Polynomial time algorithms to approximate mixed volumes within a simply exponential factor

Leonid Gurvits *

March 13, 2007

Abstract

Let $\mathbf{K} = (K_1...K_n)$ be a *n*-tuple of convex compact subsets in the Euclidean space \mathbf{R}^n , and let $V(\cdot)$ be the Euclidean volume in \mathbf{R}^n . The Minkowski polynomial $V_{\mathbf{K}}$ is defined as $V_{\mathbf{K}}(x_1,...,x_n) = V(\lambda_1K_1 + ... + \lambda_nK_n)$ and the mixed volume $V(K_1,...,K_n)$ as

$$V(K_1...K_n) = \frac{\partial^n}{\partial \lambda_1...\partial \lambda_n} V_{\mathbf{K}}(\lambda_1 K_1 + \cdots + \lambda_n K_n).$$

The mixed volume is one of the backbones of convexity theory. After **BKH** theorem, the mixed volume(and its generalizations) had become crucially important in computational algebraic geometry.

We present in this talk randomized and deterministic algorithms to approximate the mixed volume of well-presented convex compact sets. Our main result is a poly-time randomized algorithm which approximates $V(K_1, ..., K_n)$ with multiplicative error e^n and with better rates if the affine dimensions of most of the sets K_i are small.

Because of the famous **Barany-Furedi** lower bound, even such rate is not achievable by a poly-time deterministic oracle algorithm.

Our approach is based on the particular, geometric programming, convex relaxation of $\log(V(K_1, ..., K_n))$. We prove the mixed volume analogues of the Van der Waerden and the Schrijver/Valiant conjectures on the permanent. These results , interesting on their own, allow to "justify" the above mentioned convex relaxation, which is solved using the ellipsoid method and a randomized poly-time time algorithm for the approximation of the volume of a convex set.

^{*}gurvits@lanl.gov. Los Alamos National Laboratory, Los Alamos, NM.