The probability that a slight perturbation of a numerical analysis problem is difficult

Peter Bürgisser

University of Paderborn

Joint work with Felipe Cucker and Martin Lotz

IMA Workshop on Complexity, Coding, and Communication April 20, 2007

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction

Condition Numbers Smoothed Analysis Conic Condition Numbers

Main Result

Applications

Linear Equation Solving Eigenvalue Computations Polynomial Equation Solving

Outline of Proof

Geometric Reformulation Step I: Bounding the volume of tubes Step II: Bounding integrals of absolute curvature

References

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

└─ Condition Numbers

Condition Number: Definition

Suppose we have a map f:

 $a \in \mathbb{R}^p \mapsto f(a) \in \mathbb{R}^m$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Condition Number: Definition

Suppose we have a map f:

 $a \in \mathbb{R}^p \mapsto f(a) \in \mathbb{R}^m$

The condition number $\kappa(f, a)$ of an input $a \in \mathbb{R}^p$ with respect to f measures the extent to which small perturbations Δa of the input alter the output.

Condition Number: Definition

```
Suppose we have a map f:
```

$$a \in \mathbb{R}^p \mapsto f(a) \in \mathbb{R}^m$$

The condition number $\kappa(f, a)$ of an input $a \in \mathbb{R}^p$ with respect to f measures the extent to which small perturbations Δa of the input alter the output.

More specifically, after fixing norms $\|\cdot\|$ on \mathbb{R}^p and \mathbb{R}^m , we define

$$\kappa(f, \mathbf{a}) := \operatorname{limsup}_{\Delta \mathbf{a} \to \mathbf{0}} \frac{\|f(\mathbf{a} + \Delta \mathbf{a}) - f(\mathbf{a})\| / \|f(\mathbf{a})\|}{\|\Delta \mathbf{a}\| / \|\mathbf{a}\|}.$$

Condition Number: Definition

```
Suppose we have a map f:
```

$$a \in \mathbb{R}^p \mapsto f(a) \in \mathbb{R}^m$$

The condition number $\kappa(f, a)$ of an input $a \in \mathbb{R}^p$ with respect to f measures the extent to which small perturbations Δa of the input alter the output.

More specifically, after fixing norms $\|\cdot\|$ on \mathbb{R}^p and \mathbb{R}^m , we define

$$\kappa(f, a) := \operatorname{limsup}_{\Delta a \to 0} \frac{\|f(a + \Delta a) - f(a)\| / \|f(a)\|}{\|\Delta a\| / \|a\|}.$$

If f is differentiable, we have

$$\kappa(f,a) = \|Df(a)\|\frac{\|a\|}{\|f(a)\|},$$

where ||Df(a)|| denotes the operator norm of the Jacobian of f at a.

Fix $0 \neq b \in \mathbb{R}^n$ (for simplicity). Consider the map f

$$A \in \mathbb{R}^{n \times n} \mapsto x = A^{-1}b.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix $0 \neq b \in \mathbb{R}^n$ (for simplicity). Consider the map f

$$A \in \mathbb{R}^{n \times n} \mapsto x = A^{-1}b.$$

The classical condition number of a nonsingular matrix A is given by

$$\kappa(A) := \kappa(f, A) = ||A|| ||A^{-1}||,$$

where $\|\cdot\|$ denotes the operator norm.

Fix $0 \neq b \in \mathbb{R}^n$ (for simplicity). Consider the map f

$$A \in \mathbb{R}^{n \times n} \mapsto x = A^{-1}b.$$

The classical condition number of a nonsingular matrix A is given by

$$\kappa(A) := \kappa(f, A) = ||A|| ||A^{-1}||,$$

where $\|\cdot\|$ denotes the operator norm. In order to see this, suppose Ax = b and $(A + \Delta A)(x + \Delta x) = b$. Then

$$\Delta x = -A^{-1}\Delta A x + \mathcal{O}(\|\Delta A\|^2),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fix $0 \neq b \in \mathbb{R}^n$ (for simplicity). Consider the map f

$$A \in \mathbb{R}^{n \times n} \mapsto x = A^{-1}b.$$

The classical condition number of a nonsingular matrix A is given by

$$\kappa(A) := \kappa(f, A) = ||A|| ||A^{-1}||,$$

where $\|\cdot\|$ denotes the operator norm. In order to see this, suppose Ax = b and $(A + \Delta A)(x + \Delta x) = b$. Then

$$\Delta x = -A^{-1}\Delta A x + \mathcal{O}(\|\Delta A\|^2),$$

hence

$$\frac{\|\Delta x\|}{\|x\|}\frac{\|A\|}{\|\Delta A\|} \leq \kappa(A) + \mathcal{O}(\|\Delta A\|).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Crucial issue for designing "numerically stable" algorithms:
 - want the output to be accurate when using finite precision arithmetic (round-off errors).

- Crucial issue for designing "numerically stable" algorithms:
 - want the output to be accurate when using finite precision arithmetic (round-off errors).

Even when assuming infinite precision arithmetic, the condition of an input often determines the running time of iterative algorithms:

- Crucial issue for designing "numerically stable" algorithms:
 - want the output to be accurate when using finite precision arithmetic (round-off errors).

- Even when assuming infinite precision arithmetic, the condition of an input often determines the running time of iterative algorithms:
 - conjugate gradient method for solving linear equations

- Crucial issue for designing "numerically stable" algorithms:
 - want the output to be accurate when using finite precision arithmetic (round-off errors).

- Even when assuming infinite precision arithmetic, the condition of an input often determines the running time of iterative algorithms:
 - conjugate gradient method for solving linear equations
 - Renegar's interior point method for linear optimization

- Crucial issue for designing "numerically stable" algorithms:
 - want the output to be accurate when using finite precision arithmetic (round-off errors).
- Even when assuming infinite precision arithmetic, the condition of an input often determines the running time of iterative algorithms:
 - conjugate gradient method for solving linear equations
 - Renegar's interior point method for linear optimization
 - Shub and Smale's Newton homotopy method to solve systems of polynomial equations

The probability that a slight perturbation of a numerical analysis problem is difficult $\bigsqcup_{}$ Introduction

Smoothed Analysis

Average-Case Analysis

 For ill-posed problems, the condition number and thus the running time are infinite.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Average-Case Analysis

 For ill-posed problems, the condition number and thus the running time are infinite.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hence worst-case analysis does not make sense in this context.

Average-Case Analysis

- For ill-posed problems, the condition number and thus the running time are infinite.
- Hence worst-case analysis does not make sense in this context.
- An average-case analysis of the running time of a numerical algorithm reduces to an analysis of the distribution (or expected value) of the condition number for random inputs *a*. Cf. Demmel, Edelman, Kostlan, Renegar, Shub, Smale,...

Smoothed analysis , proposed by D. Spielman and S.-H. Teng, is a new form of analysis, that arguably blends the best of both worst-case and average-case.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Smoothed Analysis

Smoothed analysis , proposed by D. Spielman and S.-H. Teng, is a new form of analysis, that arguably blends the best of both worst-case and average-case.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $f : \mathbb{R}^{p} \to \mathbb{R}_{+}$ be a function (running time, condition number). Instead of showing

"it is unlikely that f(a) will be large"

Smoothed Analysis

Smoothed analysis , proposed by D. Spielman and S.-H. Teng, is a new form of analysis, that arguably blends the best of both worst-case and average-case.

Let $f : \mathbb{R}^{p} \to \mathbb{R}_{+}$ be a function (running time, condition number). Instead of showing

"it is unlikely that f(a) will be large"

one shows that

"for all a and all slight random perturbations Δa , it is unlikely that $f(a + \Delta a)$ will be large."

Smoothed Analysis

Smoothed analysis , proposed by D. Spielman and S.-H. Teng, is a new form of analysis, that arguably blends the best of both worst-case and average-case.

Let $f : \mathbb{R}^{p} \to \mathbb{R}_{+}$ be a function (running time, condition number). Instead of showing

"it is unlikely that f(a) will be large"

one shows that

"for all a and all slight random perturbations Δa , it is unlikely that $f(a + \Delta a)$ will be large."

Worst case analysis	Average case analysis	Smoothed analysis
$\sup_{a\in \mathbb{R}^p} f(a)$	$\mathop{E}_{a\in\Phi} f(a)$	$\sup_{a\in\mathbb{R}^p} \mathop{\mathbf{E}}_{z\in N(0,\sigma^2)} f(a+z)$

Smoothed Analysis

Smoothed analysis , proposed by D. Spielman and S.-H. Teng, is a new form of analysis, that arguably blends the best of both worst-case and average-case.

Let $f : \mathbb{R}^{p} \to \mathbb{R}_{+}$ be a function (running time, condition number). Instead of showing

"it is unlikely that f(a) will be large"

one shows that

"for all a and all slight random perturbations Δa , it is unlikely that $f(a + \Delta a)$ will be large."

Worst case analysis	Average case analysis	Smoothed analysis
$\sup_{a\in \mathbb{R}^{\rho}}f(a)$	$\mathop{\mathbf{E}}_{a\in\Phi}f(a)$	$\sup_{a\in\mathbb{R}^p} \mathop{\mathbf{E}}_{z\in N(0,\sigma^2)} f(a+z)$

 Φ distribution on \mathbb{R}^p , $N(0, \sigma^2)$ Gaussian distribution.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm

 Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Dunagan, Spielman, and Teng (2003): Smoothed analysis of Renegar's condition number for linear programming

 Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Dunagan, Spielman, and Teng (2003): Smoothed analysis of Renegar's condition number for linear programming
- Wschebor (2004): Smoothed analysis of the classical condition number

- Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm
- Dunagan, Spielman, and Teng (2003): Smoothed analysis of Renegar's condition number for linear programming
- Wschebor (2004): Smoothed analysis of the classical condition number
- Cucker, Diao, and Wei (2005): Smoothed analysis of other condition numbers

- Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm
- Dunagan, Spielman, and Teng (2003): Smoothed analysis of Renegar's condition number for linear programming
- Wschebor (2004): Smoothed analysis of the classical condition number
- Cucker, Diao, and Wei (2005): Smoothed analysis of other condition numbers
- Damerow, Meyer auf der Heyde, Raecke, Scheideler, Sohler (2003): Smoothed motion complexity

- Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm
- Dunagan, Spielman, and Teng (2003): Smoothed analysis of Renegar's condition number for linear programming
- Wschebor (2004): Smoothed analysis of the classical condition number
- Cucker, Diao, and Wei (2005): Smoothed analysis of other condition numbers
- Damerow, Meyer auf der Heyde, Raecke, Scheideler, Sohler (2003): Smoothed motion complexity
- Bürgisser, Cucker, and Lotz (2006, 2007): Smoothed analysis of conic condition numbers

- Spielman and Teng (2001, 2004): Smoothed analysis of the Simplex algorithm
- Dunagan, Spielman, and Teng (2003): Smoothed analysis of Renegar's condition number for linear programming
- Wschebor (2004): Smoothed analysis of the classical condition number
- Cucker, Diao, and Wei (2005): Smoothed analysis of other condition numbers
- Damerow, Meyer auf der Heyde, Raecke, Scheideler, Sohler (2003): Smoothed motion complexity
- Bürgisser, Cucker, and Lotz (2006, 2007): Smoothed analysis of conic condition numbers
- and some more . . .

Geometric Interpretation of Condition Numbers

The condition number of a square matrix A allows a geometric interpretation. The set of singular matrices $\Sigma \subseteq \mathbb{R}^{n \times n}$ is the set of ill-posed problems.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometric Interpretation of Condition Numbers

The condition number of a square matrix A allows a geometric interpretation. The set of singular matrices $\Sigma \subseteq \mathbb{R}^{n \times n}$ is the set of ill-posed problems.

The Eckart-Young Theorem states that

$$\|A^{-1}\| = \frac{1}{\mathsf{dist}(A, \Sigma)},$$

where dist refers to the Frobenius norm $||A||^2 := \sum_{ij} a_{ij}^2$ (coming from the canonical scalar product on $\mathbb{R}^{n \times n}$).

Geometric Interpretation of Condition Numbers

The condition number of a square matrix A allows a geometric interpretation. The set of singular matrices $\Sigma \subseteq \mathbb{R}^{n \times n}$ is the set of ill-posed problems.

The Eckart-Young Theorem states that

$$\|A^{-1}\| = \frac{1}{\mathsf{dist}(A, \Sigma)},$$

where dist refers to the Frobenius norm $||A||^2 := \sum_{ij} a_{ij}^2$ (coming from the canonical scalar product on $\mathbb{R}^{n \times n}$). The modified condition number

$$\kappa_F(A) := \|A\|_F \, \|A^{-1}\| = \frac{\|A\|_F}{\operatorname{dist}(A, \Sigma)},$$

differs from $\kappa(A)$ at most by a factor of \sqrt{n} .

The probability that a slight perturbation of a numerical analysis problem is difficult
Introduction
Conic Condition Numbers

Conic Condition Numbers 1

We consider an abstract setting with input space ℝ^{p+1}, together with a symmetric cone Σ ⊆ ℝ^{p+1}, the set of "ill-posed problems".

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conic Condition Numbers 1

- We consider an abstract setting with input space ℝ^{p+1}, together with a symmetric cone Σ ⊆ ℝ^{p+1}, the set of "ill-posed problems".
- We define the associated conic condition number 𝒞(a) of an input a ∈ ℝ^p as

$$\mathscr{C}(a) := rac{\|a\|}{\operatorname{dist}(a, \Sigma)},$$

where the norm and distance are induced by the canonical inner product.

Conic Condition Numbers 1

- We consider an abstract setting with input space ℝ^{p+1}, together with a symmetric cone Σ ⊆ ℝ^{p+1}, the set of "ill-posed problems".
- We define the associated conic condition number 𝔅(a) of an input a ∈ ℝ^p as

$$\mathscr{C}(a) := rac{\|a\|}{\mathsf{dist}(a,\Sigma)},$$

where the norm and distance are induced by the canonical inner product.

Let Σ ⊆ ℝ^{n×n} be the set of singular matrices A. The condition number κ_F(A) is conic by the Eckart-Young Theorem:

$$\kappa_F(A) = ||A||_F ||A^{-1}|| = \frac{||A||_F}{\operatorname{dist}_F(A, \Sigma)}.$$

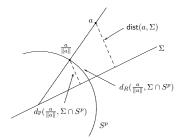
Introduction

Conic Condition Numbers

Conic Condition Numbers 2

$$\mathscr{C}(a) = \frac{\|a\|}{\mathsf{dist}(a, \Sigma)} = \frac{1}{d_{\mathbb{P}}(\frac{a}{\|a\|}, \Sigma \cap S^p)}$$

where $d_{\mathbb{F}}(x,y) = \sin d_{\mathbb{R}}(x,y)$ denotes the projective distance on the sphere $S^p := \{x \in \mathbb{R}^{p+1} \mid ||x|| = 1\}$. Hence, we may restrict to data *a* lying on the sphere S^p .



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Uniform Smoothed Analysis

▶ For $a \in S^p$ and $\sigma > 0$ let

$$B(a,\sigma) := \{z \in S^{p} \mid d_{\mathbb{P}^{p}}(z,a) \leq \sigma\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

denote the ball of radius σ around a in S^p .

Uniform Smoothed Analysis

▶ For $a \in S^p$ and $\sigma > 0$ let

$$B(a,\sigma) := \{ z \in S^p \mid d_{\mathbb{P}^p}(z,a) \le \sigma \}.$$

denote the ball of radius σ around a in S^p .

► Uniform smoothed analysis of a conic condition number *C* is the study of

$$\sup_{a\in S^p} \mathop{\mathbf{E}}_{z\in B(a,\sigma)} \ln \mathscr{C}(z),$$

where $z \in B(a, \sigma)$ means that z is uniformly distributed in $B(a, \sigma)$.

Uniform Smoothed Analysis

▶ For $a \in S^p$ and $\sigma > 0$ let

$$B(a,\sigma) := \{z \in S^p \mid d_{\mathbb{P}^p}(z,a) \le \sigma\}.$$

denote the ball of radius σ around a in S^p .

► Uniform smoothed analysis of a conic condition number *C* is the study of

$$\sup_{a\in S^p} \mathop{\mathbf{E}}_{z\in B(a,\sigma)} \ln \mathscr{C}(z),$$

where $z \in B(a, \sigma)$ means that z is uniformly distributed in $B(a, \sigma)$. • $\sigma = 0$ yields worst-case analysis

Uniform Smoothed Analysis

▶ For $a \in S^p$ and $\sigma > 0$ let

$$B(a,\sigma) := \{z \in S^p \mid d_{\mathbb{P}^p}(z,a) \le \sigma\}.$$

denote the ball of radius σ around a in S^p .

► Uniform smoothed analysis of a conic condition number *C* is the study of

$$\sup_{a\in S^p} \mathop{\mathbf{E}}_{z\in B(a,\sigma)} \ln \mathscr{C}(z),$$

where $z \in B(a, \sigma)$ means that z is uniformly distributed in $B(a, \sigma)$.

- $\sigma = 0$ yields worst-case analysis
- $\sigma = 1$ yields average-case analysis

Uniform Smoothed Analysis

▶ For $a \in S^p$ and $\sigma > 0$ let

$$B(a,\sigma) := \{z \in S^p \mid d_{\mathbb{P}^p}(z,a) \le \sigma\}.$$

denote the ball of radius σ around a in S^p .

► Uniform smoothed analysis of a conic condition number *C* is the study of

$$\sup_{a\in S^p} \mathop{\mathbf{E}}_{z\in B(a,\sigma)} \ln \mathscr{C}(z),$$

where $z \in B(a, \sigma)$ means that z is uniformly distributed in $B(a, \sigma)$.

- $\sigma = 0$ yields worst-case analysis
- $\sigma = 1$ yields average-case analysis

For any a ∈ S^p and σ > 0, we are thus interested in studying the distribution of the random variables 𝔅(z) and ln 𝔅(z) on B(a, σ).

Main Result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Main Result

Theorem

Let \mathscr{C} be a conic condition number with set of ill-posed inputs Σ . Assume that $\Sigma \cap S^p \subseteq W$ where $W \subset S^p$ is the zero set in S^p of homogeneous polynomials of degree at most d. Then, for all $\sigma \in (0,1]$ and all $t \geq (2d+1)\frac{p}{\sigma}$,

$$\sup_{a\in S^{p}} \operatorname{Prob}_{z\in \mathcal{B}(a,\sigma)} \{\mathscr{C}(z)\geq t\}\leq 26 \, dp \, \frac{1}{\sigma t}$$

and

$$\sup_{a\in S^p} \mathop{\mathbf{E}}_{z\in B(a,\sigma)} (\ln \mathscr{C}(z)) \leq 2\ln p + 2\ln d + 2\ln \frac{1}{\sigma} + 4.7.$$

Main Result

Theorem

Let \mathscr{C} be a conic condition number with set of ill-posed inputs Σ . Assume that $\Sigma \cap S^p \subseteq W$ where $W \subset S^p$ is the zero set in S^p of homogeneous polynomials of degree at most d. Then, for all $\sigma \in (0, 1]$ and all $t \geq (2d + 1)\frac{p}{\sigma}$,

$$\sup_{a\in S^p} \Pr_{z\in B(a,\sigma)} \{\mathscr{C}(z) \geq t\} \leq 26 \, dp \, \frac{1}{\sigma t}.$$

and

$$\sup_{a\in S^p} \mathop{\mathbf{E}}_{z\in B(a,\sigma)} (\ln \mathscr{C}(z)) \leq 2\ln p + 2\ln d + 2\ln \frac{1}{\sigma} + 4.7.$$

Similar bounds on the tail of the distribution of $\mathscr{C}(z)$ in the framework of average case analysis ($\sigma = 1$) in terms of these parameters have been given by Demmel (1988) and by Beltrán-Pardo (2005) (over \mathbb{C}).

Applications

(ロ)、(型)、(E)、(E)、 E) の(の)

Linear Equation Solving

- ▶ Problem: Solving the system of equations Ax = b, $A \in \mathbb{R}^{n \times n}$.
- Set of ill-posed inputs: $\Sigma = \{A \in \mathbb{R}^{n \times n} \mid \det A = 0\}$
- Condition number: $\kappa_F(A) = ||A||_F ||A^{-1}||$.

Corollary

For all $A \in \mathbb{R}^{n imes n}$ of Frobenius norm one and $0 < \sigma \leq 1$ we have

$$\mathop{\mathbf{E}}_{Z\in B(A,\sigma)}(\ln \kappa_F(Z)) \le 6\ln n + 2\ln \frac{1}{\sigma} + 4.7.$$

Linear Equation Solving

- ▶ Problem: Solving the system of equations Ax = b, $A \in \mathbb{R}^{n \times n}$.
- Set of ill-posed inputs: $\Sigma = \{A \in \mathbb{R}^{n \times n} \mid \det A = 0\}$
- Condition number: $\kappa_F(A) = ||A||_F ||A^{-1}||$.

Corollary

For all $A \in \mathbb{R}^{n \times n}$ of Frobenius norm one and $0 < \sigma \leq 1$ we have

$$\mathop{\mathbf{E}}_{Z\in B(A,\sigma)}(\ln\kappa_F(Z))\leq 6\ln n+2\ln\frac{1}{\sigma}+4.7.$$

Proof: Apply the theorem with $p = n^2 - 1$, $W = \Sigma$, and d = n.

Linear Equation Solving

- ▶ Problem: Solving the system of equations Ax = b, $A \in \mathbb{R}^{n \times n}$.
- Set of ill-posed inputs: $\Sigma = \{A \in \mathbb{R}^{n \times n} \mid \det A = 0\}$
- Condition number: $\kappa_F(A) = ||A||_F ||A^{-1}||$.

Corollary

For all $A \in \mathbb{R}^{n \times n}$ of Frobenius norm one and $0 < \sigma \leq 1$ we have

$$\mathop{\mathbf{E}}_{Z\in B(A,\sigma)}(\ln \kappa_F(Z)) \leq 6\ln n + 2\ln \frac{1}{\sigma} + 4.7.$$

Proof: Apply the theorem with $p = n^2 - 1$, $W = \Sigma$, and d = n.

M. Wschebor derived similar bounds for Gaussian perturbations by direct methods (2004).

Eigenvalue Computations

- ▶ Problem: Compute the (complex) eigenvalues of a matrix $A \in \mathbb{R}^{n \times n}$.
- ► Set of ill-posed inputs: Matrices A having multiple eigenvalues.
- ► Condition number (Wilkinson): Satisfies $\kappa_{\text{eigen}}(A) \leq \frac{\sqrt{2} \|A\|_{F}}{\text{dist}(A,\Sigma)}$.

Corollary

For all $A \in \mathbb{R}^{n \times n}$ and $0 < \sigma \leq 1$ we have

$$\mathop{\mathbf{E}}_{Z \in B(A,\sigma)}(\ln \kappa_{\operatorname{eigen}}(Z)) \leq 8 \ln n + 2 \ln \frac{1}{\sigma} + 5.1.$$

Eigenvalue Computations

- ▶ Problem: Compute the (complex) eigenvalues of a matrix $A \in \mathbb{R}^{n \times n}$.
- ► Set of ill-posed inputs: Matrices A having multiple eigenvalues.
- ► Condition number (Wilkinson): Satisfies $\kappa_{eigen}(A) \leq \frac{\sqrt{2} \|A\|_{F}}{\text{dist}(A,\Sigma)}$.

Corollary

For all $A \in \mathbb{R}^{n \times n}$ and $0 < \sigma \leq 1$ we have

$$\mathop{\mathbf{E}}_{Z\in B(A,\sigma)}(\ln\kappa_{\operatorname{eigen}}(Z)) \leq 8\ln n + 2\ln\frac{1}{\sigma} + 5.1.$$

Proof: $W = \Sigma$ is the zeroset of the discriminant of the characteristic polynomial, which has degree $d = n^2 - n$. Apply the theorem.

Polynomial Equation Solving

Complex Polynomial Systems

▶ Fix $d_1, \ldots, d_n \in \mathbb{N} \setminus \{0\}$. We denote by \mathcal{H}_d the vector space of polynomial systems $f = (f_1, \ldots, f_n)$ with $f_i \in \mathbb{C}[X_0, \ldots, X_n]$ homogeneous of degree d_i . \mathcal{H}_d carries an invariant Hermitian product.

- Applications

Polynomial Equation Solving

Complex Polynomial Systems

- ▶ Fix $d_1, \ldots, d_n \in \mathbb{N} \setminus \{0\}$. We denote by \mathcal{H}_d the vector space of polynomial systems $f = (f_1, \ldots, f_n)$ with $f_i \in \mathbb{C}[X_0, \ldots, X_n]$ homogeneous of degree d_i . \mathcal{H}_d carries an invariant Hermitian product.
- In a seminal series of papers, M. Shub and S. Smale studied the problem of, given *f* ∈ *H*_d, compute an approximation of a complex zero of *f*. They proposed an algorithm and studied its complexity in terms of a condition number µ_{norm}(*f*) for *f*.

- Applications

Polynomial Equation Solving

Complex Polynomial Systems

- ▶ Fix $d_1, \ldots, d_n \in \mathbb{N} \setminus \{0\}$. We denote by \mathcal{H}_d the vector space of polynomial systems $f = (f_1, \ldots, f_n)$ with $f_i \in \mathbb{C}[X_0, \ldots, X_n]$ homogeneous of degree d_i . \mathcal{H}_d carries an invariant Hermitian product.
- In a seminal series of papers, M. Shub and S. Smale studied the problem of, given f ∈ H_d, compute an approximation of a complex zero of f. They proposed an algorithm and studied its complexity in terms of a condition number µ_{norm}(f) for f.

Corollary

For all $f \in \mathcal{H}_{d}$ of norm one we have

$$\mathop{\mathbf{E}}_{g\in B(f,\sigma)}(\ln\mu_{\operatorname{norm}}(g)) \leq 2\ln N + 4\ln \mathcal{D} + 2\ln n + 2\ln \frac{1}{\sigma} + 6.1.$$

where $N = \dim \mathcal{H}_{\mathbf{d}} - 1$ and $\mathcal{D} = d_1 \cdots d_n$ is the Bézout number.

- Applications

Polynomial Equation Solving

Complex Polynomial Systems

- ▶ Fix $d_1, \ldots, d_n \in \mathbb{N} \setminus \{0\}$. We denote by \mathcal{H}_d the vector space of polynomial systems $f = (f_1, \ldots, f_n)$ with $f_i \in \mathbb{C}[X_0, \ldots, X_n]$ homogeneous of degree d_i . \mathcal{H}_d carries an invariant Hermitian product.
- In a seminal series of papers, M. Shub and S. Smale studied the problem of, given f ∈ H_d, compute an approximation of a complex zero of f. They proposed an algorithm and studied its complexity in terms of a condition number µ_{norm}(f) for f.

Corollary

For all $f \in \mathcal{H}_d$ of norm one we have

$$\mathop{\mathbf{E}}_{g\in\mathcal{B}(f,\sigma)}(\ln\mu_{\operatorname{norm}}(g)) \leq 2\ln N + 4\ln \mathcal{D} + 2\ln n + 2\ln \frac{1}{\sigma} + 6.1.$$

where $N = \dim \mathcal{H}_d - 1$ and $\mathcal{D} = d_1 \cdots d_n$ is the Bézout number.

S. Smale and M. Shub obtained similar estimates for average complexity.

Outline of Proof of Main Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Geometric Reformulation of the Problem

Given a conic condition number \mathscr{C} with ill-posed set Σ . Let $W \subset S^p$ such that $\Sigma \cap S^p \subseteq W$. Then for $z \in S^p$

$$\mathscr{C}(z) \geq rac{1}{arepsilon} \Longleftrightarrow d_{\mathbb{P}^p}(z,\Sigma\cap S^p) \leq arepsilon \Rightarrow d_{\mathbb{P}^p}(z,W) \leq arepsilon.$$

Geometric Reformulation of the Problem

Given a conic condition number \mathscr{C} with ill-posed set Σ . Let $W \subset S^p$ such that $\Sigma \cap S^p \subseteq W$. Then for $z \in S^p$

$$\mathscr{C}(z) \geq rac{1}{arepsilon} \Longleftrightarrow d_{\mathbb{P}^p}(z,\Sigma\cap S^p) \leq arepsilon \Rightarrow d_{\mathbb{P}^p}(z,W) \leq arepsilon.$$

We denote by $T(W, \varepsilon)$ the ε -neighborhood around W in S^p :

$$T(W, \varepsilon) := \{z \in S^{p} \mid d_{\mathbb{P}^{p}}(z, \Sigma) < \varepsilon\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geometric Reformulation of the Problem

Given a conic condition number \mathscr{C} with ill-posed set Σ . Let $W \subset S^p$ such that $\Sigma \cap S^p \subseteq W$. Then for $z \in S^p$

$$\mathscr{C}(z) \geq rac{1}{arepsilon} \Longleftrightarrow d_{\mathbb{P}^p}(z,\Sigma\cap S^p) \leq arepsilon \Rightarrow d_{\mathbb{P}^p}(z,W) \leq arepsilon.$$

We denote by $T(W, \varepsilon)$ the ε -neighborhood around W in S^p :

$$T(W,\varepsilon) := \{z \in S^{p} \mid d_{\mathbb{P}^{p}}(z,\Sigma) < \varepsilon\}.$$

Then:

$$\Pr_{z \in B(a,\sigma)} \left\{ \mathscr{C}(z) \geq \frac{1}{\varepsilon} \right\} \leq \Pr_{z \in B(a,\sigma)} \left\{ d_{\mathbb{P}^p}(z,W) \leq \varepsilon \right\} = \frac{\operatorname{vol}(T(W,\varepsilon) \cap B(a,\sigma))}{\operatorname{vol}(B(a,\sigma))}.$$

Geometric Reformulation

Geometric Version of Main Result

Let
$$\mathcal{O}_{\rho} := \operatorname{vol}(S^{\rho}) = \frac{2\pi^{\frac{\rho+1}{2}}}{\Gamma(\frac{\rho+1}{2})}$$
 denote the volume of S^{ρ} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Geometric Version of Main Result

Let
$$\mathcal{O}_p := \operatorname{vol}(S^p) = \frac{2\pi^{\frac{p+1}{2}}}{\Gamma(\frac{p+1}{2})}$$
 denote the volume of S^p .

The main theorem follows from the following purely geometric statement on the volume of patches of tubes around subvarieties in spheres.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Geometric Version of Main Result

Let
$$\mathcal{O}_p := \operatorname{vol}(S^p) = \frac{2\pi^{\frac{p+1}{2}}}{\Gamma(\frac{p+1}{2})}$$
 denote the volume of S^p .

The main theorem follows from the following purely geometric statement on the volume of patches of tubes around subvarieties in spheres.

Theorem'

Let $W \subset S^p$ be a real algebraic variety defined by homogeneous polynomials of degree at most $d \geq 1$. Then we have for $a \in S^p$ and $0 < \varepsilon, \sigma \leq 1$

$$\frac{\operatorname{vol}\left(\mathcal{T}(W,\varepsilon)\cap B(a,\sigma)\right)}{\operatorname{vol}B(a,\sigma)} \leq 4\sum_{k=1}^{p-1} {p \choose k} (2d)^k \left(1+\frac{\varepsilon}{\sigma}\right)^{p-k} \left(\frac{\varepsilon}{\sigma}\right)^k + \frac{p\mathcal{O}_p}{\mathcal{O}_{p-1}} (2d)^p \left(\frac{\varepsilon}{\sigma}\right)^p$$

うせん 御を (曲を) (目を)

The three main steps of the proof

 Upper bound on the volume of an ε-neighborhood of a smooth hypersurface in terms of integrals of absolute curvature. This is a variation of H. Weyl's exact formula for the volume of tubes, a formula which, however, only holds for sufficiently small ε.

The three main steps of the proof

- Upper bound on the volume of an ε-neighborhood of a smooth hypersurface in terms of integrals of absolute curvature. This is a variation of H. Weyl's exact formula for the volume of tubes, a formula which, however, only holds for sufficiently small ε.
- Estimation of integrals of absolute curvature.
 This is based on the kinematic formula of integral geometry and Bézout's theorem.

The three main steps of the proof

- Upper bound on the volume of an ε-neighborhood of a smooth hypersurface in terms of integrals of absolute curvature. This is a variation of H. Weyl's exact formula for the volume of tubes, a formula which, however, only holds for sufficiently small ε.
- Estimation of integrals of absolute curvature. This is based on the kinematic formula of integral geometry and Bézout's theorem.
- **III** Remove the smoothness assumption by some perturbation argument.

Some differential geometry of hypersurfaces on spheres

Let *M* be a compact oriented smooth hypersurface of S^p interpreted as a Riemannian submanifold. Denote by κ₁(x),..., κ_{p−1}(x) the principal curvatures at x of *M*.

Some differential geometry of hypersurfaces on spheres

- Let *M* be a compact oriented smooth hypersurface of S^p interpreted as a Riemannian submanifold. Denote by κ₁(x),..., κ_{p−1}(x) the principal curvatures at x of *M*.
- For 1 ≤ i ith curvature K_{M,i}(x) of M at x as the *i*th elementary symmetric polynomial in κ₁(x),..., κ_{p-1}(x), and put K_{M,0}(x) := 1.

Some differential geometry of hypersurfaces on spheres

- Let *M* be a compact oriented smooth hypersurface of S^p interpreted as a Riemannian submanifold. Denote by κ₁(x),..., κ_{p−1}(x) the principal curvatures at x of *M*.
- For 1 ≤ i ith curvature K_{M,i}(x) of M at x as the *i*th elementary symmetric polynomial in κ₁(x),..., κ_{p-1}(x), and put K_{M,0}(x) := 1.
- The integral of *i*th absolute curvature over the open subset U of M is defined as

$$\mu_i|(U):=\int_U|K_{M,i}|\,dM.$$

Some differential geometry of hypersurfaces on spheres

- Let *M* be a compact oriented smooth hypersurface of S^p interpreted as a Riemannian submanifold. Denote by κ₁(x),..., κ_{p−1}(x) the principal curvatures at x of *M*.
- For 1 ≤ i ith curvature K_{M,i}(x) of M at x as the *i*th elementary symmetric polynomial in κ₁(x),..., κ_{p-1}(x), and put K_{M,0}(x) := 1.
- The integral of *i*th absolute curvature over the open subset U of M is defined as

$$\mu_i|(U):=\int_U|K_{M,i}|\,dM.$$

• Note $|\mu_0|(U) = \operatorname{vol}(U)$.

Outline of Proof

L-Step I: Bounding the volume of tubes

Bounding the volume of tubes

The ε -tube $T^{\perp}(M, \varepsilon)$ around M is a subset of $T(M, \varepsilon)$ obtained by "cutting off points close to the boundary" of M:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of Proof

Step I: Bounding the volume of tubes

Bounding the volume of tubes

The ε -tube $T^{\perp}(M, \varepsilon)$ around M is a subset of $T(M, \varepsilon)$ obtained by "cutting off points close to the boundary" of M:

Variant of Weyl's Tube Formula

Let M be a compact, oriented, smooth hypersurface of S^p and U be an open subset of M. For all $0<\varepsilon\leq 1$

$$\operatorname{vol}(\mathcal{T}^{\perp}(U,\varepsilon)) \leq 2\sum_{i=0}^{p-1} J_{p,i+1}(\varepsilon) \cdot |\mu_i|(U),$$

where

$$J_{p,k}(\varepsilon) := \int_0^{\arcsin \varepsilon} (\sin \rho)^{k-1} (\cos \rho)^{p-k} d\rho.$$

The probability that a slight perturbation of a numerical analysis problem is difficult

Outline of Proof

Step I: Bounding the volume of tubes

Bounding the volume of tubes

The ε -tube $T^{\perp}(M, \varepsilon)$ around M is a subset of $T(M, \varepsilon)$ obtained by "cutting off points close to the boundary" of M:

Variant of Weyl's Tube Formula

Let M be a compact, oriented, smooth hypersurface of S^p and U be an open subset of M. For all $0<\varepsilon\leq 1$

$$\operatorname{vol}(\mathcal{T}^{\perp}(U,\varepsilon)) \leq 2\sum_{i=0}^{p-1} J_{p,i+1}(\varepsilon) \cdot |\mu_i|(U),$$

where

$$J_{p,k}(\varepsilon) := \int_0^{\arcsin \varepsilon} (\sin \rho)^{k-1} (\cos \rho)^{p-k} d\rho.$$

Weyl's formula gives the exact volume of tubes, but only holds for sufficiently small radius.

The probability that a slight perturbation of a numerical analysis problem is difficult

Outline of Proof

Step I: Bounding the volume of tubes

Bounding the volume of tubes

The ε -tube $T^{\perp}(M, \varepsilon)$ around M is a subset of $T(M, \varepsilon)$ obtained by "cutting off points close to the boundary" of M:

Variant of Weyl's Tube Formula

Let M be a compact, oriented, smooth hypersurface of S^p and U be an open subset of M. For all $0<\varepsilon\leq 1$

$$\operatorname{vol}(\mathcal{T}^{\perp}(U,\varepsilon)) \leq 2\sum_{i=0}^{p-1} J_{p,i+1}(\varepsilon) \cdot |\mu_i|(U),$$

where

$$J_{p,k}(\varepsilon) := \int_0^{\arcsin \varepsilon} (\sin \rho)^{k-1} (\cos \rho)^{p-k} d\rho.$$

Weyl's formula gives the exact volume of tubes, but only holds for sufficiently small radius.

The leading term is $2J_{p,1}(\varepsilon) \cdot |\mu_0|(U) \approx 2\varepsilon \operatorname{vol}(U)$.

Step II: Bounding integrals of absolute curvature

Bounding integrals of absolute curvature

Let $f \in \mathbb{R}[X_0, ..., X_p]$ be homogeneous of degree d > 0 with nonempty zero set $V \subseteq S^p$ such that the derivative of the restriction of f to S^p does not vanish on V. Then V is a compact smooth hypersurface of S^p .

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Step II: Bounding integrals of absolute curvature

Bounding integrals of absolute curvature

Let $f \in \mathbb{R}[X_0, ..., X_p]$ be homogeneous of degree d > 0 with nonempty zero set $V \subseteq S^p$ such that the derivative of the restriction of f to S^p does not vanish on V. Then V is a compact smooth hypersurface of S^p .

Proposition For $a \in S^p$, $0 < \sigma \le 1$, and $0 \le i < p$ we have $|\mu_i|(V \cap B_{\mathbb{P}}(a, \sigma)) \le 2\binom{p-1}{i} \mathcal{O}_{p-1} d^{i+1} \sigma^{p-i-1}.$

Step II: Bounding integrals of absolute curvature

Bounding integrals of absolute curvature

Let $f \in \mathbb{R}[X_0, ..., X_p]$ be homogeneous of degree d > 0 with nonempty zero set $V \subseteq S^p$ such that the derivative of the restriction of f to S^p does not vanish on V. Then V is a compact smooth hypersurface of S^p .

Proposition

For
$$a \in S^p$$
, $0 < \sigma \le 1$, and $0 \le i < p$ we have

$$|\mu_i|(V \cap B_{\mathbb{P}}(a,\sigma)) \leq 2\binom{p-1}{i}\mathcal{O}_{p-1} d^{i+1}\sigma^{p-i-1}.$$

Proof ingredients:

- Principal kinematic formula of integral geometry for spheres
- Bézout's theorem

Step II: Bounding integrals of absolute curvature

Crofton's formula from integral geometry

We denote by dG the volume element on the orthogonal group G = O(p+1) (compact Lie group), normalized such that the volume of G equals one. G operates on S^p in the natural way.

Step II: Bounding integrals of absolute curvature

Crofton's formula from integral geometry

We denote by dG the volume element on the orthogonal group G = O(p+1) (compact Lie group), normalized such that the volume of G equals one. G operates on S^p in the natural way.

Crofton's formula

Let T be a submanifold of S^p with dim T = p - 1. Then

$$\frac{\operatorname{vol}_{p-1}(\mathcal{T})}{\mathcal{O}_{p-1}} = \frac{1}{2} \int_{g \in G} \#(\mathcal{T} \cap gS^1) \, dG(g).$$

Step II: Bounding integrals of absolute curvature

Crofton's formula from integral geometry

We denote by dG the volume element on the orthogonal group G = O(p+1) (compact Lie group), normalized such that the volume of G equals one. G operates on S^p in the natural way.

Crofton's formula

Let T be a submanifold of S^p with dim T = p - 1. Then

$$\frac{\operatorname{vol}_{p-1}(T)}{\mathcal{O}_{p-1}} = \frac{1}{2} \int_{g \in G} \#(T \cap gS^1) \, dG(g).$$

▶ This allows to bound $vol(V \cap B_{\mathbb{P}}(a, \sigma))$ via Bézout's theorem.

Step II: Bounding integrals of absolute curvature

Crofton's formula from integral geometry

We denote by dG the volume element on the orthogonal group G = O(p+1) (compact Lie group), normalized such that the volume of G equals one. G operates on S^p in the natural way.

Crofton's formula

Let T be a submanifold of S^p with dim T = p - 1. Then

$$\frac{\operatorname{vol}_{p-1}(\mathcal{T})}{\mathcal{O}_{p-1}} = \frac{1}{2} \int_{g \in G} \#(\mathcal{T} \cap gS^1) \, dG(g).$$

- ▶ This allows to bound $vol(V \cap B_{\mathbb{P}}(a, \sigma))$ via Bézout's theorem.
- To bound μ_i for i > 0 we need a more sophisticated tool.

Step II: Bounding integrals of absolute curvature

Principal kinematic formula from integral geometry

A far reaching generalization of Crofton's formula was obtained by Chern for Euclidean space.

Step II: Bounding integrals of absolute curvature

Principal kinematic formula from integral geometry

A far reaching generalization of Crofton's formula was obtained by Chern for Euclidean space.

We will need the following version of this formula for spheres (cf. Santaló, Howard).

Principal kinematic formula

Let U be an open subset of a compact oriented smooth hypersurface M of S^p and $0 \le i . Then we have$

$$\mu_i(U) = \mathcal{C}(p,i) \int_{g \in G} \mu_i(gU \cap S^{i+1}) \, dG(g),$$

where $C(p, i) = (p - i - 1) {p-1 \choose i} \frac{\mathcal{O}_{p-1}\mathcal{O}_p}{\mathcal{O}_i\mathcal{O}_{i+1}\mathcal{O}_{p-i-2}}$.

Step II: Bounding integrals of absolute curvature

Principal kinematic formula from integral geometry

A far reaching generalization of Crofton's formula was obtained by Chern for Euclidean space.

We will need the following version of this formula for spheres (cf. Santaló, Howard).

Principal kinematic formula

Let U be an open subset of a compact oriented smooth hypersurface M of S^p and $0 \le i < p-1$. Then we have

$$\mu_i(U) = \mathcal{C}(p,i) \int_{g \in G} \mu_i(gU \cap S^{i+1}) \, dG(g),$$

where $C(p, i) = (p - i - 1) {p-1 \choose i} \frac{\mathcal{O}_{p-1}\mathcal{O}_p}{\mathcal{O}_i\mathcal{O}_{i+1}\mathcal{O}_{p-i-2}}$.

This allows to reduce the estimation of μ_i to the case of codimension one, i.e., Gaussian curvature, which can be treated directly.

References

References for the results presented and some relevant previous work:

- C. Beltrán and L.M. Pardo. Upper bounds on the distribution of the condition number of singular matrices. To appear in *Found*. *Comput. Math.*.
- P. Bürgisser, F. Cucker, and M. Lotz. The probability that a slight perturbation of a numerical analysis problem is difficult. Accepted for Mathematics of Computation
- P. Bürgisser, F. Cucker, and M. Lotz. General formulas for the smoothed analysis of condition numbers. *Comptes rendus de l'Académie des sciences Paris*, Ser. I 343, 145-150 (2006).
- P. Bürgisser, F. Cucker, and M. Lotz. Smoothed analysis of complex conic condition numbers *Journal de Mathématiques Pures et Appliquées* 86: 293-309 (2006).

- ► J. Demmel. The probability that a numerical analysis problem is difficult. *Mathematics of Computation* 50: 449-480 (1988).
- A. Gray. Tubes. Progress in Mathematics, vol. 221, 2004.
- A. Ocneanu (1984, lecture at MSRI, unpublished).

The probability that a slight perturbation of a numerical analysis problem is difficult $\bigsqcup_{\text{References}}$

- ▶ J. Renegar. On the efficiency of Newton's method in approximating all zeros of systems of complex polynomials. *Math. of Oper. Research* 12: 121–148 (1987).
- L. A. Santaló. Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and its Applications, vol. 1, 1976.
- M. Shub and S. Smale. Complexity of Bézout's theorem II: volumes and probabilities. In *Computational Algebraic Geometry*, pp. 267–285. Progress in Mathematics 109, Birkhäuser, 1993
- ► S. Smale. The fundamental theorem of algebra and complexity theory. *Bulletin of the AMS* 4: 1–36 (1981).
- D.A. Spielman and S.-H. Teng. Smoothed Analysis: Why The Simplex Algorithm Usually Takes Polynomial Time. *Journal of the* ACM 51: 385–463 (2004).
- ► H. Weyl. On the volume of tubes. Amer. J. Math. 61: 461-472 (1939).
- R. Wongkew. Volumes of tubular neighbourhoods of real algebraic varieties. *Pacific J. of Mathematics* 159: 177–184 (2003).
- ▶ M. Wschebor. Smoothed Analysis of $\kappa(A)$. J. of Complexity 20: 97–107 (2004).