The conditions: (i) stability of g , (ii) V H =< g > and (iii)
G -separability of H .

detm and permn satisfy conditions (i) and (ii) above.

For n = 2, stabilizer of det2 is indeed SL4-separable.

For V =
∧d and g the highest weight vector, ∆(g) is the

grassmanian. For this ΣH generates the ideal.

For g = detm, the data ΣH does indeed enter the null-cone.

Still open:

Look at H = SLn × SLn sitting inside G = SLn2 . Is H
G -separable?

Does ΣH determine ∆(detm)?
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To conclude on Question 1

Stabilizer yields a rich set ΣH of relations vanishing on ∆(detm).

Given G -separability, ΣH does determine ∆(detm) locally.

Now suppose that permm
n ∈ ∆(detm) then:

Look at the surjection k[∆(detm)]→ k[∆(permm
n )].

Vµ ⊆ k[∆(permm
n )] and Vµ non-H-admissible, then Vµ is the required

obstruction.

If k[∆(permm
n )] is understood then this sets up the

representation-theoretic obstruction.
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Question 2-Partial Stability

Can anything be retrieved from the superficial instability of permm
n ?

Let’s consider the
simpler function f =
perm(Y ) ∈ Symn(X ),
i.e., with useful
variables Y and useless
X − Y .

Let parabolic
P ⊆ GL(X ) fix Y .

P = LU , with U the
unipotent radical.

Y

X

n

m

We see that:

f is fixed by U .

f is L-stable.
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The form f

Recall f = perm(Y ) ∈ V = Symn(X ) and P fixing Y .
We see that f is partially stable with R = L = GL(Y )× GL(X − Y ).

With W = Symn(Y ), we have the P-equivariant diagrams:

W
ι→ V

↑ ↑
∆W (f )

ι→ ∆V (f )

k[W ]d
ι∗← k[V ]d

↓ ↓
k[∆W (f )]d

ι∗← k[∆V (f )]d

where ∆W (f ) is the projective closure of the GL(Y )-orbit of f , and
∆V (f ) is that of the GL(X )-orbit of f .
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The Theorem

Lifting

The GL(X )-module Vµ(X ) occurs in k[∆V (f )]d∗ iff (Vµ(X ))U is
non-zero. Thus the GL(Y )-module Vµ(Y ) must exist.

Next, the multiplicity of Vµ(X ) in k[∆V (f )]d∗ equals that of
Vµ(Y ) in k[∆W (f )]d∗].

Now recall that f = permm(Y ), and let K = stabilizer(f ) ⊆ GL(Y ).

But f is GL(Y )-stable, and

the GL(Y )-modules which appear in k[∆W (f )]d must be
K -admissible.
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The Grassmanian

Consider V = V1k (Cm) =
∧k(Cm) and the highest weight vector v .

v is stable for the GLk × GLm−k action.

∆V (v) is just the grassmanian.

v is partially stable with the obvious P .

W = Ck ⊆ Cm and ∆W (v) is the line through v .

whence
k[∆W (v)] =

∑
d

C

The above theorem subsumes the Borel-Weil theorem:

k[∆V (v)] ∼=
∑

d

Vdk (Cm)
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The general partially stable case

Recall: Let V be a G -module. Vector v ∈ V is called partially stable
if there is a parabolic P = LU and a regular R ⊆ L such that:

v is fixed by U , and

v is R-stable.

In the general case, there is a regular subgroup R ⊆ L, whence the
theory goes through

∆W (v)→ ∆Y (v)→ ∆V (v)

The first injection goes through a Pieri branching rule.

The second injection follows the lifting theorem.
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In Summary

The General Conclusion
In other words, the theory of partially-stable ∆V (f ) lifts from that of
the stable case ∆W (f ).

The crucial problem therefore is to understand ∆W (f ) or ∆V (g), i.e.,
the stable case. There, for its geometry, we have:

Is the stabilizer H of g , G -separable?
I Larsen-Pink: do multiplicities determine subgroups?

Does ΣH generate the ideal of ∆(g)?
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The Representation-theoretic Obstruction

Let H ⊆ GL(X ) stabilize detm and K ⊆ GL(Y ) stabilize permn
m.

The representation-theoretic obstruction V ∗
µ (X ) for

permm
n ∈ ∆(detm)

Vµ(X )|H must have a H-fixed point.

Vµ(X )U is non-zero.

Vµ(Y , y)|R does not have a K -fixed point.
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The lower-bounds?

Question: How does this relate m and n?

Vµ(X )|H must have a H-fixed point.

Vµ(X )U is non-zero.

Vµ(Y , y)|R does not have a K -fixed point.

The representation Vµ(Y , y) is of width n2 which is smaller than
m2 = |X |.
If m >> n then µ is really thin, and an obstruction may not
exist.

and a formula may exist.
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The subgroup restriction problem

Given a G -module V , does V |H contain 1H?

Given an H-module W , does V |H contain W ?

The Kronecker Product Consider H = SLr × SLs → SLrs = G ,
when does Vµ(G ) contain an H-invariant?

This, we know, is a very very hard problem. But this is what arises
(with r = s = m) when we consider detm.
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Any more geometry?

Is there any more geometry which will help?

The Hilbert-Mumford-Kempf flags: limits for affine closures.
I Extendable to projective closures?
I Something there, but convexity of the optmization problem

breaks down.

The Luna-Vust theory: local models for stable points.
I Extendable for partially stable points?
I A finite limited local model exists, but no stabilizer condition

seems to pop out.
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Specific to Permanent-Determinant

Negative Results

von zur Gathen: m > c · n
I Used the singular loci of det and perm.
I Combinatorial arguments.

Raz: multilinear model, but m > poly(n).

Ressayre-Mignon: m > c · n2

I Used the curvature tensor.

Positive results

Jerrum-Sinclair-Vigoda: The permanent can be approximated by
a randomized algorithm
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The Subgroup Restriction Problem

The Kronecker Product Consider H = SLr × SLs → SLrs = G ,
when does Vµ(G ) contain an H-invariant?

Similar(?) problems recently solved (in Littlewood-Richardson
coefficients cν

λ,µ):

The PRV-conjecture on the non-zeroness of certain cν
λ,µ.

I The Drinfeld-Jimbo quantized Lie algebras.
I The crystal bases for modules.

The saturation conjecture: cnν
nλ,nµ 6= 0 =⇒ cν

λ,µ 6= 0.
I A polynomial-time non-combinatorial algorithm to detect if

cν
λ,µ 6= 0.
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The Subgroup Quantization

The Kronecker Product For X = V ⊗W , is there a quantized
structure and an injection H = GLq(V )× GLq(W )← GLq(X ) = G

For the standard quantizations, no such injection exists.

However, there maybe a different quantization GLq(X ) which:
I for which the injection above is natural
I is (co)-semisimple
I which has a representation theory following GLq(X )

This is investigated in GCT 4 (under preparation).
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In Conclusion

Complexity Theory questions and projective orbit closures.
I stable and partially stable points.
I obstructions

obstruction existence
I Representations as obstructions
I Distinctive stabilizers
I local definability of Orbit(g)

partial stability
I lifting theorems

subgroup restriction problem
I tests for non-zero-ness of group-theoretic data
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Thank you.
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