
1

New Recombination Techniques for Polynomial
Factorization Algorithms Based on Hensel Lifting

Grégoire Lecerf

CNRS UMR 8100

Laboratoire de Mathématiques

Université de Versailles St-Quentin-en-Yvelines

France

http://www.math.uvsq.fr/˜lecerf

2

Context and Contents

Motivation. Design and implementation of efficient algorithms for factoring
multivariate polynomials into irreducible factors.

Example. Irreducible factorization in

(F5(a, b, c)[d]/(d2 + a2 + 2b2 − c3))(e)[f]/(f5 + a2 + e2 + d)[y1, y2, y3].

Recall that F ∈ K[y] \ K is separable iff Res(F, F ′) 6= 0, iff F has no multiple root
in the algebraic closure K̄ of K.

Contents.

I. Computability issues.

II. Reduction to separable polynomials.

III. Reduction from 2 to 1 variables.

3

Part I

Computability Issues

Effective field:= a field together with an implementation of its arithmetic operations
(+, −, ×, /) and its equality test (=).

4

Negative Results
van der Waerden (1930), Fröhlich & Shepherdson (1956)

Theorem. The irreducible decomposition of univariate polynomials over effective
fields is not computable in general.

Proof. Let λ : N∗ → N∗ be injective and computable. Let pi be the ith prime
number, and let K := Q(√pλ(1),

√
pλ(2),

√
pλ(3), . . .). For a given n, factoring

y2 − pn in K[y] is equivalent to testing if n is in the image of λ.

Take λ so that the latter test is not computable [Kleene, 1936].�

Theorem. In characteristic p > 0, the pth power test, the pth root extraction and
the squarefree decomposition are not computable.

Proof. K := F2(xi, x2
j | i 6∈ Im(λ), j ∈ Im(λ)) ⊆ F2(x1, x2, . . .).

x2
n is a square in K iff n 6∈ Im(λ). [von zur Gathen, 1984]

Remark. K is isomorphic to F2(x1, x2, . . .)! �

5

Positive Results

A field K is explicitly finitely generated over a field F if it is the fraction field of
F[x1, . . . , xn]/P with P prime and explicitly given by a finite set of generators.

Theorem. [van der Waerden, Fröhlich & Shepherdson, Seidenberg, Richman. . .]
The irreducible decomposition is computable over any explicitly finitely generated
extension of a prime field.

Proof. From now on, with a view towards complexity. . .

Theorem. [van der Waerden, Maclane, 30’] If F is perfect then, K can be rewritten
into K = F(t1, . . . , tr)[α1, . . . , αs], with

• t1, . . . , tr being a transcendence basis of K over F,

• α1, . . . , αs being algebraic and separable over F(t1, . . . , tr).

 We can discard inseparable extensions.

Example. K := (F5(a, b, c)[d]/(d2 + a2 + 2b2 − c3))(e)[f]/(f5 + a2 + e2 + d)
can be rewritten into F5(b, c, e, f)[d, a]/(d + f5 + a2 + e2, a2 + d2 + 2b2 − c3).

6
Remarks.

+ This rewriting can be made effective by means of Gröbner bases and pth root
extractions in Fp.

+ After this rewriting, pth root extraction in K is made easier and boils down to
linear algebra.

General Factorization Algorithms in Computer Algebra.

• Davenport, Trager (1981): never fully implemented and contained some gaps.

• Steel (2005): the first (and still unique) most general implementation in the
Magma computer algebra system (magma.maths.usyd.edu.au).

• Other implementations are all partial.

Let us now move from computability to algorithms. . .

7

Prerequisites for Cost Analysis
[von zur Gathen and Gerhard, Modern Computer Algebra, 2003]

• Each binary arithmetic operation (+, −, ×, /, =) in K costs O(1).

• Dense representation for polynomials.
Example: the size of a bivariate polynomial of bi-degree (n, m) is
(n + 1)(m + 1).

• “Soft big Oh notation”: f(d) ∈ Õ(g(d)) means

f(d) ∈ g(d)(log2(3 + g(d)))O(1).

• “Softly linear in d”= Õ(d); “Softly quadratic in d”= Õ(d2). . .

• The product, the division and the extended gcd of two univariate polynomials of
degree d over K take Õ(d) operations in K.

• ω is a constant such that the product of two n×n matrices over K takesO(nω)
arithmetic operations in K. For convenience we assume that 2 < ω ≤ 3.

8

Factorization in Fp[y](and Fpk[y])

• Early ideas: Gauss (1797), Galois (1830), Arwins (1918).

• 1st alg.: Berlekamp (1970), Zassenhaus (1969), Cantor & Zassenhaus (1981).

• Alg. from 90’s: von zur Gathen, Shoup, Niederreiter, Gao, Kaltofen. . .

Factorization in Q[y]

• First algorithm due to Kronecker (1882): exponential cost.

• Hensel (1918) lifting algorithm (already known by Gauss): exponential cost.
Popularized in computer algebra by Zassenhaus (1969).

• First polynomial time algorithm by Lenstra & Lenstra & Lovász (1982): compute
a complex root with sufficiently high precision in order to deduce its minimal
polynomial by means of LLL.

• First practical polynomial time algorithm: van Hoeij (2002); then improvements
and implementation by Belabas & van Hoeij & Klüners & Steel (2004): compute
an approximate p-adic decomposition, and recombine the factors with LLL.

9

Separable Algebraic Extension

+ Reduction to the separable case to be presented in the next part of the talk.

Theorem. Factorization of separable polynomials in K(x)[y] =⇒ factorization of
separable polynomials in K[α][y] whenever α is algebraic separable over K.

Proof. Let F ∈ K[z, y], and let q be the minimal polynomial of α.

Irr. decomposition of F (α, y)⇐⇒ prime decomposition of (q(z), F (z, y))

⇐⇒ Irr. decomposition of Resz(q(z), F (z, y − xz)) ∈ K[x][y]. �

+ van der Waerden in Moderne Algebra (1930) in characteristic 0.

+ Trager (1976): algorithmic point of view; probabilistic faster approach in
characteristic 0 by taking a random value for x in K.

+ Steel (2005): complete implementation in positive characteristic in Magma.

+ Bostan, Flajolet, Salvy, Schost (2006): speed-up for computing the resultant.

10

Transcendental Extension

Theorem. Factorization of separable polynomials in K[y] =⇒ factorization of
separable polynomials in K[x][y]. (Proof in Part III of the talk.)

Let F ∈ K[x, y] of total degree d and bidegree dx, dy.
1st period: Exponential Time Algorithms

• The first algorithm goes back at least to Kronecker:

+ substitution x← ydy+1, univariate factorization in degree O(dxdy);

+ exponential cost in the recombination step.

• The Hensel lifting and recombination approach was studied in [Musser, 1973,
1975], [Wang, Rothschild, 1975], [Wang, 1978], [von zur Gathen, 1984],
[Bernardin, 1999 (Maple implementation)]. . .

+ Univariate factorization in degree dy.

+ The exponential cost is again in the recombination step.

+ The cost is polynomial in average over finite fields [Gao, Lauder, 2000].

• Absolute factorization via elimination following Emmy Noether’s ideas.

11

2nd period: First Polynomial Time Algorithms

• The first deterministic polynomial time algorithm for when K = Q is due to
Kaltofen (1982). Several authors then contributed during the 80’s for various K:
Lenstra, Kannan, Lovász, Chistov, Grigoviev, von zur Gathen. . .

+ Derived from the LLL algorithm; essentially cubic time.

3rd period: Efficient Polynomial Time Algorithms

• First recent breakthrough. Shuhong Gao’s reduction to linear algebra (2003)
via de Rham’s cohomology: Õ((dxdy)2) (softly quadratic) in characteristic 0 or
large enough. Derived from Ruppert’s absolute irreducibility test (1986, 99).

• Second recent breakthroughs. The first polynomial time Hensel lifting and
recombination algorithm is due to [Belabas, van Hoeij, Klüners, Steel, 2004]:
Õ(dxd3

y).

• [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004]: improvement to Õ(d3) in
characteristic 0 or large enough.

• Mixing of the breakthroughs. [Lecerf, part III of the talk]: “Õ(dxd2
y)”.

12

Purely Inseparable Algebraic Extension

Theorem. Factorization of separable polynomials in K[y] 6=⇒ factorization of
separable polynomials in K[α][y] if α is purely inseparable over K.

Solution already presented. Rewrite K[α] as an extension of its prime field in
order to remove purely inseparable extensions.

Other possible solution.

1. Let q be the minimal polynomial of α over K. Wlog we can assume that
q(α) = αp − a, with a ∈ K \ Kp.

2. From a separable F (y) ∈ K[α][y] compute F̃ (yp) = F (y)p.

F̃ is separable hence can be factored in K[y].

3. Let G be an irreducible factor of F̃ . If G(yp) is a pth power Hp in K[α][y] then
H is an irreducible factor of F . Otherwise G(yp) is an irreducible factor of F .

+ “6=⇒” becomes “=⇒” if K satisfies Seidenberg’s condition P.

13

Seidenberg’s condition P on K: pth power test and pth root extraction are possible
in any purely inseparable extension of K.

⇐⇒ pth root test and extraction are possible in any finite algebraic extension of K.

⇐⇒ pth root test and extraction are possible in any explicitly finitely generated field
extension of K.

⇐⇒ squarefree factorization is possible in L[y] for any finite algebraic extension L
of K [Gianni, Trager, 1996].

Reference. Factorization in constructive mathematics: Mines, Richman, and
Ruitenburg, A course in constructive algebra, Springer-Verlag, 1988.

14

Algebraically Closed Field

The absolute decomposition of F ∈ K[x, y] is its decomposition in K̄[x, y], where
K̄ is the algebraic closure of K.

Example. F := y4 + (2x + 14)y2 − 7x2 + 6x + 47 =
(y2 + (1− 2

√
2)x− 16

√
2 + 7)(y2 + (1 + 2

√
2)x + 16

√
2 + 7).

Usual Representation of the Absolutely Irreducible Factors.

Assume that F is separable when seen in K(x)[y]. The absolutely irreducible
factors of F , written F1, . . . , Fr, and are usually represented by
{(q1, F̃1), . . . , (qs, F̃s)}, such that:

• qi ∈ K[z] \ K, monic, separable.

• F̃i ∈ K[x, y, z], with degz(F̃i) ≤ deg(qi)− 1.

• deg(F̃i(x, y, α)) is independent of the root α of qi.

• {F1, . . . , Fr} = ∪s
i=1{F̃i(x, y, α) | qi(α) = 0}.

• Irredundancy:
∑s

i=1 deg(qi) = r.

15

Example 1. If F ∈ K[y] is squarefree then we can take s := 1, q1(z) as the monic
part of F (z) and F̃1(y, z) := y − z.

Example 2. If K := Q and F := y4 + (2x + 14)y2 − 7x2 + 6x + 47 then we can
take s := 1, q1(z) := z2 − 2, F̃1(x, y, z) := y2 + (1− 2z)x− 16z + 7.

Theorem. [Noether, 1922] For all K the absolutely irreducible decomposition of any
separable polynomial F can be computed by means of arithmetic operations in K
alone.

+ Computing an algebraic extension of K containing all the absolute factors of F

is actually very expensive and useless in many applications.

16
Noether, 1922

Schmidt, 1976

Heintz, Sieveking, 1981

Trager, 1984

Dicrescenzo, Duval, 1984

Kaltofen, 1985: poly time

von zur Gathen, 1985

Ruppert, 1986

Dvornicich, Traverso, 1987

Bajaj, Canny, Garrity, Warren, 1989

Duval, 1990

Kaltofen, 1995: cubic time

Ragot, 1997

Ruppert, 1999

Cormier, Singer, Ulmer, Trager, 2002

Galligo, Rupprecht, 2002

Coreless, Galligo, et al., 2002

Rupprecht, 2004

Bronstein, Trager, 2003

Gao, 2003: softly quadratic time

Sommese, Verschelde, Wampler, 2004

Chèze, Galligo, 2004

Chèze, Lecerf, 2005: sub-quadratic

17

Part II

Reduction to Separable Polynomials

Let A be a unique factorization domain.

Let F ∈ A[y] be primitive of degree d.

p denotes the characteristic of A.

F ∈ A[y] \ A is said to be separable if it has no multiple root in the algebraic
closure of the fraction field of A⇐⇒ Res(F, F ′) 6= 0.

18

Definition

If p = 0 then separable decomposition ≡ squarefree decomposition.

Now assume that p > 0.
The separable decomposition of F is the unique set
{(G1, q1, m1), . . . , (Gs, qs, ms)} ⊆ (A[y] \ A)× {1, p, p2, p3, . . .} × N
(the Gi are actually defined up to unit factors in A) such that:

1. F (y) =
∏s

i=1 Gi(yqi)mi ;

2. for all i 6= j in {1, . . . , s}, Gi(yqi) and Gj(yqj) are coprime;

3. for all i ∈ {1, . . . , s}, mi mod p 6= 0;

4. for all i ∈ {1, . . . , s}, Gi is separable and primitive;

5. for all i 6= j in {1, . . . , s}, (qi, mi) 6= (qj, mj).

Proof. The roots of Gi(yqi) are the ones of F with multiplicity qimi. �

19

Algorithms

It is classical that the separable decomposition can be computed in polynomial time
by arithmetic operations in A alone.

If A is a field:

• Gianni & Trager (1996): softly quadratic algorithm extending the classical
squarefree factorization algorithm for characteristic 0 attributed to Musser
(1971).

• Lecerf (2006): softly optimal cost, with a natural extension of Yun’s squarefree
factorization algorithm (1976).

Otherwise: the fast multimodular and Chinese remaindering techniques classically
used for the gcd can be adapted to the separable factorization.

20

Reducing the Irreducible Factorization to the Separable Case

1. Compute the separable decomposition of F into
∏s

i=1 Gi(yqi)mi .

2. Compute the irreducible factorization of each Gi.

3. If H is an irreducible factor of Gi then compute the largest q|qi such that
H(yqi) = P (yqi/q)q. Then P (yqi/q) is an irreducible factor of F with
multiplicity qmi.

. pth power and pth root extraction must be computable.

21

Part III

Reduction from 2 to 1 Variables

Let F ∈ K[x, y] be of total degree d and bi-degree (dx, dy).

F is assumed to be

• primitive when seen in K[x][y], and

• separable when seen in K(x)[y].

22

The Classical Hensel Lifting Approach
Pretreatment

Task. Find a suitable translation of x so that the following normalization condition
holds:

degy(F (0, y)) = dy and Resy

(
F,

∂F

∂y

)
(0) 6= 0.

Algorithm. If K has sufficiently many elements then the translation can easily be
found in K (softly optimal average cost). Otherwise we construct an algebraic
extension E of K of degree Õ(log(dxdy)) in order to increase the cardinality. Then
we compute the irreducible factorization of F in E[x, y] from which we deduce the
one in K[x, y].

+ The extra cost for working in E instead of K is negligible when discarding the
logarithmic cost factors.

From now on we assume that the normalization condition holds.

23

Skeleton of the Hensel Lifting Factorization Algorithm

Let F1, . . . , Fr be the irreducible factors of F .
Let c (resp. ci) be the leading coefficient of F (resp. Fi) seen in K[x][y].
We write F = cF1 · · ·Fs for the irreducible factorization of F in K[[x]][y].
Each Fi is made monic.

Algorithm.

1. Initialization: factor F (0, y) in K[y] to obtain F1, . . . , Fs to precision (x).

2. Hensel lifting: use Hensel lifting in order to obtain F1, . . . , Fs to a certain
precision (xσ) (softly optimal cost).

3. Recombination: discover how the lifted factors recombine into the Fi.

Problem. Find an efficient polynomial time recombination.

For all i ∈ {1, . . . , r}, let µi ∈ {0, 1}s be the unique vector defined by
Fi = ci

∏s
j=1 F

µi,j

j .

+ The knowledge of all the µi solves the recombination problem.

24
Example

F := y4 − x4 − 2y3 + 2yx2 − y2 − x2 + 2y ∈ Q[x, y].

1. Initialization: F (0, y) = y(y − 1)(y + 1)(y − 2).

2. Hensel lifting:

F1 = y − (2− 1/2x2 − 1/8x4) +O(x5),

F2 = y − (1 + 1/2x2 − 1/8x4) +O(x5),

F3 = y − (1/2x2 + 1/8x4) +O(x5),

F4 = y − (−1− 1/2x2 + 1/8x4) +O(x5).

3. Recombination: µ1 = (1, 0, 1, 0) and µ2 = (0, 1, 0, 1).
F1 = F1F3 = y2 − 2y + x2, F2 := F2F4 = y2 − x2 − 1.

Fi = ci

∏s
j=1 F

µi,j

j .

25

Detailed History of the Hensel Lifting Approach

Let σ still denote the precision of the lifted factors.

� Belabas, van Hoeij, Klüners, Steel (2004): logarithmic derivative method,
σ = dx(2dy − 1) + 1 suffices to recombine in polynomial time.

Theorem. µ1, . . . , µr is the reduced echelon basis of the following system in
the `i ∈ K: ∃G ∈ K[x, y], degx(G) ≤ dx, degy(G) ≤ dy − 1,

s∑
i=1

`i

∂Fi

∂y

Fi

−
G

F
∈ (xσ).

+ The polynomial time was conjectured by T. Sasaki et al. (1991–1993) with a
similar technique.

+ The precision σ is sharp for this algorithm.

� Bostan, Lecerf, Salvy, Schost, Wiebelt (2004): σ = 3d− 2 suffices, if K has
characteristic zero or at least d(d− 1) + 1.

26

� Lecerf (2006): new algorithm based on the de Rham cohomology with precision
σ = 2d, if K has characteristic zero or at least d(d− 1) + 1, and F monic in
K[x][y].

Theorem. µ1, . . . , µr is the reduced echelon basis of the following system in
the `i ∈ K: ∃G, H ∈ K[x, y], deg(G) ≤ d− 1, deg(H) ≤ d− 1,

s∑
i=1

`i

∂Fi

∂y

Fi

−
G

F
∈ (xσ) and

s∑
i=1

`i

∂Fi

∂x

Fi

−
H

F
∈ (xσ−1).

+ The precision σ is also sharp for this algorithm.

� Lecerf (next slide): precision σ = dx + 1 always suffices by means of a different
recombination point of view.

27

The New Recombination Point of View

Let F̂i :=
r∏

j=1,j 6=i

Fj =
F

Fi

and F̂i :=
F

Fi

.

The central objects to recombine are the following:

Gi :=
⌈
F̂i

∂Fi

∂y

⌉dx+1

for all i ∈ {1, . . . , s},

where dAel :=
∑

0≤i≤l−1, j≥0 ai,jx
iyj , for any A :=

∑
i,j≥0 ai,jx

iyj .

+ The only lifting to precision (xdx+1) is necessary to compute the Gi.

Let F be a sub-field of K.

LF :=

{
(`1, . . . , `s) ∈ Fs |

s∑
i=1

`iGi ∈
〈

F̂1

∂F1

∂y
, . . . , F̂r

∂Fr

∂y

〉
F

}
,

Lemma. µ1, . . . , µr is the reduced echelon basis of LF.

Proof. Fi = ci

s∏
j=1

F
µi,j

j =⇒ F̂i

∂Fi

∂y
=

s∑
j=1

µi,jF̂j

∂Fj

∂y
=⇒ F̂i

∂Fi

∂y
=

s∑
j=1

µi,jGj,

whence µi ∈ LF. Then conclude with the dimensions. . .�

28

Characterization of LF by the Residues

` := (`1, . . . , `s) ∈ Fs, G :=
∑s

i=1 `iGi, K̄ := algebraic closure of K.

Let φ1, . . . , φdy
be the roots of F in K̄[[x]], and let ρi := G(x, φi)/∂F

∂y
(x, φi), for

all i ∈ {1, . . . , dy}, so that

G

F
=

dy∑
i=1

ρi

y − φi

.

Lemma. ` ∈ LF =⇒ ρ ∈ Fdy . Conversely, ρ ∈ K̄dy =⇒ ` ∈ LF.

Proof. If ` ∈ LF then G is a F linear combination of F̂1
∂F1

∂y
, . . . , F̂r

∂Fr

∂y
. Conversely

. . .�

We shall distinguish two cases:

a. Characteristic p = 0 or p ≥ dx(2dy − 1) + 1.

+ We take F = K; ρ ∈ Kdy ⇐⇒ d(ρ)/dx = 0.

b. 0 < p ≤ dx(2dy − 1).

+ We take F = Fp; ρ ∈ Fdy
p ⇐⇒ (ρi)p = ρi for all i.

29

Computation of LK in characteristic 0

D : K[x, y]dx,dy−1 → K(x)[y]dy−1

G 7→
(

∂G

∂x

∂F

∂y
−

∂G

∂y

∂F

∂x

)
∂F

∂y
−
(

∂2F

∂xy

∂F

∂y
−

∂2F

∂y2

∂F

∂x

)
G mody F,

dρi

dx
=

D(G)(x, φi(x))
∂F
∂y

(x, φi(x))3
,

Proposition. 〈µ1, . . . , µr〉 = LK = ker(D).

Warning. F is not monic when seen in K[x][y]. In order to avoid expression swell
“mody F ” is performed in K[[x]][y] to precision (xO(dx)). In this way the
recombination reduces to the resolution of a linear system with s unknowns and
O(dxdy) equations.

30

Deterministic Recombination Algorithm in characteristic 0

Input. F ∈ K[x, y], and F1, . . . , Fs to precision (xdx+1).

Output. µ1, . . . , µr.

1. For each i ∈ {1, . . . , s}, compute F̂i as the quotient of F by Fi to precision
(xdx+1). Õ(sdxdy).

2. Compute F̂1
∂F1

∂y
, . . . , F̂s

∂Fs

∂y
to precision (xdx+1) and deduce G1, . . . , Gs.

Õ(sdxdy)

3. Compute D(G1), . . . , D(Gs). Õ(sdxdy)

4. Compute µ1, . . . , µt as the reduced echelon solution basis of the following
linear system in the unknowns (`1, . . . , `s) ∈ Ks:

s∑
i=1

`iD(Gi) = 0. Õ(dxdysω−1)

31

The worst case for this deterministic algorithm is when s ≈ dy Õ(dxdω
y)

If necessary, we can swap x and y in order to ensure dy ≤ dx so that
Õ(dxdω

y) ⊂ Õ((dxdy)2) softly quadratic cost.

First speedup:

The linear system to be solved is overdetermined: at most dy unknowns for
O(dxdy) equations.

 Use a Las Vegas probabilistic linear solver [Kaltofen, Saunders, 1991] in order
to reach an average total cost in Õ(dxd2

y) ⊆ Õ((dxdy)1.5) (when dy ≤ dx).

More speedups: many tricks can be used in order to make the cost of the linear
algebra negligible in practice [Belabas et al., 2004], [Lecerf, 2005].

32

Computation of LFp in characteristic p > 0

From now on we assume that 0 < p ≤ dx(2dy − 1).
K[x, y]k,l := polynomials of bi-degree at most (k, l).

We use the Niederreiter (1993) operator:

Ñ : K[x, y]dx,dy−1 → K[x, yp]pdx,dy−1

G 7→ Gp +
∂p−1

∂yp−1

(
F p−1G

)
.

WARNING: Ñ is not K-linear in general but only Fp-linear.

N : Fs
p → K[x, yp]

(`1, . . . , `s) 7→ N

(
s∑

i=1

`iGi

)
.

Proposition. µ1, . . . , µr is the reduced echelon basis of ker(N).
Proof. The same as for polynomials in Fp[y]. . .�

33
+ The recombination problem reduces to linear system solving over Fp.

+ The size of the linear system to be solved depends on the Fp-algebra structure
of K.

+ If K = Fpk then the linear system has O(pkdxdy) equations and s unknowns.

Proposition.

• ker(N) ⊆ ker(D) ∩ Fs
p.

• N(ker(D) ∩ Fs
p) ⊆ K[xp, yp]dx,dy−1.

+ If K = Fpk then the new linear system has O(kdxdy) equations and s

unknowns.

34

Sketch of the Recombination Algorithm

1. Run the algorithm designed for the characteristic 0 in order to get a basis of
ker(D) ∩ Fs

p.

2. Compute the reduced echelon basis of ker(N).

When K = Fq with q = pk we have the following estimates:

• Deterministic version: Õ(kdxdω
y) operations in Fp “≤” Õ(dxdω

y) operations in
Fq.

• Randomized version: average cost in Õ(kdxd2
y) operations in Fp “≤” Õ(dxd2

y)
operations in Fq.

35

Conclusion

Future work.

• Extension of [Chèze, Lecerf, 2005]: absolute factorization in small positive
characteristic, and a unified approach of the rational and the absolute
factorizations.

• Generalization of the complexity results in terms of the volume of the convex
hull of the support of F .

• Implementation of an open source C++/Mathemagix factorization library
(www.mathemagix.org [van der Hoeven]).

