On the number of homotopy types of fibres of a definable map

Saugata Basu

School of Mathematics Georgia Tech

Complexity, Coding and Communications Workshop, IMA, April 16, 2007. (Joint work with N. Vorobjov, University of Bath, England.)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Outline

- Semi-algebraic and semi-Pfaffian sets
- Topological complexity of semi-algebraic and semi-Pfaffian sets
- Fibers of a definable map
- Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
- Open Problems

(日)

Outline

- Semi-algebraic and semi-Pfaffian sets
- Topological complexity of semi-algebraic and semi-Pfaffian sets
- Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
 - Open Problems

(日)

Outline

- Semi-algebraic and semi-Pfaffian sets
- Topological complexity of semi-algebraic and semi-Pfaffian sets
- Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
 - Open Problems

< 同 > < 三 > < 三 >

Outline

- Semi-algebraic and semi-Pfaffian sets
- Topological complexity of semi-algebraic and semi-Pfaffian sets
- Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
 - Open Problems

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Outline

- Semi-algebraic and semi-Pfaffian sets
- Topological complexity of semi-algebraic and semi-Pfaffian sets
- Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
- Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Semi-algebraic and semi-Pfaffian sets

Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Semi-algebraic Sets

- A semi-algebraic set, S ⊂ ℝ^k, is a subset of ℝ^k defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to *P* ⊂ ℝ[X₁,..., X_k], we call S a *P*-semi-algebraic set.
- If the atoms of the Boolean formula are of the form
 P ≥ 0, P ≤ 0, P ∈ P, and there are no negations, then we call S a P-closed semi-algebraic set.

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se

Fibers of a definable map

Semi-algebraic Sets

- A semi-algebraic set, S ⊂ ℝ^k, is a subset of ℝ^k defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to *P* ⊂ ℝ[X₁,..., X_k], we call S a *P*-semi-algebraic set.
- If the atoms of the Boolean formula are of the form
 P ≥ 0, P ≤ 0, P ∈ P, and there are no negations, then we call S a P-closed semi-algebraic set.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se

Fibers of a definable map

Semi-algebraic Sets

- A semi-algebraic set, S ⊂ ℝ^k, is a subset of ℝ^k defined by a Boolean formula whose atoms are polynomial equalities and inequalities.
- If all the polynomials involved belong to *P* ⊂ ℝ[X₁,..., X_k], we call S a *P*-semi-algebraic set.
- If the atoms of the Boolean formula are of the form
 P ≥ 0, P ≤ 0, P ∈ P, and there are no negations, then we call S a P-closed semi-algebraic set.

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Pfaffian Functions (following Khovansky)

A Pfaffian chain, *F*, of length *r*, is a sequence *f*₁,..., *f*_r of analytic functions defined in some open domain in *U* ⊂ ℝ^ℓ and satisfying the following triangular system of differential equations.

 $df_j(\mathbf{x}) = \sum_{i=1}^n g_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_j(\mathbf{x})) dx_i, 1 \leq j \leq r,$

where each g_{ij} is a polynomial in $\ell + j$ variables.

- Suppose deg $(g_{ij}) \leq \alpha$.
- A function $f: U \to \mathbb{R}$ defined by

 $f(\mathbf{x}) = P(\mathbf{x}, f_1(\mathbf{x}), \dots, f_r(\mathbf{x})),$

with deg(P) $\leq \beta$, is called a Pfaffian function of order rand degree (α, β) .

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Pfaffian Functions (following Khovansky)

A Pfaffian chain, *F*, of length *r*, is a sequence *f*₁,..., *f*_r of analytic functions defined in some open domain in *U* ⊂ ℝ^ℓ and satisfying the following triangular system of differential equations.

 $df_j(\mathbf{x}) = \sum_{i=1}^n g_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_j(\mathbf{x})) dx_i, 1 \leq j \leq r,$

where each g_{ij} is a polynomial in $\ell + j$ variables.

• Suppose $\deg(g_{ij}) \leq \alpha$.

• A function $f: U \to \mathbb{R}$ defined by

 $f(\mathbf{x}) = P(\mathbf{x}, f_1(\mathbf{x}), \dots, f_r(\mathbf{x})),$

with deg(P) $\leq \beta$, is called a Pfaffian function of order rand degree (α, β) .

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Pfaffian Functions (following Khovansky)

A Pfaffian chain, *F*, of length *r*, is a sequence *f*₁,..., *f*_r of analytic functions defined in some open domain in *U* ⊂ ℝ^ℓ and satisfying the following triangular system of differential equations.

$$df_j(\mathbf{x}) = \sum_{i=1}^n g_{ij}(\mathbf{x}, f_1(\mathbf{x}), \dots, f_j(\mathbf{x})) dx_i, 1 \le j \le r,$$

where each g_{ij} is a polynomial in $\ell + j$ variables.

- Suppose $\deg(g_{ij}) \leq \alpha$.
- A function $f: U \to \mathbb{R}$ defined by

 $f(\mathbf{x}) = P(\mathbf{x}, f_1(\mathbf{x}), \ldots, f_r(\mathbf{x})),$

with deg(*P*) $\leq \beta$, is called a Pfaffian function of order *r* and degree (α, β) .

Semi-algebraic and semi-Pfaffian sets

Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Examples of Pfaffian chains

- A polynomial of degree bounded by *d* is a Pfaffian function of order 0 and degree (1, *d*).
- A polynomial

 $\boldsymbol{P} = \boldsymbol{c}_1 \mathbf{x}^{\alpha_1} + \dots + \boldsymbol{c}_m \mathbf{x}^{\alpha_m} \in \mathbb{R}[X_1, \dots, X_k]$

having *m* monomials in its support, is a Pfaffian function of order k + m and degree (2, 1), in $(\mathbb{R} \setminus \{0\})^k$ by virtue of the Pfaffian chain,

$$\begin{array}{rcl} dg_i &=& -g_i^2 dx_i, 1 \leq i \leq k, & [g_i(\mathbf{x}) = 1/x_i] \\ df_j &=& \sum_{i=1}^k \alpha_{j,i} g_i f_j dx_i, 1 \leq j \leq m. & [f_j(\mathbf{x}) = \mathbf{x}^{\alpha_j}] \end{array}$$

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Examples of Pfaffian chains

- A polynomial of degree bounded by *d* is a Pfaffian function of order 0 and degree (1, *d*).
- A polynomial

$$\boldsymbol{P} = \boldsymbol{c}_1 \boldsymbol{x}^{\alpha_1} + \dots + \boldsymbol{c}_m \boldsymbol{x}^{\alpha_m} \in \mathbb{R}[X_1, \dots, X_k]$$

having *m* monomials in its support, is a Pfaffian function of order k + m and degree (2, 1), in $(\mathbb{R} \setminus \{0\})^k$ by virtue of the Pfaffian chain,

$$\begin{array}{rcl} dg_i &=& -g_i^2 dx_i, 1 \leq i \leq k, & [g_i(\mathbf{x}) = 1/x_i] \\ df_j &=& \sum_{i=1}^k \alpha_{j,i} g_i f_j dx_i, 1 \leq j \leq m. & [f_j(\mathbf{x}) = \mathbf{x}^{\alpha_j}] \end{array}$$

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Some more examples of Pfaffian chains

 The exponential function f(x) = e^{ax} is Pfaffian of order 1 and degree (1, 1) in ℝ by virtue of the equation,

df(x) = af(x)dx.

• The function $f(x) = \cos(x)$ is Pfaffian of order 2 and degree (2, 1) in the domain $U = \mathbb{R} \setminus \bigcup_{i \in \mathbb{Z}} \{\pi + 2i\pi\}$, by virtue of the equations

 $dg(x) = ((1 + g^{2}(x))/2)dx, df(x) = -f(x)g(x)dx,$ $\cos(x) = 2f(x) - 1.$

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Some more examples of Pfaffian chains

 The exponential function f(x) = e^{ax} is Pfaffian of order 1 and degree (1, 1) in ℝ by virtue of the equation,

df(x) = af(x)dx.

The function f(x) = cos(x) is Pfaffian of order 2 and degree (2, 1) in the domain U = ℝ \ ∪_{i∈ℤ}{π + 2iπ}, by virtue of the equations

 $dg(x) = ((1 + g^{2}(x))/2)dx, df(x) = -f(x)g(x)dx,$ $\cos(x) = 2f(x) - 1.$

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ ● 三 ● の Q ()

Semi-algebraic and semi-Pfaffian sets

Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Semi-Pfaffian Sets

- Let \mathcal{P} be a finite set of Pfaffian functions in the open cube $U := (-1, 1)^m \subset \mathbb{R}^m$.
- A set S ⊂ U is called P-semi-Pfaffian in U if it is defined by a Boolean formula with atoms of the form
 P > 0, P < 0, P = 0 for P ∈ P. A P-semi-Pfaffian set S is restricted if its closure in U is compact.

・ロト ・四ト ・ヨト ・ヨト

э.

Semi-algebraic and semi-Pfaffian sets

Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Semi-Pfaffian Sets

- Let \mathcal{P} be a finite set of Pfaffian functions in the open cube $U := (-1, 1)^m \subset \mathbb{R}^m$.
- A set S ⊂ U is called P-semi-Pfaffian in U if it is defined by a Boolean formula with atoms of the form
 P > 0, P < 0, P = 0 for P ∈ P. A P-semi-Pfaffian set S is restricted if its closure in U is compact.

(日) (圖) (E) (E) (E)

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Outline

- Introduction
 - Semi-algebraic and semi-Pfaffian sets
 - Topological complexity of semi-algebraic and semi-Pfaffian sets
 - Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
- Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Bounds on Betti Numbers

- For any subset $S \subset \mathbb{R}^k$, we denote by $b_i(S) = \operatorname{rank}(H_i(S))$.
- In the semi-algebraic case: If $S \subset \mathbb{R}^{k}$ is a \mathcal{P} -semi-algebraic

In the restricted semi-Pfaffian case (Khovansky,

in \mathcal{P} is length *r* and degree (α, β) .

On the number of homotopy types of fibres of a definable ma

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Bounds on Betti Numbers

- For any subset $S \subset \mathbb{R}^k$, we denote by $b_i(S) = \operatorname{rank}(H_i(S))$.
- In the semi-algebraic case: If S ⊂ ℝ^k is a *P*-semi-algebraic set, then (Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)

 $\sum_{0 \le i \le k} b_i(S) \le (O(s^2d))^k$

where $s = #(\mathcal{P})$ and $d = \max_{P \in \mathcal{P}} \deg(P)$.

 In the restricted semi-Pfaffian case (Khovansky, Gabrielov-Vorobjov):

 $\sum_{0 \le i \le k} b_i(\mathcal{S}) \le s^{2k} 2^{\binom{r}{2}} O(k\beta + \min(r, k)\alpha)^{k+r}$

where $s = \#(\mathcal{P})$ and Pfaffian chain defining the functions in \mathcal{P} is length *r* and degree (α, β) .

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Bounds on Betti Numbers

- For any subset $S \subset \mathbb{R}^k$, we denote by $b_i(S) = \operatorname{rank}(H_i(S))$.
- In the semi-algebraic case: If S ⊂ ℝ^k is a *P*-semi-algebraic set, then (Oleinik, Petrovsky, Thom, Milnor, B., Gabrielov-Vorobjov)

$$\sum_{0 \le i \le k} b_i(S) \le (O(s^2 d))^k$$

where $s = #(\mathcal{P})$ and $d = \max_{P \in \mathcal{P}} \deg(P)$.

 In the restricted semi-Pfaffian case (Khovansky, Gabrielov-Vorobjov):

 $\sum_{0 \le i \le k} b_i(S) \le s^{2k} 2^{\binom{r}{2}} O(k\beta + \min(r,k)\alpha)^{k+r}$

where $s = \#(\mathcal{P})$ and Pfaffian chain defining the functions in \mathcal{P} is length *r* and degree (α, β) .

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Outline

- Semi-algebraic and semi-Pfaffian sets
- Topological complexity of semi-algebraic and semi-Pfaffian sets
- Fibers of a definable map
- Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
- Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Fibers of a definable map

- Let S ⊂ ℝ^{m+n} be a definable (i.e semi-algebraic or restricted semi-Pfaffian) set, and let π : ℝ^{m+n} → ℝⁿ be the projection map on the last *n* co-ordinates. We denote by π_S = π|_S.
- For $\mathbf{y} \in \mathbb{R}^n$, let $S_{\mathbf{y}} = S \cap \pi^{-1}(\mathbf{y})$.
- Main question of this talk: How many "topological types" occur amongst the S_y's as y varies over ℝⁿ ?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree *d* in *n* variables ?

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Fibers of a definable map

- Let S ⊂ ℝ^{m+n} be a definable (i.e semi-algebraic or restricted semi-Pfaffian) set, and let π : ℝ^{m+n} → ℝⁿ be the projection map on the last *n* co-ordinates. We denote by π_S = π|_S.
- For $\mathbf{y} \in \mathbb{R}^n$, let $S_{\mathbf{y}} = \mathbf{S} \cap \pi^{-1}(\mathbf{y})$.
- Main question of this talk: How many "topological types" occur amongst the S_y's as y varies over ℝⁿ ?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree *d* in *n* variables ?

・ロ・ ・ 四・ ・ 回・ ・ 日・

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Fibers of a definable map

- Let S ⊂ ℝ^{m+n} be a definable (i.e semi-algebraic or restricted semi-Pfaffian) set, and let π : ℝ^{m+n} → ℝⁿ be the projection map on the last *n* co-ordinates. We denote by π_S = π|_S.
- For $\mathbf{y} \in \mathbb{R}^n$, let $S_{\mathbf{y}} = \mathbf{S} \cap \pi^{-1}(\mathbf{y})$.
- Main question of this talk: How many "topological types" occur amongst the S_y's as y varies over ℝⁿ ?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in n variables ?

・ロト ・四ト ・ヨト ・ヨト

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

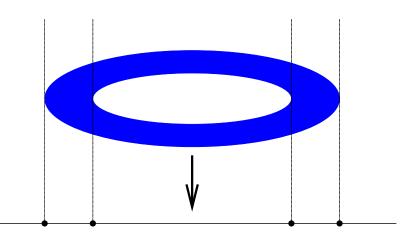
Fibers of a definable map

- Let S ⊂ ℝ^{m+n} be a definable (i.e semi-algebraic or restricted semi-Pfaffian) set, and let π : ℝ^{m+n} → ℝⁿ be the projection map on the last *n* co-ordinates. We denote by π_S = π|_S.
- For $\mathbf{y} \in \mathbb{R}^n$, let $S_{\mathbf{y}} = \mathbf{S} \cap \pi^{-1}(\mathbf{y})$.
- Main question of this talk: How many "topological types" occur amongst the S_y's as y varies over ℝⁿ ?
- As an application: how many topological types occur amongst real or complex hypersurfaces defined by a polynomial of degree d in n variables ?

・ロト ・四ト ・ヨト ・ヨト

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Definable map



Saugata Basu On the number of homotopy types of fibres of a definable ma

æ

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Hardt Triviality

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathbb{R}^{m+n}$, there exists a finite partition of \mathbb{R}^n into definable sets $\{T_i\}_{i \in I}$ such that S is definably trivial over each T_i .

This means that for each $i \in I$ and any point $\mathbf{y} \in T_i$, the pre-image $\pi_s^{-1}(T_i)$ is definably homeomorphic to $\pi_s^{-1}(\mathbf{y}) \times T_i$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_s^{-1}(\mathbf{y}), \mathbf{y} \in T_i$ are definably homeomorphic.

・ロト ・四ト ・ヨト ・ヨト

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Hardt Triviality

Theorem (Hardt, 1980)

Given any definable set $S \subset \mathbb{R}^{m+n}$, there exists a finite partition of \mathbb{R}^n into definable sets $\{T_i\}_{i \in I}$ such that S is definably trivial over each T_i .

This means that for each $i \in I$ and any point $\mathbf{y} \in T_i$, the pre-image $\pi_s^{-1}(T_i)$ is definably homeomorphic to $\pi_s^{-1}(\mathbf{y}) \times T_i$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_s^{-1}(\mathbf{y}), \mathbf{y} \in T_i$ are definably homeomorphic.

・ロト ・四ト ・ヨト ・ヨト

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Hardt Triviality

Theorem (Hardt, 1980)

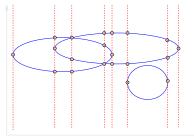
Given any definable set $S \subset \mathbb{R}^{m+n}$, there exists a finite partition of \mathbb{R}^n into definable sets $\{T_i\}_{i \in I}$ such that S is definably trivial over each T_i .

This means that for each $i \in I$ and any point $\mathbf{y} \in T_i$, the pre-image $\pi_S^{-1}(T_i)$ is definably homeomorphic to $\pi_S^{-1}(\mathbf{y}) \times T_i$ by a fiber preserving homeomorphism. In particular, for each $i \in I$, all fibers $\pi_S^{-1}(\mathbf{y}), \mathbf{y} \in T_i$ are definably homeomorphic.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

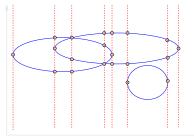
Complexity of the Hardt partition



- This implies a double exponential (in *mn*) upper bound on the cardinality of *I*.
- Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of the single sector.

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

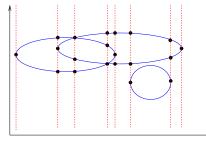
Complexity of the Hardt partition



- This implies a double exponential (in *mn*) upper bound on the cardinality of *I*.
- Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of the single sector.

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

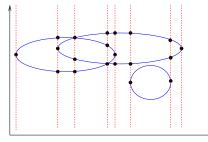
Complexity of the Hardt partition



- This implies a double exponential (in *mn*) upper bound on the cardinality of *I*.
- Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_s .

Semi-algebraic and semi-Pfaffian sets Topological complexity of semi-algebraic and semi-Pfaffian se Fibers of a definable map

Complexity of the Hardt partition



- This implies a double exponential (in *mn*) upper bound on the cardinality of *I*.
- Open problem: prove a single exponential upper bound on the number of homeomorphism types of the fibres of π_s .

Main theorems Tightness Some Applications

Outline

- Introduction
 - Semi-algebraic and semi-Pfaffian sets
 - Topological complexity of semi-algebraic and semi-Pfaffian sets
 - Fibers of a definable map
 - Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
- Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main theorems Tightness Some Applications

Semi-algebraic case

Theorem

Let $\mathcal{P} \subset \mathbb{R}[X_1, \dots, X_m, Y_1, \dots, Y_n]$, with deg(P) $\leq d$ for each $P \in \mathcal{P}, \#\mathcal{P} = s$. Then, there exists a finite set $A \subset \mathbb{R}^n$, with

 $\#A \leq s^{2(m+1)n} (2^m nd)^{O(nm)} = (2^m snd)^{O(nm)},$

such that for every $\mathbf{y} \in \mathbb{R}^n$ there exists $\mathbf{z} \in A$ such that for every \mathcal{P} -semi-algebraic set $S \subset \mathbb{R}^{m+n}$, the set $\pi_S^{-1}(\mathbf{y})$ is semi-algebraically homotopy equivalent to $\pi_S^{-1}(\mathbf{z})$. In particular, for any fixed \mathcal{P} -semi-algebraic set S, the number of different homotopy types of fibres $\pi_S^{-1}(\mathbf{y})$ for various $\mathbf{y} \in \pi(S)$ is also bounded by

$$s^{2(m+1)n}(2^m nd)^{O(nm)} = (2^m snd)^{O(nm)}.$$

Main theorems Tightness Some Applications

Semi-Pfaffian case

Theorem

Let \mathcal{P} be a finite set of Pfaffian functions defined on the open cube $U := (-1, 1)^{m+n} \subset \mathbb{R}^{m+n}$, with $\#\mathcal{P} = s$, and such that all functions in \mathcal{P} have degrees (α, β) and are derived from a common Pfaffian chain of order r. Then, there exists a finite set $A \subset \pi(U)$ with

 $#A \leq \mathsf{s}^{\mathsf{O}(nm)} 2^{\mathsf{O}(n(m^2+nr^2))} (nm(\alpha+\beta))^{\mathsf{O}(n(m+r))},$

such that for every $\mathbf{y} \in \pi(\mathbf{U})$ there exists $\mathbf{z} \in A$ such that for every \mathcal{P} -semi-Pfaffian set $S \subset U$, the set $\pi_S^{-1}(\mathbf{y})$ is homotopy equivalent to $\pi_S^{-1}(\mathbf{z})$.

Main theorems Tightness Some Applications

Outline

- Introduction
 - Semi-algebraic and semi-Pfaffian sets
 - Topological complexity of semi-algebraic and semi-Pfaffian sets
 - Fibers of a definable map
 - Main Results
 - Main theorems

Tightness

- Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
- Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Main theorems Tightness Some Applications

Single exponential dependence on m

• Let $P \in \mathbb{R}[X_1, \dots, X_m] \hookrightarrow \mathbb{R}[X_1, \dots, X_m, Y]$ be the polynomial defined by

$$P := \sum_{i=1}^{m} \prod_{j=1}^{d} (X_i - j)^2.$$

- Then $Z(P, \mathbb{R}^{m+1})$ consists of d^m lines all parallel to the Y-axis.
- Consider now the semi-algebraic set $S \subset \mathbb{R}^{m+1}$ defined by

 $(P = 0) \land (0 \le Y \le X_1 + dX_2 + d^2X_3 + \dots + d^{m-1}X_m).$

and let $\pi : \mathbb{R}^{m+1} \to \mathbb{R}$ be the projection map on the Y co-ordinate.

Main theorems Tightness Some Applications

Single exponential dependence on m

Let P ∈ ℝ[X₁,..., X_m] → ℝ[X₁,..., X_m, Y] be the polynomial defined by

$$P := \sum_{i=1}^{m} \prod_{j=1}^{d} (X_i - j)^2.$$

- Then $Z(P, \mathbb{R}^{m+1})$ consists of d^m lines all parallel to the Y-axis.
- Consider now the semi-algebraic set $S \subset \mathbb{R}^{m+1}$ defined by

 $(P = 0) \land (0 \le Y \le X_1 + dX_2 + d^2X_3 + \dots + d^{m-1}X_m).$

and let π : $\mathbb{R}^{m+1} \to \mathbb{R}$ be the projection map on the Y co-ordinate.

Main theorems Tightness Some Applications

Single exponential dependence on m

Let P ∈ ℝ[X₁,..., X_m] → ℝ[X₁,..., X_m, Y] be the polynomial defined by

$$P := \sum_{i=1}^{m} \prod_{j=1}^{d} (X_i - j)^2.$$

- Then Z(P, R^{m+1}) consists of d^m lines all parallel to the Y-axis.
- Consider now the semi-algebraic set $\mathbb{S} \subset \mathbb{R}^{m+1}$ defined by

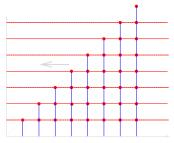
 $(P = 0) \land (0 \le Y \le X_1 + dX_2 + d^2X_3 + \dots + d^{m-1}X_m).$

and let $\pi : \mathbb{R}^{m+1} \to \mathbb{R}$ be the projection map on the Y co-ordinate.

Main theorems Tightness Some Applications

Tightness (cont).

The fibres π_S⁻¹(y), for y ∈ {0, 1, 2, ..., d^m − 1} ⊂ ℝ are 0-dimensional and of different cardinality.

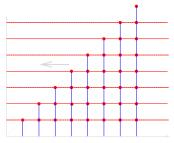


There are no examples where the number of homotopy types of the fibres grows with *n* (with the parameters *s*, *d*, and *m* fixed) since this number can be bounded by a function of *s*, *d* and *m* independent of *n*.

Main theorems Tightness Some Applications

Tightness (cont).

The fibres π_S⁻¹(y), for y ∈ {0, 1, 2, ..., d^m − 1} ⊂ ℝ are 0-dimensional and of different cardinality.

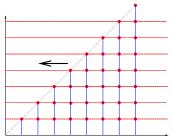


There are no examples where the number of homotopy types of the fibres grows with *n* (with the parameters *s*, *d*, and *m* fixed) since this number can be bounded by a function of *s*, *d* and *m* independent of *n*.

Main theorems Tightness Some Applications

Tightness (cont).

The fibres π_S⁻¹(y), for y ∈ {0, 1, 2, ..., d^m − 1} ⊂ ℝ are 0-dimensional and of different cardinality.



There are no examples where the number of homotopy types of the fibres grows with *n* (with the parameters *s*, *d*, and *m* fixed) since this number can be bounded by a function of *s*, *d* and *m* independent of *n*.

Main theorems Tightness Some Applications

Outline

- 1) Introduction
 - Semi-algebraic and semi-Pfaffian sets
 - Topological complexity of semi-algebraic and semi-Pfaffian sets
 - Fibers of a definable map
 - Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
 - Open Problems

(日)

Main theorems Tightness Some Applications

A notation

- Let ϕ be a Boolean formula with atoms $\{a_i, b_i, c_i \mid 1 \le i \le s\}$. For an ordered list $\mathcal{P} = (P_1, \ldots, P_s)$ of polynomials $P_i \in \mathbb{R}[X_1, \ldots, X_m]$, we denote by $\phi_{\mathcal{P}}$ the formula obtained from ϕ by replacing for each $i, 1 \le i \le s$, the atom a_i (respectively, b_i and c_i) by $P_i = 0$ (respectively, by $P_i > 0$ and by $P_i < 0$).
- We say that two ordered lists P = (P₁,..., P_s),
 Q = (Q₁,..., Q_s) have the same homotopy type if for any Boolean formula φ, the semi-algebraic sets defined by φ_P and φ_Q are homotopy equivalent.

Main theorems Tightness Some Applications

A notation

- Let ϕ be a Boolean formula with atoms $\{a_i, b_i, c_i \mid 1 \le i \le s\}$. For an ordered list $\mathcal{P} = (P_1, \ldots, P_s)$ of polynomials $P_i \in \mathbb{R}[X_1, \ldots, X_m]$, we denote by $\phi_{\mathcal{P}}$ the formula obtained from ϕ by replacing for each $i, 1 \le i \le s$, the atom a_i (respectively, b_i and c_i) by $P_i = 0$ (respectively, by $P_i > 0$ and by $P_i < 0$).
- We say that two ordered lists P = (P₁,..., P_s),
 Q = (Q₁,..., Q_s) have the same *homotopy type* if for any Boolean formula φ, the semi-algebraic sets defined by φ_P and φ_Q are homotopy equivalent.

Main theorems Tightness Some Applications

Homotopy types of sets defined by fewnomials

Let $\mathcal{M}_{m,r}$ be the family of ordered lists $\mathcal{P} = (P_1, \dots, P_s)$ with $P_i \in \mathbb{R}[X_1, \dots, X_m]$, with the total number of monomials in all polynomials in \mathcal{P} not exceeding *r*.

Theorem

The number of different homotopy types of ordered lists in $\mathcal{M}_{m,r}$ does not exceed $2^{O(mr)^4}$. In particular, the number of different homotopy types of semi-algebraic sets defined by a fixed formula $\phi_{\mathcal{P}}$, where \mathcal{P} varies over $\mathcal{M}_{m,r}$, does not exceed

 $2^{O(mr)^4}$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Main theorems Tightness Some Applications

Homotopy types of sets defined by fewnomials

Let $\mathcal{M}_{m,r}$ be the family of ordered lists $\mathcal{P} = (P_1, \ldots, P_s)$ with $P_i \in \mathbb{R}[X_1, \ldots, X_m]$, with the total number of monomials in all polynomials in \mathcal{P} not exceeding *r*.

Theorem

The number of different homotopy types of ordered lists in $\mathcal{M}_{m,r}$ does not exceed $2^{O(mr)^4}$. In particular, the number of different homotopy types of semi-algebraic sets defined by a fixed formula $\phi_{\mathcal{P}}$, where \mathcal{P} varies over $\mathcal{M}_{m,r}$, does not exceed

 $2^{O(mr)^4}$.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Main theorems Tightness Some Applications

Homotopy types of sets defined by fewnomials

Let $\mathcal{M}_{m,r}$ be the family of ordered lists $\mathcal{P} = (P_1, \dots, P_s)$ with $P_i \in \mathbb{R}[X_1, \dots, X_m]$, with the total number of monomials in all polynomials in \mathcal{P} not exceeding *r*.

Theorem

The number of different homotopy types of ordered lists in $\mathcal{M}_{m,r}$ does not exceed $2^{O(mr)^4}$. In particular, the number of different homotopy types of semi-algebraic sets defined by a fixed formula $\phi_{\mathcal{P}}$, where \mathcal{P} varies over $\mathcal{M}_{m,r}$, does not exceed

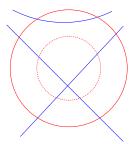
 $2^{O(mr)^4}$.

(日)

Main theorems Tightness Some Applications

Triviality at infinity

Let $V \subset \mathbb{R}^m$ be a \mathcal{P} -semi-algebraic set, where $\mathcal{P} \subset \mathbb{Z}[X_1, \ldots, X_m]$. Let for each $P \in \mathcal{P}$, deg(P) < d, and the maximum of the absolute values of coefficients in P be less than some constant M, $0 < M \in \mathbb{Z}$.

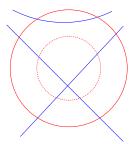


▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

Main theorems Tightness Some Applications

Triviality at infinity

Let $V \subset \mathbb{R}^m$ be a \mathcal{P} -semi-algebraic set, where $\mathcal{P} \subset \mathbb{Z}[X_1, \ldots, X_m]$. Let for each $P \in \mathcal{P}$, deg(P) < d, and the maximum of the absolute values of coefficients in P be less than some constant M, $0 < M \in \mathbb{Z}$.



▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

Main theorems Tightness Some Applications

New Theorem

It was known before that there exists a constant c > 0, such that for any $R > M^{d^{cm}}$, and for any connected component W of V the intersection $W \cap B_m(0, R) \neq \emptyset$, and $W \subset B_m(0, R)$ if W is bounded.

Theorem

There exists a constant c > 0, such that for any $R_1 > R_2 > M^{d^{cm}}$ we have,

 $V \cap B_m(0, R_1) \simeq V \cap B_m(0, R_2),$ $V \setminus B_m(0, R_1) \simeq V \setminus B_m(0, R_2).$

Main theorems Tightness Some Applications

New Theorem

It was known before that there exists a constant c > 0, such that for any $R > M^{d^{cm}}$, and for any connected component W of V the intersection $W \cap B_m(0, R) \neq \emptyset$, and $W \subset B_m(0, R)$ if W is bounded.

Theorem

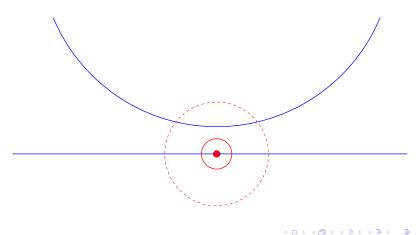
There exists a constant c > 0, such that for any $R_1 > R_2 > M^{d^{cm}}$ we have,

 $V \cap B_m(0, R_1) \simeq V \cap B_m(0, R_2),$ $V \setminus B_m(0, R_1) \simeq V \setminus B_m(0, R_2).$

Main theorems Tightness Some Applications

Local Conic Structure

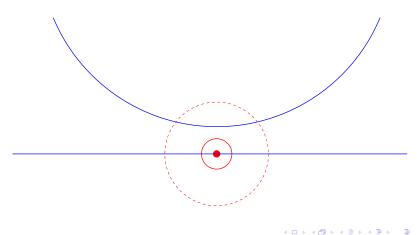
Semi-algebraic sets are locally contractible.



Main theorems Tightness Some Applications

Local Conic Structure

Semi-algebraic sets are locally contractible.



Main theorems Tightness Some Applications

Quantitative Local Contractibility

Theorem

Let $V \subset \mathbb{R}^m$ be a \mathcal{P} - semi-algebraic set, with $\mathcal{P} \subset \mathbb{Z}[X_1, \ldots, X_m]$ and $0 \in V$. Let deg(P) < d for each $P \in \mathcal{P}$, and the maximum of absolute values of coefficients of $P \in \mathcal{P}$ be less than M, $0 < M \in \mathbb{Z}$. Then, there exists a constant c > 0 such that for every $0 < r < M^{-d^{cm}}$ the set $V \cap B_m(0, r)$ is contractible.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

The special case of a bounded real algebraic variety The general case

Outline

- 1) Introduction
 - Semi-algebraic and semi-Pfaffian sets
 - Topological complexity of semi-algebraic and semi-Pfaffian sets
 - Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds
- 3 Proofs
 - The special case of a bounded real algebraic variety
 - The general case
 - Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The special case of a bounded real algebraic variety The general case

Quick Primer on Infinitesimals

- In the proof it will be convenient to use *infinitesimals* instead of sufficiently small elements of the ground field R. We do this by considering non-archimedean extensions of R.
- More precisely, denote by R(ε) the real closed field of algebraic Puiseux series in ε with coefficients in R.
- Given a semi-algebraic set S ⊂ ℝ^k, the *extension* of S to ℝ', denoted Ext(S, ℝ'), is the semi-algebraic subset of ℝ^{'k} defined by the same quantifier free formula that defines S.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The special case of a bounded real algebraic variety The general case

Quick Primer on Infinitesimals

- In the proof it will be convenient to use *infinitesimals* instead of sufficiently small elements of the ground field R. We do this by considering non-archimedean extensions of R.
- More precisely, denote by ℝ⟨ε⟩ the real closed field of algebraic Puiseux series in ε with coefficients in ℝ.
- Given a semi-algebraic set S ⊂ ℝ^k, the *extension* of S to ℝ', denoted Ext(S, ℝ'), is the semi-algebraic subset of ℝ'^k defined by the same quantifier free formula that defines S.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

The special case of a bounded real algebraic variety The general case

Quick Primer on Infinitesimals

- In the proof it will be convenient to use *infinitesimals* instead of sufficiently small elements of the ground field R. We do this by considering non-archimedean extensions of R.
- More precisely, denote by ℝ⟨ε⟩ the real closed field of algebraic Puiseux series in ε with coefficients in ℝ.
- Given a semi-algebraic set S ⊂ ℝ^k, the *extension* of S to ℝ', denoted Ext(S, ℝ'), is the semi-algebraic subset of ℝ^{'k} defined by the same quantifier free formula that defines S.

(日本) (日本) (日本)

Introduction Main Results Proofs

Open Problems

The special case of a bounded real algebraic variety The general case

First Ingredient: Thom's Isotopy Lemma

Lemma

Let $S \subset \mathbb{R}^{m+n}$ be a compact, non-singular hypersurface (defined by Q = 0) and $\pi : \mathbb{R}^{m+n} \to \mathbb{R}^n$ the projection map on the last *n*-cordinates. Let $C \subset \mathbb{R}^n$ be a connected subset of \mathbb{R}^n not containing any critical value of π_S . Then, the homeomorphism type of S_y stays the same as **y** varies over **C**.

(Note that, a critical point of π_S is a solution of the system $Q = \frac{\partial Q}{\partial X_1} = \cdots = \frac{\partial Q}{\partial X_m} = 0$. and a critical value is the image under π of a critical point.)

(日) (圖) (E) (E) (E)

The special case of a bounded real algebraic variety The general case

Second Ingredient: Deformation

• Let ε be an infinitesimal and let,

 $Q_1 = Q^2 - \varepsilon.$

- Let $T \subset \mathbb{R} \langle \varepsilon \rangle^{m+n}$ denote the set defined by $Q_1 \leq 0$.
- Then, *T* is bounded by the non-singular hypersurface $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})$.
- For each fixed $\mathbf{y} \in \mathbb{R}^n$ (Notice: co-ordinates in \mathbb{R}),

1 $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})_y$ is a non-singular hypersurface in $\mathbb{R}\langle \varepsilon \rangle^m$. **2** $T_y \simeq \operatorname{Ext}(S_y, \mathbb{R}\langle \varepsilon \rangle^m)$.

The special case of a bounded real algebraic variety The general case

Second Ingredient: Deformation

• Let ε be an infinitesimal and let,

 $Q_1 = Q^2 - \varepsilon.$

• Let $T \subset \mathbb{R}\langle \varepsilon \rangle^{m+n}$ denote the set defined by $Q_1 \leq 0$.

- Then, *T* is bounded by the non-singular hypersurface $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})$.
- For each fixed $\mathbf{y} \in \mathbb{R}^n$ (Notice: co-ordinates in \mathbb{R}),

1 $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})_y$ is a non-singular hypersurface in $\mathbb{R}\langle \varepsilon \rangle^m$. **2** $T_y \simeq \operatorname{Ext}(S_y, \mathbb{R}\langle \varepsilon \rangle^m)$.

The special case of a bounded real algebraic variety The general case

Second Ingredient: Deformation

• Let ε be an infinitesimal and let,

 $Q_1 = Q^2 - \varepsilon.$

- Let $T \subset \mathbb{R}\langle \varepsilon \rangle^{m+n}$ denote the set defined by $Q_1 \leq 0$.
- Then, *T* is bounded by the non-singular hypersurface $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})$.
- For each fixed $\mathbf{y} \in \mathbb{R}^n$ (Notice: co-ordinates in \mathbb{R}),

 $\begin{array}{l} \bigcirc \quad \mathbb{Z}(Q_1,\mathbb{R}\langle\varepsilon\rangle^{m+n})_{\mathbf{y}} \text{ is a non-singular hypersurface in } \mathbb{R}\langle\varepsilon\rangle^m. \\ \bigcirc \quad \mathbb{T}_{\mathbf{y}}\simeq \operatorname{Ext}(S_{\mathbf{y}},\mathbb{R}\langle\varepsilon\rangle^m). \end{array}$

The special case of a bounded real algebraic variety The general case

Second Ingredient: Deformation

• Let ε be an infinitesimal and let,

 $Q_1 = Q^2 - \varepsilon.$

- Let $T \subset \mathbb{R}\langle \varepsilon \rangle^{m+n}$ denote the set defined by $Q_1 \leq 0$.
- Then, *T* is bounded by the non-singular hypersurface $Z(Q_1, \mathbb{R} \langle \varepsilon \rangle^{m+n})$.
- For each fixed $\mathbf{y} \in \mathbb{R}^n$ (Notice: co-ordinates in \mathbb{R}),

Z(Q₁, ℝ⟨ε⟩^{m+n})_y is a non-singular hypersurface in ℝ⟨ε⟩^m.
 T_y ≃ Ext(S_y, ℝ⟨ε⟩^m).

The special case of a bounded real algebraic variety The general case

Second Ingredient: Deformation

• Let ε be an infinitesimal and let,

 $Q_1 = Q^2 - \varepsilon.$

- Let $T \subset \mathbb{R}\langle \varepsilon \rangle^{m+n}$ denote the set defined by $Q_1 \leq 0$.
- Then, *T* is bounded by the non-singular hypersurface $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})$.
- For each fixed $\mathbf{y} \in \mathbb{R}^n$ (Notice: co-ordinates in \mathbb{R}),

Z(Q₁, ℝ⟨ε⟩^{m+n})_y is a non-singular hypersurface in ℝ⟨ε⟩^m.
 T_y ≃ Ext(S_y, ℝ⟨ε⟩^m).

The special case of a bounded real algebraic variety The general case

Second Ingredient: Deformation

• Let ε be an infinitesimal and let,

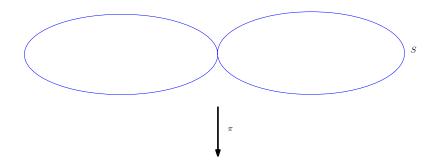
 $Q_1 = Q^2 - \varepsilon.$

- Let $T \subset \mathbb{R}\langle \varepsilon \rangle^{m+n}$ denote the set defined by $Q_1 \leq 0$.
- Then, *T* is bounded by the non-singular hypersurface $Z(Q_1, \mathbb{R}\langle \varepsilon \rangle^{m+n})$.
- For each fixed $\mathbf{y} \in \mathbb{R}^n$ (Notice: co-ordinates in \mathbb{R}),

Z(Q₁, ℝ⟨ε⟩^{m+n})_y is a non-singular hypersurface in ℝ⟨ε⟩^m.
 T_y ≃ Ext(S_y, ℝ⟨ε⟩^m).

The special case of a bounded real algebraic variety The general case

Picture



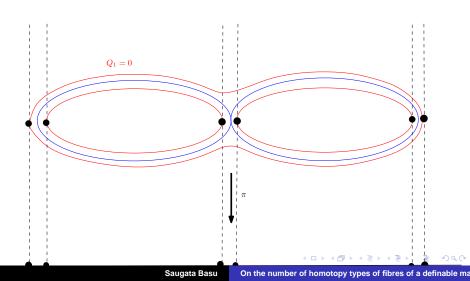
Saugata Basu On the number of homotopy types of fibres of a definable ma

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

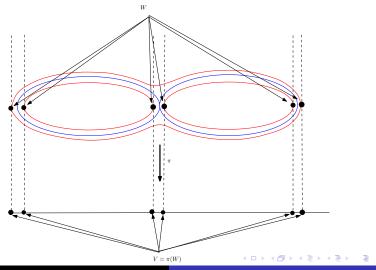
The special case of a bounded real algebraic variety The general case

Picture



The special case of a bounded real algebraic variety The general case

Picture



Saugata Basu On the number of homotopy types of fibres of a definable ma

The special case of a bounded real algebraic variety The general case

- Let V ⊂ ℝ⟨ε⟩ⁿ be the set of critical values of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- Now, *V* is the projection to $\mathbb{R}\langle \varepsilon \rangle^n$ of the set *W*, defined by

$$Q_1 = \frac{\partial Q_1}{\partial X_1} = \dots = \frac{\partial Q_1}{\partial X_m} = 0.$$

- Now, for each y ∈ V, π_S⁻¹(y) is singular (because y is a critical value). Hence, V ∩ ℝⁿ = Ø.
- If *C* is a connected component of ℝ⟨ε⟩ⁿ \ *V*, the homotopy type of Ext(*T*_y, ℝ⟨ε⟩^m) stays invariant as y varies over *C*.
- Hence, the number of homotopy types of S_y as y varies \mathbb{R}^n , $\leq b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V).$

The special case of a bounded real algebraic variety The general case

- Let V ⊂ ℝ⟨ε⟩ⁿ be the set of critical values of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- Now, V is the projection to $\mathbb{R}\langle \varepsilon \rangle^n$ of the set W, defined by

$$Q_1 = \frac{\partial Q_1}{\partial X_1} = \cdots = \frac{\partial Q_1}{\partial X_m} = 0.$$

- Now, for each y ∈ V, π_S⁻¹(y) is singular (because y is a critical value). Hence, V ∩ ℝⁿ = Ø.
- If *C* is a connected component of ℝ⟨ε⟩ⁿ \ *V*, the homotopy type of Ext(*T*_y, ℝ⟨ε⟩^m) stays invariant as y varies over *C*.
- Hence, the number of homotopy types of S_y as y varies \mathbb{R}^n , $\leq b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V).$

The special case of a bounded real algebraic variety The general case

- Let V ⊂ ℝ⟨ε⟩ⁿ be the set of critical values of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- Now, V is the projection to $\mathbb{R}\langle \varepsilon \rangle^n$ of the set W, defined by

$$\mathsf{Q}_1 = \frac{\partial \mathsf{Q}_1}{\partial X_1} = \cdots = \frac{\partial \mathsf{Q}_1}{\partial X_m} = 0.$$

- Now, for each y ∈ V, π_S⁻¹(y) is singular (because y is a critical value). Hence, V ∩ ℝⁿ = Ø.
- If *C* is a connected component of ℝ⟨ε⟩ⁿ \ *V*, the homotopy type of Ext(*T*_y, ℝ⟨ε⟩^m) stays invariant as y varies over *C*.
- Hence, the number of homotopy types of S_y as y varies \mathbb{R}^n , $\leq b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V).$

The special case of a bounded real algebraic variety The general case

- Let V ⊂ ℝ⟨ε⟩ⁿ be the set of critical values of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- Now, V is the projection to $\mathbb{R}\langle \varepsilon \rangle^n$ of the set W, defined by

$$\mathsf{Q}_1 = \frac{\partial \mathsf{Q}_1}{\partial X_1} = \cdots = \frac{\partial \mathsf{Q}_1}{\partial X_m} = \mathbf{0}.$$

- Now, for each y ∈ V, π_S⁻¹(y) is singular (because y is a critical value). Hence, V ∩ ℝⁿ = Ø.
- If C is a connected component of ℝ⟨ε⟩ⁿ \ V, the homotopy type of Ext(T_y, ℝ⟨ε⟩^m) stays invariant as y varies over C.
- Hence, the number of homotopy types of S_y as y varies \mathbb{R}^n , $\leq b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V).$

The special case of a bounded real algebraic variety The general case

- Let V ⊂ ℝ⟨ε⟩ⁿ be the set of critical values of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- Now, V is the projection to $\mathbb{R}\langle \varepsilon \rangle^n$ of the set W, defined by

$$\mathsf{Q}_1 = \frac{\partial \mathsf{Q}_1}{\partial X_1} = \cdots = \frac{\partial \mathsf{Q}_1}{\partial X_m} = \mathbf{0}.$$

- Now, for each y ∈ V, π_S⁻¹(y) is singular (because y is a critical value). Hence, V ∩ ℝⁿ = Ø.
- If *C* is a connected component of ℝ⟨ε⟩ⁿ \ V, the homotopy type of Ext(*T*_y, ℝ⟨ε⟩^m) stays invariant as y varies over *C*.
- Hence, the number of homotopy types of S_y as y varies \mathbb{R}^n , $\leq b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V).$

The special case of a bounded real algebraic variety The general case

Last Ingredient: Bounding the Betti numbers of projections

- $b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V) = b_{n-1}(V)$, by Alexander duality.
- V = π(W), where W is the set of critical points of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- We have good control on the complexity of *W*.
- Use the inequality originating in the "descent spectral sequence",

$$b_{n-1}(\pi(W)) \leq \sum_{i+j=n-1} b_i(W imes_{\pi} \cdots imes_{\pi} W).$$

The special case of a bounded real algebraic variety The general case

Last Ingredient: Bounding the Betti numbers of projections

- $b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V) = b_{n-1}(V)$, by Alexander duality.
- V = π(W), where W is the set of critical points of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- We have good control on the complexity of *W*.
- Use the inequality originating in the "descent spectral sequence",

$$b_{n-1}(\pi(W)) \leq \sum_{i+j=n-1} b_i(W imes_{\pi} \cdots imes_{\pi} W).$$

The special case of a bounded real algebraic variety The general case

Last Ingredient: Bounding the Betti numbers of projections

- $b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V) = b_{n-1}(V)$, by Alexander duality.
- V = π(W), where W is the set of critical points of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- We have good control on the complexity of W.
- Use the inequality originating in the "descent spectral sequence",

$$b_{n-1}(\pi(W)) \leq \sum_{i+j=n-1} b_i(W imes_{\pi} \cdots imes_{\pi} W).$$

The special case of a bounded real algebraic variety The general case

Last Ingredient: Bounding the Betti numbers of projections

- $b_0(\mathbb{R}\langle \varepsilon \rangle^n \setminus V) = b_{n-1}(V)$, by Alexander duality.
- V = π(W), where W is the set of critical points of π restricted to Z(Q₁, ℝ⟨ε⟩^{m+n}).
- We have good control on the complexity of *W*.
- Use the inequality originating in the "descent spectral sequence",

$$b_{n-1}(\pi(W)) \leq \sum_{i+j=n-1} b_i(W imes_{\pi} \cdots imes_{\pi} W).$$

The special case of a bounded real algebraic variety The general case

Outline

- Introduction
 - Semi-algebraic and semi-Pfaffian sets
 - Topological complexity of semi-algebraic and semi-Pfaffian sets
 - Fibers of a definable map
- 2 Main Results
 - Main theorems
 - Tightness
 - Some Applications
 - Fewnomials and Polynomials with small additive complexity
 - Metric upper bounds

Proofs

- The special case of a bounded real algebraic variety
- The general case
- Open Problems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The special case of a bounded real algebraic variety The general case

Handling more general situations

- First Ingredient: Thom's Lemma for stratified maps.
- Second Ingredient: Much more complicated scheme of deformation, maintaining the homotopy type of arbitrary semi-algebraic sets defined in terms of the given *P*.
 Squares the number of polynomials.
- Third Ingredient: Consider critical points and values restricted to various strata.
- Fourth Ingredient: More careful accounting of the Betti numbers for instance, in order to bound $b_{n-1}(\pi(W))$ in the stratified situation, we can throw out all stratas of W of dimension smaller than n 1. Gives better control on the combinatorial complexity.

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

The special case of a bounded real algebraic variety The general case

Handling more general situations

- First Ingredient: Thom's Lemma for stratified maps.
- Second Ingredient: Much more complicated scheme of deformation, maintaining the homotopy type of arbitrary semi-algebraic sets defined in terms of the given *P*.
 Squares the number of polynomials.
- Third Ingredient: Consider critical points and values restricted to various strata.
- Fourth Ingredient: More careful accounting of the Betti numbers for instance, in order to bound $b_{n-1}(\pi(W))$ in the stratified situation, we can throw out all stratas of W of dimension smaller than n 1. Gives better control on the combinatorial complexity.

・ロト ・四ト ・ヨト ・ヨト

The special case of a bounded real algebraic variety The general case

Handling more general situations

- First Ingredient: Thom's Lemma for stratified maps.
- Second Ingredient: Much more complicated scheme of deformation, maintaining the homotopy type of arbitrary semi-algebraic sets defined in terms of the given *P*.
 Squares the number of polynomials.
- Third Ingredient: Consider critical points and values restricted to various strata.
- Fourth Ingredient: More careful accounting of the Betti numbers for instance, in order to bound $b_{n-1}(\pi(W))$ in the stratified situation, we can throw out all stratas of W of dimension smaller than n 1. Gives better control on the combinatorial complexity.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

The special case of a bounded real algebraic variety The general case

Handling more general situations

- First Ingredient: Thom's Lemma for stratified maps.
- Second Ingredient: Much more complicated scheme of deformation, maintaining the homotopy type of arbitrary semi-algebraic sets defined in terms of the given *P*.
 Squares the number of polynomials.
- Third Ingredient: Consider critical points and values restricted to various strata.
- Fourth Ingredient: More careful accounting of the Betti numbers for instance, in order to bound $b_{n-1}(\pi(W))$ in the stratified situation, we can throw out all stratas of W of dimension smaller than n 1. Gives better control on the combinatorial complexity.

(日) (圖) (E) (E) (E)

Open Problems

• Single exponential bounds for homeomorphism types ?

- Bounds on the number of homeomorphism types of varieties of degree at most d ?
- In positive charateristic ?
- Is there any application of such results in computational complexity theory ?

(日)

Open Problems

- Single exponential bounds for homeomorphism types ?
- Bounds on the number of homeomorphism types of varieties of degree at most d ?
- In positive charateristic ?
- Is there any application of such results in computational complexity theory ?

Open Problems

- Single exponential bounds for homeomorphism types ?
- Bounds on the number of homeomorphism types of varieties of degree at most *d* ?
- In positive charateristic ?
- Is there any application of such results in computational complexity theory ?

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Open Problems

- Single exponential bounds for homeomorphism types ?
- Bounds on the number of homeomorphism types of varieties of degree at most *d* ?
- In positive charateristic ?
- Is there any application of such results in computational complexity theory ?

・ロット (母) ・ ヨ) ・ コ)