# Conceptual Aspects to solve Smale's 17–th Problem: complexity, probability, polynomial equations and Integral

Geometry. \*

Luis M. Pardo Universidad de Cantabria

April 11, 2007

\*IMA, April 2007

### SMALE'S LIST

. . .

. . .

18 Problems, as....

Problem 1: The Riemann Hypothesis

Problem 2: The Poincaré Conjecture (Perelman)

Problem 3: Does P = NP ?

Problem 4: Integer Zeros of a Polynomial.

Problem 5: Height Bounds for diophantine curves.

Problem 9: The Linear Programming Problem.

Problem 14: The Lorentz Attractor Problem. (Tucker, 02)

17-th Problem.

Can a zero of n complex polynomial equations in n unknowns be found approximately on the average, in polynomial time with a uniform algorithm?.

(Beltrán- ${\sf P.}$  , 06)

HISTORICAL SCKETCH

XIX-th century: Modern Elimination Theory Bézout, Cayley, Hilbert, Kronecker, Sturm, Sylvester

1900–1930: Macaulay, König,...

1930–1965: Vanished on the air?

1965–: Monomial orders and standard–Gröbner Basis Hironaka, Buchberger,...,Rewriting Techniques

Sparse Approach... Bernstein, Kouchnirenko, Sturmfels....

Complexity Classes Approach... Cook [P = NP ?]

1995–: Intrinsical Methods adapted to data structures  $TERA, KRONECKER \dots$ 

A SIMPLIFIED VERSION

**Goal:** Efficient Algorithmics for Problems Given by Polynomial Equations

Potential Applications : <sup>†</sup> Information Theory (Coding, Crypto,...), Game Theory, Graphic and Mechanical Design, Chemist, Robotics, ...

The Problem: Efficiency

**Rk.** Most algorithms for Elimination Problems run in worse than exponential time in the number of variables:

Intractable for Practical Applications.

<sup>†</sup>Many of them Casual but not Causal

## SOLVING

INPUT: A list of multivariate polynomial equations:  $f_1, \ldots, f_s \in \mathbb{C}[X_1, \ldots, X_n]$ .

OUTPUT: A description of the solution variety  $V(f_1, \ldots, f_s) := \{x \in \mathbb{C}^n : f_i(x) = 0...\}.$ 

**Description:** The kind of description determines the kind of problems/questions you may answer about  $V(f_1, \ldots, f_s)$ 

Example: Symbolic/Algebraic Computing  $\longrightarrow$  questions involving quantifiers

Hilbert's Nulltellensatz (HN) Given  $f_1, \ldots, f_s$  decide whether the following holds:

 $\exists x \in \mathbb{C}^n \ f_i(x) = 0, \ 1 \le i \le s.$ 

DIFFERENT SCHOOLS

Syntactic Standard, Gröbner Basis, Rewriting...a Long List

Structural :Find the suitable complexity class for the problem NP-hard, PSPACE,...

Semi-Semantics: Using combinatorial objects (hence semi-semantic) to control complexity: Sparse School: using Newton polytopes Bernstein. Kouchnirenko, Sturmfels...

Semantic/Intrinsic: Mostly the TERA group: Cantabria (P., Morais, Montaña, Hägele,...); Polytechnique (Giusti, Bostan, Lecerf, Schost, Salvy...); \* Buenos Aires (Heintz, Krick, Matera, Solerno, ...); \* Humboldt (Bank, Mbakop,Lehmann) Some Concepts underlying Semantic Schools

- Polynomials viewed as programs.
- Parameters of Semantical Objects (algebraic varieties) dominate complexity.

**Degree of** V ([Heintz, 83], [Vogel, 83], [Fulton, 81]) : $\ddagger$  of intersection points with generic linear varieties.

Height of V: Bit length of the coefficients CHOW FORM

\* Geometric Degree of a Sequence:

 $\delta(V_1,\ldots,V_r) := \max\{\deg(V_i) : 1 \le i \le r\}.$ 

#### A STATEMENT

**Theorem 1** There is a bounded error probability Turing machine that answers **HN** in time polynomial in

## $L \delta H$ ,

where

L is the input length (whatever usual data structure),

 $\pmb{\delta}$  is the geometric degree of a deformation sequence (Kronecker's deformation) and

H is the height of the last equi-dimensional variety computed.

EXAMPLES

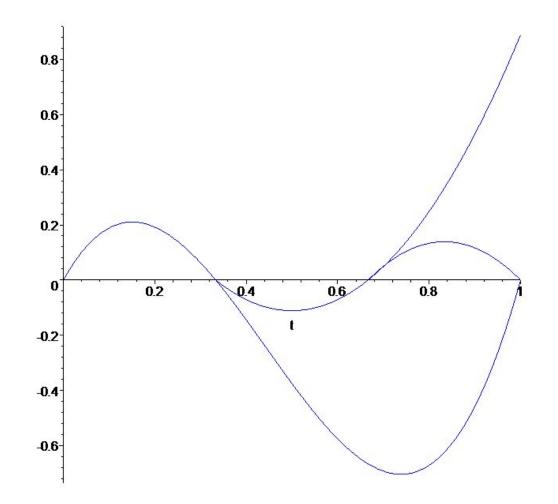
$$X_1^2 - X_1 = 0, \dots, X_n^2 - X_n = 0, k - \sum_{i=1}^n m_i X_i = 0.$$

$$X_1^2 - X_1 = 0, \dots, X_n^2 - X_n = 0, k - \sum_{i=1}^n 2^{i-1} X_i = 0.$$

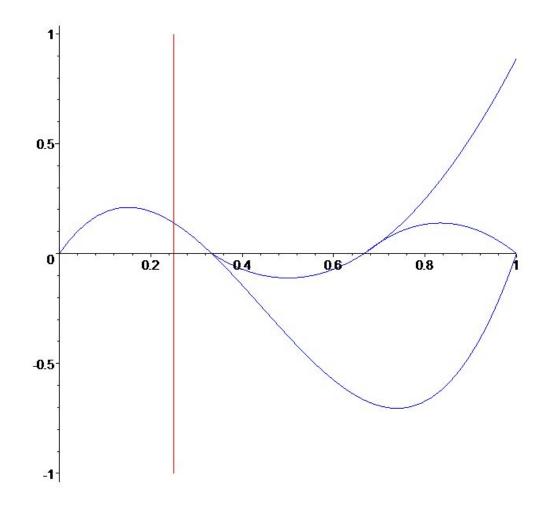
$$X_1^2 - X_1 = 0, \dots, X_n^2 - X_n = 0,512 - \sum_{i=1}^n 2^{i-1}X_i = 0.$$

$$X_2^2 - X_1 = 0, X_3^2 - X_2 = 0 \dots, X_n^2 - X_{n-1} = 0, k - X_n = 0.$$

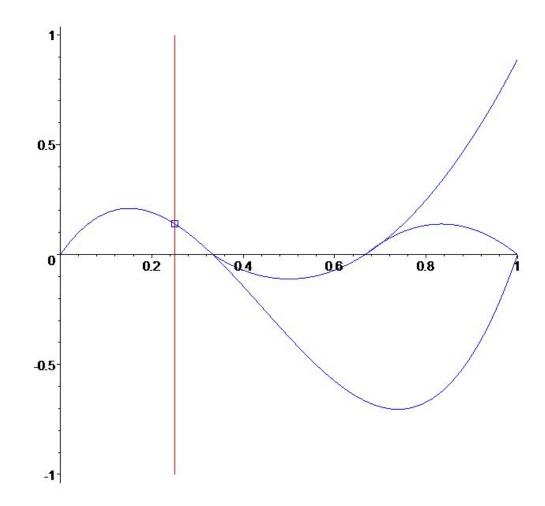
## KRONECKER'S DEFORMATION



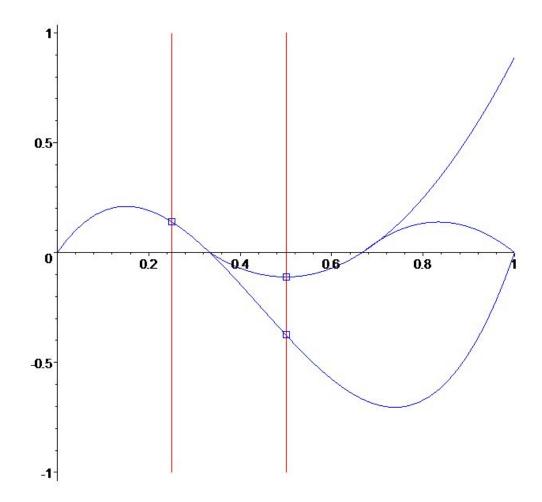
INITIALIZE



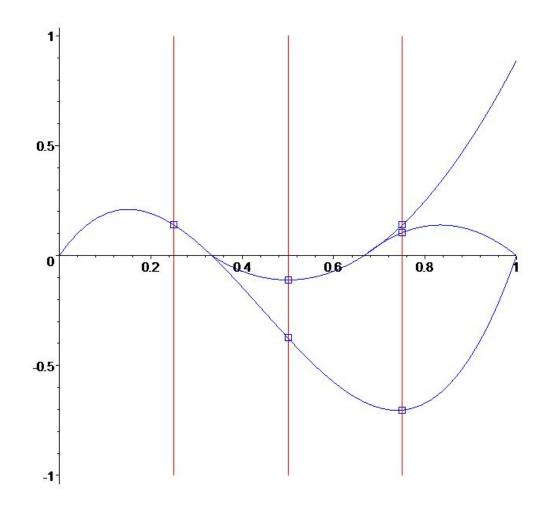
LIFTING FIBERS



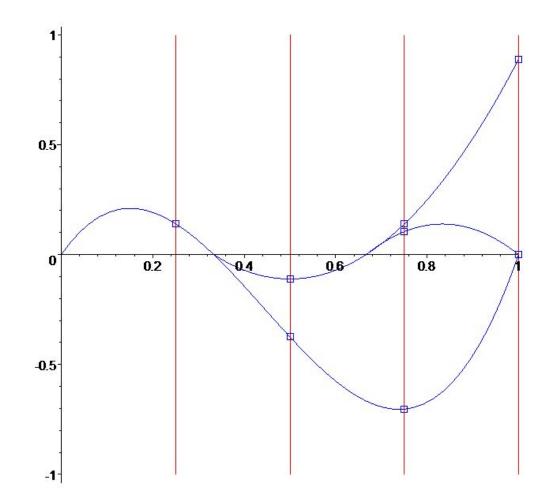
JUMPING FROM A LIFTING FIBER TO A NEW ONE



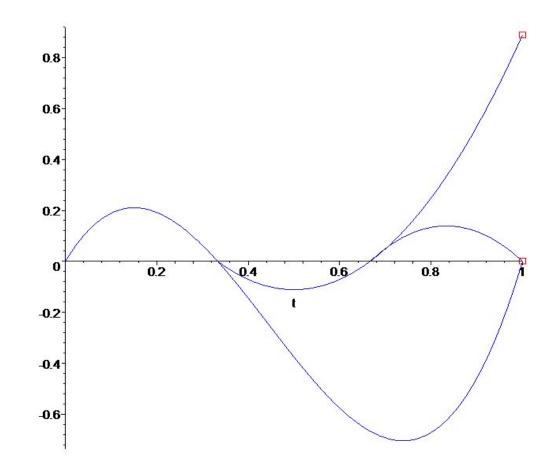
And so on...



UNTIL THE END



THE TARGET





We got:

**A description** of the target variety through a birational isomorphism, even biregular in the zero–dimensional case, that contains information that suffices to answer elimination questions.

But...

Is that optimal in terms of complexity ?

## Algorithms based on a deformation:

A sequence suite  $V_1, \ldots, V_n$  of intermediate varieties to solve before "eliminating"

## Universal Solving

An algorithm is called Universal if its output contains information enough about the variety of solutions to answer all elimination questions.

**Remark 2** Most Computer Algebra/Symbolic Computation procedures are Universal.

#### LOWER COMPLEXITY BOUNDS

**Theorem** [Castro-Giusti-Heintz-Matera-P.,2003] Any universal solving procedure requires exponential running time.

\* TERA algorithm is essentially optimal.
\* Running time is greater than the Bézout Number:

$$\prod_{i=1}^n deg(f_i) \ge 2^n.$$

\* No Universal solving procedure may improve this lower complexity bound.

# Searching Non–Universal Solving Procedures.

Searching for procedures that compute partial (non-universal) information about the solution variety in polynomial running time.

Smale's 17th Problem

Some Preliminary Ideas

What is "Partial Information"?

Some Preliminary Ideas

What is "Partial Information"?

For instance, a "good approximation" to some of the solutions

What is "Partial Information"?

For instance, a "good approximation" to some of the solutions

Example INPUT:  $f_1, \ldots, f_n \in \mathbb{Q}[X_1, \ldots, X_n]$  t.q.  $\#V(f_1, \ldots, f_n) < \infty$ .

OUPUT:  $z \in \mathbb{Q}[i]^n$  such that there exists  $\zeta \in V(f_1, \ldots, f_n)$  satisfying

 $||\zeta - z|| < \varepsilon,$ 

for som  $\varepsilon > 0$ .

**APPROXIMATIONS?** 

Some Multivariate Elimination and some lattice reduction algorithms (under KLL approach) yield

**Theorem 3 (Castro-Hagele-Morais-P., 01)** *There is a computational equivalence between:* 

- Approximations  $z \in \mathbb{Q}[i]^n$  of some of the zeros $\zeta \in V(f_1, \ldots, f_n)$ ,
- A description "á la Kronecker-TERA" of the residual class field of  $\mathbb{Q}_{\zeta}$ .

Theorem (cont.)

The running time of this computational equivalence is polynomial in:

- $D_{\zeta}$  = degree of the residual class field  $\mathbb{Q}_{\zeta}$ .
- L = input size.
- $H_{\zeta} = height of the residual class field \mathbb{Q}_{\zeta}$ .

Namely, a "good" approximation contains information that suffices for elimination (although it is not clear whether you should compute it)

#### IMMEDIATE APPLICATION

**Theorem 4** There is an algorithm that performs the following taks:

- INPUT: A univariate polynomial  $f \in \mathbb{Q}[T]$ .
- OUTPUT: A primitive element description of the normal closure of f.

*THe running time of this procedure is polynomial in the following quatities:* 

 $d, h, \sharp Gal_{\mathbb{Q}}(f),$ 

where d is the degree of f and h is the bit length of the coefficients of f.

**Remark:** A geometric algorithm such that the complexity is not of order d! except when unavoidable.

GOOD APPROXIMATION?

For simplicity we work on the projective space

Systems of homogeneous polynomials:

 $F := [f_1, \dots, f_n] \in \mathcal{H}_{(d)},$  $deg(f_i) = d_i, (d) := (d_1, \dots, d_n),$  $\mathcal{H}_{(d)} := \text{Complex vector space of all equations of given degree.}$ 

$$V_{\mathbb{P}}(F) := \{ x \in \mathbb{P}_n(\mathbb{C}) : F(x) = 0 \}.$$

The incidence variety (Room-Kempf, Shub-Smale)

$$V := \{ (F, x) \in \mathbb{IP}(\mathcal{H}_{(d)} \times \mathbb{IP}_n(\mathbb{C}) : F(x) = 0 \}.$$

#### PROJECTIVE NEWTON'S OPERATOR

(M. Shub amd S. Smale 1986–1996)

 $\pi : \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow \mathrm{IP}_n(\mathbb{C})$ 

**Notations:** *Projective Metrics : Riemannian :* 

$$d_R(\pi(x), \pi(x')) := \arccos\left(\frac{|\langle x, x' \rangle|}{\|x\| \|x'\|}\right).$$

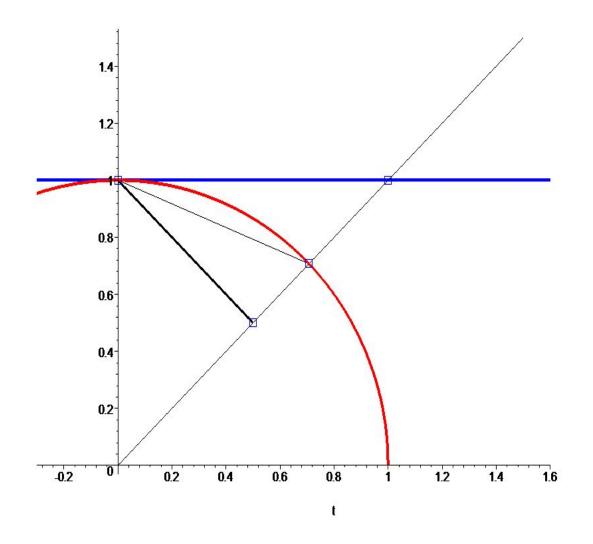
Fubini-Study :

$$d_P(\pi(x), \pi(x')) := \sin d_R(\pi(x), \pi(x')).$$

Tangent Distance :

$$d_T(\pi(x), \pi(x')) := tand_R(\pi(x), \pi(x')).$$





NEWTON'S OPERATOR II

Tangent Space at a point  $z \in \operatorname{IP}_n(\mathbb{C})$ :

$$T_z \mathbb{IP}_n(\mathbb{C}) := \{ w \in \mathbb{C}^{n+1} : \langle w, z \rangle = 0 \}.$$

A system of polynomial equations  $F := [f_1, \ldots, f_n]$ , Jacobian matrix :

$$DF(z) : \mathbb{C}^{n+1} \longrightarrow \mathbb{C}^n.$$

If z is not a critical point, the restriction to the tangent space:

$$T_z f := DF(z) |_{T_z} : T_z \mathbb{IP}_n(\mathbb{C}) \longrightarrow \mathbb{C}^n.$$

The inverse:

$$(T_z f)^{-1}$$
 :  $\mathbb{C}^n \longrightarrow \mathbb{C}^{n+1}$ .

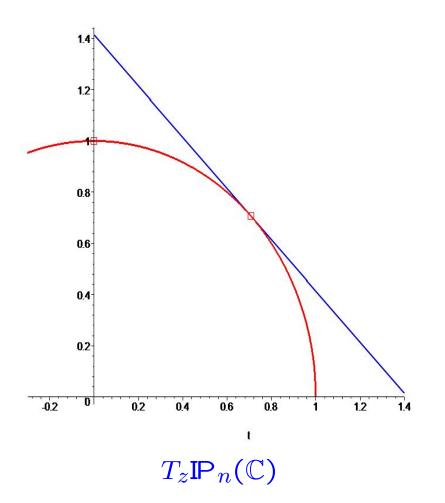
PROJECTIVE NEWTON'S OPERATOR III

The canonical projection  $\pi : \mathbb{C}^{n+1} \setminus \{0\} \longrightarrow \mathrm{IP}_n(\mathbb{C}).$ 

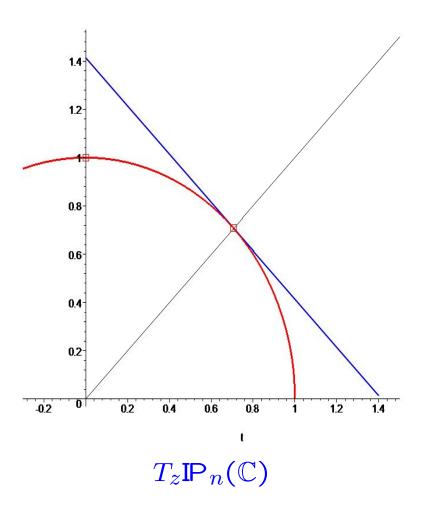
For every non-critical  $\pi(z) \in \mathbb{IP}_n(\mathbb{C})$  Newton's operator is given by:

$$N_F(\pi(z)) := \pi \left( z - \left( DF(z) \mid_{T_z} \right)^{-1} F(z) \right),$$

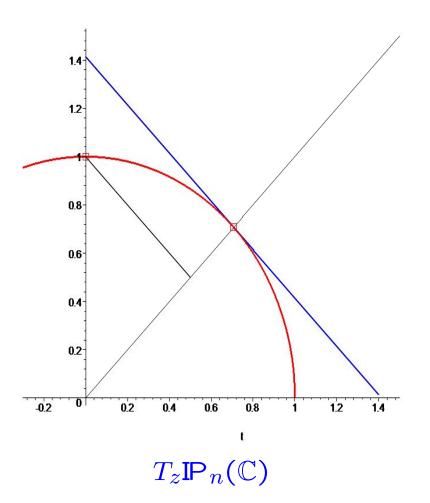
Some pictures I



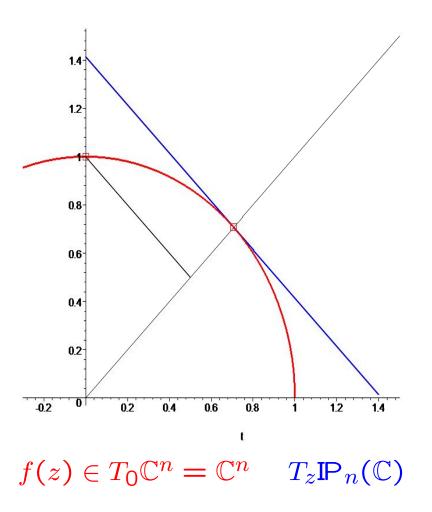
N. Op. Picture II



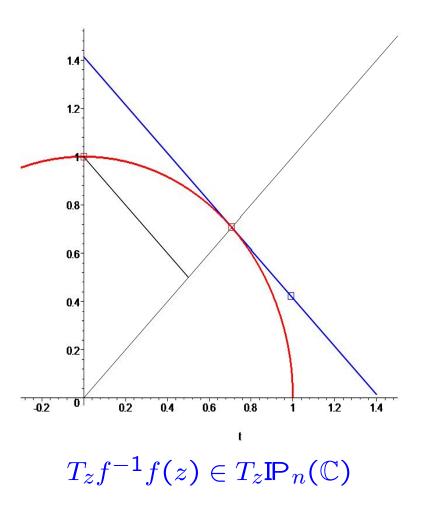
N. Op. Picture III



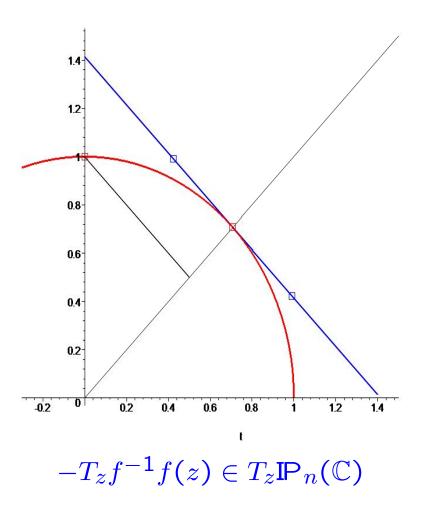
N. Op. Picture IV



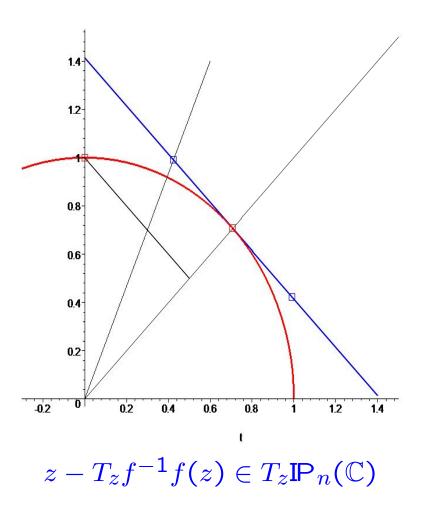
N. Op. Picture V



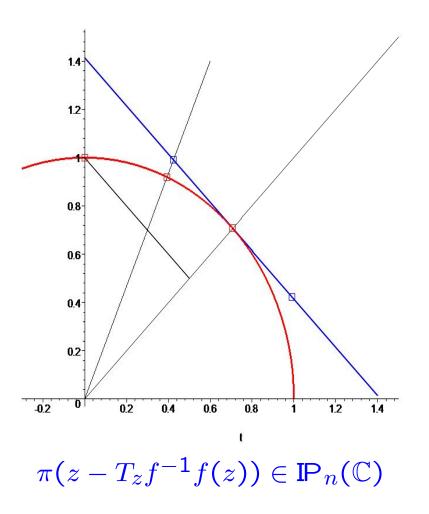
N. Op. Picture VI



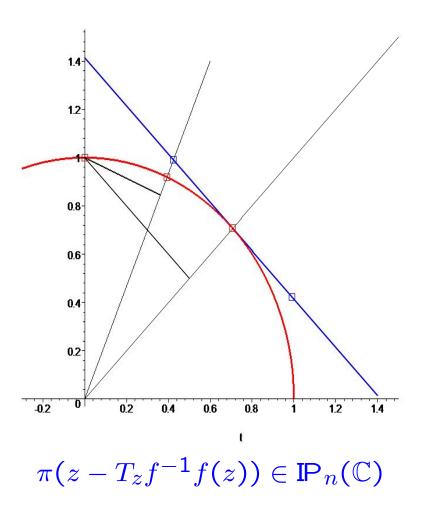
N. Op. Picture VII



N.Op. Picture VIII



N.Op. Picture IX



APPROXIMATE ZEROS

**\*** INPUT: A System of Homogeneous Polynomials

 $F := [f_1, \ldots, f_n] \in \mathcal{H}_{(d)},$ 

 $deg(f_i) = d_i, (d) := (d_1, \ldots, d_n).$ 

A zero  $\zeta \in V(F)$ 

An Approximate Zero(Smale'81) a point  $z \mathbb{IP}_n(\mathbb{C})$  such that Newton's operator  $N_F$  applied to z converges very fast to the zero.

$$d_T(N_F^k(z),\zeta) \leq rac{1}{2^{2^{k-1}}}.$$

 $d_T :=$ tangent "distance".

Condition Number ([Shub-Smale, 86–96])

$$\mu_{norm}(F,\zeta) := \|F\| \|T_z F^{-1} \Delta(\|\zeta^{d_i-1}\| d_i^{1/2})\|.$$
  
Condition Number Theorem : *Discriminant Variety in*  $\mathbb{P}(\mathcal{H}_{(d)}).$ 

$$\Sigma_{\zeta} := \{ F \in \operatorname{IP}(\mathcal{H}_{(d)}) : \zeta \in V(F), T_{\zeta}F \notin GL(n,\mathbb{C}) \}.$$

 $\Sigma := \bigcup_{\zeta \in \mathbb{IP}_n(\mathbb{C})} \Sigma_{\zeta}.$  (Systems with a critical zero).

Fiber Distance :  $\rho(F, \zeta) := d_P(F, \Sigma_{\zeta}).$ 

Theorem 5 (Shub-Smale, 91)

$$\mu_{norm}(F,\zeta) := \frac{1}{\rho(F,\zeta)}.$$

Smale's  $\gamma-$ Theory

$$d := \max\{d_i : 1 \le i \le n\}.$$

Theorem 6 (Smale, 81) Si:

$$d_T(z,\zeta) \leq rac{3-\sqrt{7}}{d^{\frac{3}{2}}\mu_{norm}(F,\zeta)},$$

then, z is an approximate zero associated to some zero  $\zeta$  of F.

# $\frac{* \text{ INPUT:}}{\text{A System } F \in \mathbf{IP}(\mathcal{H}_{(d)}),$

#### \* OUTPUT:

UNIVERSAL SOLVING: An Approximate Zero z for each zero  $\zeta \in V(F)$ .

Lower Complexity Bound: Bézout's Number ( $\mathcal{D} := \prod_{i=1}^{n} d_i$ )  $\Rightarrow$  Intractable

#### Or:

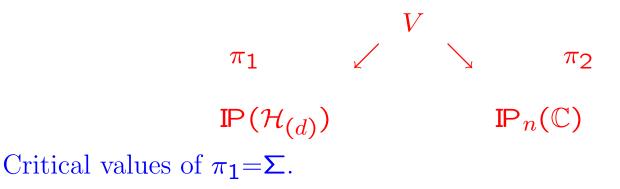
NON-UNIVERSAL SOLVING : An Approximate Zero z for some of the zeros  $\zeta \in V(F)$ .

Complexity of Non–Universal Solving? (= Smale's 17th Problem) DÉFORMATION HOMOTOPIC DEFORMATION (HD)

Incidence Variety:

 $V := \{ (F, \zeta) \in \operatorname{IP}(\mathcal{H}_{(d)} \times \operatorname{IP}_n(\mathbb{C}) : f(\zeta) = 0 \}.$ 

Two Canonical Projections:



In fact, the following is a "covering map":

 $\pi_1: V \setminus \Sigma' \longrightarrow \operatorname{IP}(\mathcal{H}_{(d)}) \setminus \Sigma.$ And the real codimension is:  $\operatorname{codim}_{\operatorname{IP}(\mathcal{H}_{(d)})}(\Sigma) \geq 2.$ 

### NAMELY

Except for a null measure subset, for each  $F, G \in \operatorname{IP}(\mathcal{H}_{(d)}) \setminus \Sigma$ , :  $[F, G] \cap \Sigma = \emptyset$ ,

where

$$[F,G] := \{(1-t)F + tG, t \in [0,1]\}.$$

and the following is also a "covering space":

$$\pi_1:\pi_1^{-1}([F,G])\longrightarrow [F,G].$$

Namely, for each  $\zeta \in V(G)$  there is a curve:

 $\Gamma(F,G,\zeta) := \{ (F_t,\zeta_t) \in V : \zeta_t \in V(F_t), t \in [0,1] \}.$ 

AN ALGORITHMIC PHILOSOPHY

Start at  $(G, \zeta)$  (t = 1) and closely follow (by applying Newton's projective operator) a polygonal close to  $\Gamma(F, G, \zeta)$  until you find an approximate zero of F.

INPUT  $F \in \mathcal{H}_{(d)}$ 

With Initial Pair

 $(G,\zeta) \in \mathcal{H}_{(d)} \times \operatorname{IP}_n(\mathbb{C}), \ G(\zeta) = 0.$ 

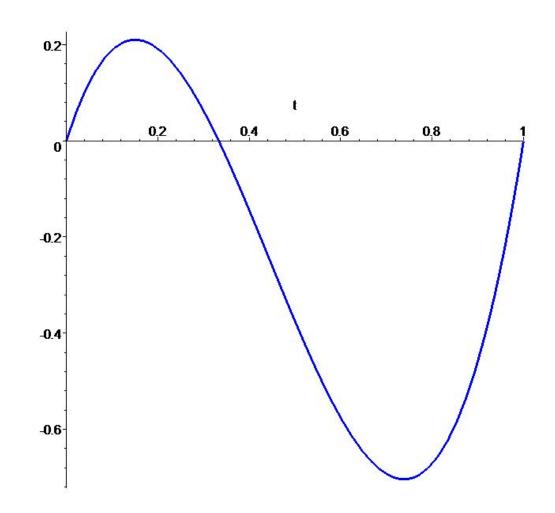
Following [F,G] and the cruve  $\Gamma$ 

OUTPUT

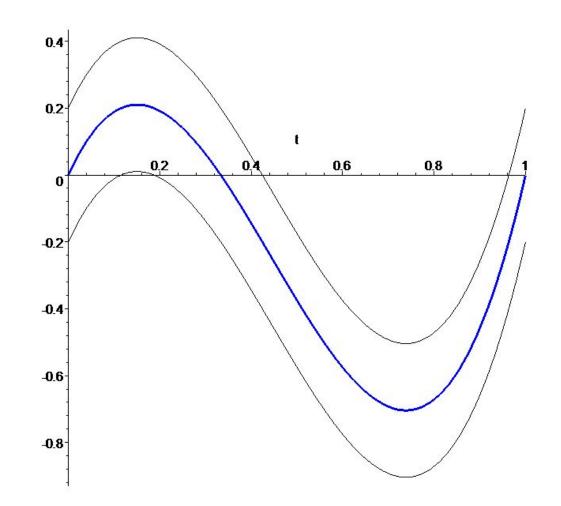
-- Either ERROR

-- Or an approximate zero  $z \in \operatorname{IP}_n(\mathbb{C})$  associated to some zero  $\zeta \in \operatorname{IP}_n(\mathbb{C})$  of  $F \in \mathcal{H}_{(d)}$ 

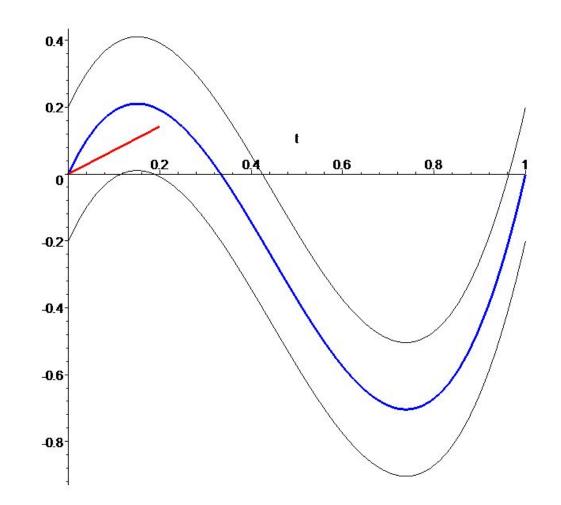
HD PICTURE I



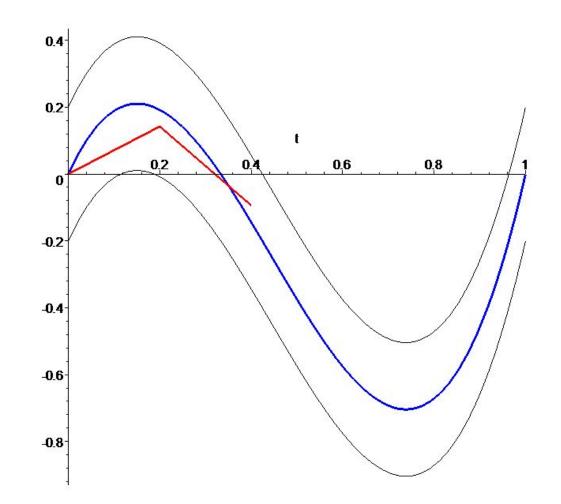
HD PICTURE II



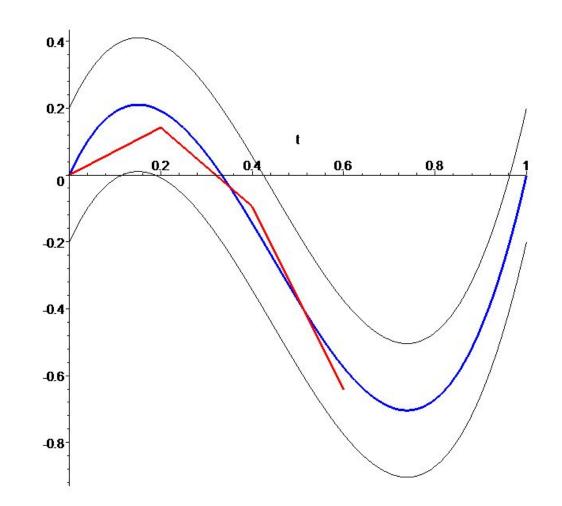
HD PICTURE III



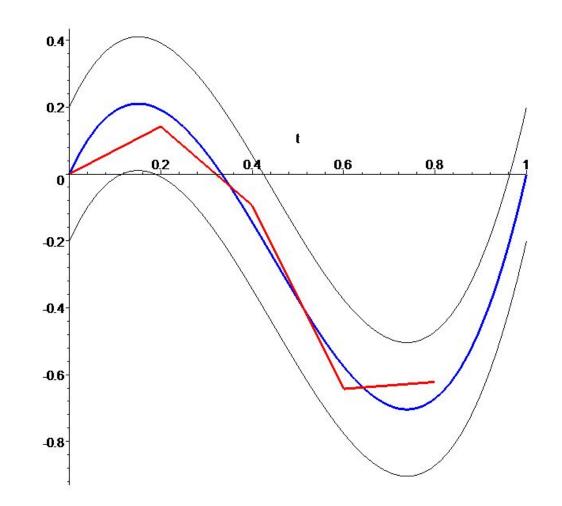
HD PICTURE IV



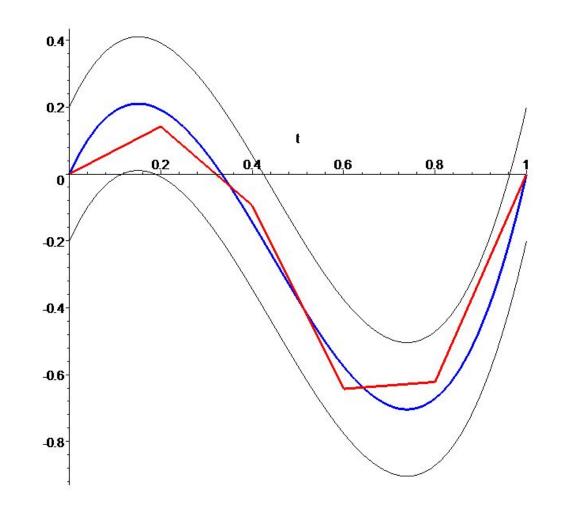
HD PICTURE V



HD PICTURE VI



HD PICTURE VII



**Problem 1.-** What is the compexity of this method?

#### Answer.-

- The complexity of each step is polynomial in the number of variables and the evaluation complexity of the input system. Thus, complexity mainly depends on the number of steps.

– The number of "homotopy steps" is bounded by  $O(\mu_{norm}(\Gamma)^2)$  ([Shub-Smale, 91]), where

 $\mu_{norm}(\Gamma(F,G,\zeta)) := max\{\mu_{norm}(F_t,\zeta_t) : (F_t,\zeta_t) \in \Gamma(F,G,\zeta)\}.$ 

The Problems with this approach (II)

**Problem 2.-** worst case complexity is doubly exponential in the number of variables (voir exemple dans [castro-Hagele-Morais-P., 01]), and then?

#### Answer.-

"Worst case complexity" does not suffice to explain the behavior.
 Look at average complexity!.

– The word "average" forces to have some probability distribution, . which one?.

## Answer (Sub-problem 2b).-

- The set  $\mathbb{IP}(\mathcal{H}_{(d)})$  is a complex and compact Riemannian manifold. Thus, it has an associated measure (a volume form in  $d\nu_{\mathbb{IP}}$ ) such that the volume  $\nu_{\mathbb{IP}}[\mathbb{IP}(\mathcal{H}_{(d)})]$  is finite. Then we also have a probability distribution.

- The probability measure in  $\mathbb{IP}(\mathcal{H}_{(d)})$  equivalent to Gaussian distribution in the affine space  $\mathcal{H}_{(d)}$ .

**Sub–problem 2c.**—Since computing is discrete, what is the distribution for discrete inputs (namely polynomials with coefficients in a discrete field)?.

The Problems with this approach (IV)

**Problem 3.**—Anyway, this approach is not defining an algorithm (since we have o initial pair). Is there a true algorithm of polynomial average complexity?.

#### Answers.-

1.– Yes.

2.– Polynomial in the dimension of the space of inputs (dense encoding of polynomials).

#### ONCE AGAIN HD

INPUT  $F \in \mathcal{H}_{(d)}$ 

Apply homotopic defomration (HD) with initial pair

$$(G,z) \in \mathcal{H}_{(d)} \times \mathrm{IP}_n(\mathbb{C})$$

following the curve  $\Gamma(F, G, z)$  of  $\Gamma = \pi_1^{-1}([F, G]))$  that contains (G, z).

OUTPUT:

– Either ERROR

- or an approximate zero of F.

HD with resources bounded by a function  $\varphi(f,\varepsilon)$ .

INPUT  $F \in \mathcal{H}_{(d)}, \varepsilon > 0$ 

Perform  $\varphi(f, \varepsilon)$  steps of homotopic deformation (HD) with initial pair  $(G, z) \in \mathcal{H}_{(d)} \times \mathbb{IP}_n(\mathbb{C})$ 

following the curve  $\Gamma(F, G, z)$  in  $\Gamma = \pi_1^{-1}([F, g])$  that contains (G, z).

OUTPUT:

– Either ERROR

- or an approximate zero of F.

 $\varepsilon$ -efficient Initial Pairs

**Definition**A pair  $(G, \zeta) \in V$  is  $\varepsilon$ -efficient if the resources function for the resources:

$$\varphi(f,\varepsilon) := 10^5 n^5 N^2 d^3 \varepsilon^{-2}.$$

For randomly chosen input system  $F \in \mathbf{IP}(\mathcal{H}_{(d)})$  the algorithm HD with initial pair (G, z) and resources bound  $\varphi$  outputs un approximate zero of F with probability greater than:

$$1-\varepsilon$$
.

Let  $(G_{\varepsilon}, \zeta_{\varepsilon})$  be an  $\varepsilon$ -efficient initial pair.

INPUT  $F \in \mathcal{H}_{(d)}, \varepsilon > 0$ 

Perform  $\varphi(f, \varepsilon)$  steps of HD with initial pair

 $(G_{\varepsilon},\zeta_{\varepsilon})\in\mathcal{H}_{(d)}\times\mathbb{IP}_n(\mathbb{C})$ 

following  $\Gamma(F, G_{\varepsilon}, \zeta_{\varepsilon})$ .

**OUTPUT:** 

– Either ERROR

- or an approximate zero of F.



**Theorem 7** ([Shub-Smale, BezV, Beltrán-P, Bez V 1/2] There exist  $\varepsilon$ -efficient initial pairs.

**Remark 8** Even with  $\zeta_{\varepsilon} = (1:0:\cdots:0)$ .

**Smale 17th Problem.** How to construct  $\varepsilon$ -efficient initial pairs?.

QUESTOR SETS

[Beltrán- P., 2006]

A subset  $\mathcal{G} \subseteq V$  (incidence variety) is a questor set for HD if:

for every  $\varepsilon > 0$  the probability that a randomly chosen pair  $(G, \zeta) \in \mathcal{G}$ is  $\varepsilon$ -efficient for HD is greater than

 $1-\varepsilon$ .

Input  $F \in \mathcal{H}_{(d)}, \varepsilon > 0$ 

Guess at random  $(G, \zeta) \in \mathcal{G}$ 

Apply  $\varphi(f, \varepsilon)$  deformation steps HD between G and F, starting at  $(G, \zeta)$ .

OUTPUT:

- Either ERROR (with probability smaller than  $\varepsilon$ )
- or un approximate zero of F (with probability greater than  $1 \varepsilon$ ).



## *Minor:* It is a probabilistic algorithm

 $\mathit{Relevant:}$  The questor set  $\mathcal G$  must be easy to construct and easy t handle .



**Theorem**[Beltrán, P. 2006] We succeeded to exhibit a constructible and easy to mhandle questor set.  $e := (1 : 0 : \ldots : 0) \in \operatorname{IP}_n(\mathbb{C})$  a "pole" in the complex sphere.

 $V_e := \{F \in \mathcal{H}_{(d)} : F(e) = 0\}$ . Systems vanising at the "pole" e.

 $F \in V_e \longmapsto F : \mathbb{C}^{n+1} \longrightarrow \mathbb{C}^n.$ 

The tangent mapping  $T_eF := DF(e)$  restricted to the tangent space  $T_e \mathbb{IP}_n(\mathbb{C}) = e^{\perp} = \mathbb{C}^n \subseteq \mathbb{C}^{n+1}$ .:

$$T_eF := T_e \mathbb{IP}_n(\mathbb{C}) = \mathbb{C}^n \longrightarrow \mathbb{C}^n.$$

A FIRST APPROACH

 $L_e := \{F \in V_e : T_e F = F\}$ . "linear part" of the systems in  $V_e$ .

 $L_e^{\perp} := Systems in V_e of order greater than 2 at e.$ 

**Remark.-**  $V_e, L_e, L_e^{\perp}$  are linear subspaces of  $\mathcal{H}_{(d)}$  given by their coefficient list.

Naïve Idea: Consider

 $\mathcal{G} := \{ (G, e) : G \in V_e = L_e^{\perp} \bigoplus L_e \}.(?)$ 

Towards Questor Sets II  $(L_e)$ 

 $\mathcal{U}(n+1):=$  unitary matrices defined in  $\mathbb{C}^{n+1}$ .

 $\mathcal{H}_{(1)} := \mathcal{M}_{n \times n+1}(\mathbb{C})$  space of  $n \times (n+1)$  complex matrices.

$$X^{(d)} := \begin{pmatrix} X_0^{d_1 - 1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & X_0^{d_n - 1} \end{pmatrix}.$$

 $V_e^{(1)} := \{ (M, U) : M \in \mathcal{H}_{(1)}, U \in \mathcal{U}, UKer(M) = e \}.$ 

Liner Part  $L_e$ 

$$\psi_e: V_e^{(1)} \longrightarrow L_e$$

$$\psi_e(M,U) := X^{(d)}(MU) \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}.$$

$$L_e := Im(\psi_e(M, U)).$$

## A useful constant

$$T := \left(\frac{n^2 + n}{N}\right)^{n^2 + n} \in \mathbb{R}, \qquad t \in [0, T].$$

TOWARDS A QUESTOR SET III

$$\mathbb{G} := [0,T] \times L_e^{\perp} \times V_e^{(1)}.$$

$$G: \mathbb{G} \longrightarrow V_e,$$

$$(t, L, M, U) \in \mathbb{G} \longmapsto G(t, L, M, U) \in V_e$$

$$G(t, L, M, U) := (1 - t^{\frac{1}{n^2 + n}})^{1/2}L + t^{\frac{1}{n^2 + n}}\psi_e(M, U) \in V_e,$$

Towards a questor set IV  $Bezout5\frac{1}{2}$ 

Theorem 9 (Beltrán-P., 2005a) For every degree list (d) :=  $(d_1, \ldots, d_n)$ , the set

 $\mathcal{G}_{(d)} := Image(G) = G(\mathbb{G}).$ 

is questor set of initial pairs for HD. Namely,

A system  $(G, e) \in \mathcal{G}_{(d)}$  chosen at random is  $\varepsilon$ -efficient for HD with probability greater than

$$1-\varepsilon$$
.

THE ALGORITHM

INPUT:  $F \in \mathcal{H}_{(d)}, \varepsilon > 0.$ 

Guess at random  $(G, e) \in \mathcal{G}_{(d)}$  (Guess (t, L, M)...)

Apply  $\varphi(F,\varepsilon)$  homotopic deformation steps

OUTPUT: Either "ERROR" or an approximate zero z of F.

Meaning (I)

**Theorem 10** [Beltrán-P,06] *There is a probabilistic algorithm (bounded error probability) for non–universal projective solving of systems of ho-mogeneous polynomial equations such that for every positive real number*  $\varepsilon > 0$ :

• The running time of the algorithm is at most:  $O(n^5 N^2 \varepsilon^{-2})$ 

• The probability that the algorithm outputs an approximate zero is greater than:

 $1-\varepsilon$ 

CUBIC EQUATIONS

**Corollary 11** [Beltrán-P,06] There is a probabilistic algorithm (bounded error probability) for non-universal projective solving of systems of homogeneous polynomial equations of degree 3 such that for every positive real number  $\varepsilon > 0$ :

• The running time of the algorithm is at most:

 $O(n^{13}\varepsilon^{-2})$ 

• The probability that the algorithm outputs an approximate zero is greater than:

1-arepsilon

**Remarque** Taking  $\varepsilon = 1/n^2$ , the algorithm computes approximate zeros with probability greater than

$$1 - 1/n^2$$
.

in time

 $O(n^{15}).$ 

Average complexity I(Smale'2 17th )

In [Beltrán-P., 07] we slighty modified our algorithm to get average complexity:

**Definition 12 (Strong Questor Set)** A subset  $\mathcal{G} \subseteq V$  is a strong questor set if

 $E_{\mathcal{G}}[A_{\varepsilon}] \le 10^4 n^5 N^3 d^{3/2} \varepsilon^2,$ 

where

$$A_{\varepsilon}(G, z) := Prob_{\mathbb{P}(\mathcal{H}_{(d)})}[\mu_{norm}(F, G, z) > \varepsilon^{-1}].$$

Strong Questor Set

**Theorem 13 (Beltrán-P.,07)** For every strong questor set  $\mathcal{G}$ , there is a measurable subset  $\mathcal{C}$  such that the following holds:

 $\operatorname{Prob}_{\mathcal{G}}[\mathcal{C}] \geq 4/5.$ 

For every  $\varepsilon > 0$  and for every  $(G, z) \in C$ , (G, z) is a  $\varepsilon$ -efficient initial pair.

**Theorem 14 (Beltrán-P.,07)** The set  $\mathcal{G}_{(d)}$  is a strong questor set.

## AVERAGE COMPLEXITY

**Corollary 15** There is a bounded error probability algorithm of average polynomial time that for all but a zero measure subset of systems of homogeneous polynomial equations computes projective approximate zeros.

By average complexity we mean:

$$E_{\mathbb{P}(\mathcal{H}_{(d)})}[T_{\mathcal{P}}] := \frac{1}{\nu_{\mathbb{P}}[\mathbb{IP}(\mathcal{H}_{(d)})]} \int_{\mathbb{IP}(\mathcal{H}_{(d)})} T_{\mathcal{P}}(f) d\nu_{\mathbb{IP}} = O(n^5 N^3),$$
  
$$T_{\mathcal{P}}(f) := running time on input f.$$

## [Beltrán-P., 07]:

**Corollary 16** There is a bounded error probability algorithm of average polynomial time that for all but a zero measure subset of systems of homogeneous polynomial equations computes affine approximate zeros.

By average complexity we mean:

$$E_{\mathbb{P}(\mathcal{H}_{(d)})}[T_{\mathcal{A}}] := \frac{1}{\nu_{\mathbb{P}}[\mathbb{IP}(\mathcal{H}_{(d)})]} \int_{\mathbb{P}(\mathcal{H}_{(d)})} T_{\mathcal{A}}(f) d\nu_{\mathbb{P}} = O(N^5),$$
  
$$T_{\mathcal{A}}(f) := running time on input f.$$

[Beltrán-P., 07]

**Theorem 17** Let  $\delta > 0$  be a positive real number. For every  $F \in IP(\mathcal{H}_{(d)})$ , let

$$V_A(F) := \{ x \in \mathbb{C}^n : f(x) = 0 \},\$$

be the set of affine solutions Let

 $||V_A(F)|| := \sup\{||x|| : x \in V_A(F)\} \in [0,\infty],$ 

the maximal norm of its zeros.

Then, the probability that for a randomly chosen affine system  $F \in IP(\mathcal{H}_{(d)})$  we have  $||V_A(F)|| > \delta$  is at most:

 $\mathcal{D}\sqrt{\pi n}\delta^{-1}$ 

In fact, we proved:

•

$$E_{\mathbb{IP}(\mathcal{H}_{(d)})}[||V_A(f)||] = \mathcal{D}\frac{\Gamma(1/2)\Gamma(n+1/2)}{\Gamma(n)} \le \mathcal{D}\sqrt{\pi n}.$$

IMMEDIATE OPEN QUESTIONS

Real Solving ?: Zero-dimensional Case.

Singular Zeros: Homotopy Techniques?.

Adaptability to Other Input Data Structures: Does it work for straight– line programa input structure?.