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Semi-algebraic Sets

A semi-algebraic set, S ⊂ Rk , is a subset of Rk defined by
a Boolean formula whose atoms are polynomial equalities
and inequalities.

If all the polynomials involved belong to P ⊂ R[X1, . . . , Xk ],
we call S a P-semi-algebraic set.

If the atoms of the Boolean formula are of the form
P ≥ 0, P ≤ 0, P ∈ P, and there are no negations, then we
call S a P-closed semi-algebraic set.
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Pfaffian Functions (following Khovansky)

A Pfaffian chain, F , of length r , is a sequence f1, . . . , fr of
analytic functions defined in some open domain in U ⊂ R`

and satisfying the following triangular system of differential
equations.

dfj(x) =
n∑

i=1

gij(x, f1(x), . . . , fj(x))dxi , 1 ≤ j ≤ r ,

where each gij is a polynomial in ` + j variables.
Suppose deg(gij) ≤ α.
A function f : U → R defined by

f (x) = P(x, f1(x), . . . , fr (x)),

with deg(P) ≤ β, is called a Pfaffian function of order r
and degree (α, β).
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Examples of Pfaffian chains

A polynomial of degree bounded by d is a Pfaffian function
of order 0 and degree (1, d).

A polynomial

P = c1xα1 + · · ·+ cmxαm ∈ R[X1, . . . , Xk ]

having m monomials in its support, is a Pfaffian function of
order k + m and degree (2, 1), in (R \ {0})k by virtue of the
Pfaffian chain,

dgi = −g2
i dxi , 1 ≤ i ≤ k , [gi(x) = 1/xi ]

dfj =
∑k

i=1 αj,i gi fj dxi , 1 ≤ j ≤ m. [fj(x) = xαj ]
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Some more examples of Pfaffian chains

The exponential function f (x) = eax is Pfaffian of order 1
and degree (1, 1) in R by virtue of the equation,

df (x) = af (x)dx .

The function f (x) = cos(x) is Pfaffian of order 2 and
degree (2, 1) in the domain U = R \ ∪i∈Z{π + 2iπ}, by
virtue of the equations

dg(x) = ((1 + g2(x))/2)dx , df (x) = −f (x)g(x)dx ,

cos(x) = 2f (x)− 1.
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Semi-Pfaffian Sets

Let P be a finite set of Pfaffian functions in the open cube
U := (−1, 1)m ⊂ Rm.

A set S ⊂ U is called P-semi-Pfaffian in U if it is defined by
a Boolean formula with atoms of the form
P > 0, P < 0, P = 0 for P ∈ P. A P-semi-Pfaffian set S is
restricted if its closure in U is compact.
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Bounds on Betti Numbers

For any subset S ⊂ Rk , we denote by bi(S) = rank(Hi(S)).
In the semi-algebraic case: If S ⊂ Rk is a P-semi-algebraic
set, then (Oleinik, Petrovsky, Thom, Milnor, B.,
Gabrielov-Vorobjov)∑

0≤i≤k

bi(S) ≤ (O(s2d))k

where s = #(P) and d = maxP∈P deg(P).
In the restricted semi-Pfaffian case (Khovansky,
Gabrielov-Vorobjov):∑

0≤i≤k

bi(S) ≤ s2k 2(r
2) O(kβ + min(r , k)α)k+r

where s = #(P) and Pfaffian chain defining the functions
in P is length r and degree (α, β).
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Fibers of a definable map

Let S ⊂ Rm+n be a definable (i.e semi-algebraic or
restricted semi-Pfaffian) set, and let π : Rm+n → Rn be the
projection map on the last n co-ordinates. We denote by
πS = π|S.

For y ∈ Rn, let Sy = S ∩ π−1(y).

Main question of this talk: How many “topological types”
occur amongst the Sy ’s as y varies over Rn ?

As an application: how many topological types occur
amongst real or complex hypersurfaces defined by a
polynomial of degree d in n variables ?
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Definable map
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Hardt Triviality

Theorem (Hardt, 1980)

Given any definable set S ⊂ Rm+n, there exists a finite partition
of Rn into definable sets {Ti}i∈I such that S is definably trivial
over each Ti .

This means that for each i ∈ I and any point y ∈ Ti , the
pre-image π−1

S (Ti) is definably homeomorphic to π−1
S (y)× Ti by

a fiber preserving homeomorphism. In particular, for each i ∈ I,
all fibers π−1

S (y), y ∈ Ti are definably homeomorphic.

Saugata Basu On the number of homotopy types of fibres of a definable map
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Complexity of the Hardt partition

Hardt’s theorem is a corollary of the existence of cylindrical
cell decompositions for definable sets.

This implies a double exponential (in mn) upper bound on
the cardinality of I.
Open problem: prove a single exponential upper bound on
the number of homeomorphism types of the fibres of πS.

Saugata Basu On the number of homotopy types of fibres of a definable map
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Semi-algebraic case

Theorem

Let P ⊂ R[X1, . . . , Xm, Y1, . . . , Yn], with deg(P) ≤ d for each
P ∈ P, #P = s. Then, there exists a finite set A ⊂ Rn, with

#A ≤ s2(m+1)n (2mnd)O(nm) = (2msnd)O(nm),

such that for every y ∈ Rn there exists z ∈ A such that for every
P-semi-algebraic set S ⊂ Rm+n, the set π−1

S (y) is
semi-algebraically homotopy equivalent to π−1

S (z). In particular,
for any fixed P-semi-algebraic set S, the number of different
homotopy types of fibres π−1

S (y) for various y ∈ π(S) is also
bounded by

s2(m+1)n(2mnd)O(nm) = (2msnd)O(nm).
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Semi-Pfaffian case

Theorem

Let P be a finite set of Pfaffian functions defined on the open
cube U := (−1, 1)m+n ⊂ Rm+n, with #P = s, and such that all
functions in P have degrees (α, β) and are derived from a
common Pfaffian chain of order r . Then, there exists a finite set
A ⊂ π(U) with

#A ≤ sO(nm)2O(n(m2+nr2))(nm(α + β))O(n(m+r)),

such that for every y ∈ π(U) there exists z ∈ A such that for
every P-semi-Pfaffian set S ⊂ U, the set π−1

S (y) is homotopy
equivalent to π−1

S (z).
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Single exponential dependence on m

Let P ∈ R[X1, . . . , Xm] ↪→ R[X1, . . . , Xm, Y ] be the
polynomial defined by

P :=
m∑

i=1

d∏
j=1

(Xi − j)2.

Then Z(P, Rm+1) consists of dm lines all parallel to the
Y -axis.
Consider now the semi-algebraic set S ⊂ Rm+1 defined by

(P = 0) ∧ (0 ≤ Y ≤ X1 + dX2 + d2X3 + · · ·+ dm−1Xm).

and let π : Rm+1 → R be the projection map on the Y
co-ordinate.
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Tightness (cont).

The fibres π−1
S (y), for y ∈ {0, 1, 2, . . . , dm − 1} ⊂ R are

0-dimensional and of different cardinality.

There are no examples where the number of homotopy
types of the fibres grows with n (with the parameters s, d ,
and m fixed) since this number can be bounded by a
function of s, d and m independent of n.
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A notation

Let φ be a Boolean formula with atoms
{ai , bi , ci | 1 ≤ i ≤ s}. For an ordered list P = (P1, . . . , Ps)
of polynomials Pi ∈ R[X1, . . . , Xm], we denote by φP the
formula obtained from φ by replacing for each i , 1 ≤ i ≤ s,
the atom ai (respectively, bi and ci ) by Pi = 0 (respectively,
by Pi > 0 and by Pi < 0).

We say that two ordered lists P = (P1, . . . , Ps),
Q = (Q1, . . . , Qs) have the same homotopy type if for any
Boolean formula φ, the semi-algebraic sets defined by φP
and φQ are homotopy equivalent.
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Homotopy types of sets defined by fewnomials

Let Mm,r be the family of ordered lists P = (P1, . . . , Ps) with
Pi ∈ R[X1, . . . , Xm], with the total number of monomials in all
polynomials in P not exceeding r .

Theorem

The number of different homotopy types of ordered lists in
Mm,r does not exceed 2O(mr)4

. In particular, the number of
different homotopy types of semi-algebraic sets defined by a
fixed formula φP , where P varies over Mm,r , does not exceed

2O(mr)4
.
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Triviality at infinity

Let V ⊂ Rm be a P-semi-algebraic set, where
P ⊂ Z[X1, . . . , Xm]. Let for each P ∈ P, deg(P) < d , and the
maximum of the absolute values of coefficients in P be less
than some constant M, 0 < M ∈ Z.
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New Theorem

It was known before that there exists a constant c > 0, such
that for any R > Mdcm

, and for any connected component W of
V the intersection W ∩ Bm(0, R)) 6= ∅, and W ⊂ Bm(0, R) if W
is bounded.

Theorem

There exists a constant c > 0, such that for any
R1 > R2 > Mdcm

we have,

V ∩ Bm(0, R1) ' V ∩ Bm(0, R2),

V \ Bm(0, R1) ' V \ Bm(0, R2).
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Local Conic Structure

Semi-algebraic sets are locally contractible.
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Quantitative Local Contractibility

Theorem

Let V ⊂ Rm be a P- semi-algebraic set, with P ⊂ Z[X1, . . . , Xm]
and 0 ∈ V. Let deg(P) < d for each P ∈ P, and the maximum
of absolute values of coefficients of P ∈ P be less than M,
0 < M ∈ Z. Then, there exists a constant c > 0 such that for
every 0 < r < M−dcm

the set V ∩ Bm(0, r) is contractible.
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Quick Primer on Infinitesimals

In the proof it will be convenient to use infinitesimals
instead of sufficiently small elements of the ground field R.
We do this by considering non-archimedean extensions of
R.

More precisely, denote by R〈ε〉 the real closed field of
algebraic Puiseux series in ε with coefficients in R.

Given a semi-algebraic set S ⊂ Rk , the extension of S to
R′, denoted Ext(S, R′), is the semi-algebraic subset of R′k

defined by the same quantifier free formula that defines S.

Saugata Basu On the number of homotopy types of fibres of a definable map



Introduction
Main Results

Proofs
Open Problems

The special case of a bounded real algebraic variety
The general case

Quick Primer on Infinitesimals

In the proof it will be convenient to use infinitesimals
instead of sufficiently small elements of the ground field R.
We do this by considering non-archimedean extensions of
R.

More precisely, denote by R〈ε〉 the real closed field of
algebraic Puiseux series in ε with coefficients in R.

Given a semi-algebraic set S ⊂ Rk , the extension of S to
R′, denoted Ext(S, R′), is the semi-algebraic subset of R′k

defined by the same quantifier free formula that defines S.

Saugata Basu On the number of homotopy types of fibres of a definable map



Introduction
Main Results

Proofs
Open Problems

The special case of a bounded real algebraic variety
The general case

Quick Primer on Infinitesimals

In the proof it will be convenient to use infinitesimals
instead of sufficiently small elements of the ground field R.
We do this by considering non-archimedean extensions of
R.

More precisely, denote by R〈ε〉 the real closed field of
algebraic Puiseux series in ε with coefficients in R.

Given a semi-algebraic set S ⊂ Rk , the extension of S to
R′, denoted Ext(S, R′), is the semi-algebraic subset of R′k

defined by the same quantifier free formula that defines S.

Saugata Basu On the number of homotopy types of fibres of a definable map



Introduction
Main Results

Proofs
Open Problems

The special case of a bounded real algebraic variety
The general case

First Ingredient:Thom’s Isotopy Lemma

Lemma

Let S ⊂ Rm+n be a compact, non-singular hypersurface
(defined by Q = 0) and π : Rm+n → Rn the projection map on
the last n-cordinates. Let C ⊂ Rn be a connected subset of Rn

not containing any critical value of πS. Then, the
homeomorphism type of Sy stays the same as y varies over C.

(Note that, a critical point of πS is a solution of the system

Q =
∂Q
∂X1

= · · · = ∂Q
∂Xm

= 0. and a critical value is the image

under π of a critical point.)
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Second Ingredient: Deformation

Let ε be an infinitesimal and let,

Q1 = Q2 − ε.

Let T ⊂ R〈ε〉m+n denote the set defined by Q1 ≤ 0.

Then, T is bounded by the non-singular hypersurface
Z(Q1, R〈ε〉m+n).
For each fixed y ∈ Rn (Notice: co-ordinates in R),

1 Z(Q1, R〈ε〉m+n)y is a non-singular hypersurface in R〈ε〉m.
2 Ty ' Ext(Sy , R〈ε〉m).
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π
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Third Ingredient: Homotopy types of Sy and the
number of connected components of regular values

Let V ⊂ R〈ε〉n be the set of critical values of π restricted to
Z(Q1, R〈ε〉m+n).
Now, V is the projection to R〈ε〉n of the set W , defined by

Q1 =
∂Q1

∂X1
= · · · = ∂Q1

∂Xm
= 0.

Now, for each y ∈ V , π−1
S (y) is singular (because y is a

critical value). Hence, V ∩ Rn = ∅.
If C is a connected component of R〈ε〉n \ V , the homotopy
type of Ext(Ty , R〈ε〉m) stays invariant as y varies over C.
Hence,the number of homotopy types of Sy as y varies Rn,
≤ b0(R〈ε〉n \ V ).
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Last Ingredient: Bounding the Betti numbers of
projections

b0(R〈ε〉n \ V ) = bn−1(V ), by Alexander duality.

V = π(W ), where W is the set of critical points of π
restricted to Z(Q1, R〈ε〉m+n).

We have good control on the complexity of W .

Use the inequality originating in the “descent spectral
sequence”,

bn−1(π(W )) ≤
∑

i+j=n−1

bi(W ×π · · · ×π W ).
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Handling more general situations

First Ingredient: Thom’s Lemma for stratified maps.

Second Ingredient: Much more complicated scheme of
deformation, maintaining the homotopy type of arbitrary
semi-algebraic sets defined in terms of the given P.
Squares the number of polynomials.

Third Ingredient: Consider critical points and values
restricted to various strata.

Fourth Ingredient: More careful accounting of the Betti
numbers – for instance, in order to bound bn−1(π(W )) in
the stratified situation, we can throw out all stratas of W of
dimension smaller than n − 1. Gives better control on the
combinatorial complexity.
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Open Problems

Single exponential bounds for homeomorphism types ?

Bounds on the number of homeomorphism types of
varieties of degree at most d ?

In positive charateristic ?

Is there any application of such results in computational
complexity theory ?
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