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Smale’s List

18 Problems, as....

Problem 1: The Riemann Hypothesis

Problem 2: The Poincaré Conjecture (Perelman)

Problem 3: Does P = NP ?

Problem 4: Integer Zeros of a Polynomial.

Problem 5: Height Bounds for diophantine curves.
· · ·

Problem 9: The Linear Programming Problem.
· · ·

Problem 14: The Lorentz Attractor Problem. (Tucker, 02)



17-th Problem.

Can a zero of n complex polynomial equations in n unknowns

be found approximately on the average, in polynomial time

with a uniform algorithm?.

(Beltrán-P. , 06)



Historical Scketch

XIX-th century: Modern Elimination Theory
Bézout, Cayley, Hilbert, Kronecker, Sturm, Sylvester

1900–1930: Macaulay, König,...

1930–1965: Vanished on the air?

1965–: Monomial orders and standard–Gröbner Basis Hironaka, Buch-
berger,...,Rewriting Techniques

Sparse Approach... Bernstein, Kouchnirenko, Sturmfels....

Complexity Classes Approach... Cook [ P = NP ?]

1995–: Intrinsical Methods adapted to data structures
TERA, KRONECKER ....



A Simplified version

Goal: Efficient Algorithmics for Problems Given by Polynomial Equa-

tions

Potential Applications : † Information Theory (Coding, Crypto,...),

Game Theory, Graphic and Mechanical Design, Chemist, Robotics, ...

The Problem: Efficiency

Rk. Most algorithms for Elimination Problems run in worse than ex-

ponential time in the number of variables:

Intractable for Practical Applications.

†Many of them Casual but not Causal



Solving

Input: A list of multivariate polynomial equations: f1, . . . , fs ∈ C[X1, . . . , Xn].

Output: A description of the solution variety
V (f1, . . . , fs) := {x ∈ Cn : fi(x) = 0...}.

Description: The kind of description determines the kind of prob-
lems/questions you may answer about V (f1, . . . , fs)

Example: Symbolic/Algebraic Computing−→ questions involving quan-
tifiers

Hilbert’s Nulltellensatz (HN) Given f1, . . . , fs decide whether the
following holds:

∃x ∈ Cn fi(x) = 0, 1 ≤ i ≤ s.



Different Schools

Syntactic Standard, Gröbner Basis, Rewriting...a Long List

Structural :Find the suitable complexity class for the problem NP-hard,

PSPACE,...

Semi–Semantics: Using combinatorial objects (hence semi-semantic) to

control complexity: Sparse School: using Newton polytopes Bernstein.

Kouchnirenko, Sturmfels...

Semantic/Intrinsic: Mostly the TERA group: Cantabria (P., Morais,

Montaña, Hägele,...); Polytechnique (Giusti, Bostan, Lecerf, Schost,

Salvy...); * Buenos Aires (Heintz, Krick, Matera, Solerno, ...); * Hum-

boldt (Bank, Mbakop,Lehmann)



Some Concepts underlying Semantic Schools

• Polynomials viewed as programs.

• Parameters of Semantical Objects (algebraic varieties) dominate
complexity.

Degree of V ([Heintz,83], [Vogel, 83], [Fulton, 81]) :] of intersection
points with generic linear varieties.

Height of V :
Bit length of the coefficients Chow form

* Geometric Degree of a Sequence:

δ(V1, . . . , Vr) := max{deg(Vi) : 1 ≤ i ≤ r}.



A Statement

Theorem 1 There is a bounded error probability Turing machine that

answers HN in time polynomial in

L δ H,

where

L is the input length (whatever usual data structure),

δ is the geometric degree of a deformation sequence (Kronecker’s defor-

mation) and

H is the height of the last equi-dimensional variety computed.



Examples

X2
1 −X1 = 0, . . . , X2

n −Xn = 0, k −
n∑
i=1

miXi = 0.

X2
1 −X1 = 0, . . . , X2

n −Xn = 0, k −
n∑
i=1

2i−1Xi = 0.

X2
1 −X1 = 0, . . . , X2

n −Xn = 0,512−
n∑
i=1

2i−1Xi = 0.

X2
2 −X1 = 0, X2

3 −X2 = 0 . . . , X2
n −Xn−1 = 0, k −Xn = 0.



Kronecker’s Deformation



Initialize



Lifting Fibers



Jumping from a Lifting Fiber to a new one



And so on...



Until the End



The target



The Output)

We got:

A description of the target variety through a birational isomorphism,

even biregular in the zero–dimensional case, that contains information

that suffices to answer elimination questions.

But...

Is that optimal in terms of complexity ?



Universal Solving

Algorithms based on a deformation:

A sequence suite V1, . . . , Vn of intermediate varieties to solve before

“eliminating”

Universal Solving

An algorithm is called Universal if its output contains information

enough about the variety of solutions to answer all elimination ques-

tions.

Remark 2 Most Computer Algebra/Symbolic Computation procedures

are Universal.



Lower Complexity Bounds

Theorem [Castro-Giusti-Heintz-Matera-P.,2003]

Any universal solving procedure requires exponential running time.

* TERA algorithm is essentially optimal.

* Running time is greater than the Bézout Number:

n∏
i=1

deg(fi) ≥ 2n.

* No Universal solving procedure may improve this lower complexity

bound.



The Search for Alternatives

Searching Non–Universal Solving Procedures.

Searching for procedures that compute partial (non–universal) informa-

tion about the solution variety in polynomial running time.

Smale’s 17th Problem



Some Preliminary Ideas

What is “Partial Information”?



Some Preliminary Ideas

What is “Partial Information”?

For instance, a “good approximation” to some of the solutions



Some Preliminary Ideas

What is “Partial Information”?

For instance, a “good approximation” to some of the solutions

Example

INPUT: f1, . . . , fn ∈ Q[X1, . . . , Xn] t.q. ]V (f1, . . . , fn) <∞.

OUPUT: z ∈ Q[i]n such that there exists ζ ∈ V (f1, . . . , fn) satisfying

||ζ − z|| < ε,

for som ε > 0.



Approximations?

Some Multivariate Elimination and some lattice reduction algorithms

(under KLL approach) yield

Theorem 3 (Castro-Hagele-Morais-P., 01) There is a com-

putational equivalence between:

• Approimations z ∈ Q[i]n of some of the zerosζ ∈ V (f1, . . . , fn),

• A description “á la Kronecker–TERA” of the residual class field of

Qζ.



Theorem (cont.)

The running time of this computational equivalence is polynomial in:

• Dζ= degree of the residual class field Qζ.

• L= input size.

• Hζ= height of the residual class fieldQζ.

Namely, a “good” approximation contains information that suf-

fices for elimination(although it is not clear whether you should com-

pute it)



Immediate Application

Theorem 4 There is an algorithm that performs the following taks:

• Input: A univariate polynomial f ∈ Q[T ].

• Output: A primitive element description of the normal closure of

f .

THe running time of this procedure is polynomial in the following quati-

ties:

d, h, ]GalQ(f),

where d is the degree of f and h is the bit length of the coefficients of

f .



Remark: A geometric algorithm such that the complexity is not of

order d! except when unavoidable.



Good Approximation?

For simplicity we work on the projective space

Systems of homogeneous polynomials:

F := [f1, . . . , fn] ∈ H(d),

deg(fi) = di, (d) := (d1, . . . , dn),

H(d) := Complex vector space of all equations of given degree.

VIP(F ) := {x ∈ IPn(C) : F (x) = 0}.

The incidence variety (Room-Kempf, Shub-Smale)

V := {(F, x) ∈ IP(H(d) × IPn(C) : F (x) = 0}.



Projective Newton’s Operator

(M. Shub amd S. Smale 1986–1996)

π : Cn+1 \ {0} −→ IPn(C)

Notations: Projective Metrics :

Riemannian :

dR(π(x), π(x′)) := arccos

(
|〈x, x′〉|
‖x‖‖x′‖

)
.

Fubini–Study :

dP (π(x), π(x′)) := sin dR(π(x), π(x′)).

Tangent Distance :

dT (π(x), π(x
′)) := tandR(π(x), π(x′)).



A Picture



Newton’s Operator II

Tangent Space at a point z ∈ IPn(C) :

TzIPn(C) := {w ∈ Cn+1 : 〈w, z〉 = 0}.

A system of polynomial equations F := [f1, . . . , fn], Jacobian matrix :

DF (z) : Cn+1 −→ Cn.

If z is not a critical point, the restriction to the tangent space:

Tzf := DF (z) |Tz : TzIPn(C) −→ Cn.

The inverse:

(Tzf)
−1 : Cn −→ Cn+1.



Projective Newton’s Operator III

The canonical projection π : Cn+1 \ {0} −→ IPn(C).

For every non-critical π(z) ∈ IPn(C) Newton’s operator is given by:

NF (π(z)) := π

(
z −

(
DF (z) |Tz

)−1
F (z)

)
,



Some pictures I

TzIPn(C)



N. Op. Picture II

TzIPn(C)



N. Op. Picture III

TzIPn(C)



N. Op. Picture IV

f(z) ∈ T0Cn = Cn TzIPn(C)



N. Op. Picture V

Tzf−1f(z) ∈ TzIPn(C)



N. Op. Picture VI

−Tzf−1f(z) ∈ TzIPn(C)



N. Op. Picture VII

z − Tzf−1f(z) ∈ TzIPn(C)



N.Op. Picture VIII

π(z − Tzf−1f(z)) ∈ IPn(C)



N.Op. Picture IX

π(z − Tzf−1f(z)) ∈ IPn(C)



Approximate Zeros

* Input: A System of Homogeneous Polynomials

F := [f1, . . . , fn] ∈ H(d),

deg(fi) = di, (d) := (d1, . . . , dn).

A zero ζ ∈ V (F )

An Approximate Zero(Smale’81) a point zIPn(C) such that Newton’s

operator NF applied to z converges very fast to the zero.

dT (N
k
F (z), ζ) ≤

1

22k−1 .

dT := tangent “distance” .



Condition Number ([Shub–Smale, 86–96])

µnorm(F, ζ) := ‖F‖‖TzF−1∆(‖ζdi−1‖d1/2i )‖.

Condition Number Theorem : Discriminant Variety in IP(H(d)).

Σζ := {F ∈ IP(H(d)) : ζ ∈ V (F ), TζF 6∈ GL(n,C)}.

Σ :=
⋃

ζ∈IPn(C)

Σζ. (Systems with a critical zero).

Fiber Distance : ρ(F, ζ) := dP (F,Σζ).

Theorem 5 (Shub-Smale, 91)

µnorm(F, ζ) :=
1

ρ(F, ζ)
.



Smale’s γ−Theory

d := max{di : 1 ≤ i ≤ n}.

Theorem 6 (Smale,81) Si :

dT (z, ζ) ≤
3−

√
7

d
3
2µnorm(F, ζ)

,

then, z is an approximate zero associated to some zero ζ of F .



Non–Universal Algorithmics

* Input:

A System F ∈ IP(H(d)),

* Output:

Universal Solving: An Approximate Zero z for each zero ζ ∈ V (F ).

Lower Complexity Bound: Bézout’s Number ( D :=
∏n
i=1 di) ⇒

Intractable

Or:
Non-Universal Solving : An Approximate Zero z for some of the
zeros ζ ∈ V (F ).

Complexity of Non–Universal Solving? (= Smale’s 17th Prob-
lem)



Déformation Homotopic Deformation (HD)

Incidence Variety:

V := {(F, ζ) ∈ IP(H(d) × IPn(C) : f(ζ) = 0}.

Two Canonical Projections:

V
π1 ↙ ↘ π2

IP(H(d)) IPn(C)

Critical values of π1=Σ.

In fact, the following is a “covering map”:

π1 : V \Σ′ −→ IP(H(d)) \Σ.

And the real codimension is: codimIP(H(d))
(Σ) ≥ 2.



Namely

Except for a null measure subset, for each F,G ∈ IP(H(d)) \Σ, :

[F,G] ∩Σ = ∅,

where

[F,G] := {(1− t)F + tG, t ∈ [0,1]}.

and the following is also a “covering space”:

π1 : π−1
1 ([F,G]) −→ [F,G].

Namely, for each ζ ∈ V (G) there is a curve:

Γ(F,G, ζ) := {(Ft, ζt) ∈ V : ζt ∈ V (Ft), t ∈ [0,1]}.



An algorithmic Philosophy

Start at (G, ζ) (t = 1) and closely follow (by applying Newton’s pro-

jective operator) a polygonal close to Γ(F,G, ζ) until you find an ap-

proximate zero of F .

Input F ∈ H(d)

With Initial Pair

(G, ζ) ∈ H(d) × IPn(C), G(ζ) = 0.

Following [F,G] and the cruve Γ

Output

-- Either ERROR

-- Or an approximate zero z ∈ IPn(C) associated to some zero ζ ∈
IPn(C) of F ∈ H(d)



HD Picture I



HD Picture II



HD Picture III



HD Picture IV



HD Picture V



HD Picture VI



HD Picture VII



The Problems with this approach (I)

Problem 1.- What is the compexity of this method?

Answer.–

– The complexity of each step is polynomial in the number of variables

and the evaluation complexity of the input system. Thus, complexity

mainly depends on the number of steps.

– The number of “homotopy steps” is bounded by O(µnorm(Γ)2)

([Shub-Smale, 91]), where

µnorm(Γ(F,G, ζ)) := max{µnorm(Ft, ζt) : (Ft, ζt) ∈ Γ(F,G, ζ)}.



The Problems with this approach (II)

Problem 2.- worst case complexity is doubly exponential in the number

of variables (voir exemple dans [castro–Hagele–Morais–P., 01]), and

then?

Answer.–

– “Worst case complexity” does not suffice to explain the behavior.

Look at average complexity!.

– The word “average” forces to have some probability distribution, .

which one?.



The Problems with this approach (III)

Answer (Sub-problem 2b).–

– The set IP(H(d)) is a complex and compact Riemannian manifold.

Thus, it has an associated measure (a volume form in dνIP) such that

the volume νIP[IP(H(d)] is finite. Then we also have a probability

distribution.

– The probability measure in IP(H(d)) equivalent to Gaussian distrib-

ution in the affine space H(d).

Sub–problem 2c.–Since computing is discrete, what is the distribution

for discrete inputs (namely polynomials with coefficients in a discrete

field)?.



The Problems with this approach (IV)

Problem 3.–Anyway, this approach is not defining an algorithm (since

we have o initial pair). Is there a true algorithm of polynomial average

complexity?.

Answers.–

1.– Yes.

2.– Polynomial in the dimension of the space of inputs (dense encoding

of polynomials).



Once again HD

Input F ∈ H(d)

Apply homotopic defomration (HD) with initial pair

(G, z) ∈ H(d) × IPn(C)

following the curve Γ(F,G, z) of Γ = π−1
1 ([F,G])) that contains

(G, z).

Output:

– Either ERROR

– or an approximate zero of F .



HD with bounded resources

HD with resources bounded by a function ϕ(f, ε).

Input F ∈ H(d), ε > 0

Perform ϕ(f, ε) steps of homotopic deformation (HD) with initial pair

(G, z) ∈ H(d) × IPn(C)

following the curve Γ(F,G, z) in Γ = π−1
1 ([F, g])) that contains (G, z).

Output:

– Either ERROR

– or an approximate zero of F .



ε−efficient Initial Pairs

DefinitionA pair (G, ζ) ∈ V is ε−efficient if the resources function

for the resources:

ϕ(f, ε) := 105n5N2d3ε−2.

For randomly chosen input system F ∈ IP(H(d)) the algorithm HD

with initial pair (G, z) and resources bound ϕ outputs un approximate

zero of F with probability greater than:

1− ε.



HD with ε−efficient initial pair

Let (Gε, ζε) be an ε−efficient initial pair.

Input F ∈ H(d), ε > 0

Perform ϕ(f, ε) steps of HD with initial pair

(Gε, ζε) ∈ H(d) × IPn(C)

following Γ(F,Gε, ζε).

Output:

– Either ERROR

– or an approximate zero of F .



Existence

Theorem 7 ([Shub-Smale, BezV, Beltrán-P, Bez V 1/2] There

exist ε−efficient initial pairs.

Remark 8 Even with ζε = (1 : 0 : · · · : 0).

Smale 17th Problem.– How to construct ε−efficient initial pairs?.



Questor Sets

[Beltrán- P., 2006]

A subset G ⊆ V (incidence variety) is a questor set for HD if:

for every ε > 0 the probability that a randomly chosen pair (G, ζ) ∈ G
is ε−efficient for HD is greater than

1− ε.



HD with questor sets

Input F ∈ H(d), ε > 0

Guess at random (G, ζ) ∈ G

Apply ϕ(f, ε) deformation steps HD between G and F , starting

at (G, ζ).

Output:

– Either ERROR (with probability smaller than ε)

– or un approximate zero of F (with probability greater than 1− ε).



Comments

Minor: It is a probabilistic algorithm

Relevant: The questor set G must be easy to construct and easy

t handle .



Bézout 51
2

Theorem[Beltrán, P. 2006] We succeeded to exhibit a constructible and

easy to mhandle questor set.



Towards a Questor Set I

e := (1 : 0 : . . . : 0) ∈ IPn(C) a “pole” in the complex sphere.

Ve := {F ∈ H(d) : F (e) = 0}. Systems vanising at the “pole” e.

F ∈ Ve 7−→ F : Cn+1 −→ Cn.

The tangent mapping TeF := DF (e) restricted to the tangent space

TeIPn(C) = e⊥ = Cn ⊆ Cn+1.:

TeF := TeIPn(C) = Cn −→ Cn.



A First Approach

Le := {F ∈ Ve : TeF = F}. “linear part” of the systems in Ve.

L⊥e := Systems in Ve of order greater than 2 at e.

Remark.- Ve, Le, L⊥e are linear subspaces of H(d) given by their coef-

ficient list.

Näıve Idea: Consider

G := {(G, e) : G ∈ Ve = L⊥e
⊕

Le}.(?)



Towards Questor Sets II (Le)

U(n+ 1):= unitary matrices defined in Cn+1.

H(1) := Mn×n+1(C) space of n× (n+ 1) complex matrices.

X(d) :=

X
d1−1
0 · · · 0
... . . . ...

0 · · · Xdn−1
0

 .

V
(1)
e := {(M,U) : M ∈ H(1), U ∈ U , UKer(M) = e}.



Liner Part Le

ψe : V (1)
e −→ Le

ψe(M,U) := X(d)(MU)

X1
...
Xn

 .

Le := Im(ψe(M,U)).

A useful constant

T :=
(
n2+n
N

)n2+n
∈ R, t ∈ [0, T ].



Towards a questor set III

G := [0, T ]× L⊥e × V
(1)
e .

G : G −→ Ve,

(t, L,M,U) ∈ G 7−→ G(t, L,M,U) ∈ Ve

G(t, L,M,U) := (1− t
1

n2+n)1/2L+ t
1

n2+nψe(M,U) ∈ Ve,



Towards a questor set IV Bezout51
2

Theorem 9 (Beltrán-P., 2005a) For every degree list (d) :=

(d1, . . . , dn), the set

G(d) := Image(G) = G(G).

is questor set of initial pairs for HD. Namely,

A system (G, e) ∈ G(d) chosen at random is ε−efficient for HD

with probability greater than

1− ε.



The Algorithm

Input: F ∈ H(d), ε > 0.

Guess at random (G, e) ∈ G(d) (Guess (t, L,M)...)

Apply ϕ(F, ε) homotopic deformation steps

Output: Either “ERROR” or an approximate zero z of F .



Meaning (I)

Theorem 10 [Beltrán-P,06] There is a probabilistic algorithm (bounded
error probability) for non–universal projective solving of systems of ho-
mogeneous polynomial equations such that for every positive real number
ε > 0:

• The running time of the algorithm is at most:

O(n5N2ε−2)

• The probability that the algorithm outputs an approximate zero is
greater than:

1− ε



Cubic Equations

Corollary 11 [Beltrán-P,06] There is a probabilistic algorithm (bounded

error probability) for non–universal projective solving of systems of ho-

mogeneous polynomial equations of degree 3 such that for every positive

real number ε > 0:

• The running time of the algorithm is at most:

O(n13ε−2)

• The probability that the algorithm outputs an approximate zero is

greater than:

1− ε



Remarque Taking ε = 1/n2, the algorithm computes approximate

zeros with probability greater than

1− 1/n2.

in time

O(n15).



Average complexity I(Smale’2 17th )

In [Beltrán-P., 07] we slighty modified our algorithm to get

average complexity:

Definition 12 (Strong Questor Set) A subset G ⊆ V is a strong

questor set if

EG[Aε] ≤ 104n5N3d3/2ε2,

where

Aε(G, z) := ProbIP(H(d))
[µnorm(F,G, z) > ε−1].



Strong Questor Set

Theorem 13 (Beltrán-P.,07) For every strong questor set G, there

is a measurable subset C such that the following holds:

ProbG[C] ≥ 4/5.

For every ε > 0 and for every (G, z) ∈ C, (G, z) is a ε−efficient initial

pair.

Theorem 14 (Beltrán-P.,07) The set G(d)is a strong questor set.



Average Complexity

Corollary 15 There is a bounded error probability algorithm of aver-

age polynomial time that for all but a zero measure subset of systems

of homogeneous polynomial equations computes projective approximate

zeros .

By average complexity we mean:

EIP(H(d))
[TP] :=

1

νIP[IP(H(d))]

∫
IP(H(d))

TP(f)dνIP = O(n5N3),

TP(f) := running time on input f .



The affine case

[Beltrán-P., 07] :

Corollary 16 There is a bounded error probability algorithm of aver-

age polynomial time that for all but a zero measure subset of systems of

homogeneous polynomial equations computes affine approximate zeros.

By average complexity we mean:

EIP(H(d))
[TA] :=

1

νIP[IP(H(d))]

∫
IP(H(d))

TA(f)dνIP = O(N5),

TA(f) :=running time on input f .



The key of the Affine Case

[Beltrán-P., 07]

Theorem 17 Let δ > 0 be a positive real number. For every F ∈
IP(H(d)), let

VA(F ) := {x ∈ Cn : f(x) = 0},

be the set of affine solutions Let

||VA(F )|| := sup{||x|| : x ∈ VA(F )} ∈ [0,∞],

the maximal norm of its zeros.

Then, the probability that for a randomly chosen affine system F ∈
IP(H(d)) we have ||VA(F )|| > δ is at most:

D
√
πnδ−1



.

In fact, we proved:

EIP(H(d))
[||VA(f)||] = D

Γ(1/2)Γ(n+ 1/2)

Γ(n)
≤ D

√
πn.



Immediate Open Questions

Real Solving ?: Zero–dimensional Case.

Singular Zeros: Homotopy Techniques?.

Adaptability to Other Input Data Structures: Does it work for straight–

line programa input structure?.


