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Introduction
We consider the problem of decoding for
linear codes. Let C be an [n, k, d] linear code
over Fq. Suppose we transmit a codeword c
and after transmition obtain y = c + e, e an
error vector.
Complete decoding: Given y ∈ Fnq find
c ∈ C : y = c + e and wt(e) is minimal, where
wt is the weight of a vector. Bounded
decoding: The same as above, but additional
constraint wt(e) ≤ (d− 1)/2 is given.
We concentrate more on the latter.
Different methods of decoding
•Exhaustive search.
• Syndrome decoding.
•Advanced linear algebra (bit swapping

etc.)
•Decoding based on optimization

techniques in the Euclidian space.
•Decoding via solving systems of

polynomial equations.
Our work belongs to the last part. This
method was initially proposed for cyclic
codes by Cooper (1990-1), the works of
Chen, Reed, Helleseth, Truong (1994) and
later works of Sala, Mora, Augot, Bardet,
Faugere followed. Some generalizations to
linear codes by Lax, Fitzgerald and O’Keeffe,
Fitzpatrick were proposed.

MDS basis
Let b1, . . . , bn be a basis of Fnq and let B be a
matrix with b1, . . . , bn as rows. The unknown
syndrome u(B, e) of a vector e w.r.t B is the
column vector u(B, e) = BeT ; it has entries
ui(B, e) = bi · e for i = 1, . . . , n. We abbreviate
u(B, e) by u(e).
For two vectors x and y,
x ∗ y := (x1y1, . . . , xnyn).
Then we have bi ∗ bj =

∑n
l=1 cijlbl for some cijl,

which are called structure constants.
Let Bt be a submatrix of B composed of the
first t rows. We say that the basis b1, . . . , bn is
an MDS basis and matrix B is in the MDS
form iff all submatricies of Bt have full rank
for all t = 1, . . . , n.

The system
We may assume that after a finite extension
of the field Fq we have n ≤ q, so that we can
construct an MDS basis.
Let H be a parity check matrix of the code C.
We can express: hi =

∑n
j=1 aijbj, where hi are

the rows of H , i = 1, . . . , n− k. For all
codewords hi · c = 0, so
si(y) := hi · y = hi · e =: si(e), where s(y) is a
usual known syndrome. We have
s(y) =

∑n
j=1 aijuj(e). Define the following

ideals in the ring Fq[U1, . . . , Un, V1, . . . , Vt]

• J(y) = 〈∑n
j=1 aijUj − si(y)〉i=1,...,n−k

• I(t, U, V ) = 〈∑t
j=1UijVj − Ui,t+1〉i=1,...,n,

where Uij =
∑n
l=1 cijlUl.

• I(t, y) = J(y) + I(t, U, V ).

Main results
Suppose that wt(e) ≤ (d− 1)/2, wt(e) 6= 0. Let
t be the smallest positive integer, such that
the system I(t, y) has a solution (u, v) over
an algebraic closure F̄. Then:
• t = wt(e).
• the solution (u, v) is unique over the

algebraic closure and satisfies ui = ui(e) for
all i = 1, . . . , n.
•multiplicity of the solution (u, v) is 1, so

the reduced Gröbner basis of I(t, y) w.r.t
any well ordering is of the form

Ui − ui, i = 1, . . . , n, Vj − vj, j = 1, . . . , t.

• after solving the system I(t, y) decoding is
simple:

eT = B−1BeT = B−1u(e).

Other problems that can be solved
•Finding minimum distance.
•Finding weight distribution.
•Complete decoding.
•Generic decoding.
for the latter three one needs to add the field
equations.

Complexity estimates with
semi-regular sequences
We want to estimate the complexity of
finding the reduced Gröbner basis of the
system I(t, y). Estimates of complexity due
to Bardet, Salvy, Faugere, Yang (2005) are
available for the so-called semi-regular
sequences and F5 algorithm by Faugere.
A homogeneous sequence of polynomials
(f1, . . . , fm) from F[x1, . . . , xl] is semi-regular if
for all i = 1, . . . , m and g such that

gfi ∈ 〈f1, . . . , fi−1〉, deg(gfi) < ireg

holds that g ∈ 〈f1, . . . , fi−1〉. The index of
regularity of a homogeneous
zero-dimensional ideal I = 〈f1, . . . , fm〉 is
defined by

ireg(I) = min
{
d ≥ 0 | dimF(I(d)) =

(
l′ + d

d

)}
,

where I(d) := {f ∈ I, deg(f) = d} is the
vector subspace of polynomials in I of
degree d; l′ = l − 1.
The complexity estimate that we need is: For
a homogeneous semi-regular system the
total number of arithmetic operations in F
performed by F5 (matrix version) is
bounded by

O
(
m · ireg

(
l + ireg − 1

ireg

)ω)
,

where ω < 2.39 is the exponent in the
advanced Gaussian elimination algorithms.
Bardet et al. conjecture that as the number of
variables tends to infinity, the proportion of
semi-regular sequences tends to 1, so it is
reasonable to conjecture that also I(t, y) is
semi-regular asymptotically. We measure
the complexity via complexity coefficient:
Given a decoding algorithm for a code C of
rate R over Fq of complexity Compl(C), the
complexity coefficient CC(R) is defined as

1

n
logq(Compl(C)),

so that
Compl(C) = qnCC(R).

Complexity estimates with
semi-regular sequences (cont.)
Using the results of Bardet et al. we obtain
the complexity coefficient for our algorithm
in the case of decoding random linear codes:

CCQED(R) = ω logq 2 · A + 1

α
·H2

(
1

A + 1

)
,

where A = (α− 1
2 −

√
α(α− 1)), α =

1
R+δ/2, δ = H−1

q (1−R), and Hq(x) =

−x logq x− (1− x) logq(1− x) + x logq(q − 1) is
the q-ary entropy function

Comparing with other algorithms
We compare the complexity coefficients of
the following: QED = our method of
quadratic equations decoding, ES =
exhaustive search, SD = syndrome decoding,
CS = covering set decoding, CP = covering
polynomial decoding, SCS = systematic
coset search.
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Experimental results
Below are the results obtained for
computing the reduced Gröbner basis of
I(t, y) with SINGULAR computer algebra
system. All computations were made on
AMD Athlon 64 Processor 2800+ (1.8MHz),
512MB RAM under Linux Gentoo. We
consider here only binary codes. The time is
in seconds; ”1” means 1 second or less. We
write n, k as column headers.

e 120,40 120,30 120,20 120,10 150,10
2 1 1 1 1 1
3 13 1 1 1 1
4 313 9 1 1 1
5 - 62 1 1 1
6 - 200 5 1 3
7 - 933 14 1 4
8 - - 32 1 4
9 - - 74 1 4

10 - - 183 2 6
11 - - 633 3 6
12 - - - 4 6
13 - - - 5 8
14 - - - 6 8
15 - - - 14 10
16 - - - 20 11
17 - - - 29 16
18 - - - 71 16
19 - - - 139 34
20 - - - 327 53
21 - - - 483 84
22 - - - - 133
23 - - - - 241
24 - - - - 513

For the ”true” decoding when we do not
know the number of errors that occurred, so
we have to solve the systems I(i, y) for
i = 1, . . . , e, where e is the actual number of
errors. In the table below cumulative time
needed to solve the first e− 1 systems is
shown, then time needed for solving the
system I(e, y) and the ratio between the two.
The codes are: [120,40], e = 4; [120,30], e = 7;
[120,20],e = 11; [120,10],e = 21;
[150,10],e = 24.

14 273 312 628 651
313 933 633 483 513
0.04 0.29 0.49 1.3 1.27
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