Algebraic versions of "P=NP ?"

Pascal Koiran Laboratoire de l'Informatique du Parallélisme Ecole Normale Supérieure de Lyon

Workshop on Complexity, Coding, and Communications Minneapolis, April 2007.

Valiant's model : $VP_K = VNP_K$?

Complexity of a polynomial f measured by number $L(f)$ of arithmetic operations $(+,-, \times)$ needed to evaluate f :

 $L(f)$ = size of smallest arithmetic circuit computing f.

 $(f_n) \in VP$ if number of variables, $deg(f_n)$ and $L(f_n)$ are polynomially bounded. For instance, $(X^{2^n}) \notin VP$.

$$
- (f_n) \in \text{VNP if } f_n(\overline{x}) = \sum_{\overline{y}} g_n(\overline{x}, \overline{y})
$$

for some $(g_n) \in VP$

(sum ranges over all boolean values of \overline{y}).

A typical VNP family : the permanent.

$$
\text{per}(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i\sigma(i)}.
$$

It is VNP-complete if $char(K) \neq 2$.

VP and VNP are almost the only classes studied in Valiant's framework.

Sharp contrast with the "complexity theory zoo" of discrete classes (> 400 classes at www.complexityzoo.com).

Some exceptions :

- $-$ VQP : $\deg(f_n)$ polynomially bounded and $L(f_n) \leq n^{\text{poly}(\log n)}$.
- Malod (2003) has studied versions of VP and VNP without bound on $deg(f_n) : VP_{nb}$, VNP_{nb}; and constant-free classes : VP^{0} , VNP^{0} , VP^{0}_{nb} , VNP^{0}_{nb} .
- We will define a class VPSPACE (or VPAR ?) which contains VNP_{nb} .

Blum-Shub-Smale model (as presented by Poizat) : $P_K = NP_K$?

Computation model is richer : in addition to $+, -, \times$ gates, circuits may use = and (if K ordered) \leq gates. Selection gates :

$$
s(x, y, z) = \begin{cases} y \text{ if } x = 0 \\ z \text{ if } x = 1 \end{cases}
$$

We may assume that $x \in \{0, 1\}$. For instance, $s(x, y, z) = xz + (1 - x)y$.

–Focus on decision problems.

Complexity classes

- A problem :
$$
X \subseteq K^{\infty} = \bigcup_{n \geq 1} K^n
$$
.

 X is P_K if for all $x\in K^n,$

$$
x \in X \Leftrightarrow C_n(x_1, \ldots x_n, a_1, \ldots, a_k) = 1
$$

with C_n constructed in polynomial time by a Turing machine.

X is NP_K if for all $x \in K^n$,

$$
x \in X \Leftrightarrow \exists y \in K^{p(n)} \langle x, y \rangle \in Y
$$

with $Y \in P_K$.

A typical $NP_{\mathbb{R}}$ -complete problem :

decide whether a polynomial of degree 4 in n variables has a real root. Best algorithms to this day are of complexity exponential in n .

Decision is easy if evaluation is easy

VPAR : Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Theorem [Koiran-Périfel, STACS 2007] :

Uniform $VP_{nb} =$ Uniform $VPAR \Rightarrow P_{\mathbb{R}} = NP_{\mathbb{R}} = PAR_{\mathbb{R}}$.

Several versions $(6?)$ of this theorem,

depending on uniformity conditions and the role of constants.

Complexity \equiv tree depth.

Model is unrealistic :

the complexity of polynomial evaluation should be taken into account !

Circuits versus trees

Circuit with T test $(=,\le)$ or selection gates \rightarrow tree of depth T.

Can $NP_{\mathbb{R}}$ problems be solved by decision trees of polynomial depth? If not, $P_{\mathbb{R}} \neq NP_{\mathbb{R}}$!

Similar questions for various structures M , for instance, $M = (\mathbb{C}, +, -, \times, =), (\mathbb{R}, +, -, \leq), (\mathbb{R}, +, -, =), \{0, 1\}.$ Do NP_M problems have polynomial depth decision trees ? For $M = \{0, 1\}$, the answer is...

Labels of internal nodes are of the form " $x_i = 0$?".

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, =)$, the answer is...

Internal nodes are of the form :

$$
a_1x_1 + \cdots + a_nx_n + b = 0?
$$

Do NP_M problems have polynomial depth decision trees? For $M = (\mathbb{R}, +, -, =), \textbf{No}.$

Twenty Questions :

INPUT : x_1, \ldots, x_n .

QUESTION : $x_1 \in \{0, 1, 2, \ldots, 2^n - 1\}$?

Twenty Questions is in NP_M : guess $y \in \{0, 1\}^n$, check that $x_1 = \sum_{i=1}^n 2^{j-1} y_i$.

A *canonical path argument* shows that its decision tree complexity is 2^n . Therefore, $P_M \neq NP_M$ (Meer).

Conjecture (Shub-Smale) : Twenty Questions is not in $P_{(\mathbb{C}, +, -, \times, =)}$.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \leq)$, the answer is...

Internal nodes are of the form :

$$
a_1x_1 + \dots + a_nx_n + b \ge 0?
$$

Remark : Twenty Questions *is* in P_M by binary search.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \leq),$ **Yes**.

Proof based on algorithms for point location in arrangements of hyperplanes.

R, S lie in the same 2-dimensional cell. $|P,Q|$ is a 1-dimensional cell. ${P}$ and ${Q}$ are 0-dimensional cells.

Decision trees for $NP_{(\mathbb{R},+, -, <)}$ problems : the construction

- 1. $NP_M \subseteq PAR_M$: problems solvable in parallel polynomial time (by uniform circuits of possibly exponential size).
- 2. For inputs in \mathbb{R}^n , any PAR_M problem is a union of *cells* of an arrangement of $2^{n^{O(1)}}$ hyperplanes.
- 3. In this arrangement, point location can be performed in depth $n^{O(1)}$ (Meiser, Meyer auf der Heide). Now, just label the leaves correctly.

Corollary [Fournier-Koiran] : if $P = NP$ then $P_M = NP_M$.

Proof sketch : with access to an NP oracle,

one can effectively "run" the tree on any input $x \in \mathbb{R}^n$

(i.e., construct the path followed by x from the root to a leaf).

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{C}, +, -, \times, =)$, the answer is...

Internal nodes are of the form

$$
P(x_1,\ldots,x_n)=0?
$$

where P is an arbitrary polynomial.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{C}, +, -, \times, =)$, **Yes**.

Not the topic of this talk...

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \times, \leq),$ the answer is...

Internal nodes are of the form

$$
P(x_1,\ldots,x_n)\geq 0?
$$

where P is an arbitrary polynomial.

Do NP_M problems have polynomial depth decision trees ? For $M = (\mathbb{R}, +, -, \times, \leq),$ **Yes**.

- 1. $NP_{\mathbb{R}} \subseteq PAR_{\mathbb{R}}$: problems solvable in parallel polynomial time (by uniform circuits of possibly exponential size).
- 2. For inputs in \mathbb{R}^n , any $\text{PAR}_{\mathbb{R}}$ problem is a union of *cells* of an arrangement of $2^{n^{O(1)}}$ hypersurfaces of degree $2^{n^{O(1)}}$. Fix polynomials P_1, \ldots, P_s . Two points x and y are in the same cell if $sign(P_i(x)) = sign(P_i(y))$ for all $i = 1, \ldots, s$. Here, $sign(a) \in \{-1, 0, 1\}.$
- 3. In this arrangement, point location can be performed in depth $n^{O(1)}$. Now, just label the leaves correctly.

Point location in arrangements of real hypersurfaces

Theorem [Grigoriev] : Point location can be done in depth $O(\log N)$, where N is the number of nonempty cells.

Remark : $N \leq (sd)^{O(n)}$ where $d = \max_{i=1,\ldots,s} \deg(P_i)$. Hence $\log N = n^{O(1)}$.

Consider inputs x with $P_i(x) \neq 0$ for all i. Nodes are of the form " $\prod_{i \in F} P_i(x) > 0$ "', where F is as follows.

Divide and Conquer Lemma :

Let $X = \{1, \ldots, s\}$ and F_1, \ldots, F_N nonempty subsets of X. There exists $F \subseteq X$ such that $N/3 \leq |\{F_x; |F \cap F_x| \text{ even }\}| \leq 2N/3$. Apply to sets F_x defined by conditions of the form :

$$
j \in F_x \Leftrightarrow P_j(x) < 0.
$$

Then $\prod_{j\in F} P_j(x) > 0 \Leftrightarrow |F \cap F_x|$ even.

Improved version of divide and conquer lemma

Theorem [Charbit, Jeandel, Koiran, Périfel, Thomassé] : The range $\left[\frac{N}{3}, \frac{2N}{3}\right]$ can be replaced by $\left[\frac{N}{2} - \alpha, \frac{N}{2} + \alpha\right]$ where $\alpha = \sqrt{N}/2$. **Remark :** One must have $\alpha = \Omega(\sqrt{N}/(\log N)^{1/4})$.

Probabilistic proof : for ^a random subset F, let

 $Y_i = 1$ if $|F \cap F_i|$ is even, and $Y_i = -1$ otherwise.

Need to show that there exists F such that $Y^2 \leq N$, where $Y = \sum_{i=1}^{N} Y_i$. This follows from $E[Y^2] = N$:

$$
E[Y^{2}] = E[\sum_{i=1}^{N} Y_{i}^{2} + 2\sum_{i < j} Y_{i} Y_{j}]
$$

but $E[Y_i^2] = 1$ and for $i \neq j$, by pairwise independence : $E[Y_iY_j] = E[Y_i]E[Y_j] = 0.$

This can be turned into ^a deterministic logspace algorithm.

A remark on derandomization

From Motwani, Naor and Naor 1994 :

"A natural approach towards de-randomizing algorithms is to find ^a method for searching the associated sample Ω for a good point w with respect to a given input instance I. Given such a point w , the algorithm $A(I, w)$ is now a deterministic algorithm and it is guaranteed to find a correct solution. The problem faced in searching the sample space is that it is generally exponential in size. The result of Adleman showing that $RP \subseteq P/poly$ implies that the sample space Ω associated with a randomized algorithm always contains ^a polynomial-sized subspace which has ^a good point for each possible input instance. However, this result is highly non-constructive and it appears that it cannot be used to actually de-randomize algorithms."

Adleman strikes back

Given s and N , our deterministic logspace algorithm constructs a list of $s^2N^2(N + 1)^2$ subsets of $X = \{1, \ldots, s\}$ such that for any input F_1, \ldots, F_N :

$$
-\frac{\sqrt{N}}{2} \leq |\{F_x; |F \cap F_x| \text{ even}\}| - \frac{N}{2} \leq \frac{\sqrt{N}}{2}.
$$

holds for some element F of the list.

The deterministic algorithm then performs an exhaustive search in this list.

Effective point location :

Taking the complexity of polynomials into account

For a problem $A \in \text{PAR}_{\mathbb{R}}$, hypersurfaces of the arrangement are defined by polynomials P_i in uniform VPAR :

Families of polynomials computed by uniform arithmetic circuits of polynomial depth.

Nodes of the tree of the form " $\prod_{i \in F} P_i(x) > 0$?" where $F \in PSPACE$: in Uniform VPAR.

Labels of leaves can be computed in PSPACE.

Theorem [Koiran-Périfel] : If VPAR families have polynomial size circuits, then $PAR_{\mathbb{R}}$ problems have polynomial size circuits.

Can VPAR families have polynomial size circuits ?

- Very strong hypothesis.
- – Admits several versions (6 ?), depending on uniformity conditions and role of constants.

With (polynomially) nonuniform circuits, and Valiant's convention for constants :

(i) VPAR = VP_{nb}.
\n(i) VP = VNP and PSPACE
$$
\subseteq
$$
 P/poly.

 $VPAR = VP_{nb} \Rightarrow PSPACE \subseteq P/poly$ assumes GRH (seems necessary to handle arbitrary constants).

Can we refute $[VP = VNP$ and $PSPACE \subseteq P/poly$?

To prove that $\neg(A \land B)$, one does not always have to prove $\neg A$ or $\neg B$.

For instance, we know that LOGSPACE \neq P or P \neq PSPACE.

It was shown by Bürgisser that (under GRH),

 $VP = VNP \Rightarrow NP \subseteq NC/poly$ (problems recognized by polynomial size boolean circuits of polylogarithmic depth).

Hence, assuming GRH, the hypothesis implies that $PSPACE \subseteq NC/poly$.

Most uniform version of this hypothesis

Uniform $VPAR^0 = Uniform VP_{nb}^0 \Rightarrow$ P-uniform NC = PSPACE.

Proof is in two steps. Hypothesis implies :

(i) $P = PSPACE$.

(ii) P-uniform $NC = \bigoplus P$.

Proof of (ii) based on \bigoplus P-completeness of \bigoplus HAMILTONIAN PATHS. Note that \sharp HAMILTONIAN PATHS is of the form

$$
\sum_{\sigma\colon n-\mathrm{cycle}}\prod_{i\neq \mathrm{end}(\sigma)}a_{i\sigma(i)}
$$

where (a_{ij}) is the graph's adjacency matrix.

Remark : It is known that LOGSPACE-uniform $NC \neq PSPACE$.

VPSPACE

Theorem :

A polynomial family $f_n \in \mathbb{Z}[X_1,\ldots,X_{p(n)}]$ is in P-uniform VPAR⁰ iff :

- (i) $p(n)$ is polynomially bounded.
- (ii) deg (f_n) is exponentially bounded.
- (iii) The bit size of the coefficients of f_n is exponentially bounded.
- (iv) The map $(1^n, \overline{\alpha}) \mapsto a_{n,\overline{\alpha}}$ is PSPACE computable, where

$$
f_n(\overline{X}) = \sum_{\overline{\alpha}} a_{n,\overline{\alpha}} \overline{X}^{\overline{\alpha}}.
$$

This characterization is useful in the proof that

[VP = VNP and PSPACE
$$
\subseteq
$$
 P/poly] \Rightarrow VPAR = VP_{nb}.

A natural example of ^a VPAR family

Resultants of multivariate polynomial systems form ^a VPAR family.

Proof sketch :

- (i) The *Macaulay matrix* is an exponential size matrix whose non-zero entries are coefficients of the polynomial system.
- (ii) Determinants can be computed by arithmetic circuits of polylogarithmic depth.

Outcome of this work

 Focus pu^t back on evaluation problems : to show that certain decision problems (in $NP_{\mathbb{R}}$, or $PAR_{\mathbb{R}}$) are hard, one must first be able to show that certain evaluation problems (in VPAR) are hard.

- Suggestion of new lower bound problems : various versions of "VP_{nb} = VPAR ?".
- Other natural (complete ?) polynomial families in VPAR ?