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Context and Contents

Motivation. Design and implementation of efficient algorithms for factoring
multivariate polynomials into irreducible factors.

Example. Irreducible factorization in

(F5(a, b, c)[d]/(d2 + a2 + 2b2 − c3))(e)[f ]/(f5 + a2 + e2 + d)[y1, y2, y3].

Recall that F ∈ K[y] \ K is separable iff Res(F, F ′) 6= 0, iff F has no multiple root
in the algebraic closure K̄ of K.

Contents.

I. Computability issues.

II. Reduction to separable polynomials.

III. Reduction from 2 to 1 variables.
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Part I

Computability Issues

Effective field:= a field together with an implementation of its arithmetic operations
(+, −, ×, /) and its equality test (=).
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Negative Results
van der Waerden (1930), Fröhlich & Shepherdson (1956)

Theorem. The irreducible decomposition of univariate polynomials over effective
fields is not computable in general.

Proof. Let λ : N∗ → N∗ be injective and computable. Let pi be the ith prime
number, and let K := Q(√pλ(1),

√
pλ(2),

√
pλ(3), . . .). For a given n, factoring

y2 − pn in K[y] is equivalent to testing if n is in the image of λ.

Take λ so that the latter test is not computable [Kleene, 1936].�

Theorem. In characteristic p > 0, the pth power test, the pth root extraction and
the squarefree decomposition are not computable.

Proof. K := F2(xi, x2
j | i 6∈ Im(λ), j ∈ Im(λ)) ⊆ F2(x1, x2, . . .).

x2
n is a square in K iff n 6∈ Im(λ). [von zur Gathen, 1984]

Remark. K is isomorphic to F2(x1, x2, . . .)! �
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Positive Results

A field K is explicitly finitely generated over a field F if it is the fraction field of
F[x1, . . . , xn]/P with P prime and explicitly given by a finite set of generators.

Theorem. [van der Waerden, Fröhlich & Shepherdson, Seidenberg, Richman. . . ]
The irreducible decomposition is computable over any explicitly finitely generated
extension of a prime field.

Proof. From now on, with a view towards complexity. . .

Theorem. [van der Waerden, Maclane, 30’] If F is perfect then, K can be rewritten
into K = F(t1, . . . , tr)[α1, . . . , αs], with

• t1, . . . , tr being a transcendence basis of K over F,

• α1, . . . , αs being algebraic and separable over F(t1, . . . , tr).

 We can discard inseparable extensions.

Example. K := (F5(a, b, c)[d]/(d2 + a2 + 2b2 − c3))(e)[f ]/(f5 + a2 + e2 + d)
can be rewritten into F5(b, c, e, f)[d, a]/(d + f5 + a2 + e2, a2 + d2 + 2b2 − c3).
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Remarks.

+ This rewriting can be made effective by means of Gröbner bases and pth root
extractions in Fp.

+ After this rewriting, pth root extraction in K is made easier and boils down to
linear algebra.

General Factorization Algorithms in Computer Algebra.

• Davenport, Trager (1981): never fully implemented and contained some gaps.

• Steel (2005): the first (and still unique) most general implementation in the
Magma computer algebra system (magma.maths.usyd.edu.au).

• Other implementations are all partial.

Let us now move from computability to algorithms. . .
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Prerequisites for Cost Analysis
[von zur Gathen and Gerhard, Modern Computer Algebra, 2003]

• Each binary arithmetic operation (+, −, ×, /, =) in K costs O(1).

• Dense representation for polynomials.
Example: the size of a bivariate polynomial of bi-degree (n, m) is
(n + 1)(m + 1).

• “Soft big Oh notation”: f(d) ∈ Õ(g(d)) means

f(d) ∈ g(d)(log2(3 + g(d)))O(1).

• “Softly linear in d”= Õ(d); “Softly quadratic in d”= Õ(d2). . .

• The product, the division and the extended gcd of two univariate polynomials of
degree d over K take Õ(d) operations in K.

• ω is a constant such that the product of two n×n matrices over K takesO(nω)
arithmetic operations in K. For convenience we assume that 2 < ω ≤ 3.



8

Factorization in Fp[y](and Fpk[y])

• Early ideas: Gauss (1797), Galois (1830), Arwins (1918).

• 1st alg.: Berlekamp (1970), Zassenhaus (1969), Cantor & Zassenhaus (1981).

• Alg. from 90’s: von zur Gathen, Shoup, Niederreiter, Gao, Kaltofen. . .

Factorization in Q[y]

• First algorithm due to Kronecker (1882): exponential cost.

• Hensel (1918) lifting algorithm (already known by Gauss): exponential cost.
Popularized in computer algebra by Zassenhaus (1969).

• First polynomial time algorithm by Lenstra & Lenstra & Lovász (1982): compute
a complex root with sufficiently high precision in order to deduce its minimal
polynomial by means of LLL.

• First practical polynomial time algorithm: van Hoeij (2002); then improvements
and implementation by Belabas & van Hoeij & Klüners & Steel (2004): compute
an approximate p-adic decomposition, and recombine the factors with LLL.
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Separable Algebraic Extension

+ Reduction to the separable case to be presented in the next part of the talk.

Theorem. Factorization of separable polynomials in K(x)[y] =⇒ factorization of
separable polynomials in K[α][y] whenever α is algebraic separable over K.

Proof. Let F ∈ K[z, y], and let q be the minimal polynomial of α.

Irr. decomposition of F (α, y)⇐⇒ prime decomposition of (q(z), F (z, y))

⇐⇒ Irr. decomposition of Resz(q(z), F (z, y − xz)) ∈ K[x][y]. �

+ van der Waerden in Moderne Algebra (1930) in characteristic 0.

+ Trager (1976): algorithmic point of view; probabilistic faster approach in
characteristic 0 by taking a random value for x in K.

+ Steel (2005): complete implementation in positive characteristic in Magma.

+ Bostan, Flajolet, Salvy, Schost (2006): speed-up for computing the resultant.
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Transcendental Extension

Theorem. Factorization of separable polynomials in K[y] =⇒ factorization of
separable polynomials in K[x][y]. (Proof in Part III of the talk.)

Let F ∈ K[x, y] of total degree d and bidegree dx, dy.
1st period: Exponential Time Algorithms

• The first algorithm goes back at least to Kronecker:

+ substitution x← ydy+1, univariate factorization in degree O(dxdy);

+ exponential cost in the recombination step.

• The Hensel lifting and recombination approach was studied in [Musser, 1973,
1975], [Wang, Rothschild, 1975], [Wang, 1978], [von zur Gathen, 1984],
[Bernardin, 1999 (Maple implementation)]. . .

+ Univariate factorization in degree dy.

+ The exponential cost is again in the recombination step.

+ The cost is polynomial in average over finite fields [Gao, Lauder, 2000].

• Absolute factorization via elimination following Emmy Noether’s ideas.
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2nd period: First Polynomial Time Algorithms

• The first deterministic polynomial time algorithm for when K = Q is due to
Kaltofen (1982). Several authors then contributed during the 80’s for various K:
Lenstra, Kannan, Lovász, Chistov, Grigoviev, von zur Gathen. . .

+ Derived from the LLL algorithm; essentially cubic time.

3rd period: Efficient Polynomial Time Algorithms

• First recent breakthrough. Shuhong Gao’s reduction to linear algebra (2003)
via de Rham’s cohomology: Õ((dxdy)2) (softly quadratic) in characteristic 0 or
large enough. Derived from Ruppert’s absolute irreducibility test (1986, 99).

• Second recent breakthroughs. The first polynomial time Hensel lifting and
recombination algorithm is due to [Belabas, van Hoeij, Klüners, Steel, 2004]:
Õ(dxd3

y).

• [Bostan, Lecerf, Salvy, Schost, Wiebelt, 2004]: improvement to Õ(d3) in
characteristic 0 or large enough.

• Mixing of the breakthroughs. [Lecerf, part III of the talk]: “Õ(dxd2
y)”.
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Purely Inseparable Algebraic Extension

Theorem. Factorization of separable polynomials in K[y] 6=⇒ factorization of
separable polynomials in K[α][y] if α is purely inseparable over K.

Solution already presented. Rewrite K[α] as an extension of its prime field in
order to remove purely inseparable extensions.

Other possible solution.

1. Let q be the minimal polynomial of α over K. Wlog we can assume that
q(α) = αp − a, with a ∈ K \ Kp.

2. From a separable F (y) ∈ K[α][y] compute F̃ (yp) = F (y)p.

F̃ is separable hence can be factored in K[y].

3. Let G be an irreducible factor of F̃ . If G(yp) is a pth power Hp in K[α][y] then
H is an irreducible factor of F . Otherwise G(yp) is an irreducible factor of F .

+ “6=⇒” becomes “=⇒” if K satisfies Seidenberg’s condition P.
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Seidenberg’s condition P on K: pth power test and pth root extraction are possible
in any purely inseparable extension of K.

⇐⇒ pth root test and extraction are possible in any finite algebraic extension of K.

⇐⇒ pth root test and extraction are possible in any explicitly finitely generated field
extension of K.

⇐⇒ squarefree factorization is possible in L[y] for any finite algebraic extension L
of K [Gianni, Trager, 1996].

Reference. Factorization in constructive mathematics: Mines, Richman, and
Ruitenburg, A course in constructive algebra, Springer-Verlag, 1988.
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Algebraically Closed Field

The absolute decomposition of F ∈ K[x, y] is its decomposition in K̄[x, y], where
K̄ is the algebraic closure of K.

Example. F := y4 + (2x + 14)y2 − 7x2 + 6x + 47 =
(y2 + (1− 2

√
2)x− 16

√
2 + 7)(y2 + (1 + 2

√
2)x + 16

√
2 + 7).

Usual Representation of the Absolutely Irreducible Factors.

Assume that F is separable when seen in K(x)[y]. The absolutely irreducible
factors of F , written F1, . . . , Fr, and are usually represented by
{(q1, F̃1), . . . , (qs, F̃s)}, such that:

• qi ∈ K[z] \ K, monic, separable.

• F̃i ∈ K[x, y, z], with degz(F̃i) ≤ deg(qi)− 1.

• deg(F̃i(x, y, α)) is independent of the root α of qi.

• {F1, . . . , Fr} = ∪s
i=1{F̃i(x, y, α) | qi(α) = 0}.

• Irredundancy:
∑s

i=1 deg(qi) = r.
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Example 1. If F ∈ K[y] is squarefree then we can take s := 1, q1(z) as the monic
part of F (z) and F̃1(y, z) := y − z.

Example 2. If K := Q and F := y4 + (2x + 14)y2 − 7x2 + 6x + 47 then we can
take s := 1, q1(z) := z2 − 2, F̃1(x, y, z) := y2 + (1− 2z)x− 16z + 7.

Theorem. [Noether, 1922] For all K the absolutely irreducible decomposition of any
separable polynomial F can be computed by means of arithmetic operations in K
alone.

+ Computing an algebraic extension of K containing all the absolute factors of F

is actually very expensive and useless in many applications.
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Noether, 1922

Schmidt, 1976

Heintz, Sieveking, 1981

Trager, 1984

Dicrescenzo, Duval, 1984

Kaltofen, 1985: poly time

von zur Gathen, 1985

Ruppert, 1986

Dvornicich, Traverso, 1987

Bajaj, Canny, Garrity, Warren, 1989

Duval, 1990

Kaltofen, 1995: cubic time

Ragot, 1997

Ruppert, 1999

Cormier, Singer, Ulmer, Trager, 2002

Galligo, Rupprecht, 2002

Coreless, Galligo, et al., 2002

Rupprecht, 2004

Bronstein, Trager, 2003

Gao, 2003: softly quadratic time

Sommese, Verschelde, Wampler, 2004

Chèze, Galligo, 2004

Chèze, Lecerf, 2005: sub-quadratic
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Part II

Reduction to Separable Polynomials

Let A be a unique factorization domain.

Let F ∈ A[y] be primitive of degree d.

p denotes the characteristic of A.

F ∈ A[y] \ A is said to be separable if it has no multiple root in the algebraic
closure of the fraction field of A⇐⇒ Res(F, F ′) 6= 0.
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Definition

If p = 0 then separable decomposition ≡ squarefree decomposition.

Now assume that p > 0.
The separable decomposition of F is the unique set
{(G1, q1, m1), . . . , (Gs, qs, ms)} ⊆ (A[y] \ A)× {1, p, p2, p3, . . .} × N
(the Gi are actually defined up to unit factors in A) such that:

1. F (y) =
∏s

i=1 Gi(yqi)mi ;

2. for all i 6= j in {1, . . . , s}, Gi(yqi) and Gj(yqj) are coprime;

3. for all i ∈ {1, . . . , s}, mi mod p 6= 0;

4. for all i ∈ {1, . . . , s}, Gi is separable and primitive;

5. for all i 6= j in {1, . . . , s}, (qi, mi) 6= (qj, mj).

Proof. The roots of Gi(yqi) are the ones of F with multiplicity qimi. �
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Algorithms

It is classical that the separable decomposition can be computed in polynomial time
by arithmetic operations in A alone.

If A is a field:

• Gianni & Trager (1996): softly quadratic algorithm extending the classical
squarefree factorization algorithm for characteristic 0 attributed to Musser
(1971).

• Lecerf (2006): softly optimal cost, with a natural extension of Yun’s squarefree
factorization algorithm (1976).

Otherwise: the fast multimodular and Chinese remaindering techniques classically
used for the gcd can be adapted to the separable factorization.
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Reducing the Irreducible Factorization to the Separable Case

1. Compute the separable decomposition of F into
∏s

i=1 Gi(yqi)mi .

2. Compute the irreducible factorization of each Gi.

3. If H is an irreducible factor of Gi then compute the largest q|qi such that
H(yqi) = P (yqi/q)q. Then P (yqi/q) is an irreducible factor of F with
multiplicity qmi.

. pth power and pth root extraction must be computable.
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Part III

Reduction from 2 to 1 Variables

Let F ∈ K[x, y] be of total degree d and bi-degree (dx, dy).

F is assumed to be

• primitive when seen in K[x][y], and

• separable when seen in K(x)[y].
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The Classical Hensel Lifting Approach
Pretreatment

Task. Find a suitable translation of x so that the following normalization condition
holds:

degy(F (0, y)) = dy and Resy

(
F,

∂F

∂y

)
(0) 6= 0.

Algorithm. If K has sufficiently many elements then the translation can easily be
found in K (softly optimal average cost). Otherwise we construct an algebraic
extension E of K of degree Õ(log(dxdy)) in order to increase the cardinality. Then
we compute the irreducible factorization of F in E[x, y] from which we deduce the
one in K[x, y].

+ The extra cost for working in E instead of K is negligible when discarding the
logarithmic cost factors.

From now on we assume that the normalization condition holds.
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Skeleton of the Hensel Lifting Factorization Algorithm

Let F1, . . . , Fr be the irreducible factors of F .
Let c (resp. ci) be the leading coefficient of F (resp. Fi) seen in K[x][y].
We write F = cF1 · · ·Fs for the irreducible factorization of F in K[[x]][y].
Each Fi is made monic.

Algorithm.

1. Initialization: factor F (0, y) in K[y] to obtain F1, . . . , Fs to precision (x).

2. Hensel lifting: use Hensel lifting in order to obtain F1, . . . , Fs to a certain
precision (xσ) (softly optimal cost).

3. Recombination: discover how the lifted factors recombine into the Fi.

Problem. Find an efficient polynomial time recombination.

For all i ∈ {1, . . . , r}, let µi ∈ {0, 1}s be the unique vector defined by
Fi = ci

∏s
j=1 F

µi,j

j .

+ The knowledge of all the µi solves the recombination problem.
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Example

F := y4 − x4 − 2y3 + 2yx2 − y2 − x2 + 2y ∈ Q[x, y].

1. Initialization: F (0, y) = y(y − 1)(y + 1)(y − 2).

2. Hensel lifting:

F1 = y − (2− 1/2x2 − 1/8x4) +O(x5),

F2 = y − (1 + 1/2x2 − 1/8x4) +O(x5),

F3 = y − (1/2x2 + 1/8x4) +O(x5),

F4 = y − (−1− 1/2x2 + 1/8x4) +O(x5).

3. Recombination: µ1 = (1, 0, 1, 0) and µ2 = (0, 1, 0, 1).
F1 = F1F3 = y2 − 2y + x2, F2 := F2F4 = y2 − x2 − 1.

Fi = ci

∏s
j=1 F

µi,j

j .
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Detailed History of the Hensel Lifting Approach

Let σ still denote the precision of the lifted factors.

� Belabas, van Hoeij, Klüners, Steel (2004): logarithmic derivative method,
σ = dx(2dy − 1) + 1 suffices to recombine in polynomial time.

Theorem. µ1, . . . , µr is the reduced echelon basis of the following system in
the `i ∈ K: ∃G ∈ K[x, y], degx(G) ≤ dx, degy(G) ≤ dy − 1,

s∑
i=1

`i

∂Fi

∂y

Fi

−
G

F
∈ (xσ).

+ The polynomial time was conjectured by T. Sasaki et al. (1991–1993) with a
similar technique.

+ The precision σ is sharp for this algorithm.

� Bostan, Lecerf, Salvy, Schost, Wiebelt (2004): σ = 3d− 2 suffices, if K has
characteristic zero or at least d(d− 1) + 1.
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� Lecerf (2006): new algorithm based on the de Rham cohomology with precision
σ = 2d, if K has characteristic zero or at least d(d− 1) + 1, and F monic in
K[x][y].

Theorem. µ1, . . . , µr is the reduced echelon basis of the following system in
the `i ∈ K: ∃G, H ∈ K[x, y], deg(G) ≤ d− 1, deg(H) ≤ d− 1,

s∑
i=1

`i

∂Fi

∂y

Fi

−
G

F
∈ (xσ) and

s∑
i=1

`i

∂Fi

∂x

Fi

−
H

F
∈ (xσ−1).

+ The precision σ is also sharp for this algorithm.

� Lecerf (next slide): precision σ = dx + 1 always suffices by means of a different
recombination point of view.
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The New Recombination Point of View

Let F̂i :=
r∏

j=1,j 6=i

Fj =
F

Fi

and F̂i :=
F

Fi

.

The central objects to recombine are the following:

Gi :=
⌈
F̂i

∂Fi

∂y

⌉dx+1

for all i ∈ {1, . . . , s},

where dAel :=
∑

0≤i≤l−1, j≥0 ai,jx
iyj , for any A :=

∑
i,j≥0 ai,jx

iyj .

+ The only lifting to precision (xdx+1) is necessary to compute the Gi.

Let F be a sub-field of K.

LF :=

{
(`1, . . . , `s) ∈ Fs |

s∑
i=1

`iGi ∈
〈

F̂1

∂F1

∂y
, . . . , F̂r

∂Fr

∂y

〉
F

}
,

Lemma. µ1, . . . , µr is the reduced echelon basis of LF.

Proof. Fi = ci

s∏
j=1

F
µi,j

j =⇒ F̂i

∂Fi

∂y
=

s∑
j=1

µi,jF̂j

∂Fj

∂y
=⇒ F̂i

∂Fi

∂y
=

s∑
j=1

µi,jGj,

whence µi ∈ LF. Then conclude with the dimensions. . .�
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Characterization of LF by the Residues

` := (`1, . . . , `s) ∈ Fs, G :=
∑s

i=1 `iGi, K̄ := algebraic closure of K.

Let φ1, . . . , φdy
be the roots of F in K̄[[x]], and let ρi := G(x, φi)/∂F

∂y
(x, φi), for

all i ∈ {1, . . . , dy}, so that

G

F
=

dy∑
i=1

ρi

y − φi

.

Lemma. ` ∈ LF =⇒ ρ ∈ Fdy . Conversely, ρ ∈ K̄dy =⇒ ` ∈ LF.

Proof. If ` ∈ LF then G is a F linear combination of F̂1
∂F1

∂y
, . . . , F̂r

∂Fr

∂y
. Conversely

. . .�

We shall distinguish two cases:

a. Characteristic p = 0 or p ≥ dx(2dy − 1) + 1.

+ We take F = K; ρ ∈ Kdy ⇐⇒ d(ρ)/dx = 0.

b. 0 < p ≤ dx(2dy − 1).

+ We take F = Fp; ρ ∈ Fdy
p ⇐⇒ (ρi)p = ρi for all i.
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Computation of LK in characteristic 0

D : K[x, y]dx,dy−1 → K(x)[y]dy−1

G 7→
(

∂G

∂x

∂F

∂y
−

∂G

∂y

∂F

∂x

)
∂F

∂y
−
(

∂2F

∂xy

∂F

∂y
−

∂2F

∂y2

∂F

∂x

)
G mody F,

dρi

dx
=

D(G)(x, φi(x))
∂F
∂y

(x, φi(x))3
,

Proposition. 〈µ1, . . . , µr〉 = LK = ker(D).

Warning. F is not monic when seen in K[x][y]. In order to avoid expression swell
“mody F ” is performed in K[[x]][y] to precision (xO(dx)). In this way the
recombination reduces to the resolution of a linear system with s unknowns and
O(dxdy) equations.
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Deterministic Recombination Algorithm in characteristic 0

Input. F ∈ K[x, y], and F1, . . . , Fs to precision (xdx+1).

Output. µ1, . . . , µr.

1. For each i ∈ {1, . . . , s}, compute F̂i as the quotient of F by Fi to precision
(xdx+1). Õ(sdxdy).

2. Compute F̂1
∂F1

∂y
, . . . , F̂s

∂Fs

∂y
to precision (xdx+1) and deduce G1, . . . , Gs.

Õ(sdxdy)

3. Compute D(G1), . . . , D(Gs). Õ(sdxdy)

4. Compute µ1, . . . , µt as the reduced echelon solution basis of the following
linear system in the unknowns (`1, . . . , `s) ∈ Ks:

s∑
i=1

`iD(Gi) = 0. Õ(dxdysω−1)
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The worst case for this deterministic algorithm is when s ≈ dy  Õ(dxdω
y )

If necessary, we can swap x and y in order to ensure dy ≤ dx so that
Õ(dxdω

y ) ⊂ Õ((dxdy)2) softly quadratic cost.

First speedup:

The linear system to be solved is overdetermined: at most dy unknowns for
O(dxdy) equations.

 Use a Las Vegas probabilistic linear solver [Kaltofen, Saunders, 1991] in order
to reach an average total cost in Õ(dxd2

y) ⊆ Õ((dxdy)1.5) (when dy ≤ dx).

More speedups: many tricks can be used in order to make the cost of the linear
algebra negligible in practice [Belabas et al., 2004], [Lecerf, 2005].
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Computation of LFp in characteristic p > 0

From now on we assume that 0 < p ≤ dx(2dy − 1).
K[x, y]k,l := polynomials of bi-degree at most (k, l).

We use the Niederreiter (1993) operator:

Ñ : K[x, y]dx,dy−1 → K[x, yp]pdx,dy−1

G 7→ Gp +
∂p−1

∂yp−1

(
F p−1G

)
.

WARNING: Ñ is not K-linear in general but only Fp-linear.

N : Fs
p → K[x, yp]

(`1, . . . , `s) 7→ N

(
s∑

i=1

`iGi

)
.

Proposition. µ1, . . . , µr is the reduced echelon basis of ker(N).
Proof. The same as for polynomials in Fp[y]. . .�
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+ The recombination problem reduces to linear system solving over Fp.

+ The size of the linear system to be solved depends on the Fp-algebra structure
of K.

+ If K = Fpk then the linear system has O(pkdxdy) equations and s unknowns.

Proposition.

• ker(N) ⊆ ker(D) ∩ Fs
p.

• N(ker(D) ∩ Fs
p) ⊆ K[xp, yp]dx,dy−1.

+ If K = Fpk then the new linear system has O(kdxdy) equations and s

unknowns.
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Sketch of the Recombination Algorithm

1. Run the algorithm designed for the characteristic 0 in order to get a basis of
ker(D) ∩ Fs

p.

2. Compute the reduced echelon basis of ker(N).

When K = Fq with q = pk we have the following estimates:

• Deterministic version: Õ(kdxdω
y ) operations in Fp “≤” Õ(dxdω

y ) operations in
Fq.

• Randomized version: average cost in Õ(kdxd2
y) operations in Fp “≤” Õ(dxd2

y)
operations in Fq.
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Conclusion

Future work.

• Extension of [Chèze, Lecerf, 2005]: absolute factorization in small positive
characteristic, and a unified approach of the rational and the absolute
factorizations.

• Generalization of the complexity results in terms of the volume of the convex
hull of the support of F .

• Implementation of an open source C++/Mathemagix factorization library
(www.mathemagix.org [van der Hoeven]).


