

New Recombination Techniques for Polynomial Factorization Algorithms Based on Hensel Lifting

Grégoire Lecerf

CNRS UMR 8100 Laboratoire de Mathématiques Université de Versailles St-Quentin-en-Yvelines France http://www.math.uvsq.fr/˜lecerf

Context and Contents

Motivation. Design and implementation of efficient algorithms for factoring multivariate polynomials into irreducible factors.

Example. Irreducible factorization in

 $(\mathbb{F}_5(a, b, c)[d]/(d^2 + a^2 + 2b^2 - c^3))(e)[f]/(f^5 + a^2 + e^2 + d)[y_1, y_2, y_3].$

Recall that $F\in\mathbb{K}[y]\setminus\mathbb{K}$ is separable iff $\mathrm{Res}(F,F')\neq 0,$ iff F has no multiple root in the algebraic closure \bar{K} of K .

Contents.

- I. Computability issues.
- II. Reduction to separable polynomials.
- III. Reduction from 2 to 1 variables.

Computability Issues

Effective field:= a field together with an implementation of its arithmetic operations $(+, -, \times, /)$ and its equality test $(=)$.

Negative Results

van der Waerden (1930), Fröhlich & Shepherdson (1956)

Theorem. The irreducible decomposition of univariate polynomials over effective fields is not computable in general.

Proof. Let $\lambda : \mathbb{N}^* \to \mathbb{N}^*$ be injective and computable. Let p_i be the *i*th prime number, and let $\mathbb{K}:=\mathbb{Q}(\sqrt{p_{\lambda(1)}},\sqrt{p_{\lambda(2)}},\sqrt{p_{\lambda(3)}},\ldots)$. For a given n, factoring y^2-p_n in $\mathbb{K}[y]$ is equivalent to testing if n is in the image of $\lambda.$

Take λ so that the latter test is not computable [Kleene, 1936]. \Box

Theorem. In characteristic $p > 0$, the pth power test, the pth root extraction and the squarefree decomposition are not computable.

Proof. $\mathbb{K} := \mathbb{F}_2(x_i, x_j^2 \mid i \not\in \mathsf{Im}(\lambda), j \in \mathsf{Im}(\lambda)) \subseteq \mathbb{F}_2(x_1, x_2, \ldots).$

 x^2_n $\frac{2}{n}$ is a square in $\mathbb K$ iff $n\not\in\mathsf{Im}(\lambda)$. [von zur Gathen, 1984]

Remark. K is isomorphic to $\mathbb{F}_2(x_1, x_2, \ldots)$! \Box

Positive Results

A field $\mathbb K$ is explicitly finitely generated over a field $\mathbb F$ if it is the fraction field of $\mathbb{F}[x_1,\ldots,x_n]/P$ with P *prime* and explicitly given by a finite set of generators.

Theorem. [van der Waerden, Fröhlich & Shepherdson, Seidenberg, Richman. . .] The irreducible decomposition is computable over any explicitly finitely generated extension of a prime field.

Proof. From now on, with a view towards complexity...

Theorem. [van der Waerden, Maclane, 30'] If $\mathbb F$ is perfect then, $\mathbb K$ can be rewritten into $\mathbb{K} = \mathbb{F}(t_1, \ldots, t_r)[\alpha_1, \ldots, \alpha_s]$, with

- \bullet t_1, \ldots, t_r being a *transcendence basis* of $\mathbb K$ over $\mathbb F,$
- $\bullet \ \alpha_1, \ldots, \alpha_s$ being algebraic and *separable* over $\mathbb{F}(t_1, \ldots, t_r)$.

 \rightsquigarrow We can discard inseparable extensions.

Example. $\mathbb{K} := (\mathbb{F}_5(a, b, c)[d]/(d^2 + a^2 + 2b^2 - c^3))(e)[f]/(f^5 + a^2 + e^2 + d)$ can be rewritten into $\mathbb{F}_5(b,c,e,f)[d,a]/(d+f^5+a^2+e^2,a^2+d^2+2b^2-c^3).$

Remarks.

- \sqrt{w} This rewriting can be made effective by means of Gröbner bases and pth root extractions in \mathbb{F}_p .
- E as After this rewriting, pth root extraction in K is made easier and boils down to linear algebra.

General Factorization Algorithms in Computer Algebra.

- Davenport, Trager (1981): never fully implemented and contained some gaps.
- Steel (2005): the first (and still unique) most general implementation in the Magma computer algebra system (magma.maths.usyd.edu.au).
- Other implementations are all partial.

Let us now move from computability to algorithms...

Prerequisites for Cost Analysis

[von zur Gathen and Gerhard, Modern Computer Algebra, 2003]

- Each binary arithmetic operation $(+, -, \times, /, =)$ in $\mathbb K$ costs $\mathcal O(1)$.
- Dense representation for polynomials. Example: the size of a bivariate polynomial of bi-degree (n, m) is $(n+1)(m+1)$.
- "Soft big Oh notation": $f(d) \in \tilde{\mathcal{O}}(g(d))$ means

$$
f(d)\in g(d)(\log_2(3+g(d)))^{\mathcal{O}(1)}.
$$

- "Softly linear in $d = \tilde{\mathcal{O}}(d)$; "Softly quadratic in $d = \tilde{\mathcal{O}}(d^2)$...
- The product, the division and the extended gcd of two univariate polynomials of degree d over K take $\tilde{\mathcal{O}}(d)$ operations in K.
- ω is a constant such that the product of two $n \times n$ matrices over $\mathbb K$ takes $\mathcal{O}(n^\omega)$ arithmetic operations in K. For convenience we assume that $2 < \omega \leq 3$.

Factorization in $\mathbb{F}_p[y]$ (and $\mathbb{F}_{p^k}[y]$)

- Early ideas: Gauss (1797), Galois (1830), Arwins (1918).
- 1st alg.: Berlekamp (1970), Zassenhaus (1969), Cantor & Zassenhaus (1981).
- Alg. from 90's: von zur Gathen, Shoup, Niederreiter, Gao, Kaltofen...

Factorization in $\mathbb{Q}[y]$

- First algorithm due to Kronecker (1882): exponential cost.
- Hensel (1918) lifting algorithm (already known by Gauss): exponential cost. Popularized in computer algebra by Zassenhaus (1969).
- First polynomial time algorithm by Lenstra & Lenstra & Lovász (1982): compute a complex root with sufficiently high precision in order to deduce its minimal polynomial by means of LLL.
- First *practical* polynomial time algorithm: van Hoeij (2002); then improvements and implementation by Belabas & van Hoeij & Klüners & Steel (2004): compute an approximate p -adic decomposition, and recombine the factors with LLL.

Separable Algebraic Extension

☞ *Reduction to the separable case to be presented in the next part of the talk.*

Theorem. Factorization of separable polynomials in $\mathbb{K}(x)[y] \Longrightarrow$ factorization of separable polynomials in $\mathbb{K}[\alpha][y]$ whenever α is algebraic separable over \mathbb{K} .

Proof. Let $F \in K[z, y]$, and let q be the minimal polynomial of α .

Irr. decomposition of $F(\alpha, y) \Longleftrightarrow$ prime decomposition of $(q(z), F(z, y))$

- \Longleftrightarrow Irr. decomposition of $\mathrm{Res}_{\bm{z}}(q(z),F(z,y-xz))\in\mathbb{K}[x][y].$ \Box
- ☞ van der Waerden in *Moderne Algebra* (1930) in characteristic 0.
- **Trager (1976): algorithmic point of view; probabilistic faster approach in** characteristic 0 by taking a random value for x in $\mathbb K$.
- ☞ Steel (2005): complete implementation in positive characteristic in Magma.
- ☞ Bostan, Flajolet, Salvy, Schost (2006): speed-up for computing the resultant.

Transcendental Extension

Theorem. Factorization of separable polynomials in $\mathbb{K}[y] \Longrightarrow$ factorization of separable polynomials in $\mathbb{K}[x][y]$. *(Proof in Part III of the talk.)*

Let $F \in \mathbb{K}[x, y]$ of total degree d and bidegree d_x, d_y . **1st period: Exponential Time Algorithms**

- The first algorithm goes back at least to Kronecker: ☞ substitution $x \leftarrow y^{d_y+1}$, univariate factorization in degree $\mathcal{O}(d_xd_y)$; ☞ exponential cost in the recombination step.
- The Hensel lifting and recombination approach was studied in [Musser, 1973, 1975], [Wang, Rothschild, 1975], [Wang, 1978], [von zur Gathen, 1984], [Bernardin, 1999 (Maple implementation)]. . .
	- Univariate factorization in degree d_{y} .
	- ☞ The exponential cost is again in the recombination step.
	- ☞ The cost is polynomial in average over finite fields [Gao, Lauder, 2000].
- Absolute factorization via elimination following Emmy Noether's ideas.

2nd period: First Polynomial Time Algorithms

- The first deterministic polynomial time algorithm for when $\mathbb{K} = \mathbb{Q}$ is due to Kaltofen (1982). Several authors then contributed during the 80's for various \mathbb{K} : Lenstra, Kannan, Lovász, Chistov, Grigoviev, von zur Gathen. . .
	- ☞ Derived from the LLL algorithm; essentially cubic time.

3rd period: Efficient Polynomial Time Algorithms

- **First recent breakthrough.** Shuhong Gao's reduction to linear algebra (2003) via de Rham's cohomology: $\tilde{\mathcal{O}}((d_xd_y)^2)$ (softly quadratic) in characteristic 0 or large enough. Derived from Ruppert's absolute irreducibility test (1986, 99).
- **Second recent breakthroughs.** The first polynomial time Hensel lifting and recombination algorithm is due to [Belabas, van Hoeij, Klüners, Steel, 2004]: $\tilde{\cal O}(d_xd_y^3$ $\frac{3}{y}).$
- [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004]: improvement to $\tilde{\mathcal{O}}(d^3)$ in characteristic 0 or large enough.
- $\bullet\,$ Mixing of the breakthroughs. [Lecerf, part III of the talk]: $\lq\tilde{\cal O}(d_x d_y^2)$ $\binom{2}{y}$ ".

Purely Inseparable Algebraic Extension

Theorem. Factorization of separable polynomials in $\mathbb{K}[y] \rightleftarrows$ factorization of separable polynomials in $\mathbb{K}[\alpha][y]$ if α is purely inseparable over \mathbb{K} .

Solution already presented. Rewrite $\mathbb{K}[\alpha]$ as an extension of its prime field in order to remove purely inseparable extensions.

Other possible solution.

- 1. Let q be the minimal polynomial of α over K. Wlog we can assume that $q(\alpha) = \alpha^p - a$, with $a \in \mathbb{K} \setminus \mathbb{K}^p$.
- 2. From a separable $F(y) \in \mathbb{K}[\alpha][y]$ compute $\tilde{F}(y^p) = F(y)^p.$ \tilde{F} is *separable* hence can be factored in $\mathbb{K}[y]$.
- 3. Let G be an irreducible factor of $\tilde{F}.$ If $G(y^p)$ is a p th power H^p in $\mathbb{K}[\alpha][y]$ then H is an irreducible factor of F . Otherwise $G(y^p)$ is an irreducible factor of F .
- \mathbb{R}^* " \Longrightarrow " becomes " \Longrightarrow " if K satisfies Seidenberg's condition P.

Seidenberg's condition P on \mathbb{K} : pth power test and pth root extraction are possible in any purely inseparable extension of K .

 \iff pth root test and extraction are possible in any finite algebraic extension of K.

 \iff pth root test and extraction are possible in any explicitly finitely generated field extension of K .

 \iff squarefree factorization is possible in $\mathbb{L}[y]$ for any finite algebraic extension \mathbb{L} of K [Gianni, Trager, 1996].

Reference. Factorization in constructive mathematics: Mines, Richman, and Ruitenburg, *A course in constructive algebra*, Springer-Verlag, 1988.

Algebraically Closed Field

The absolute decomposition of $F \in \mathbb{K}[x,y]$ is its decomposition in $\bar{\mathbb{K}}[x,y]$, where $\bar{\mathbb{K}}$ is the algebraic closure of \mathbb{K} .

Example.
$$
F := y^4 + (2x + 14)y^2 - 7x^2 + 6x + 47 =
$$

 $(y^2 + (1 - 2\sqrt{2})x - 16\sqrt{2} + 7)(y^2 + (1 + 2\sqrt{2})x + 16\sqrt{2} + 7).$

Usual Representation of the Absolutely Irreducible Factors.

Assume that F is separable when seen in $\mathbb{K}(x)[y]$. The absolutely irreducible factors of F, written F_1, \ldots, F_r , and are usually represented by $\{ (q_1, \tilde{F}_1), \ldots, (q_s, \tilde{F}_s) \}$, such that:

- $q_i \in \mathbb{K}[z] \setminus \mathbb{K}$, monic, separable.
- $\bullet \ \ \tilde{F}_i \in \mathbb{K}[x,y,z]$, with $\deg_{\boldsymbol{z}}(\tilde{F}_i) \leq \deg(q_i)-1.$
- $\deg(\tilde{F}_i(x,y,\alpha))$ is independent of the root α of $q_i.$
- $\bullet \,\,\left\{F_1,\ldots,F_r\right\}=\cup_{i=1}^s\{\tilde F_i(x,y,\alpha)\mid q_i(\alpha)=0\}.$
- Irredundancy: $\sum_{i=1}^s \deg(q_i) = r$.

Example 1. If $F \in K[y]$ is squarefree then we can take $s := 1$, $q_1(z)$ as the monic part of $F(z)$ and $\tilde{F}_1(y, z) := y - z$.

Example 2. If $\mathbb{K} := \mathbb{Q}$ and $F := y^4 + (2x + 14)y^2 - 7x^2 + 6x + 47$ then we can take $s:=1,$ $q_1(z):=z^2-2,$ $\tilde{F}_1(x,y,z):=y^2+(1-2z)x-16z+7.$

Theorem. [Noether, 1922] For all K the absolutely irreducible decomposition of any separable polynomial F can be computed by means of arithmetic operations in K alone.

■ Computing an algebraic extension of K containing all the absolute factors of F is actually very expensive and useless in many applications.

Noether, 1922 Schmidt, 1976 Heintz, Sieveking, 1981 Trager, 1984 Dicrescenzo, Duval, 1984 Kaltofen, 1985: poly time von zur Gathen, 1985 Ruppert, 1986 Dvornicich, Traverso, 1987 Bajaj, Canny, Garrity, Warren, 1989 Duval, 1990 Kaltofen, 1995: cubic time

Ragot, 1997 Ruppert, 1999 Cormier, Singer, Ulmer, Trager, 2002 Galligo, Rupprecht, 2002 Coreless, Galligo, *et al.*, 2002 Rupprecht, 2004 Bronstein, Trager, 2003 Gao, 2003: softly quadratic time Sommese, Verschelde, Wampler, 2004 Chèze, Galligo, 2004 Chèze, Lecerf, 2005: sub-quadratic

Reduction to Separable Polynomials

Let A be a unique factorization domain.

Let $F \in \mathbb{A}[y]$ be primitive of degree d.

 p denotes the characteristic of \mathbb{A} .

 $F \in \mathbb{A}[y] \setminus \mathbb{A}$ is said to be separable if it has no multiple root in the algebraic closure of the fraction field of $\mathbb{A} \Longleftrightarrow \operatorname{Res}(F,F') \neq 0.$

Definition

If $p = 0$ then separable decomposition \equiv squarefree decomposition.

Now assume that $p > 0$.

The separable decomposition of F is the *unique* set $\left\{(G_1, q_1, m_1), \ldots, (G_s, q_s, m_s)\right\} \subseteq \left(\mathbb{A}[y] \setminus \mathbb{A}\right) \times \{1, p, p^2, p^3, \ldots\} \times \mathbb{N}$ (the G_i are actually defined up to unit factors in A) such that:

1.
$$
F(y) = \prod_{i=1}^{s} G_i(y^{q_i})^{m_i}
$$
;

- 2. for all $i\neq j$ in $\{1,\ldots,s\}$, $G_i(y^{q_i})$ and $G_j(y^{q_j})$ are coprime;
- 3. for all $i \in \{1, \ldots, s\}$, m_i mod $p \neq 0$;
- 4. for all $i \in \{1, \ldots, s\}$, G_i is separable and primitive;
- 5. for all $i\neq j$ in $\{1,\ldots,s\},$ $(q_i,m_i)\neq (q_j,m_j).$

Proof. The roots of $G_i(y^{q_i})$ are the ones of F with multiplicity $q_i m_i$. \Box

Algorithms

It is classical that the separable decomposition can be computed in polynomial time by arithmetic operations in A alone.

If A **is a field:**

- Gianni & Trager (1996): softly quadratic algorithm extending the classical squarefree factorization algorithm for characteristic 0 attributed to Musser (1971).
- Lecerf (2006): softly optimal cost, with a natural extension of Yun's squarefree factorization algorithm (1976).

Otherwise: the fast multimodular and Chinese remaindering techniques classically used for the gcd can be adapted to the separable factorization.

Reducing the Irreducible Factorization to the Separable Case

- 1. Compute the separable decomposition of F into $\prod_{i=1}^s G_i(y^{q_i})^{m_i}$.
- 2. Compute the irreducible factorization of each G_i .
- 3. If H is an irreducible factor of G_i then compute the largest $q\vert q_i$ such that $H(y^{q_i}) = P(y^{q_i/q})^q.$ Then $P(y^{q_i/q})$ is an irreducible factor of F with multiplicity qm_i .
- \Diamond pth power and pth root extraction must be computable.

Reduction from 2 **to** 1 **Variables**

Let $F \in \mathbb{K}[x, y]$ be of total degree d and bi-degree (d_x, d_y) .

 F is assumed to be

- primitive when seen in $\mathbb{K}[x][y]$, and
- separable when seen in $\mathbb{K}(x)[y]$.

The Classical Hensel Lifting Approach Pretreatment

Task. Find a suitable translation of x so that the following normalization condition holds:

$$
\deg_y(F(0,y))=d_y\quad\text{and}\quad\mathrm{Res}_y\left(F,\frac{\partial F}{\partial y}\right)(0)\neq 0.
$$

Algorithm. If K has sufficiently many elements then the translation can easily be found in K (softly optimal average cost). Otherwise we construct an algebraic extension $\mathbb E$ of $\mathbb K$ of degree $\tilde{\cal O}(\log(d_xd_y))$ in order to increase the cardinality. Then we compute the irreducible factorization of F in $\mathbb{E}[x, y]$ from which we deduce the one in $\mathbb{K}[x,y]$.

 E The extra cost for working in E instead of K is negligible when discarding the logarithmic cost factors.

From now on we assume that the normalization condition holds.

Skeleton of the Hensel Lifting Factorization Algorithm

Let F_1,\ldots,F_r be the irreducible factors of $F.$ Let \bm{c} (resp. $\bm{c_i}$) be the leading coefficient of \bm{F} (resp. F_i) seen in $\mathbb{K}[x][y]$. We write $F = c\mathfrak{F}_1 \cdots \mathfrak{F}_s$ for the irreducible factorization of F in $\mathbb{K}[[x]][y]$. Each \mathfrak{F}_i is made monic.

Algorithm.

- 1. Initialization: factor $F(0, y)$ in $\mathbb{K}[y]$ to obtain $\mathfrak{F}_1, \ldots, \mathfrak{F}_s$ to precision (x) .
- 2. Hensel lifting: use Hensel lifting in order to obtain $\mathfrak{F}_1,\ldots,\mathfrak{F}_s$ to a certain precision (x^{σ}) (softly optimal cost).
- 3. Recombination: discover how the lifted factors recombine into the F_i .

Problem. Find an efficient polynomial time recombination.

For all $i \in \{1, \ldots, r\}$, let $\mu_i \in \{0, 1\}^s$ be the unique vector defined by $F_i = c_i \prod_{j=1}^s \mathfrak{F}^{\mu_{i,j}}_j$ $\frac{\mu_{i,j}}{j}$.

 \sqrt{a} The knowledge of all the μ_i solves the recombination problem.

Example

$$
F:=y^4-x^4-2y^3+2yx^2-y^2-x^2+2y\in \mathbb{Q}[x,y].
$$

- 1. Initialization: $F(0, y) = y(y 1)(y + 1)(y 2)$.
- 2. Hensel lifting:

$$
\mathfrak{F}_1 = y - (2 - 1/2x^2 - 1/8x^4) + \mathcal{O}(x^5),
$$

\n
$$
\mathfrak{F}_2 = y - (1 + 1/2x^2 - 1/8x^4) + \mathcal{O}(x^5),
$$

\n
$$
\mathfrak{F}_3 = y - (1/2x^2 + 1/8x^4) + \mathcal{O}(x^5),
$$

\n
$$
\mathfrak{F}_4 = y - (-1 - 1/2x^2 + 1/8x^4) + \mathcal{O}(x^5).
$$

3. Recombination: $\mu_1 = (1, 0, 1, 0)$ and $\mu_2 = (0, 1, 0, 1)$. $F_1 = \mathfrak{F}_1 \mathfrak{F}_3 = y^2 - 2y + x^2, \qquad F_2 := \mathfrak{F}_2 \mathfrak{F}_4 = y^2 - x^2 - 1.$ $F_i = c_i \prod_{j=1}^s \mathfrak{F}^{\mu_{i,j}}_j$ $\frac{\mu_{i,j}}{j}$.

Detailed History of the Hensel Lifting Approach

Let σ still denote the precision of the lifted factors.

 Belabas, van Hoeij, Klüners, Steel (2004): logarithmic derivative method, $\sigma = d_x(2d_y - 1) + 1$ suffices to recombine in polynomial time.

Theorem. μ_1, \ldots, μ_r is the reduced echelon basis of the following system in the $\ell_i \in \mathbb{K}$: ∃ $G \in \mathbb{K}[x,y],\ \deg_x(G) \leq d_x,\ \deg_y(G) \leq d_y-1,$ \sum s $i=1$ $\boldsymbol{\ell_i}$ $\partial \mathfrak{F}_i$ $\boldsymbol{\partial y}$ \mathfrak{F}_i − G F $\in (x^{\sigma}).$

- ☞ The polynomial time was conjectured by T. Sasaki *et al.* (1991–1993) with a similar technique.
- **EXECUTE:** The precision σ is sharp for this algorithm.
- Bostan, Lecerf, Salvy, Schost, Wiebelt (2004): $\sigma = 3d 2$ suffices, if K has characteristic zero or at least $d(d-1) + 1$.

■ Lecerf (2006): new algorithm based on the de Rham cohomology with precision $\sigma = 2d$, if K has characteristic zero or at least $d(d-1) + 1$, and F monic in $\mathbb{K}[x][y]$.

Theorem. μ_1, \ldots, μ_r is the reduced echelon basis of the following system in the $\ell_i \in \mathbb{K}$: $\exists G, H \in \mathbb{K}[x, y], \deg(G) \leq d-1, \deg(H) \leq d-1$,

$$
\sum_{i=1}^s \ell_i \frac{\frac{\partial \mathfrak{F}_i}{\partial y}}{\mathfrak{F}_i} - \frac{G}{F} \in (x^{\sigma}) \text{ and } \sum_{i=1}^s \ell_i \frac{\frac{\partial \mathfrak{F}_i}{\partial x}}{\mathfrak{F}_i} - \frac{H}{F} \in (x^{\sigma-1}).
$$

EXECUTE: The precision σ is also sharp for this algorithm.

Lecerf (next slide): precision $\sigma = d_x + 1$ always suffices by means of a different recombination point of view.

The New Recombination Point of View

Let
$$
\hat{F}_i := \prod_{j=1, j \neq i}^r F_j = \frac{F}{F_i}
$$
 and $\hat{\mathfrak{F}}_i := \frac{F}{\mathfrak{F}_i}$.

The central objects to recombine are the following:

$$
\mathfrak{G}_i := \left\lceil \hat{\mathfrak{F}}_i \frac{\partial \mathfrak{F}_i}{\partial y} \right\rceil^{d_x+1} \text{ for all } i \in \{1, \dots, s\},
$$

where
$$
\lceil A \rceil^l := \sum_{0 \le i \le l-1,} \sum_{j \ge 0} a_{i,j} x^i y^j, \text{ for any } A := \sum_{i,j \ge 0} a_{i,j} x^i y^j.
$$

জ The only lifting to precision (x^{d_x+1}) is necessary to compute the $\mathfrak{G}_i.$

Let $\mathbb F$ be a sub-field of $\mathbb K$.

$$
\mathcal{L}_{\mathbb{F}}:=\left\{(\ell_1,\ldots,\ell_s)\in\mathbb{F}^s\mid \sum_{i=1}^s\ell_i\mathfrak{G}_i\in \left\langle \hat{F}_1\frac{\partial F_1}{\partial y},\ldots,\hat{F}_r\frac{\partial F_r}{\partial y}\right\rangle_{\mathbb{F}}\right\},
$$

Lemma. μ_1, \ldots, μ_r is the reduced echelon basis of $\mathcal{L}_{\mathbb{F}}$. *Proof.* $F_i = c_i \prod$ s $j=1$ $\mathfrak{F}^{\mu_{i,j}}_{i}$ $_{j}^{\mu_{i,j}}\Longrightarrow\hat{F}_{i}% ^{\dag_{j+1}}\to\hat{F}_{i}^{(i)}$ $\boldsymbol{\partial F_i}$ $\boldsymbol{\partial y}$ $=$ \sum s $j=1$ $\mu_{i,j}\hat{\mathfrak{F}}_j$ $\partial \mathfrak{F}_j$ $\boldsymbol{\partial y}$ $\Longrightarrow \hat{F}_i$ $\boldsymbol{\partial F_i}$ $\boldsymbol{\partial y}$ $=$ \sum s $j=1$ $\mu_{i,j}\mathfrak{G}_j,$ whence $\mu_i \in \mathcal{L}_{\mathbb{F}}$. Then conclude with the dimensions... \Box

Characterization of $\mathcal{L}_{\mathbb{F}}$ **by the Residues**

 $\ell := (\ell_1, \ldots, \ell_s) \in \mathbb{F}^s, \ \ \ G := \sum_{i=1}^s \ell_i \mathfrak{G}_i, \ \ \bar{\mathbb{K}} := \text{algebraic closure of } \mathbb{K}.$ Let ϕ_1,\ldots,ϕ_{d_y} be the roots of F in $\bar{\mathbb{K}}[[x]],$ and let $\rho_i:=G(x,\phi_i)/\frac{\partial F}{\partial y}(x,\phi_i),$ for all $i\in\{1,\ldots,d_y\}$, so that

$$
\frac{G}{F}=\sum_{i=1}^{d_y}\frac{\rho_i}{y-\phi_i}.
$$

Lemma. $\ell \in \mathcal{L}_{\mathbb{F}} \Longrightarrow \rho \in \mathbb{F}^{d_y}$. Conversely, $\rho \in \bar{\mathbb{K}}^{d_y} \Longrightarrow \ell \in \mathcal{L}_{\mathbb{F}}$.

Proof. If $\ell \in \mathcal{L}_\mathbb{F}$ then G is a $\mathbb F$ linear combination of $\hat{F}_1\frac{\partial F_1}{\partial y},\ldots,\hat{F}_r\frac{\partial F_r}{\partial y}$. Conversely . . .

We shall distinguish two cases:

a. Characteristic $p = 0$ or $p \ge d_x(2d_y - 1) + 1$. \mathbb{R}^n We take $\mathbb{F} = \mathbb{K}$; $\rho \in \mathbb{K}^{d_y} \Longleftrightarrow d(\rho)/dx = 0$.

b. $0 < p \leq d_x(2d_y - 1)$. \mathbb{R}^n We take $\mathbb{F} = \mathbb{F}_p; \qquad \rho \in \mathbb{F}_p^{d_y}$ $\overset{d_y}{p}\Longleftrightarrow (\rho_i)^p=\rho_i\ \ \text{for all}\ i.$

Computation of $\mathcal{L}_{\mathbb{K}}$ **in characteristic** 0

$$
\begin{array}{ll} \mathsf{D}: & \mathbb{K}[x,y]_{d_x,d_y-1} \rightarrow \mathbb{K}(x)[y]_{d_y-1} \\ & G \mapsto \left(\dfrac{\partial G}{\partial x} \dfrac{\partial F}{\partial y} - \dfrac{\partial G}{\partial y} \dfrac{\partial F}{\partial x} \right) \dfrac{\partial F}{\partial y} - \left(\dfrac{\partial^2 F}{\partial x y} \dfrac{\partial F}{\partial y} - \dfrac{\partial^2 F}{\partial y^2} \dfrac{\partial F}{\partial x} \right) G \bmod_y F, \\ & \\ & \dfrac{d \rho_i}{dx} = \dfrac{\mathsf{D}(G)(x,\phi_i(x))}{\frac{\partial F}{\partial y}(x,\phi_i(x))^3}, \end{array}
$$

Proposition. $\langle \mu_1, \ldots, \mu_r \rangle = \mathcal{L}_{\mathbb{K}} = \ker(\mathsf{D})$.

Warning. F is not monic when seen in $\mathbb{K}[x][y]$. In order to avoid expression swell "mod $_y$ F " is performed in $\mathbb{K}[[x]][y]$ to precision $(x^{{\cal O}(d_x)})$. In this way the recombination reduces to the resolution of a linear system with s unknowns and $\mathcal{O}(d_xd_y)$ equations.

Deterministic Recombination Algorithm in characteristic 0

Input. $F \in \mathbb{K}[x,y]$, and $\mathfrak{F}_1, \ldots, \mathfrak{F}_s$ to precision (x^{d_x+1}) .

Output. μ_1, \ldots, μ_r .

- 1. For each $i \in \{1,\ldots,s\}$, compute $\hat{\mathfrak{F}}_i$ as the quotient of F by \mathfrak{F}_i to precision $(x^{d_x+1}) \qquad \tilde{\mathcal{O}}(s d_x d_y).$
- 2. Compute $\hat{\mathfrak{F}}_1\frac{\partial \mathfrak{F}_1}{\partial y},\ldots,\hat{\mathfrak{F}}_s\frac{\partial \mathfrak{F}_s}{\partial y}$ to precision (x^{d_x+1}) and deduce $\mathfrak{G}_1,\ldots,\mathfrak{G}_s.$ $\tilde{\mathcal{O}}(s d_x d_y)$
- 3. Compute $\mathsf{D}(\mathfrak{G}_1), \ldots, \mathsf{D}(\mathfrak{G}_s)$. $\tilde{\mathcal{O}}(sd_xd_y)$
- 4. Compute μ_1,\ldots,μ_t as the reduced echelon solution basis of the following linear system in the unknowns $(\ell_1, \ldots, \ell_s) \in \mathbb{K}^s$:

$$
\sum_{i=1}^s \ell_i \mathsf{D}(\mathfrak{G}_i) = 0. \qquad \tilde{\mathcal{O}}(d_xd_y s^{\omega - 1})
$$

The worst case for this deterministic algorithm is when $s\thickapprox d_y\rightsquigarrow \tilde{\mathcal{O}}(d_xd_y^{\omega})$ $\binom{\bm{\omega}}{\bm{y}}$

If necessary, we can swap x and y in order to ensure $d_y \leq d_x$ so that $\tilde{\cal O}(d_xd_y^{\omega}$ $\tilde{y}^\omega_j)\subset \tilde{\mathcal{O}}((d_xd_y)^2)\rightsquigarrow$ softly quadratic cost.

First speedup:

The linear system to be solved is overdetermined: at most $d_{\bm{y}}$ unknowns for $\mathcal{O}(d_xd_y)$ equations.

 \rightsquigarrow Use a Las Vegas probabilistic linear solver [Kaltofen, Saunders, 1991] in order to reach an average total cost in $\tilde{\cal O}(d_x d_y^2)$ $y^2_y) \subseteq \tilde{\mathcal{O}}((d_xd_y)^{1.5})$ (when $d_y \leq d_x$).

More speedups: many tricks can be used in order to make the cost of the linear algebra negligible in practice [Belabas et al., 2004], [Lecerf, 2005].

Computation of $\mathcal{L}_{\mathbb{F}_p}$ in characteristic $p>0$

From now on we assume that $0 < p \leq d_x(2d_y - 1)$. $\mathbb{K}[x,y]_{k,l} :=$ polynomials of bi-degree at most (k,l) .

We use the Niederreiter (1993) operator:

$$
\begin{array}{l} \tilde{\mathsf{N}}: \ \ \mathbb{K}[x,y]_{d_x,d_y-1} \rightarrow \mathbb{K}[x,y^p]_{pd_x,d_y-1}\\ \\ G \mapsto G^p + \dfrac{\partial^{p-1}}{\partial y^{p-1}}\left(F^{p-1}G\right).\end{array}
$$

WARNING: \tilde{N} is not K-linear in general but only \mathbb{F}_p -linear.

$$
\begin{array}{l} \mathsf{N}: \quad \mathbb{F}_p^s \to \mathbb{K}[x,y^p] \\ \qquad (\ell_1,\ldots,\ell_s) \mapsto \mathsf{N}\left(\sum_{i=1}^s \ell_i \mathfrak{G}_i\right). \end{array}
$$

Proposition. μ_1, \ldots, μ_r is the reduced echelon basis of $\ker(N)$. *Proof.* The same as for polynomials in $\mathbb{F}_p[y]$... \Box

- The recombination problem reduces to linear system solving over \mathbb{F}_p .
- **Exact The size of the linear system to be solved depends on the** \mathbb{F}_p **-algebra structure** of K .
- ☞ If $\mathbb{K}=\mathbb{F}_{p^k}$ then the linear system has $\mathcal{O}(pkd_xd_y)$ equations and s unknowns.

Proposition.

• ker $(N) \subseteq \ker(D) \cap \mathbb{F}_p^s$ $\frac{s}{p}$.

$$
\bullet~~{\sf N}(\ker({\sf D})\cap\mathbb{F}_p^s)\subseteq\mathbb{K}[x^p,y^p]_{d_x,d_y-1}.
$$

☞ If $\mathbb{K}=\mathbb{F}_{p^k}$ then the new linear system has $\mathcal{O}(k d_x d_y)$ equations and s unknowns.

Sketch of the Recombination Algorithm

- 1. Run the algorithm designed for the characteristic 0 in order to get a basis of $\ker(\mathsf{D}) \cap \mathbb{F}_n^s$ $\frac{s}{p}$.
- 2. Compute the reduced echelon basis of $ker(N)$.

When $\mathbb{K}=\mathbb{F}_q$ with $q=p^k$ we have the following estimates:

- Deterministic version: $\tilde{\cal O}(k d_x d_y^{\omega})$ $_{y}^{\omega})$ operations in \mathbb{F}_{p} " \le " $\tilde{\mathcal{O}}(d_{x}d_{y}^{\omega})$ $_{y}^{\omega})$ operations in \mathbb{F}_{q} .
- Randomized version: average cost in $\tilde{\cal O}(k d_x d_y^2)$ y^2) operations in \mathbb{F}_p " \leq " $\tilde{\mathcal{O}}(d_xd_y^2)$ $\binom{2}{y}$ operations in \mathbb{F}_q .

Conclusion

Future work.

- Extension of [Chèze, Lecerf, 2005]: absolute factorization in small positive characteristic, and a unified approach of the rational and the absolute factorizations.
- Generalization of the complexity results in terms of the volume of the convex hull of the support of F .
- Implementation of an open source $C++/M$ at hemagix factorization library (www.mathemagix.org [van der Hoeven]).