Algebraic versions of "P=NP?"

Pascal Koiran
Laboratoire de l'Informatique du Parallélisme
Ecole Normale Supérieure de Lyon

Workshop on Complexity, Coding, and Communications Minneapolis, April 2007.

Valiant's model : $VP_K = VNP_K$?

- Complexity of a polynomial f measured by number L(f) of arithmetic operations $(+,-,\times)$ needed to evaluate f:

L(f) = size of smallest arithmetic circuit computing f.

 $-(f_n) \in VP$ if number of variables, $deg(f_n)$ and $L(f_n)$ are polynomially bounded. For instance, $(X^{2^n}) \notin VP$.

$$-(f_n) \in \text{VNP if } f_n(\overline{x}) = \sum_{\overline{y}} g_n(\overline{x}, \overline{y})$$

for some $(g_n) \in VP$

(sum ranges over all boolean values of \overline{y}).

A typical VNP family: the permanent.

$$per(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}.$$

It is VNP-complete if $char(K) \neq 2$.

VP and VNP are almost the only classes studied in Valiant's framework.

Sharp contrast with the "complexity theory zoo" of discrete classes (> 400 classes at www.complexityzoo.com).

Some exceptions:

- VQP: $deg(f_n)$ polynomially bounded and $L(f_n) \le n^{\operatorname{poly}(\log n)}$.
- Malod (2003) has studied versions of VP and VNP without bound on $deg(f_n)$: VP_{nb} , VNP_{nb} ; and constant-free classes: VP^0 , VNP^0 , VP^0_{nb} , VNP^0_{nb} .
- We will define a class VPSPACE (or VPAR?) which contains VNP_{nb} .

Blum-Shub-Smale model (as presented by Poizat):

$$P_K = NP_K$$
?

- Computation model is richer: in addition to $+, -, \times$ gates, circuits may use = and (if K ordered) \leq gates. Selection gates:

$$s(x, y, z) = \begin{cases} y \text{ if } x = 0\\ z \text{ if } x = 1 \end{cases}$$

We may assume that $x \in \{0, 1\}$.

For instance, s(x, y, z) = xz + (1 - x)y.

- Focus on decision problems.

Complexity classes

- A problem : $X \subseteq K^{\infty} = \bigcup_{n>1} K^n$.
- X is P_K if for all $x \in K^n$,

$$x \in X \Leftrightarrow C_n(x_1, \dots, x_n, a_1, \dots, a_k) = 1$$

with C_n constructed in polynomial time by a Turing machine.

- X is NP_K if for all $x \in K^n$,

$$x \in X \Leftrightarrow \exists y \in K^{p(n)}\langle x, y \rangle \in Y$$

with $Y \in P_K$.

A typical $NP_{\mathbb{R}}$ -complete problem :

decide whether a polynomial of degree 4 in n variables has a real root.

Best algorithms to this day are of complexity exponential in n.

Decision is easy if evaluation is easy

VPAR : Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Theorem [Koiran-Périfel, STACS 2007]:

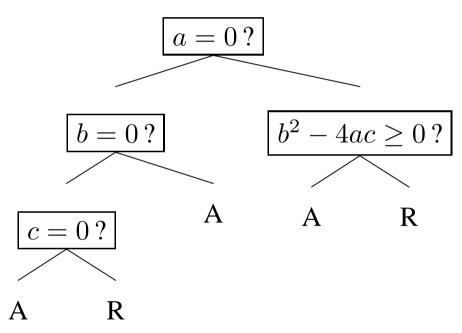
Uniform $VP_{nb} = Uniform VPAR \Rightarrow P_{\mathbb{R}} = NP_{\mathbb{R}} = PAR_{\mathbb{R}}$.

Several versions (6?) of this theorem,

depending on uniformity conditions and the role of constants.

Decision trees

$$\exists x \in \mathbb{R} \ ax^2 + bx + c = 0 ?$$



Internal nodes labeled by arbitrary polynomials.

Complexity \equiv tree depth.

Model is unrealistic:

the complexity of polynomial evaluation should be taken into account!

Circuits versus trees

Circuit with T test $(=, \leq)$ or selection gates \rightarrow tree of depth T.

Can $NP_{\mathbb{R}}$ problems be solved by decision trees of polynomial depth ? If not, $P_{\mathbb{R}} \neq NP_{\mathbb{R}}$!

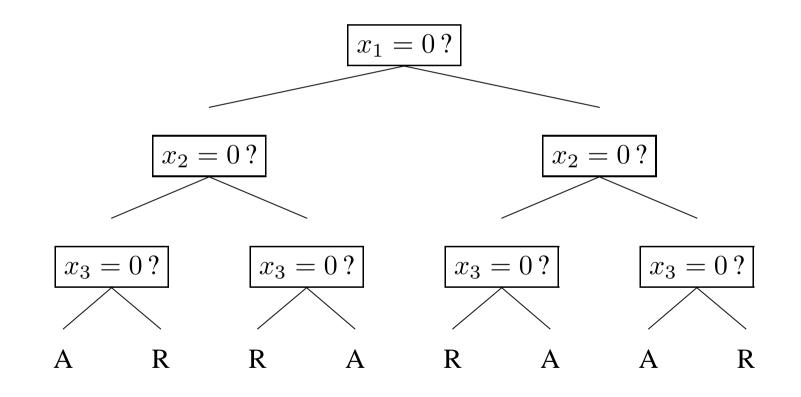
Similar questions for various structures M, for instance,

$$M = (\mathbb{C}, +, -, \times, =), (\mathbb{R}, +, -, \leq), (\mathbb{R}, +, -, =), \{0, 1\}.$$

For $M = \{0, 1\}$, the answer is...

Labels of internal nodes are of the form " $x_i = 0$?".

Do NP_M problems have polynomial depth decision trees? For $M = \{0, 1\}$, Yes.



For $M = (\mathbb{R}, +, -, =)$, the answer is...

Internal nodes are of the form:

$$a_1x_1 + \cdots + a_nx_n + b = 0$$
?

For
$$M = (\mathbb{R}, +, -, =)$$
, **No**.

Twenty Questions:

 $INPUT: x_1, \ldots, x_n.$

QUESTION: $x_1 \in \{0, 1, 2, \dots, 2^n - 1\}$?

Twenty Questions is in NP_M: guess $y \in \{0, 1\}^n$, check that $x_1 = \sum_{j=1}^n 2^{j-1} y_j$.

A canonical path argument shows that its decision tree complexity is 2^n . Therefore, $P_M \neq NP_M$ (Meer).

Conjecture (Shub-Smale): Twenty Questions is not in $P_{(\mathbb{C},+,-,\times,=)}$.

For $M = (\mathbb{R}, +, -, \leq)$, the answer is...

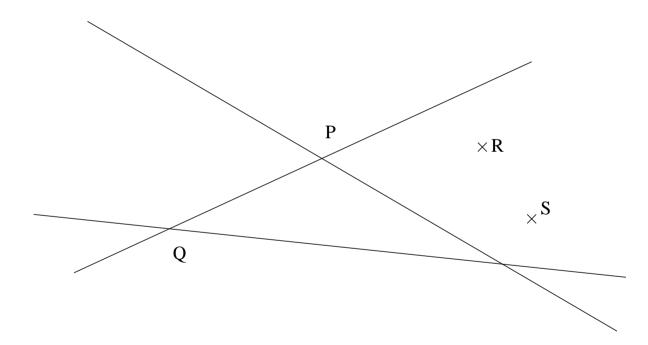
Internal nodes are of the form:

$$a_1x_1 + \dots + a_nx_n + b \ge 0?$$

Remark : Twenty Questions is in P_M by binary search.

For
$$M = (\mathbb{R}, +, -, \leq)$$
, Yes.

Proof based on algorithms for point location in arrangements of hyperplanes.



R, S lie in the same 2-dimensional cell.

P,Q is a 1-dimensional cell.

 $\{P\}$ and $\{Q\}$ are 0-dimensional cells.

Decision trees for $NP_{(\mathbb{R},+,-,\leq)}$ problems : the construction

- 1. $NP_M \subseteq PAR_M$: problems solvable in parallel polynomial time (by uniform circuits of possibly exponential size).
- 2. For inputs in \mathbb{R}^n , any PAR_M problem is a union of *cells* of an arrangement of $2^{n^{O(1)}}$ hyperplanes.
- 3. In this arrangement, point location can be performed in depth $n^{O(1)}$ (Meiser, Meyer auf der Heide). Now, just label the leaves correctly.

Corollary [Fournier-Koiran] : if P = NP then $P_M = NP_M$.

Proof sketch: with access to an NP oracle, one can effectively "run" the tree on any input $x \in \mathbb{R}^n$ (i.e., construct the path followed by x from the root to a leaf).

For
$$M = (\mathbb{C}, +, -, \times, =)$$
, the answer is...

Internal nodes are of the form

$$P(x_1,\ldots,x_n)=0?$$

where P is an arbitrary polynomial.

For
$$M = (\mathbb{C}, +, -, \times, =)$$
, Yes.

Not the topic of this talk...

For $M = (\mathbb{R}, +, -, \times, \leq)$, the answer is...

Internal nodes are of the form

$$P(x_1,\ldots,x_n) \ge 0?$$

where P is an arbitrary polynomial.

For
$$M = (\mathbb{R}, +, -, \times, \leq)$$
, Yes.

- 1. $NP_{\mathbb{R}} \subseteq PAR_{\mathbb{R}}$: problems solvable in parallel polynomial time (by uniform circuits of possibly exponential size).
- 2. For inputs in \mathbb{R}^n , any $PAR_{\mathbb{R}}$ problem is a union of *cells* of an arrangement of $2^{n^{O(1)}}$ hypersurfaces of degree $2^{n^{O(1)}}$. Fix polynomials P_1, \ldots, P_s .

Two points x and y are in the same cell if $sign(P_i(x)) = sign(P_i(y))$ for all i = 1, ..., s.

Here, $sign(a) \in \{-1, 0, 1\}$.

3. In this arrangement, point location can be performed in depth $n^{O(1)}$. Now, just label the leaves correctly.

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth $O(\log N)$, where N is the number of nonempty cells.

Remark: $N \leq (sd)^{O(n)}$ where $d = \max_{i=1,...,s} \deg(P_i)$. Hence $\log N = n^{O(1)}$.

Consider inputs x with $P_i(x) \neq 0$ for all i.

Nodes are of the form " $\prod_{j \in F} P_j(x) > 0$?", where F is as follows.

Divide and Conquer Lemma:

Let $X = \{1, \ldots, s\}$ and F_1, \ldots, F_N nonempty subsets of X.

There exists $F \subseteq X$ such that $N/3 \le |\{F_x; |F \cap F_x| \text{ even }\}| \le 2N/3$.

Apply to sets F_x defined by conditions of the form :

$$j \in F_x \Leftrightarrow P_j(x) < 0.$$

Then $\prod_{j \in F} P_j(x) > 0 \Leftrightarrow |F \cap F_x|$ even.

Improved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé]:

The range $[\frac{N}{3}, \frac{2N}{3}]$ can be replaced by $[\frac{N}{2} - \alpha, \frac{N}{2} + \alpha]$ where $\alpha = \sqrt{N}/2$.

Remark : One must have $\alpha = \Omega(\sqrt{N}/(\log N)^{1/4})$.

Probabilistic proof: for a random subset F, let

 $Y_i = 1$ if $|F \cap F_i|$ is even, and $Y_i = -1$ otherwise.

Need to show that there exists F such that $Y^2 \leq N$, where $Y = \sum_{i=1}^{N} Y_i$. This follows from $E[Y^2] = N$:

$$E[Y^2] = E[\sum_{i=1}^{N} Y_i^2 + 2\sum_{i < j} Y_i Y_j]$$

but $E[Y_i^2] = 1$ and for $i \neq j$, by pairwise independence :

$$E[Y_iY_j] = E[Y_i]E[Y_j] = 0.$$

This can be turned into a deterministic logspace algorithm.

A remark on derandomization

From Motwani, Naor and Naor 1994:

"A natural approach towards de-randomizing algorithms is to find a method for searching the associated sample Ω for a good point w with respect to a given input instance I. Given such a point w, the algorithm $\mathcal{A}(I,w)$ is now a deterministic algorithm and it is guaranteed to find a correct solution. The problem faced in searching the sample space is that it is generally exponential in size. The result of Adleman showing that $RP \subseteq P/poly$ implies that the sample space Ω associated with a randomized algorithm always contains a polynomial-sized subspace which has a good point for each possible input instance. However, this result is highly non-constructive and it appears that it cannot be used to actually de-randomize algorithms."

Adleman strikes back

Given s and N, our deterministic logspace algorithm constructs a list of $s^2N^2(N+1)^2$ subsets of $X=\{1,\ldots,s\}$ such that for any input F_1,\ldots,F_N :

$$-\frac{\sqrt{N}}{2} \le |\{F_x; |F \cap F_x| \text{ even}\}| - \frac{N}{2} \le \frac{\sqrt{N}}{2}.$$

holds for some element F of the list.

The deterministic algorithm then performs an exhaustive search in this list.

Effective point location:

Taking the complexity of polynomials into account

For a problem $A \in PAR_{\mathbb{R}}$, hypersurfaces of the arrangement are defined by polynomials P_i in uniform VPAR:

Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Nodes of the tree of the form " $\prod_{i \in F} P_i(x) > 0$?" where $F \in PSPACE$: in Uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size circuits, then $PAR_{\mathbb{R}}$ problems have polynomial size circuits.

Can VPAR families have polynomial size circuits?

- Very strong hypothesis.
- Admits several versions (6?), depending on uniformity conditions and role of constants.

With (polynomially) nonuniform circuits, and Valiant's convention for constants:

(i)
$$VPAR = VP_{nb}$$
.

(ii) VP = VNP and $PSPACE \subseteq P/poly$.

VPAR = $VP_{nb} \Rightarrow PSPACE \subseteq P/poly$ assumes GRH (seems necessary to handle arbitrary constants).

Can we refute $[VP = VNP \text{ and } PSPACE \subseteq P/poly]$?

To prove that $\neg (A \land B)$, one does not always have to prove $\neg A$ or $\neg B$.

For instance, we know that LOGSPACE \neq P or P \neq PSPACE.

It was shown by Bürgisser that (under GRH),

 $VP = VNP \Rightarrow NP \subseteq NC/poly$ (problems recognized by polynomial size boolean circuits of polylogarithmic depth).

Hence, assuming GRH, the hypothesis implies that $PSPACE \subseteq NC/poly$.

Most uniform version of this hypothesis

Uniform
$$VPAR^0 = Uniform VP_{nb}^0 \Rightarrow P-uniform NC = PSPACE$$
.

Proof is in two steps. Hypothesis implies:

- (i) P = PSPACE.
- (ii) P-uniform $NC = \bigoplus P$.

Proof of (ii) based on \bigoplus P-completeness of \bigoplus HAMILTONIAN PATHS. Note that \sharp HAMILTONIAN PATHS is of the form

$$\sum_{\sigma: n-\text{cycle } i \neq \text{end}(\sigma)} a_{i\sigma(i)}$$

where (a_{ij}) is the graph's adjacency matrix.

Remark : It is known that LOGSPACE-uniform $NC \neq PSPACE$.

VPSPACE

Theorem:

A polynomial family $f_n \in \mathbb{Z}[X_1, \dots, X_{p(n)}]$ is in P-uniform VPAR⁰ iff:

- (i) p(n) is polynomially bounded.
- (ii) $deg(f_n)$ is exponentially bounded.
- (iii) The bit size of the coefficients of f_n is exponentially bounded.
- (iv) The map $(1^n, \overline{\alpha}) \mapsto a_{n,\overline{\alpha}}$ is PSPACE computable, where

$$f_n(\overline{X}) = \sum_{\overline{\alpha}} a_{n,\overline{\alpha}} \overline{X}^{\overline{\alpha}}.$$

This characterization is useful in the proof that

$$[VP = VNP \text{ and } PSPACE \subseteq P/poly] \Rightarrow VPAR = VP_{nb}.$$

A natural example of a VPAR family

Resultants of multivariate polynomial systems form a VPAR family.

Proof sketch:

- (i) The *Macaulay matrix* is an exponential size matrix whose non-zero entries are coefficients of the polynomial system.
- (ii) Determinants can be computed by arithmetic circuits of polylogarithmic depth.

Outcome of this work

- Focus put back on evaluation problems : to show that certain decision problems (in $NP_{\mathbb{R}}$, or $PAR_{\mathbb{R}}$) are hard, one must first be able to show that certain evaluation problems (in VPAR) are hard.
- Suggestion of new lower bound problems : various versions of " $VP_{nb} = VPAR$?".
- Other natural (complete ?) polynomial families in VPAR ?