

NP, coNP and the Nullstellensatz: Lower Bounds for Stable Set and Graph Coloring Nullstellensätze Susan Margulies (UC Davis), J. De Loera (UC Davis), J. Lee (IBM), and S. Onn (Techion)

1 Key Points

2 Stable Set as a Zero-Dimensional System of Polynomial Equations (L. Lovász)

Given a graph G and an integer k , we construct the following equations:

Systems of polynomial equations over the complex numbers can be used to characterize NP-Complete graph-theoretic decision problems. From the point of view of computer algebra and symbolic computation, these are interesting polynomial systems because they are provably hard: solving them is as hard as solving the underlying NP-Complete problem. Furthermore, unless $NP = \text{coNP}$, there must exist infinite instances of these infeasible systems whose Hilbert Nullstellensatz certificates grow with respect to the underlying graphs.

- \bullet For every vertex $i=1,\ldots,n$, let $x_i^2-x_i=0$
- For every edge $(i, j) \in E(G)$, let $x_i x_j = 0$
- Finally, let

Theorem 3.1 Given a graph G, there exists a Nullstellensatz certificate of degree $\alpha(G)$ that certifies the non-existence of a stable set of size $(\alpha(G) + r)$. Moreover, there exist families of graphs for which the minimum degree possible is at least $\alpha(G)/2$.

$$
\left(-k + \sum_{i=1}^{n} x_i\right) = 0
$$

• **Theorem:** Let G be a graph, k an integer, encoded as the above $(n + m + 1)$ zero-dimensional system of equations. Then this system has a solution if and only if G has an independent set of size k .

3 Stable Set Nullstellensätze

Corollary 3.2 Given a graph G, there exists a Nullstellensatz certificate of degree $\alpha(G)$ certifying the **non-existence of a stable set of size** $(\alpha(G) + r)$, where all of the terms in every coefficient is a monomial corresponding to an independent set, and the coefficient for the stable set polynomial contains every independent set.

• **Theorem:** Let G be a graph, k an integer, encoded as vertex and edge polynomials. Then this system of equations has a solution if and only if G is k colorable.

4 Turan Graph ´ T(5, 3) **Nullstellensatz**

 $1 = \left(\frac{x_1x_2 + x_3x_4}{10}\right)$ 12 − $x_1 + x_3 + x_5 + x_2 + x_4$ 12 − 1 4 \setminus $(x_1 + x_3 + x_5 + x_2 + x_4 - 4) +$ $\int x_4$ 12 $+$ $\overline{x_2}$ 12 $+$ 1 6 \setminus $x_1x_3 +$ $\sqrt{x_2}$ 12 $+$ 1 6 \setminus $x_1x_4 +$ $\sqrt{x_2}$ 12 $+$ 1 6 \setminus $x_1x_5 +$ $\int x_4$ 12 $+$ 1 6 x_2x_4 6 $+$ x_2x_5 6 $+$ $\int x_4$ 12 $+$ 1 6 \setminus $x_3x_5 +$ x_4x_5 6 $+$ $\sqrt{x_2}$ 12 $+$ $\frac{1}{12}$ $(x_1^2 - x_1) +$ $\sqrt{x_1}$ 12 $+$ $\frac{1}{12}$ (x_2^2) $(\frac{2}{2} - x_2) + (\frac{x_4}{12})$ 12 $+$ $\frac{1}{12}$ (x_3^2) $(\frac{2}{3} - x_3) + (\frac{x_3}{12})$ 12 $+$ $\frac{1}{12}$ (x_4^2) $a_4^2 - x_4 + \frac{x}{2}$

Experimental Results for Minimum-Degree Stable Set Nullstellensätze

We derive a certificate for the $(n + 1)$ -odd wheel from the n-th odd wheel, by taking a very particular syzygy on some of the terms from the n -th odd wheel **not** 3-colorable certificate.

 $x_i^{k-2}x_j + \cdots + x_ix_j^{k-2} + x_j^{k-1} = 0$

9 Experimental Results for Minimum-Degree Graph Coloring Nullstellensätze

$$
\bigg)x_2x_3 +
$$

$$
{1})+\frac{x{5}^{2}-x_{5}}{12}
$$

Try a degree for the α polynomials, and construct a large-scale sparse linear system of equations. If infeasible, try a larger degree for α . Note: $\deg \alpha$ cannot exceed known upper bounds for Hilbert Nullstellensatz.

6 NP, coNP and the Nullstellensatz

Theorem 6.1 If NP \neq coNP, then there must exist an infinite family of graphs such that the minimum-degree Nullstellensatz for not-k-colorability or nonexistence of a stable set of size k grows with respect to the size of the graph.

7 Graph Coloring as a Zero-Dimensional System of Polynomial Equations (D. Bayer)

Given a graph G and an integer k , we construct the following equations:

• **vertex polynomials:** For every vertex $i = 1, \ldots, n$,

$$
x_i^k - 1 = 0
$$

• **edge polynomials:** For every edge $(i, j) \in E(G)$,

$$
\frac{x_i^k - x_j^k}{x_i - x_j} = x_i^{k-1} + x_i^{k-2}x_j + \cdots + x_i^{k-1}x_j + \cdots
$$

8 Odd Wheels, Cat Ears, Cliques and not-3 colorable Nullstellensatze ¨

Theorem 8.1 The minimum degree Nullstellensatz for odd-wheels is four. **Proof Sketch:**

Theorem 8.2 The minimum degree Nullstellensatz for any cat ears graph is four.

Theorem 8.3 The minimum degree Nullstellensatz for K_n , $n \geq 4$ is four.

Theorem 8.4 The minimum degree Nullstellensatz for any graph is four.

Kneser graphs, Mycielski graphs, Queen graphs, uniquelycolorable graphs, Mycielski graphs of Myceilski graphs, flowers, assorted triangle-free graphs, Vega graphs, all graphs in six vertices are less.

10 Other Encodings: Hamiltonian Cycle as a Zero-Dimensional System of Polynomial Equations

• For every vertex $i = 1, \ldots, n$, we have two equations:

$$
\prod_{s=1}^{n} (x_i - s) = 0, \quad \text{and} \quad
$$

- dimensional system of $2n$ equations has a solution.
-

Searching for Hilbert Nullstellensatz degrees...

Nullstellensatz: If $V(\langle f_1, \ldots, f_s \rangle) = \varnothing$, then $1 = \sum_{i=1}^s \alpha_i f_i$

$$
\prod_{(i,j)\in E(G)}(x_i-x_j+1)(x_i-x_j-(n-1))=0
$$

• **Theorem:** A graph G has a hamiltonian cycle if and only if the above zero-

• **Other Encodings:** Longest cycle, graph planarity, max cut and more!

 $1 = (c_1x + c_2y + c_3z + c_4w + c_5)(x^3 - 1) + (c_6x + c_7y + c_8z + c_9w + c_{10})(y^3 - 1)$ $+ (c_{11}x + \cdots + c_{15})(z^3 - 1) + (c_{16}x + \cdots + c_{20})(w^3 - 1)$ $+(c_{21}x+\cdots+c_{25})(x^2+xy+y^2)+(c_{26}x+\cdots+c_{30})(x^2+xz+z^2)$ $+(c_{31}x+\cdots+c_{35})(x^2+ xw+w^2)+(c_{36}x+\cdots+c_{40})(y^2+ yz+y^2)$ $+ (c_{41}x + \cdots + c_{45})(y^2 + yw + w^2) + (c_{46}x + \cdots + c_{50})(z^2 + zw + z^2)$