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Introduction

Condition Numbers

Condition Number: Definition

Suppose we have a map f :

a ∈ Rp 7→ f (a) ∈ Rm

The condition number κ(f , a) of an input a ∈ Rp with respect to f
measures the extent to which small perturbations ∆a of the input alter
the output.
More specifically, after fixing norms ‖ · ‖ on Rp and Rm, we define

κ(f , a) := limsup∆a→0

‖f (a + ∆a)− f (a)‖/‖f (a)‖
‖∆a‖/‖a‖

.

If f is differentiable, we have

κ(f , a) = ‖Df (a)‖ ‖a‖
‖f (a)‖

,

where ‖Df (a)‖ denotes the operator norm of the Jacobian of f at a.
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Introduction

Condition Numbers

Condition Number for Matrix inversion

Fix 0 6= b ∈ Rn (for simplicity). Consider the map f

A ∈ Rn×n 7→ x = A−1b.

The classical condition number of a nonsingular matrix A is given by

κ(A) := κ(f ,A) = ‖A‖ ‖A−1‖,

where ‖ · ‖ denotes the operator norm. In order to see this, suppose
Ax = b and (A + ∆A)(x + ∆x) = b. Then

∆x = −A−1∆Ax +O(‖∆A‖2),

hence
‖∆x‖
‖x‖

‖A‖
‖∆A‖

≤ κ(A) +O(‖∆A‖).
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Condition Numbers

Role of Condition Numbers

I Crucial issue for designing “numerically stable” algorithms:
I want the output to be accurate when using finite precision arithmetic

(round-off errors).

I Even when assuming infinite precision arithmetic, the condition of an
input often determines the running time of iterative algorithms:

I conjugate gradient method for solving linear equations
I Renegar’s interior point method for linear optimization
I Shub and Smale’s Newton homotopy method to solve systems of

polynomial equations
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Smoothed Analysis

Average-Case Analysis

I For ill-posed problems, the condition number and thus the running
time are infinite.

I Hence worst-case analysis does not make sense in this context.

I An average-case analysis of the running time of a numerical
algorithm reduces to an analysis of the distribution (or expected
value) of the condition number for random inputs a.
Cf. Demmel, Edelman, Kostlan, Renegar, Shub, Smale,...
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Smoothed Analysis

Smoothed Analysis

Smoothed analysis , proposed by D. Spielman and S.-H. Teng, is a new
form of analysis, that arguably blends the best of both worst-case and
average-case.

Let f : Rp → R+ be a function (running time, condition number).
Instead of showing

“it is unlikely that f (a) will be large”

one shows that

“for all a and all slight random perturbations ∆a, it is unlikely
that f (a + ∆a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a∈Rp

f (a) E
a∈Φ

f (a)

sup
a∈Rp

E
z∈N(0,σ2)

f (a + z)

Φ distribution on Rp, N(0, σ2) Gaussian distribution.
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Smoothed Analysis

Previous Work on Smoothed Analysis

I Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex
algorithm

I Dunagan, Spielman, and Teng (2003): Smoothed analysis of
Renegar’s condition number for linear programming

I Wschebor (2004): Smoothed analysis of the classical condition
number

I Cucker, Diao, and Wei (2005): Smoothed analysis of other condition
numbers

I Damerow, Meyer auf der Heyde, Raecke, Scheideler, Sohler (2003):
Smoothed motion complexity

I Bürgisser, Cucker, and Lotz (2006, 2007): Smoothed analysis of
conic condition numbers

I and some more . . .
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Conic Condition Numbers

Geometric Interpretation of Condition Numbers

The condition number of a square matrix A allows a geometric
interpretation. The set of singular matrices Σ ⊆ Rn×n is the set of
ill-posed problems.

The Eckart-Young Theorem states that

‖A−1‖ =
1

dist(A,Σ)
,

where dist refers to the Frobenius norm ‖A‖2 :=
∑

ij a2
ij (coming from the

canonical scalar product on Rn×n).
The modified condition number

κF (A) := ‖A‖F ‖A−1‖ =
‖A‖F

dist(A,Σ)
,

differs from κ(A) at most by a factor of
√

n.
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Conic Condition Numbers

Conic Condition Numbers 1

I We consider an abstract setting with input space Rp+1, together
with a symmetric cone Σ ⊆ Rp+1, the set of “ill-posed problems”.

I We define the associated conic condition number C (a) of an input
a ∈ Rp as

C (a) :=
‖a‖

dist(a,Σ)
,

where the norm and distance are induced by the canonical inner
product.

I Let Σ ⊆ Rn×n be the set of singular matrices A. The condition
number κF (A) is conic by the Eckart-Young Theorem:

κF (A) = ‖A‖F‖A−1‖ =
‖A‖F

distF (A,Σ)
.
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Conic Condition Numbers

Conic Condition Numbers 2

C (a) =
‖a‖

dist(a,Σ)
=

1
dP( a

‖a‖ ,Σ ∩ Sp)
,

where dP(x, y) = sin dR(x, y) denotes the projective distance on the sphere
Sp := {x ∈ Rp+1 | ‖x‖ = 1}. Hence, we may restrict to data a lying on
the sphere Sp.

dist(a,Σ)
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Conic Condition Numbers

Uniform Smoothed Analysis

I For a ∈ Sp and σ > 0 let

B(a, σ) := {z ∈ Sp | dPp (z , a) ≤ σ}.

denote the ball of radius σ around a in Sp.

I Uniform smoothed analysis of a conic condition number C is the
study of

sup
a∈Sp

E
z∈B(a,σ)

lnC (z),

where z ∈ B(a, σ) means that z is uniformly distributed in B(a, σ).

I σ = 0 yields worst-case analysis
I σ = 1 yields average-case analysis

I For any a ∈ Sp and σ > 0, we are thus interested in studying the
distribution of the random variables C (z) and ln C (z) on B(a, σ).
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Main Result

Main Result

Theorem
Let C be a conic condition number with set of ill-posed inputs Σ.
Assume that Σ ∩ Sp ⊆ W where W ⊂ Sp is the zero set in Sp of
homogeneous polynomials of degree at most d .
Then, for all σ ∈ (0, 1] and all t ≥ (2d + 1) p

σ ,

sup
a∈Sp

Prob
z∈B(a,σ)

{C (z) ≥ t} ≤ 26 dp
1

σt
.

and

sup
a∈Sp

E
z∈B(a,σ)

(lnC (z)) ≤ 2 ln p + 2 ln d + 2 ln
1

σ
+ 4.7.

Similar bounds on the tail of the distribution of C (z) in the framework of
average case analysis (σ = 1) in terms of these parameters have been
given by Demmel (1988) and by Beltrán-Pardo (2005) (over C).
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Applications

Linear Equation Solving

Linear Equation Solving

I Problem: Solving the system of equations Ax = b, A ∈ Rn×n.

I Set of ill-posed inputs: Σ = {A ∈ Rn×n | det A = 0}
I Condition number: κF (A) = ‖A‖F‖A−1‖.

Corollary

For all A ∈ Rn×n of Frobenius norm one and 0 < σ ≤ 1 we have

E
Z∈B(A,σ)

(lnκF (Z )) ≤ 6 ln n + 2 ln
1

σ
+ 4.7.

Proof: Apply the theorem with p = n2 − 1, W = Σ, and d = n. 2

M. Wschebor derived similar bounds for Gaussian perturbations by direct
methods (2004).
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Applications

Eigenvalue Computations

Eigenvalue Computations

I Problem: Compute the (complex) eigenvalues of a matrix
A ∈ Rn×n.

I Set of ill-posed inputs: Matrices A having multiple eigenvalues.

I Condition number (Wilkinson): Satisfies κeigen(A) ≤
√

2 ‖A‖F

dist(A,Σ) .

Corollary

For all A ∈ Rn×n and 0 < σ ≤ 1 we have

E
Z∈B(A,σ)

(lnκeigen(Z )) ≤ 8 ln n + 2 ln
1

σ
+ 5.1.

Proof: W = Σ is the zeroset of the discriminant of the characteristic
polynomial, which has degree d = n2 − n. Apply the theorem. 2
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Applications

Polynomial Equation Solving

Complex Polynomial Systems
I Fix d1, . . . , dn ∈ N \ {0}. We denote by Hd the vector space of

polynomial systems f = (f1, . . . , fn) with fi ∈ C[X0, . . . ,Xn]
homogeneous of degree di . Hd carries an invariant Hermitian
product.

I In a seminal series of papers, M. Shub and S. Smale studied the
problem of, given f ∈ Hd, compute an approximation of a complex
zero of f . They proposed an algorithm and studied its complexity in
terms of a condition number µnorm(f ) for f .

Corollary

For all f ∈ Hd of norm one we have

E
g∈B(f ,σ)

(lnµnorm(g)) ≤ 2 lnN + 4 lnD + 2 ln n + 2 ln
1

σ
+ 6.1.

where N = dimHd − 1 and D = d1 · · · dn is the Bézout number.

S. Smale and M. Shub obtained similar estimates for average complexity.
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Outline of Proof

Geometric Reformulation

Geometric Reformulation of the Problem

Given a conic condition number C with ill-posed set Σ. Let W ⊂ Sp

such that Σ ∩ Sp ⊆ W . Then for z ∈ Sp

C (z) ≥ 1

ε
⇐⇒ dPp (z ,Σ ∩ Sp) ≤ ε ⇒ dPp (z ,W ) ≤ ε.

We denote by T (W , ε) the ε-neighborhood around W in Sp:

T (W , ε) := {z ∈ Sp | dPp (z ,Σ) < ε}.

Then:

Prob
z∈B(a,σ)

{
C (z) ≥ 1

ε

}
≤ Prob

z∈B(a,σ)
{dPp (z ,W ) ≤ ε} =

vol(T (W , ε) ∩ B(a, σ))

vol(B(a, σ))
.
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Outline of Proof

Geometric Reformulation

Geometric Version of Main Result

Let Op := vol(Sp) = 2π
p+1
2

Γ( p+1
2 )

denote the volume of Sp.

The main theorem follows from the following purely geometric statement
on the volume of patches of tubes around subvarieties in spheres.

Theorem’
Let W ⊂ Sp be a real algebraic variety defined by homogeneous
polynomials of degree at most d ≥ 1. Then we have for a ∈ Sp and
0 < ε, σ ≤ 1

vol (T (W , ε) ∩ B(a, σ))

volB(a, σ)
≤ 4

p−1∑
k=1

(p

k

)
(2d)k

(
1 +

ε

σ

)p−k ( ε

σ

)k
+

pOp

Op−1
(2d)p

( ε

σ

)p
.
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Outline of Proof

Geometric Reformulation

The three main steps of the proof

I Upper bound on the volume of an ε-neighborhood of a smooth
hypersurface in terms of integrals of absolute curvature.
This is a variation of H. Weyl’s exact formula for the volume of
tubes, a formula which, however, only holds for sufficiently small ε.

II Estimation of integrals of absolute curvature.
This is based on the kinematic formula of integral geometry and
Bézout’s theorem.

III Remove the smoothness assumption by some perturbation argument.
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Outline of Proof

Step I: Bounding the volume of tubes

Some differential geometry of hypersurfaces on spheres

I Let M be a compact oriented smooth hypersurface of Sp interpreted
as a Riemannian submanifold. Denote by κ1(x), . . . , κp−1(x) the
principal curvatures at x of M.

I For 1 ≤ i < p we define the ith curvature KM,i (x) of M at x as the
ith elementary symmetric polynomial in κ1(x), . . . , κp−1(x), and put
KM,0(x) := 1.

I The integral of ith absolute curvature over the open subset U of M
is defined as

|µi |(U) :=

∫
U

|KM,i | dM.

I Note |µ0|(U) = vol(U).
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Outline of Proof

Step I: Bounding the volume of tubes

Bounding the volume of tubes
The ε-tube T⊥(M, ε) around M is a subset of T (M, ε) obtained by
“cutting off points close to the boundary” of M:

Variant of Weyl’s Tube Formula

Let M be a compact, oriented, smooth hypersurface of Sp and U be an
open subset of M. For all 0 < ε ≤ 1

vol(T⊥(U, ε)) ≤ 2

p−1∑
i=0

Jp,i+1(ε) · |µi |(U),

where

Jp,k(ε) :=

∫ arcsin ε

0

(sin ρ)k−1(cos ρ)p−kdρ.

Weyl’s formula gives the exact volume of tubes, but only holds for
sufficiently small radius.

The leading term is 2Jp,1(ε) · |µ0|(U) ≈ 2ε vol(U).
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Outline of Proof

Step II: Bounding integrals of absolute curvature

Bounding integrals of absolute curvature

Let f ∈ R[X0, . . . ,Xp] be homogeneous of degree d > 0 with nonempty
zero set V ⊆ Sp such that the derivative of the restriction of f to Sp

does not vanish on V . Then V is a compact smooth hypersurface of Sp.

Proposition

For a ∈ Sp, 0 < σ ≤ 1, and 0 ≤ i < p we have

|µi |(V ∩ BP(a, σ)) ≤ 2

(
p − 1

i

)
Op−1 d i+1 σp−i−1.

Proof ingredients:

I Principal kinematic formula of integral geometry for spheres

I Bézout’s theorem
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I Bézout’s theorem



The probability that a slight perturbation of a numerical analysis problem is difficult

Outline of Proof

Step II: Bounding integrals of absolute curvature

Bounding integrals of absolute curvature

Let f ∈ R[X0, . . . ,Xp] be homogeneous of degree d > 0 with nonempty
zero set V ⊆ Sp such that the derivative of the restriction of f to Sp

does not vanish on V . Then V is a compact smooth hypersurface of Sp.

Proposition

For a ∈ Sp, 0 < σ ≤ 1, and 0 ≤ i < p we have

|µi |(V ∩ BP(a, σ)) ≤ 2

(
p − 1

i

)
Op−1 d i+1 σp−i−1.

Proof ingredients:

I Principal kinematic formula of integral geometry for spheres

I Bézout’s theorem
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Crofton’s formula from integral geometry

We denote by dG the volume element on the orthogonal group
G = O(p + 1) (compact Lie group), normalized such that the volume of
G equals one. G operates on Sp in the natural way.

Crofton’s formula
Let T be a submanifold of Sp with dim T = p − 1. Then

volp−1(T )

Op−1
=

1

2

∫
g∈G

#(T ∩ gS1) dG (g).

I This allows to bound vol(V ∩ BP(a, σ)) via Bézout’s theorem.

I To bound µi for i > 0 we need a more sophisticated tool.
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Principal kinematic formula from integral geometry

A far reaching generalization of Crofton’s formula was obtained by Chern
for Euclidean space.

We will need the following version of this formula for spheres (cf.
Santaló, Howard).

Principal kinematic formula

Let U be an open subset of a compact oriented smooth hypersurface M
of Sp and 0 ≤ i < p − 1. Then we have

µi (U) = C(p, i)

∫
g∈G

µi (gU ∩ S i+1) dG (g),

where C(p, i) = (p − i − 1)
(
p−1

i

) Op−1Op

OiOi+1Op−i−2
.

This allows to reduce the estimation of µi to the case of codimension
one, i.e., Gaussian curvature, which can be treated directly.
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