Strongly self-orthogonal codes for secure computation

lwan Duursma

April 18, 2007

Linear secret sharing schemes		3
General LSSSs	 	 . 4
Access structure		
Adversary model		
Ideal LSSSs		
AG Codes		
AG LSSSs		
Ideal LSSSs		10
Sharing on *		
Interpolation		
Pairing	 	 13
Secure multi-party computation		14
Sums and products	 	 15
Multiplicative LSSSs	 	 16
Strongly multiplicative LSSSs	 	 17
Error-free protocols	 	 18
Strongly self-orthogonal codes	 	 19
Composition of schemes		20
Ramp schemes		 21
Minimum distance		
Composition Σ		
Composition C		
Sharing on *×*		
Example		
Sharing on ×		
Pairing on ×		
Cont		
Shift bound		
Example		
AG LSSSs		32
Hermitian codes		33
TIVITITUALI COUCA		

Bounds	34
Secret reconstruction	35

Overview

Linear secret sharing schemes

Ideal LSSSs

Secure multi-party computation

Composition of schemes

AG LSSSs

IMA Workshop April 16-20

Codes for secure computation - 2 / 35

Linear secret sharing schemes

3 / 35

LSSSs

Linear secret sharing schemes

General LSSSs

Access structure

Adversary model

Ideal LSSSs

AG Codes

AG LSSSs

IMA Workshop April 16-20

Codes for secure computation - 3 / 35

General LSSSs

A \mathbb{K} -linear secret sharing scheme (\mathbb{K} - LSSS) $\Sigma = \Sigma(\Pi)$ is a sequence $\Pi = (\pi_0, \pi_1, \dots, \pi_n)$ of \mathbb{K} -linear maps $\pi_i : E \longrightarrow E_i$.

- \blacksquare \mathbb{K} a field, E of finite dimension over \mathbb{K} .
- \blacksquare $E_0 = \mathbb{K}$. E_1, \dots, E_n of finite dimension over \mathbb{K} .
- For $\mathbf{x} \in E$, $s = \pi_0(\mathbf{x})$ is the secret and $(\pi_1(\mathbf{x}), \dots, \pi_n(\mathbf{x}))$ is the vector of shares.
- $\blacksquare \mathcal{P} = \{1, 2, \dots, n\}$ is the set of players or participants.

IMA Workshop April 16-20

Codes for secure computation - 4 / 35

Access structure

A subset of players $A\subseteq \mathcal{P}$ is *qualified* for the LSSS $\Sigma(\Pi)$ if the players in A can recover the secret value from their shares.

A subset $A \subseteq P$ is qualified if and only if

$$\bigcap_{i\in A}\ker\pi_i\subseteq\ker\pi_0.$$

The access structure $\Gamma(\Pi)$ is the set of all qualified subsets.

IMA Workshop April 16-20

Codes for secure computation - 5 / 35

Adversary model

The adversary structure $\Delta(\Pi)$ is the set of all unqualified subsets. An adversary can corrupt the shares of players in an unqualified subset A.

- \blacksquare Passive model: the adversary has insight in the shares of players in A.
- \blacksquare Active model: the adversary is able to modify the shares of players in A.

IMA Workshop April 16-20

Codes for secure computation -6/35

Ideal LSSSs

A \mathbb{K} - LSSS $\Sigma = \Sigma(\Pi)$ is called *ideal* if $E_i = \mathbb{K}$ for every $i \in P$.

In the ideal case, $\Pi = (\pi_1, \dots, \pi_n, \pi_0)$ defines a linear map $\Pi : E \longrightarrow \mathbb{K}^{n+1}$.

The image $C=C(\Pi)\subseteq \mathbb{K}^{n+1}$ is a linear code of length n+1 over \mathbb{K} . If the π_i generate E^* then $\dim C=\dim E$.

Conversely, every linear code together with a choice of a special coordinate determines an ideal LSSS.

IMA Workshop April 16-20

Codes for secure computation -7/35

AG Codes

Let X/\mathbb{K} be an algebraic curve (absolutely irreducible, projective, nonsingular), and let

- $\blacksquare \mathcal{P} = \{P_1, \dots, P_n\} \subset X(\mathbb{K})$, a collection of n rational points.
- \blacksquare G, a divisor with support disjoint from \mathcal{P} .

The geometric Goppa Code $C_L(\mathcal{P},G)\subset \mathbb{K}^n$ is the set of vectors

$$\{(f(P_1),\ldots,f(P_n)): f \in L(G)\},\$$

where $L(G) = \{f : (f) + G \ge 0\} \cup \{0\}.$

IMA Workshop April 16-20

Codes for secure computation - 8 / 35

AG LSSSs

The data $(X/\mathbb{K}, \mathcal{P}, G)$ for an AG code defines an ideal LSSS $\Sigma = \Sigma(\Pi)$ after assigning a special point P_0 . In $\Pi : E \longrightarrow \mathbb{K}^{n+1}$, let E = L(G) and $\Pi = Ev_{\mathcal{P}}$.

$$\Pi(f) = (\pi_1(f), \dots, \pi_n(f), \pi_0(f)),$$

= $(f(P_1), \dots, f(P_n), f(P_0)).$

More generally, let $\mathcal P$ be a set of n effective divisors $\{D_1,\ldots,D_n\}$, and, for $D_i\in\mathcal P$, let π_i be the natural surjection $L(G)\longrightarrow L(G)/L(G-D_i)$. The resulting LSSS is in general not ideal. IMA Workshop April 16-20 Codes for secure computation -9/35

Ideal LSSSs 10/35

Ideal LSSSs

Ideal LSSSs

Sharing on K*
Interpolation
Pairing

IMA Workshop April 16-20

Codes for secure computation - 10 / 35

Sharing on \mathbb{K}^*

Let $x_1, \ldots, x_n \in \mathbb{K}^*$ be n distinct elements, and let $x_0 = 0$. The Shamir secret sharing scheme $\Sigma(\Pi)$ is defined by

$$\Pi : \mathbb{K}[x]_{\leq t} \longrightarrow$$

$$\mathbb{K}[x]/(x-x_1) \times \cdots \times \mathbb{K}[x]/(x-x_n) \times \mathbb{K}[x]/(x-x_0).$$

For
$$h = (x - a_1) \cdots (x - a_{t+1})$$
,

$$\mathbb{K}[x]/(x-a_1) \times \cdots \times \mathbb{K}[x]/(x-a_{t+1})$$

$$\simeq \mathbb{K}[x]/(h) \simeq \mathbb{K}[x]_{< t} \longrightarrow \mathbb{K}[x]/(x-x_0).$$

IMA Workshop April 16-20

Codes for secure computation - 11 / 35

Interpolation

For
$$h = (x - a_1) \cdots (x - a_{t+1})$$
,

$$\mathbb{K}[x]/(x-a_1) \times \cdots \times \mathbb{K}[x]/(x-a_{t+1})$$

$$\simeq \mathbb{K}[x]/(h) \simeq \mathbb{K}[x]_{< t} \longrightarrow \mathbb{K}[x]/(x-x_0).$$

With Lagrange interpolation,

$$(s_1, \dots, s_{t+1}) \mapsto s_0 = -h(0)\left(\frac{s_1}{a_1h'(a_1)} + \dots + \frac{s_{t+1}}{a_{t+1}h'(a_{t+1})}\right)$$

(or with: CRT, Cramer's rule, residues of differentials)

IMA Workshop April 16-20

Codes for secure computation - 12 / 35

Pairing

For distinct elements $x_0, x_1, \ldots, x_n \in \mathbb{K}$ and for $h = (x - x_0)(x - x_1) \ldots (x - x_n)$, let $L = \mathbb{K}[x]/(h)$. Define $\langle \ , \ \rangle : L \times L \longrightarrow \mathbb{K}$,

$$\langle f, g \rangle = \sum_{i=0}^{n} r_i f(x_i) g(x_i), \qquad r_i = h'(x_i)^{-1}.$$

Then

$$f \in L_{\leq t} \Leftrightarrow \langle f, g \rangle = 0$$
, for all $g \in L_{< n-t}$, $g \in L_{\leq n-t} \Leftrightarrow \langle f, g \rangle = 0$, for all $f \in L_{< t}$,

and $\langle x^t, x^{n-t} \rangle = 1$.

IMA Workshop April 16-20

Codes for secure computation - 13 / 35

Secure MPC

Secure multi-party computation

Sums and products Multiplicative LSSSs Strongly multiplicative LSSSs Error-free protocols Strongly self-orthogonal codes

IMA Workshop April 16-20

Codes for secure computation -14/35

Sums and products

The Shamir (t+1,n) threshold scheme computes n shares as values of a polynomial of degree t

Let (a_1, \ldots, a_n) be shares of a obtained with a polynomial f, and let (b_1, \ldots, b_n) be shares of b obtained with a polynomial g.

Addition: $(a_1 + b_1, \dots, a_n + b_n)$ are shares of a + b for the polynomial $f + g \in \mathbb{K}[x]_{\leq t}$.

Multiplication: $(a_1 \cdot b_1, \dots, a_n \cdot b_n)$ are shares of $a \cdot b$ for $fg \in \mathbb{K}[x]_{\leq 2t}$.

IMA Workshop April 16-20 Codes for secure computation - 15 / 35

Multiplicative LSSSs

A scheme is *multiplicative* if each player can compute from his shares a_i, b_i , for secrets a, b, respectively, a value c_i such that the product ab is a linear combination of the c_i .

The Shamir (t+1, n) threshold scheme is multiplicative for n > 2t.

A multiplicative scheme is necessarily Q_2 (the set of players is not the union of two unqualified subsets).

Every Q_2 LSSS can be modified into a multiplicative LSSS with the same access structure. [Cramer, Damgard, Maurer '00]

IMA Workshop April 16-20

Codes for secure computation -16/35

Strongly multiplicative LSSSs

A scheme is strongly multiplicative if for every unqualified subset of players $A \subseteq \mathcal{P}$, the product ab is a linear combination of the c_i , $i \notin A$.

The Shamir (t+1, n) threshold scheme is strongly multiplicative for n > 3t.

A strongly multiplicative scheme is necessarily Q_3 (the set of players is not the union of three unqualified subsets).

Open problem: It is not known whether it is possible to obtain from a given LSSS with \mathcal{Q}_3 access structure a strongly multiplicative LSSS with the same access structure and of complexity polynomial in the complexity of the given LSSS.

IMA Workshop April 16-20

Codes for secure computation -17/35

Error-free protocols

[Cramer, Damgard, Maurer '00]

Given a field \mathbb{K} , an arithmetic circuit C over \mathbb{K} , and a strongly multiplicative LSSS Σ , there is an error-free protocol for multi-party computation of C,

secure against an active adversary (able to modify shares belonging to an unqualified subset) of complexity polynomial in the size of \mathbb{K} , C, and Σ ,

in the information-theoretic scenario (players can communicate over pairwise secure channels).

IMA Workshop April 16-20

Codes for secure computation - 18 / 35

Strongly self-orthogonal codes

A code C is strongly self-orthogonal if for any three codewords $a,b,c\in C$, $\sum a_ib_ic_i=0$.

Let $\Sigma(\Pi)$ be a LSSS such that $C(\Pi)$ is strongly self-orthogonal. Then $\Sigma(\Pi)$ is strongly multiplicative (with respect to the full adversary structure $\Delta(\Pi)$).

Proof: Use

$$A \subset \Delta(\Pi) \Leftrightarrow \exists c \in C : c_i = 0, i \in A, c_0 = 1.$$

IMA Workshop April 16-20

Codes for secure computation - 19 / 35

Composition

Composition of schemes

Ramp schemes

Minimum distance

Composition Σ

Composition C

Sharing on $\mathbb{K}^* \times \mathbb{K}^*$

Example

Sharing on $\mathbb{K} \times \mathbb{K}$

Pairing on $\mathbb{K} \times \mathbb{K}$

Cont.

Shift bound

Example

IMA Workshop April 16-20

Codes for secure computation - 20 / 35

Blakely-Meadows 1984

A LSSS with n players is called a (k, L, n)-threshold ramp scheme if

- \blacksquare k is minimal such that any subset of k players is qualified.
- $\blacksquare k-L$ is maximal such that any subset of k-L is unqualified.

$$\underbrace{ \begin{array}{cccc} 0 & \cdots & k-L \\ & & & ? \end{array} }_{ \text{Rejected} } & \underbrace{ \begin{array}{cccc} k & \cdots & n \\ ? & & \text{Accepted} \end{array} }_{ \text{Rejected} } & \underbrace{ \begin{array}{ccccc} \sum k & \cdots & n \\ N & & & \text{Accepted} \end{array} }_{ \text{Accepted} }$$

IMA Workshop April 16-20

Codes for secure computation - 21 / 35

Minimum distance

For $x, y \in \mathbb{K}^{n+1}$, the Hamming distance $d(x, y) = |\{i : x_i \neq y_i\}|$.

The minimum distance d of a code is the minimum Hamming distance between any two codewords.

An error-correcting code can correct any t errors uniquely if and only if d > 2t.

For a LSSS $\Sigma(\Pi)$,

$$d^* - 2 \le k - L$$
 and $k \le n - d + 2$.

where d and d^* are the minimum distance of the code $C(\Pi)$ and its dual, respectively. In general, equality does not hold.

IMA Workshop April 16-20

Codes for secure computation - 22 / 35

Composition Σ

Let $\Sigma = \Sigma_1 \circ \Sigma_2$ be the composition of two threshold schemes (k_1, n_1) and (k_2, n_2) . Σ accepts those subsets of $P = \{1, \ldots, n_1\} \times \{1, \ldots, n_2\}$ that intersect at least k_1 of the n_1 subsets $\{i\} \times \{1, \ldots, n_2\}$ in at least k_2 elements.

$$n = n_1 n_2$$

$$(n - k + 1) = (n_1 - k_1 + 1)(n_2 - k_2 + 1)$$

$$(k - L + 1) = (k_1 - L_1 + 1)(k_2 - L_2 + 1)$$

IMA Workshop April 16-20

Codes for secure computation - 23 / 35

Composition C

Let

$$C(\Pi_1) = \begin{pmatrix} 1 & 1 \\ \hline X_1 & 0 \end{pmatrix}$$
 $C(\Pi_2) = \begin{pmatrix} 1 & 1 \\ \hline X_2 & 0 \end{pmatrix}$

represent $\Sigma(\Pi_1)$ and $\Sigma(\Pi_2)$. Then,

$$C(\Pi) = \begin{pmatrix} 1 & 1 \\ \hline X_1 \otimes 1 & 0 \\ I \otimes X_2 & 0 \end{pmatrix}$$

represents $\Sigma(\Pi) = \Sigma(\Pi_1) \circ \Sigma(\Pi_2)$.

IMA Workshop April 16-20

Codes for secure computation - 24 / 35

Sharing on $\mathbb{K}^* \times \mathbb{K}^*$

Let $\mathcal{P} = A \times B$, $|A| = n_1$, $|B| = n_2$, $n = n_1 n_2$.

Let $1 \le k_1 \le n_1$, $1 \le k_2 \le n_2$.

Let E be the space of polynomials f(x, y) of the form

$$p_0(x) + p_1(x)y + \cdots + p_{k_2-1}(x)y^{k_2-1},$$

such that $\deg(p_0) = k_1 - 1$, and $\deg(p_i) = n_1, \ 1 \le i \le k_2 - 1$.

The secret is f(0,0), the shares are f(a,b), $a \in A, b \in B$. A set of players has access to the secret if and only if it has at least k_2 members in at least k_1 of the subsets $a \times B$.

IMA Workshop April 16-20

Codes for secure computation - 25 / 35

Example

For a $(2,3) \circ (3,5)$ threshold scheme, use

$$f(x,y) \in \langle (1,x), (1,x,x^2)y, (1,x,x^2)y^2 \rangle.$$

For a $(3,5) \circ (2,3)$ threshold scheme, use

$$f(x,y) \in \langle (1,y,y^2), (1,y,y^2,y^3,y^4)x \rangle.$$

IMA Workshop April 16-20

Codes for secure computation -26/35

Sharing on $\mathbb{K} \times \mathbb{K}$

Let $\mathcal{P} = A \times B$, $|A| = n_1, |B| = n_2, n = n_1 n_2$.

Let $1 \le k_1 \le n_1$, $1 \le k_2 \le n_2$.

Let E be the space of polynomials f(x, y) of the form

$$p_0(x) + p_1(x)y + \cdots + p_{k_2-1}(x)y^{k_2-1},$$

such that $\deg(p_i)=n_1,\ 0\leq i\leq k_2-2$ and $\deg(p_{k_2-1})=k_1-1,$

The secret is $[x^{k_1-1}y^{k_2-1}]f$, the shares are f(a,b), $a \in A, b \in B$. A set of players has access to the secret if and only if it has at least k_2 members in at least k_1 of the subsets $a \times B$.

IMA Workshop April 16-20

Codes for secure computation $-\ 27\ /\ 35$

Pairing on $\mathbb{K} \times \mathbb{K}$

For $A, B \subseteq \mathbb{K}$, let $h_A(x) = \prod_{a \in A} (x - a), h_B(x) = \prod_{b \in B} (y - b)$, and let

$$L = \mathbb{K}[x, y]/(h_A, h_B) = \langle x^i y^j : 0 \le i < n1, 0 \le j < n2 \rangle.$$

For given k_1 and k_2 , let $\phi = x^{k_1-1}y^{k_2-1}$ and $\phi^* = x^{n_1-k_1}y^{n_2-k_2}$. Define

$$L_{\leq \phi} = \langle x^i y^j : x^i y^j \leq \phi \rangle = L_{<\phi} \oplus \langle \phi \rangle.$$

$$L_{\leq \phi^*} = \langle x^i y^j : x^i y^j \leq \phi^* \rangle = L_{<\phi^*} \oplus \langle \phi^* \rangle.$$

Where $x^{i_1}y^{j_1} \le x^{i_2}y^{j_2}$ if $(j_1 < j_2)$ or $(j_1 = j_2 \text{ and } i_1 \le i_2)$.

IMA Workshop April 16-20

Codes for secure computation - 28 / 35

Cont.

Define $\langle , \rangle : L \times L \longrightarrow \mathbb{K}$,

$$\langle f, g \rangle = \sum_{a \in A, b \in B} r_{a,b} f(a, b) g(a, b), \quad r_{a,b} = h'_A(a)^{-1} h'_B(b)^{-1}.$$

Then

$$f \in L_{\leq \phi} \Leftrightarrow \langle f, g \rangle = 0, \text{ for all } g \in L_{<\phi^*},$$
$$g \in L_{<\phi^*} \Leftrightarrow \langle f, g \rangle = 0, \text{ for all } f \in L_{<\phi},$$

and $\langle \phi, \phi^* \rangle = 1$.

IMA Workshop April 16-20

Codes for secure computation - 29 / 35

Shift bound

(Shift bound) To show that $f \in \phi + L_{<\phi}$ is nonzero in at least d points of \mathcal{P} , it suffice to give elements $g_1, \ldots, g_d \in L$ such that the linear forms $\langle fg_1, -\rangle, \ldots, \langle fg_d, -\rangle$ are linearly independent. To show that the linear forms are linearly independent it suffices to give elements $h_1, \ldots, h_d \in L$ such that the $d \times d$ matrix $\langle fg_i, h_i \rangle$ (= $\langle f, g_ih_i \rangle$) is regular.

For the LSSS $\Sigma(\Pi)$ with $E=L_{\leq \phi}$ we use $\{g_1,\ldots,g_d\}=\{h_1,\ldots,h_d\}=\{x^iy^j:0\leq i\leq n1-k1,0\leq j\leq n2-k2\}.$

With the partial ordering $g_1 \leq \ldots \leq g_d$ and $h_1 \leq \ldots \leq h_d$ inherited from L, the matrix $\langle f, g_i h_i \rangle$ is triangular with nonzero elements on the diagonal.

IMA Workshop April 16-20

Codes for secure computation - 30 / 35

Example

For
$$(k_1, n_1) = (2, 3)$$
, $(k_2, n_2) = (3, 5)$: $\phi = xy^2$, $\phi^* = xy^2$. Let $g, h = 1 \le x \le y \le xy \le y^2 \le xy^2$.

For
$$(k_1, n_1) = (3, 5)$$
, $(k_2, n_2) = (2, 3)$: $\phi = x^2y$, $\phi^* = x^2y$. Let $g, h = 1 \le x \le x^2 \le y \le xy \le x^2y$.

$$(\phi = \phi^* = xy^2)$$

IMA Workshop April 16-20

Codes for secure computation -31/35

AG LSSSs 32 / 35

AG LSSSs

AG LSSSs

Hermitian codes

Bounds

Secret reconstruction

IMA Workshop April 16-20

Codes for secure computation - 32 / 35

Hermitian codes

Let $X/\mathbb{K}: y^r+y=x^{r+1}$, with $|\mathbb{K}|=q=r^2$. Then $|X(\mathbb{K})|=r^3+1$.

For the r^3 finite points,

$$L = \mathbb{K}[x, y]/(x^{q} - x, y^{r} + y - x^{r+1}).$$

For a set of players that includes the point at infinity

$$L = \mathbb{K}[x, y]/(x(y^{q} - y)/(y^{r} + y), y^{r} + y - x^{r+1}).$$

IMA Workshop April 16-20

Codes for secure computation - 33 / 35

Bounds

[Chen, Cramer '06]

The generalization of the Shamir secret sharing scheme uses a divisor $G=(t+2g)P_{\infty}$ in E=L(G).

 $\Sigma(G)$ is strongly multiplicative wrt Δ if n > 3t + 6g.

 $\Sigma(G)$ is strongly multiplicative wrt $\Delta_{\leq t}$ if n > 3t + 4g.

[]

For a carefully chosen divisor G, $\Sigma(G)$ is strongly multiplicative wrt Δ for n > 3t + 4g.

IMA Workshop April 16-20

Codes for secure computation - 34 / 35

Secret reconstruction

For a LSSS with a strongly self-orthogonal code, we have

$$f \in L_{<\phi} \Leftrightarrow \langle f, g \rangle = 0$$
, for all $g \in L_{<\phi^*}$,

with $\phi^* = \phi^2$.

If the shares for f are corrupted on $A\subset \Delta$, then the secret can be reconstructed as follows. If $g_2\in L_{<\phi}\backslash L_{<\phi}$ is such that

$$\langle f, g_1 g_2 \rangle = 0$$
, for all $g_1 \in L_{\langle \phi \rangle}$

then the secret can be recovered as $\langle f, \phi g_2 \rangle$.

IMA Workshop April 16-20

Codes for secure computation - 35 / 35