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General LSSSs

A K—linear secret sharing scheme (K— LSSS) ¥ = X(II) is a sequence II = (mg, 7y, ..., m,) of
K-linear maps 7; : E — E;.

m K a field, £ of finite dimension over K.

m By =K Fy,...,E, of finite dimension over K.

m For x € E, s = my(x) is the secret and (m1(x),...,m,(X)) is the vector of shares.
m P={1,2...,n} is the set of players or participants.
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Access structure

A subset of players A C P is qualified for the LSSS 3(II) if the players in A can recover the
secret value from their shares.

A subset A C P is qualified if and only if

ﬂ ker m; C ker 7.
€A

The access structure I'(I1) is the set of all qualified subsets.
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Adversary model

The adversary structure A(II) is the set of all unqualified subsets.
An adversary can corrupt the shares of players in an unqualified subset A.

m Passive model: the adversary has insight in the shares of players in A.

m Active model: the adversary is able to modify the shares of players in A.
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Ideal LSSSs
A K— LSSS ¥ = X(II) is called ideal if E; = K for every i € P.

In the ideal case, I1 = (74, ..., m,, 7o) defines a linear map I1 : & — K"+,
The image C = C(IT) C K"*! is a linear code of length n + 1 over K. If the 7; generate E*
then dimC = dim F.

Conversely, every linear code together with a choice of a special coordinate determines an ideal
LSSS.
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AG Codes

Let X/K be an algebraic curve (absolutely irreducible, projective, nonsingular), and let
m P={P,...,P,} C X(K), a collection of n rational points.
m (&, a divisor with support disjoint from P.

The geometric Goppa Code CL(P,G) C K" is the set of vectors

{(f(P1)77f(Pn)) : f € L(G)},

where L(G) ={f: (f) + G > 0} U {0}.
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AG LSSSs

The data (X/K,P,G) for an AG code defines an ideal LSSS 3 = 3(II) after assigning a
special point Py. InTl: E — K" let F = L(G) and I1 = Evp.

More generally, let P be a set of n effective divisors { D, ..., D,}, and, for D; € P, let 7; be
the natural surjection L(G) — L(G)/L(G — D;). The resulting LSSS is in general not ideal.
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Sharing on K*

Let z4,...,2, € K* be n distinct elements, and let zo = 0. The Shamir secret sharing scheme
Y(II) is defined by

II : K[.’E]St —
Klz]/(x —x1) x --- x K[z]/(x — z,) X K[z]/(z — z0)-
Forh=(z—a1) - (z — ag1),

Klz]/(z = a1) x --- x Klz]/(z = ar41)
~ Klz]/(h) ~ Klz]<; — Klz]/(z — z0).
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Interpolation
For h=(x —ay)--- (& — aw1),

Klz]/(z = a1) x -+ x Klz]/(z — ar41)
=~ Klz]/(h) =~ Klz]<; — Klz]/(z — o).

With Lagrange interpolation,

S1 St+1
a1k’ (a1) a1l (art1)

(81« -y 8t21) > 8o = —h(0)(

(or with: CRT, Cramer’s rule, residues of differentials)
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Pairing
For distinct elements zg,z1,...,2, € Kand for h = (z — z¢)(x — z1) ... (z — z,,), let

L =K][z]/(h). Define (, ): L x L — K,

n

(f,9) = rif(z)g(z:),  ri=h(z)"

i=0
Then

fe€Llae (f,g)=0, forallge Loy,
g € Lgnft g <fa g> = Oa fOI’ a” f € L<ta

and (z!,z"7") = 1.
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Sums and products

The Shamir (t 4+ 1,n) threshold scheme computes n shares as values of a polynomial of degree
t.

Let (aq,...,a,) be shares of a obtained with a polynomial f, and let (b1,...,b,) be shares of b
obtained with a polynomial g.

Addition: (a; + b1, ..., an + by,) are shares of a + b for the polynomial f + g € K[z]<;.

Multiplication: (a; - b, ..., a, - b,) are shares of a - b for fg € K[z]<s;.
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Multiplicative LSSSs

A scheme is multiplicative if each player can compute from his shares a;, b;, for secrets a, b,
respectively, a value ¢; such that the product ab is a linear combination of the c;.

The Shamir (¢ 4+ 1,n) threshold scheme is multiplicative for n > 2t.

A multiplicative scheme is necessarily Q5 (the set of players is not the union of two unqualified
subsets).

Every Qs LSSS can be modified into a multiplicative LSSS with the same access structure.
[Cramer, Damgard, Maurer '00]
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Strongly multiplicative LSSSs

A scheme is strongly multiplicative if for every unqualified subset of players A C P, the product
ab is a linear combination of the ¢;, ¢ ¢ A.

The Shamir (t + 1,7n) threshold scheme is strongly multiplicative for n > 3t.

A strongly multiplicative scheme is necessarily Q3 (the set of players is not the union of three
unqualified subsets).

Open problem: It is not known whether it is possible to obtain from a given LSSS with O3
access structure a strongly multiplicative LSSS with the same access structure and of
complexity polynomial in the complexity of the given LSSS.
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Error-free protocols

[Cramer, Damgard, Maurer '00]

Given a field K, an arithmetic circuit C' over K, and a strongly multiplicative LSSS ¥,

there is an error-free protocol for multi-party computation of C,

secure against an active adversary (able to modify shares belonging to an unqualified subset)
of complexity polynomial in the size of K, C, and %,

in the information-theoretic scenario (players can communicate over pairwise secure channels).
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Strongly self-orthogonal codes

A code C is strongly self-orthogonal if for any three codewords a,b,c € C, > a;b;c; = 0.

Let X(II) be a LSSS such that C(II) is strongly self-orthogonal. Then 3(II) is strongly
multiplicative (with respect to the full adversary structure A(II)).

Proof: Use

ACA(Il)& FeceC:c;=0,i€ A,co=1.
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Blakely-Meadows 1984
A LSSS with n players is called a (k, L, n)—threshold ramp scheme if

m k is minimal such that any subset of £ players is qualified.

m k — L is maximal such that any subset of k£ — L is unqualified.

0 v k=L - k-n (X
—_———— M~ ——
Rejected ? Accepted
0...n_k PP Ib_k—i_“rL...TE (E)
Rejected ? Accepted
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Minimum distance

For z,y € K**!, the Hamming distance d(x,v) = [{i : z; # yi}|-

The minimum distance d of a code is the minimum Hamming distance between any two
codewords.

An error-correcting code can correct any ¢ errors uniquely if and only if d > 2t.

For a LSSS X(II),
d*—2<k—L and k<n-—d+2.

where d and d* are the minimum distance of the code C'(II) and its dual, respectively. In
general, equality does not hold.
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Composition X

Let 3 = ¥ 0 3, be the composition of two threshold schemes (k1,7;) and (k2,ng). ¥ accepts
those subsets of P = {1,...,n;} x {1,...,no} that intersect at least k; of the n; subsets
{i} x {1,...,ny} in at least ko elements.

(K2, n2)

(kl,nl) © %k

(n_—k+1):( — ki +1)(ng —ka+1)
(k—L+1)= (ks — L1 +1)(ka— Ly + 1)
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Composition C

emi=(345) o4}

represent X(I1;) and X(II3). Then,

X ® 1 O

I® X,
represents Y (IT) = X(I1;) o X(I1y).
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Sharing on K* x K*

Let P = A x B, |A| = ny, |B| = ng,n = nyno.
Letlgklénl,lgkzgnz.
Let E be the space of polynomials f(z,y) of the form

po(@) + pr(@)y + - + Pro—1(x)y** 1,

such that deg(py) = k1 — 1, and deg(p;) =ny1, 1 < i< kg — 1.

The secret is f(0,0), the shares are f(a,b), a € A,b € B. A set of players has access to the
secret if and only if it has at least £ members in at least k; of the susbsets a x B.
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Example
For a (2,3) o (3,5) threshold scheme, use

flz,y) €((1,2), (1,z,2%y, (1,2,2%)y%).
For a (3,5) o (2, 3) threshold scheme, use

flzy) € ((L,y,9%), Ly v%y°yh)a).

b1 bg b3 b4 b5 bl b2 b3 b4 b5

a1 E ai x - ok

ay - % . a, - *x x -  x

as . . * * * E as
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Sharing on K x K

Let P = A x B, |A| = ny,|B| = ng,n = nina.
Letléklgnl,lékggng.
Let E be the space of polynomials f(z,y) of the form

po(z) + pi(@)y + - + Py 1 (2)y* Y,

such that deg(p;) = n1, 0 < i < ko — 2 and deg(pg, 1) = k1 — 1,

The secret is [zF 1y*271] f, the shares are f(a,b), a € A,b € B. A set of players has access to
the secret if and only if it has at least k£, members in at least k; of the susbsets a x B.
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Pairing on K x K
For A,B CK, let ha(z) = [[,ca(® —a), hp(z) = [[,c5(y —b), and let

L =K[z,y]/(ha,hp) = ("9’ : 0 <i < nl,0<j < n2).
For given ki and ko, let ¢ = z¥1~1y*2=1 and ¢* = gm1—kiym2=k2 Define

Leg= {2y : 2"y < @) = Ly ® (9).
Lege =(a'y 1 2"y’ < ¢") = Loy © (97)-

Where z'y7t < z2y? if (j1 < ja) or (j1 = j2 and i1 < iy).
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Cont.
Define (, ): L x L — K,

(f,9) =" rapf(a,0)g(a,b), rap=hy(a) hy(b) .
a€AbEB
Then

f€Llcy=(f,g)=0, forall g € Ly,
g€ Ley = (f,9)=0, forall fe Ly,

and (¢, ¢") = 1.
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Shift bound

(Shift bound) To show that f € ¢ + L., is nonzero in at least d points of P, it suffice to give
elements g1, ..., 94 € L such that the linear forms (fg1,—),...,{fga, —) are linearly
independent. To show that the linear forms are linearly independent it suffices to give elements
hi,...,hqs € L such that the d x d matrix (fg;, h;) (= (f, gih;)) is regular.

For the LSSS X(IT) with E' = L4 we use {g1,...,9a} = {h1,..., ha} =
{z'y? : 0<i<nl—kl1,0<j<n2—k2}.

With the partial ordering g1 < ... < gqg and hy < ... < hy inherited from L, the matrix
(f, gih;) is triangular with nonzero elements on the diagonal.
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Example
For (ki,n1) = (2,3), (k2,n2) = (3,5): ¢ =xy’, ¢" = y®. Let
g,h=1<z<y<ay <y’ <ay’

For (k1,n1) = (3,5), (ka,na) = (2,3): ¢ = 22y, ¢* = 2%y. Let
gh=1<z<2*<y<zy<a?.

1 z oy zy oy xy? | z z2 y xy %y
z z2 zy 2y mzy? oz 22 1 ay oy

Y zy  y? xzy? o2 xy o 2?y

ay 2y wy? oy my 2y

y?  xy? comy 2%y

zy? S

(¢ = ¢* = zy”) (¢ = ¢* = 2%y)
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Hermitian codes
Let X/K:y" +y = a"t!, with [K| = ¢ =72 Then | X(K)| = 3 + 1.

For the 72 finite points,
L=Kz,yl/(z? =z, 4" +y —a").
For a set of players that includes the point at infinity

L=Kzyl/(z@?—y)/ @ +y),y +y—a").
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Bounds

[Chen, Cramer '06]
The generalization of the Shamir secret sharing scheme uses a divisor G = (t + 2g) Py in
E = L(G).

¥(G) is strongly multiplicative wrt A if n > 3t + 6g.
2(G) is strongly multiplicative wrt A<, if n > 3t + 4g.

[

For a carefully chosen divisor G, 3(G) is strongly multiplicative wrt A for n > 3t + 4g.
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Secret reconstruction
For a LSSS with a strongly self-orthogonal code, we have
fe€Lley e (f,g)=0, forall g e Loy,

with ¢* = ¢2.
If the shares for f are corrupted on A C A, then the secret can be reconstructed as follows. If
g2 € L<y\L.y is such that

(f,9192) =0, forall g1 € Loy,

then the secret can be recovered as (f, ¢go).
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