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SMALE’S LIST

18 Problems, as....

Problem 1: The Riemann Hypothesis

Problem 2: The Poincaré Conjecture (Perelman)
Problem 3: Does P = NP 7

Problem 4: Integer Zeros of a Polynomial.

Problem 5: Height Bounds for diophantine curves.
Problem 9: The Linear Programming Problem.

Problem 14: The Lorentz Attractor Problem. (Tucker, 02)



17-th Problem.

Can a zero of n complex polynomial equations in n unknowns
be found approximately on the average, in polynomial time

with a uniform algorithm?.

(Beltran-P. , 06)



HISTORICAL SCKETCH

XIX-th century: Modern Elimination Theory
Bézout, Cayley, Hilbert, Kronecker, Sturm, Sylvester

1900-1930: Macaulay, Konaig,...

1930-1965: Vanished on the air?

1965— Monomial orders and standard—Grobner Basis Hironaka, Buch-
berger,...,Rewriting Techniques

Sparse Approach... Bernstein, Kouchnirenko, Sturmfels....
Complexity Classes Approach... Cook [P = NP ?/

1995—: Intrinsical Methods adapted to data structures
TERA, KRONECKER ....



A SIMPLIFIED VERSION

Goal: Efficient Algorithmics for Problems Given by Polynomial Fqua-

tions

Potential Applications : T Information Theory (Coding, Crypto,...),
Game Theory, Graphic and Mechanical Design, Chemist, Robotics, ..

The Problem: Efficiency

Rk. Most algorithms for Elimination Problems run in worse than ex-
ponential time i the number of variables:

Intractable for Practical Applications.

fMany of them Casual but not Causal



SOLVING

INpuT: A list of multivariate polynomial equations: f1,..., fs € C[X71,...

OutpuT: A description of the solution variety

V(fi,...,fs) . ={xeC" : fi(x) =0..}.

Description: The kind of description determines the kind of prob-
lems/questions you may answer about V' (f1,..., fs)

Ezxample: Symbolic/Algebraic Computing — questions involving quan-
tifiers

Hilbert’s Nulltellensatz (HN) Given f1,..., fs decide whether the
following holds:

dr e C" f;(x) =0, 1<i<s.

7Xn]



DIFFERENT SCHOOLS

Syntactic Standard, Grobner Basis, Rewriting...a Long List

Structural :Find the suitable complexity class for the problem NP-hard,
PSPACE,...

Semi—Semantics: Using combinatorial objects (hence semi-semantic) to
control complexity: Sparse School: using Newton polytopes Bernstein.
Kouchnirenko, Sturmfels...

Semantic/Intrinsic: Mostly the TERA group: Cantabria (P., Morais,
Montana, Hdgele,...); Polytechnique (Giusti, Bostan, Lecerf, Schost,
Salvy...); * Buenos Aires (Heintz, Krick, Matera, Solerno, ...); * Hum-
boldt (Bank, Mbakop,Lehmann)



SOME CONCEPTS UNDERLYING SEMANTIC SCHOOLS

e Polynomials viewed as programs.

e Parameters of Semantical Objects (algebraic varieties) dominate
complexity:.

Degree of V' ([Heintz, 83/, [Vogel, 83/, [Fulton, 81]) # of intersection
points with generic linear varieties.

Height of V:
Bit length of the coefficients

* Geometric Degree of a Sequence:

o(V1,..., Vi) i=max{deg(V;) : 1 <i<r}.



A STATEMENT

Theorem 1 Thereis a bounded error probability Turing machine that

answers HN in time polynomaal in

L6 H,

where

L is the input length (whatever usual data structure),

d is the geometric degree of a deformation sequence (Kronecker’s defor-
mation) and

H 1is the height of the last equi-dimensional variety computed.



EXAMPLES

n
X?-X1=0,...,X2 - Xp =0,k — Y mX; = 0.
1=1

n .
X?-X1=0,...,X2 - Xn, =0,k Y 21X, =0
1=1

n .
X{-X1=0,...,X7 - X, =0,512— Y 2" 1x; = 0.
1=1

X5 -X{=0,X2—-X,=0...,X2—X,_1=0,k— X, =0.
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THE OUTPUT)

We got:

A description of the target variety through a birational isomorphism,
even biregular in the zero—dimensional case, that contains information
that suffices to answer elimination questions.

But...
Is that optimal in terms of complexity ?



UNIVERSAL SOLVING

Algorithms based on a deformation:

A sequence suite Vq,...,Vn of intermediate varieties to solve before
“eliminating”

Universal Solving
An algorithm is called Universal if its output contains information

enough about the variety of solutions to answer all elitmination ques-
tions.

Remark 2 Most Computer Algebra/Symbolic Computation procedures
are Universal.



LowER COMPLEXITY BOUNDS

Theorem [Castro-Giusti-Heintz-Matera-P.,2003]

Any universal solving procedure requires exponential running time.

* TERA algorithm is essentially optimal.
* Running time is greater than the Bézout Number:

H deg(f;) > 2".

=1

* No Universal solving procedure may improve this lower complexity
bound.



THE SEARCH FOR ALTERNATIVES

Searching Non—Universal Solving Procedures.

Searching for procedures that compute partial (non—universal) informa-
tion about the solution variety in polynomial running time.

Smale’s 17th Problem



SOME PRELIMINARY IDEAS

What is “Partial Information”?



SOME PRELIMINARY IDEAS
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SOME PRELIMINARY IDEAS

What is “Partial Information”?
For instance, a “good approximation” to some of the solutions

Example

OUPUT: z € Q[7]™ such that there exists ( € V(f1,..., fn) satisfying

1€ = 2[] <,

for som € > 0.



APPROXIMATIONS?

Some Multivariate Elimination and some lattice reduction algorithms

(under KLL approach) yield

Theorem 3 (Castro-Hagele-Morais-P., 01) There is a com-

putational equivalence between:
o Approimations z € Q[i]™ of some of the zerosC € V(f1,..., fn),

o A description “d la Kronecker—TERA” of the residual class field of
Q¢



Theorem (cont.)

The running time of this computational equivalence s polynomaial in:

o D= degree of the residual class field Q.

e L= input size.

e H.= height of the residual class fieldQ.

Namely, a “good” approximation contains information that suf-
fices for elimination(although it is not clear whether you should com-
pute it)



IMMEDIATE APPLICATION

Theorem 4 There is an algorithm that performs the following taks:

e InruT: A univariate polynomial f € Q[T].

e Ourrutr: A primitive element description of the normal closure of

f.

THe running time of this procedure is polynomaial in the following quati-
ties:
d, h,§Galg(f),
where d 1s the degree of f and h is the bit length of the coefficients of
f.



Remark: A geometric algorithm such that the complexity is not of
order d! except when unavoidable.



GOOD APPROXIMATION?

For simplicity we work on the projective space

Systems of homogeneous polynomials:

F = [fla"'afn] EH(d)’

deg(fz) — dia (d) L= (d17 JRII) dn)?
Hgy = Complex vector space of all equations of given degree.

Vip(F) :={z € P,(C) : F(x) = 0}.
The incidence variety (Room-Kempf, Shub-Smale)

V= {(F,z) €IP(Hy x Pyu(C) : F(x) = 0}.



PROJECTIVE NEWTON’S OPERATOR

(M. Shub amd S. Smale 1986-1996)

r 1 C"TI\ {0} — IP,(C)

Notations: Projective Metrics :
Riemannian :

dp(n(x),7(z")) := arccos <|(:1:, ’ >’> :

[l |||
Fubini—Study :
dp(m(z),m(z")) 1= sin dr(w(z), 7 (z)).

Tangent Distance :

dr(m(x), n(z)) = tandp(w(x), 7 (z")).
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NEWTON’S OPERATOR 11

Tangent Space at a point z € IP,(C)
T.IP,(C) i={w e C" 1 : (w,z) = 0}.
A system of polynomial equations F' := [f1, ..., frn], Jacobian matrix :
DF(z) :Ccrt1 — ¢
If z is not a critical point, the restriction to the tangent space:
T.f :=DF(z) |, :T.IPn(C) — C".
The inverse:

(Tf)~t :C* — C"tL,



PROJECTIVE NEWTON’S OPERATOR 111

The canonical projection = : C*T1\ {0} — IP,(C).

For every non-critical w(z) € IP,(C) Newton’s operator is given by:

Np(n(2)) = (2 - (DF(2) 1) F(2)),



144

127

0.8

0.6

0.4

021

SOME PICTURES I

0z 0

"02 04 06 08 1

T.1P,(C)

12

14



141

121

084

06

04

021

N. Op. PicTURE II

02 00

02 04 06 08 1

T.1P,(C)

12

14



141

121

084

06

04

021

N. Op. PicTURE III

02 00

02 04 06 08 1

T.1P,(C)

12

14



N. Op. PICTURE 1V
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APPROXIMATE ZEROS

* Invut: A System of Homogeneous Polynomials

b= [fl)"'afn] EH(d)?
deg(f;) = di, (d) == (dq,...,dn).

A zero ¢ € V(F)

An Approximate Zero(Smale’81) a point zIP,,(C) such that Newton’s
operator N applied to z converges very fast to the zero.

1
22k—1 :

dr(NE(2),¢) <

dp := tangent “distance” .



CONDITION NUMBER ([SHUB-SMALE, 86-96])

_ . 1/2
pnorm(F, ) := | FIIIT-F L Aic = d;/ ).
Condition Number Theorem : Discriminant Variety in IP (Hg)).

ZC = {F < IP(H(d)) (€ V(F),TcF Z GL(??,,(C)}

Y= U 3¢ (Systems with a critical zero).
CEP,(C)

Fiber Distance : p(F, () := dp(F,%).

Theorem 5 (Shub-Smale, 91)
1
p(F,¢)

pnorm (F, ¢) =



SMALE’S Yy—THEORY

d:=max{d; : 1 <1< n}.

Theorem 6 (Smale,81) S5i:

3 —V7
dT(27C) S 3 \/7 y
d2 piporm (F, ¢)

then, z is an approximate zero associated to some zero ¢ of F'.




NON-UNIVERSAL ALGORITHMICS

* INPUT:

A System F' € IP (H(d))a

* QUTPUT:
UNIVERSAL SoLvING: An Approzimate Zero z for each zero ¢ € V(F).

Lower Complexity Bound: Bézout’s Number ( D =[], d;) =
Intractable

Or:

NON-UNIVERSAL SOLVING : An Approximate Zero z for some of the
zeros ( € V(F).

Complexity of Non—Universal Solving? (= Smale’s 17th Prob-
lem)



DEFORMATION HOMOTOPIC DEFORMATION (HD)

Incidence Variety:

Vi=A{F,¢) e IP(Hg x Pu(C) @ f(¢) =0}
Two Canonical Projections:

v
T / \ T

1P (Hgy) 1P, (C)

Critical values of m1=2_.

In fact, the following is a “covering map”:

m V \ >/ IP(H(d)) \ > .
And the real codimension is: codimp (3 (d))(Z) > 2.



NAMELY

Except for a null measure subset, for each F,G € IP (H(d)) \ X,
[F,.G]NX =10,
where
[F,G] ={(1 -t)F +tG, te][0,1]}.
and the following is also a “covering space”:
w1 ;7] H([F,G]) — [F,G].
Namely, for each ¢ € V(@) there is a curve:

I_(F7 G7 C) = {(Ft7Ct) cV . Ct S V(Ft>7t S [Oa 1]}



AN ALGORITHMIC PHILOSOPHY

Start at (G,¢) (¢t = 1) and closely follow (by applying Newton’s pro-
jective operator) a polygonal close to I'(F, G, ) until you find an ap-
proximate zero of F'.

InpuT F E H(d)

With Initial Pair

(G,¢) € Higy X Pn(C), G(¢) =0.
Following [F,G] and the cruve I”

OuTPUT

-- Either ERROR

- Or an approximate zero z € IP,p(C) associated to some zero ( €
IP,(C) of F € H(d)



02

HD PicTURE 1

04 06

038

S

0.2

04

0.6




HD PicTuRrE 11
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HD PicTURE 111
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HD PicTURE IV
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HD PIicTURE V
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THE PROBLEMS WITH THIS APPROACH (I)

Problem 1.- What is the compexity of this method?

Answer.—
— The complexity of each step is polynomial in the number of variables

and the evaluation complexity of the input system. Thus, complexity

mainly depends on the number of steps.

— The number of “homotopy steps” is bounded by O(unorm(I)?)
([Shub-Smale, 91]), where

/’LnOTm(I—(Fa G7 C)) L= ma’w{/’LnOTm(Fta Ct) : (Ft7Ct) S I_(F7 G) C)}



THE PROBLEMS WITH THIS APPROACH (II)

Problem 2.- worst case complexity is doubly exponential in the number

of variables (voir exemple dans [castro—Hagele-Morais—P., 01]), and
then?

Answer.—
— “Worst case complexity” does not suffice to explain the behavior.
Look at average complexity!.

— The word “average” forces to have some probability distribution, .
which one’.



THE PROBLEMS WITH THIS APPROACH (III)

Answer (Sub-problem 2b).—

— The set IP (H(d)) is a complex and compact Riemannian manifold.
Thus, it has an associated measure (a volume form in dvp) such that
the volume v [IP (H(d)] is finite. Then we also have a probability
distribution.

— The probability measure in IP (H(d)) equivalent to Gaussian distrib-
ution in the affine space Ha)-

Sub—problem 2c.—Since computing is discrete, what is the distribution
for discrete inputs (namely polynomials with coefficients in a discrete

field)?.



THE PROBLEMS WITH THIS APPROACH (IV)

Problem 3.—Anyway, this approach is not defining an algorithm (since
we have o initial pair). Is there a true algorithm of polynomial average
complexity?.

Answers.—

I.— Yes.

2.— Polynomial in the dimension of the space of inputs (dense encoding
of polynomials).



ONCE AGAIN HD

InpuT F' E H(d)

Apply homotopic defomration (HD) with initial pair
(G, Z) c H(d) X IPn((C)

following the curve I'(F,G,z) of [ = 771_1([F, G])) that contains
(G, 2).

OuTPUT:
— Fither ERROR

— or an approximate zero of F.



HD WITH BOUNDED RESOURCES

HD with resources bounded by a function ¢o(f,¢).

INpuT I € Hgy, € >0

Perform o(f, ) steps of homotopic deformation (HD) with initial pair
(G,z2) € H(d) x IPp(C)

following the curve ' (F, G, z) in T = 771_1([F, gl)) that contains (G, z).

OUuTPUT:

— Fither ERROR

— or an approximate zero of F.



€ —EFFICIENT INITIAL PAIRS

DefinitionA pair (G,{) € V is e—efficient if the resources function
for the resources:

o(f,e) 1= 10°n°N?d32.

For randomly chosen input system F € IP (H(d)) the algorithm HD
with initial pair (G, z) and resources bound ¢ outputs un approximate
zero of F with probability greater than:

1—-e.



HD WITH €—EFFICIENT INITIAL PAIR

Let (G:, () be an e—efficient initial pair.
INpuT I € Hgy, € >0

Perform ¢(f,e) steps of HD with initial pair

(Gg, Cg) c H(d) X IPn(C)
following T (F, Ge, (e).

OUuTPUT:
— Fither ERROR
— or an approximate zero of F'.



EXISTENCE

Theorem 7 ([Shub-Smale, BezV, Beltran-P, Bez \/ 1/2] There
exist e—efficient initial pairs.

Remark 8 Fven with (c=(1:0:---:0).

Smale 17th Problem.— How to construct e—efficient initial pairs?.



QUESTOR SETS

[Beltran- P., 2006]
A subset G C V (incidence variety) is a questor set for HD if:

for every € > O the probability that a randomly chosen pair (G,{) € G
15 e—efficient for HD 1is greater than



HD WITH QUESTOR SETS

IneUT B € H(g),€ >0

Guess at random (G,¢) € G

Apply o(f,e) deformation steps HD between G and F', starting
at (G, C).

OUTPUT:

— Fither ERROR (with probability smaller than €)
— or un approximate zero of F' (with probability greater than 1 — € ).




COMMENTS

Minor: It is a probabilistic algorithm

Relevant: The questor set G must be easy to construct and easy
t handle .



BEzouT 5%

Theorem /Beltran, P. 2006] We succeeded to exhibit a constructible and
easy to mhandle questor set.



TOWARDS A QUESTOR SET I

e:=(1:0:...:0) €IP,(C) a “pole” in the complex sphere.
Ve :={F € Hay F(e) = 0}. Systems vanising at the “pole” e.
FecVo—s F:Cnrtl ., Cn

The tangent mapping TeF = DF(e) restricted to the tangent space
TJIP,(C) =el =CrCCntl..



A FIRST APPROACH

Le . =A{F € Ve : TeF = F}. “linear part” of the systems in Ve.
Lt := Systems in Ve of order greater than 2 at e.

Remark.- V;, L, LeL are linear subspaces of Hq)y given by thewr coef-
fictent list.

Naive Idea: Consider

G:={(G,e) : GeVe=LEPLe}.(?)



TOWARDS QUESTOR SETS IT (Le¢)

U(n + 1) := unitary matrices defined in C*T1.

He1y = Myyn+1(C) space of n X (n+ 1) complex matrices.

Xgl_l 0

x (@ .= : :
dn—1

0 o X§

Ve(l) ={(M,U) : M EH(l),U ceU,UKer(M) = e}.



Ve(M,U) = XD (M)

LINER PART L¢

¢e : e(l) E—

Le

X1

Xn

Le := Im(¢e(M,U)).

A useful constant



TOWARDS A QUESTOR SET III

G:=[0,T] x L x VY.
G G — Ve,
(t,LM,U)e G— G, L,M,U) € Ve

_ 1 1
G(t,L, M,U) = (1 — tr2+n) /2 4 tn2+nepo (M, U) € Ve,



TOWARDS A QUESTOR SET IV Bezout5%

Theorem 9 (Beltran-P., 2005a) For every degree list (d) =
(dy,...,dn), the set

Gay = Image(G) = G(G).

15 questor set of initial pairs for HD. Namely,

A system (G,e) € 9(a) chosen at random is e—efficient for HD
with probability greater than

1—e.



THE ALGORITHM

INnpuT: F' € H(d)v e > 0.
Guess at random (G, e) € Gy (Guess (t, L, M)...)
Apply o(F,c) homotopic deformation steps

Ourput: Either “ERROR” or an approximate zero z of F'.



MEANING (I)

Theorem 10 [Beltran-P,06] There is a probabilistic algorithm (bounded
error probability) for non—universal projective solving of systems of ho-
mogeneous polynomial equations such that for every positive real number

e >0:

e The running time of the algorithm s at most:

O(n°NZ272)

e The probability that the algorithm outputs an approximate zero is
greater than:

1 —¢



CuBIC EQUATIONS

Corollary 11 |Beltran-P,06] There is a probabilistic algorithm (bounded
error probability) for non—universal projective solving of systems of ho-
mogeneous polynomial equations of degree 3 such that for every positive
real number € > O:

e The running time of the algorithm s at most:

O(n'3:72)

e The probability that the algorithm outputs an approximate zero 1is
greater than:

1 —¢



Remarque Taking ¢ = 1 /nQ, the algorithm computes approximate
zeros with probability greater than

1—1/n°
in time

O(nt®).



AVERAGE COMPLEXITY I(SMALE’2 17TH )

In [Beltran-P., 07] we slighty modified our algorithm to get
average complexity:

Definition 12 (Strong Questor Set) A subsetG C V is a strong
questor set if

EglAc] < 10%ndN343/2¢2,

where

A (G, 2) = P’rob]P(H(d))[,unorm(F, G,z) >e 1.



STRONG QUESTOR SET

Theorem 13 (Beltran-P.,07) For every strong questor set G, there

15 a measurable subset C such that the following holds:

Probg[C] > 4/5.

For every e > 0 and for every (G, z) € C, (G, z) is a e—efficient initial
pair.

Theorem 14 (Beltran-P.,07) The set Q(d) 1S a strong questor set.



AVERAGE COMPLEXITY

Corollary 15 There is a bounded error probability algorithm of aver-
age polynomial time that for all but a zero measure subset of systems

of homogeneous polynomial equations computes projective approxrimate
2€eros .

By average complexity we mean:

1
E Tpl =
P (H(d)) [ 7)] Vp [P (H(d) )] /]P (H(d))

Tp(f)dvp = O(n°N3),

Tp(f) := running time on input f.



THE AFFINE CASE

[Beltran-P., 07] :

Corollary 16 There is a bounded error probability algorithm of aver-
age polynomsial time that for all but a zero measure subset of systems of

homogeneous polynomaial equations computes affine approximate zeros.

By average complexity we mean:

1

— — 5
B (1) T4 = 5 3] S 4y TAC P = ON®),

TA(f) :=running time on input f.



THE KEY OF THE AFFINE CASE

[Beltran-P., 07]

Theorem 17 Let 6 > 0 be a positive real number. For every F &
IP(H(d)), let
VA(F) :={z € C" : f(x) = 0},
be the set of affine solutions Let
[IWVA(F)|| := sup{|[|z]| : = € Va(F)} € [0,00],

the mazximal norm of its zeros.

Then, the probability that for a randomly chosen affine system F €
IP(H(q)) we have |[Vo(F)|| > 6 is at most:

D\/WncS_l



In fact, we proved:

r(A/2)r(n+1/2) _

M (n) Dy/mn.

E]P(H(d))[HVA(f)H] =D



IMMEDIATE OPEN (QUESTIONS

Real Solving 7: Zero—dimensional Case.
Singular Zeros: Homotopy Techniques?.

Adaptability to Other Input Data Structures: Does it work for straight—
line programa input structure?.



