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Abstract. The theoretical equivalence between the DLP and DHP prob-
lems was shown by Maurer in 1994. His work was then reexamined by
Muzereau et al. [11] for the special case of elliptic curves used in prac-
tical cryptographic applications. This paper improves on the latter and
tries to get the tightest possible reduction in terms of computational
equivalence, using Maurer’s method.
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1 Introduction

Maurer and Wolf [6, 8, 7, 10] proved that, for every cyclic group G with
prime order p, the DLP and DHP over G are equivalent if there exists an
elliptic curve, called auxiliary elliptic curve, over Fp with smooth order.

Muzereau et al. [11] showed that such auxiliary elliptic curves are
highly likely to exist for almost all elliptic curve groups. It is however
remarked that it gets extremely hard to construct them as the order of
G increases. Auxiliary elliptic curves with smooth orders were built and
explicitly presented for most of the curves in the SECG standard, hence
making Maurer’s proof applicable to most of the groups used in practical
elliptic curve cryptography.

The idea behind the method introduced by Maurer [6] rests on the
concept of implicit representation: The implicit representation of an inte-
ger a (modulo p) is defined to be ga ∈ G. The algorithm proceeds by doing
computations in the implicit representation instead of the usual explicit
representation. For example, to compute a + b in implicit form, ga · gb is
computed instead which costs one multiplication. For a− b, we compute



ga · (gb)−1 costing one inversion and one multiplication. To compute a · b
in implicit form, one call to an DH-oracle, that computes gab given ga and
gb, is needed. For the implicit form of a−1, one uses the fact that ap−1 = 1,
so ap−2 = a−1, which would cost O(lg p) calls to the DH-oracle. Hence,
granted access to a DH-oracle for the group G, all algebraic algorithms
can be converted to work in the implicit representation.

This paper builds on [11] by tightening the reduction and trying to
extend the result to the remaining curves. Our goal is to show that, for
the elliptic curve cryptosystems described in the various standards, the
number of group operations and DH-oracle calls required to reduce the
DLP to the DHP is reasonably “small.” Say for example that this number
is less than 2r then, if we believe that the much more extensively studied
DLP over the same group takes at least 2` operations to solve then an
algorithm for solving the DHP, and thus breaking the DHP protocol,
would require a minimum of 2`−r group operations. Our target is therefore
to minimise the value of r, in order to get the tightest possible security
reduction.

Affine coordinates were used in [11] which requires division and hence
a DH-inversion oracle was needed. This was implemented at the cost of
O(lg p) calls to a DH-oracle which is clearly an expensive choice as it leads
to a large increase in the number of DH-oracle calls. We use projective
coordinates instead to avoid this problem. As a further optimisation we
use an optimised square root extraction algorithm.

One would also think that using addition chains may reduce the cost
of exponentiation but it turns out that this saves very little and only
adds complications. So it was decided to use traditional methods of ex-
ponentiation and concentrate on the more critical areas of the algorithm.
Section 6 expands on this and justifies this decision.

A list of auxiliary elliptic curves giving almost the tightest possible
reduction, using the Maurer method, is presented in Appendix C.

2 Notation and Definitions

Throughout the paper, we let G be a cyclic group with generator g and
prime order p > 3. We begin by defining the problems DLP and DHP.
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Definition 1 (DLP and DHP)

– Given h ∈ G, the problem of computing an integer α ∈ [0, |G|) such
that gα = h is called the Discrete Logarithm Problem (DLP) with
respect to g.

– Given two elements ga, gb ∈ G, we call the problem of computing
gab the Diffie-Hellman Problem (DHP) with respect to g. (a, b are
unknown)

We also need to formalise the notion of a DH and DL oracles.

Definition 2 (DL and DH oracles)

– A DH-oracle takes as input two elements ga, gb ∈ G and returns gab.
We write DH(ga, gb) = gab.

– A DL-oracle takes as input an element h = ga ∈ G and returns
a mod |G|. We write DL(h) = DL(ga) = a.

Both oracles return answers in unit time. (By definition of Oracles)

The equivalence between the two problems was theoretically estab-
lished by Maurer and Wolf in the nineties [6, 8, 7, 10], but it relies on the
existence of some auxiliary elliptic curves whose orders must be smooth.
These auxiliary elliptic curves are not necessarily easy to build and it
seems they are exceptionally hard to find in general. Hence, a more con-
crete treatment for the elliptic curve groups used in practice proved nec-
essary and this was done in [11]. The paper discussed the computational
equivalence between the DLP and DHP, and it also presented an explicit
list auxiliary elliptic curves needed for the reduction.

Note that, since solving any instance of the DHP given access to a
DL-oracle is trivial1, we only concentrate on the reverse implication for
the equivalence to hold: If we suppose the DHP turns out to be easy, we
wish to know if this implies that the DLP is easy as well.

The base 2 logarithm will be denoted by lg x (instead of log2). We
will also use M and I to denote multiplications and inversions in G,
respectively, and DH for DH-oracle calls. Formulae of the form

xDH + yI + zM

mean: Cost is x DH-oracle calls, y inversions and z multiplications in G.

1 Given ga, gb ∈ G, we compute a = DL(ga) and then compute gab = (gb)a.
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3 The algorithm

Given h ∈ G, we want to find the unique α modulo p such that h = gα. We
assume an elliptic curve E over Fp is given by the Weierstrass equation
y2 = x3−3x+b, with smooth order given as a product of coprime integers

|E| =
s∏

j=1

qj , (1)

with qj < B of roughly the same size, where B is some smoothness bound.
This choice of the defining equation of E saves 1DH while adding points
on it. The point at infinity on E is denoted by O.

To solve a DLP in G, Maurer’s approach is to use a DH-oracle and
solve the problem in the implicit representation over E, which is supposed
to have a smooth order. So, given h = gα ∈ G and the elliptic curve E,
as above, we check whether gy2

= gα3−3α+b can be solved for y. If so then
we have found a point Q on E in its implicit form, otherwise we replace
α by α + d for some random, small, integer d and do the checking again
until we get a point Q on E.

Note that, at this stage, we know Q in its implicit representation
only. The idea now is to solve Q = kP over E, where P is a generator
of E. Upon finding the value of k, we then compute kP in the explicit
representation and hence recover the value of α, from the explicit first
coordinate of Q. Given that E has a smooth order, we simply use the naive
Pohlig-Hellman method of first solving the problem in the subgroups of E
of prime power order, and then recovering k using the Chinese Remainder
Theorem (CRT). The reader is referred to Algorithm 1 for the detailed
description of the algorithm.

The crucial point to note is that we have a wide choice of curves over
Fp that have sizes distributed in the Hasse interval [p+1−√p, p+1+

√
p].

So, with a bit of luck, one hopes that one of these sizes is smooth enough
and hence the corresponding auxiliary elliptic curve would make solving
our DLP easy. We draw the reader’s attention to the fact that this is the
same reason that makes the ECM factoring method so successful.

In the description of Algorithm 1, note that for the comparison step
(12) to test whether a point (X : Y : Z), in projective coordinates, is
equal to a point (x, y), in affine coordinates, we simply check whether
xZ2 = X and yZ3 = Y . In implicit representation this becomes

(gZ2
)x = gX and (gZ3

)y = gY .
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This use of projective coordinates gives our greatest improvement over
[11]. We also make some savings by storing precomputed values and using
them throughtout the algorithm. The next two subsections will describe
the improvements made.

Algorithm 1 Solve a DLP in a group G given access to a DH-oracle for G.
Input: A cyclic group G = 〈g〉 of prime order p, an elliptic curve E/Fp : y2 =
x3 − 3x + b, generated by P , |E| =

∏s
j=1 qj and h = gα ∈ G

Output: α = DL(h)
Step 1. Compute a valid implicit x-coordinate related to the DL α

1: repeat
2: Choose d randomly, and set gx ← hgd 〈gx ← gα+d〉
3: gz ← gx3−3x+b.

4: until gz(p−1)/2
= g 〈Test quadratic-residuosity of z (mod p)〉

Step 2. Compute gy from gz = gy2
:

5: Extract the square root of z in implicit representation, to obtain gy.
Now, Q = (x, y) is a point on E known in the implicit representation only (gx, gy).
Step 3. Compute k : Q = kP in E(Fp): 〈Use the Pohlig-Hellman simplification〉

6: for j = 1, . . . , s do
7: Compute Qj = (guj , gvj , gwj ), where (uj , vj , wj) = |E|

qj
Q 〈Projective coordinates〉

8: Set i← 0, (u, v)← O, Pj ← |E|
qj

P 〈Affine coordinates〉
9: repeat 〈Solve Qj = kjPj in the subgroup of E(Fp) of order qj〉

10: i← i + 1.
11: (u, v)← (u, v) + Pj . 〈(u, v)← iPj = i |E|

qj
P 〉

12: until (gw2
j )u = guj and (gw3

j )v = gvj 〈Test if (gu, gv) equals (guj , gvj , gwj )〉
13: kj ← i.
14: end for

Step 4. Construct α
15: Compute k (mod |E|) such that ∀j ∈ {1, . . . , s} : k ≡ kj (mod qj). 〈Use CRT 〉
16: Compute kP = Q in affine coordinates.
17: Then x (mod p) is the abscissa of Q, and α = x− d.

3.1 Square root extraction

We describe the special cases in the explicit notation. This algorithm is
used by Algorithm 1, in the implicit representation, to compute gy from
gz = gy2

= gx3−3x+b, see Algorithm 2.
Suppose a is known to be a quadratic residue modulo p and we want

to compute x ∈ Fp such that x2 ≡ a (mod p). Then, besides the general
Tonelli and Shanks algorithm used in [11], we also treat two special cases:
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1. If p ≡ 3 (mod 4) then x ≡ a(p+1)/4 (mod p),
2. If p ≡ 5 (mod 8) then do the following: Compute s = a(p−5)/8,

u = a · s, t = s · u. If t = 1 then x = u otherwise x = 2(p−1)/4 · u.

Treating these special cases is worthwhile since half the primes are
congruent to 3 modulo 4, and half of the remaining primes are congruent
to 5 modulo 8. The only remaining primes are all congruent to 1 modulo 8.
We gain no advantage by using similar methods for this case, so we simply
use the Tonelli-Shanks algorithm for the remaining primes, see [3, p. 32].

Algorithm 2 Implicit square roots in a group G using a DH-oracle for G.
Input: A cyclic group G = 〈g〉 of odd prime order p, and gz = gy2 ∈ G.
Output: gy.
1: if p ≡ 3 (mod 4) then

2: gy ← gz(p+1)/4
. 〈First case: p ≡ 3 (mod 4)〉

3: else if p ≡ 5 (mod 8) then

4: gs ← gz(p−5)/8
, gu ← gzs, gt ← gsu. 〈Second case: p ≡ 5 (mod 8)〉

5: if gt = g then
6: gy ← gu.
7: else
8: gy ← gu·2(p−1)/4

.
9: end if

10: else
11: Write p− 1 = 2e · w, w odd. 〈Tonelli and Shanks algorithm for p ≡ 1 (mod 8)〉
12: Set gs ← g, r ← e, gy ← gz(w−1)/2

, gb ← gzy2
, gy ← gzy. 〈Initialise〉

13: while gb 6≡ 1 mod p. do

14: Find the smallest m ≥ 1 such that g(b2
m

) ≡ 1 mod p. 〈Find exponent〉
15: Set gt ← g(s2r−m−1

), gs ← gt2 , r ← m, gy ← gyt, gb ← gbs. 〈Reduction〉
16: end while
17: end if

3.2 Explicit and implicit point multiplication

As already remarked, we use the projective coordinate system in step 3
of Algorithm 1 instead of the affine coordinate system. The formulae for
addition and doubling2 in the implicit representation easily follow from
their standard explicit counterparts, see Appendix B. The cost of each
operation is given in the following table.

2 Doubling is the operation of adding a point to itself: 2P = P + P .
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Doubling Addition
Explicit Implicit Explicit Implicit

DH 8 16
I 4 5
M 8 14 16 3

2 lg p + 13
2

For the affine coordinates, note that we only need the explicit case (In
the j-loop). The costs are:

1I + 4M for doubling and 1I + 3M for addition.

Since we will need to compute kP for different values of k but a fixed
P , pre-computing the values 21P, 22P, . . . , 2blg kcP will save us some com-
putation. Then, using the right-to-left binary method, we expect only
1
2 lg k elliptic curve additions. We now summarise the costs of exponenti-
ation.

Implicit exponentiation in Projective coordinates: The cost of the
precomputation is about

(8DH + 4I + 14M) lg k (2)

and then each exponentiation would cost about(
8DH +

5
2
I +

1
4
(3 lg p + 13)M

)
lg k. (3)

Explicit exponentiation in Affine coordinates: The precomputation
cost is

(1I + 4M) lg k (4)

and then each exponentiation would cost

1
2
(1I + 3M) lg k. (5)

3.3 Complexity of the algorithm

The complexity analysis of Algorithm 1, presented in Appendix A, yields
the following theorem
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Theorem 1. Let G be a cyclic finite group of prime order p. Assume
an elliptic curve E over Fp has been found, whose B-smooth order is

|E| =
s∏

j=1

qj ,

where qj are not necessarily prime but are coprime of roughly the same
size. Then, solving a given instance of the DLP in G requires on average
about

O
(

log2 p

log B

)
DH +O

(
B log2 p

log B

)
M.

For comparison, we quote below the asymptotic costs obtained by [11]

O
(

log3 p

log B

)
DH +O

(
B log2 p

log B

)
M.

While the number of multiplications has remained the same, the num-
ber of DH-oracle calls has now become quadratic in the size of the group
G instead of cubic.

Note that, in order to get a lower bound on the cost of solving a
DHP instance, we no longer require the auxiliary elliptic curves’ orders
to be smooth. This is because as long as we assume that the DLP is an
exponentially hard problem then we do not mind if the reduction from the
DHP to the DLP is exponential too. This remark will allow us to choose
s = 3 later, and then the task will be to find smooth elliptic curves
whose orders are product of three coprime numbers. This is a significant
relaxation of the smoothness condition.

4 Implications on the security of the DHP

The implications of this reduction on the security of the DLP was treated
in [11]. We only comment on its implications on the security of the DHP,
as it is here where the work done in this paper matters most.

Let CDLP , CDHP denote the costs of solving the DLP and DHP on
an elliptic curve of size p, respectively. By Maurer’s reduction, we have
CDLP = NDH ·CDHP +NM, where NDH, NM are respectively the number
of calls to the DH-oracle and number of multiplications in G. Hence, for
NM � CDLP we get

CDHP =
CDLP −NM

NDH
∼ CDLP

NDH
.
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Since solving the DLP on an elliptic curve E is believed to take at
least

√
|E| steps [2], in general, then setting

TDH =

√
|E|

NDH
,

we see that TDH gives us a lower bound on the number of operations
required to break the DHP, assuming NM � CDLP . Hence, it is the value
of TDH that gives the exact security result, given the best auxiliary elliptic
curves we found.

The tightness of the security reduction is controlled by two values.
The first being the number of field multiplications NM, and second and
most important is the value TDH for the reason put forth earlier.

Tables 1 and 2 give the logarithms of these key values, lg NM and
lg NDH, for the curves in the SECG standard [16]. They also give lg

√
|E|,

the logarithm of the (believed) minimum cost of solving an instance of the
DLP. The column headed adv gives the number of security bits gained on
the previous results from [11]. The last rows of the tables are detached
to indicate that the values are theoretical and that no auxiliary elliptic
curves could be generated for them, mainly due to the sheer size of the
numbers that needed to be factored.

Table 1. Summary of results for curves of large prime characteristic

secp curve lg
√
|E| lg NM lg NDH lg TDH adv

secp112r1 55.9 46.3 11.4 44.4 6.4
secp112r2 54.9 45.6 11.4 43.5 5.5
secp128r1 64.0 51.9 11.6 52.4 6.4
secp128r2 63.0 51.2 11.6 51.4 5.4
secp160k1 80.0 62.9 12.0 68.0 8.0
secp160r1 80.0 62.9 12.0 68.0 6.0
secp160r2 80.0 62.9 12.0 68.0 7.0
secp192k1 96.0 73.8 12.2 83.8 7.8
secp192r1 96.0 73.8 12.2 83.8 6.8
secp224k1 112.0 84.7 12.4 99.6 6.6
secp224r1 112.0 84.7 12.4 99.6 7.6
secp256k1 128.0 95.5 12.6 115.4 7.4
secp256r1 128.0 95.5 12.6 115.4 7.4
secp384r1 192.0 138.8 13.2 178.8 8.8

secp521r1 260.5 184.9 13.7 246.8 -
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Table 2. Summary of results for curves of even characteristic

sect curve lg
√
|E| lg NM lg NDH lg TDH adv

sect113r1 56.0 46.4 11.4 44.6 6.6
sect113r2 56.0 46.4 11.4 44.6 6.6
sect131r1 65.0 52.6 11.7 53.3 6.3
sect131r2 65.0 52.6 11.7 53.3 6.3
sect163k1 81.0 63.5 12.0 69.0 7.0
sect163r1 81.0 63.5 12.0 69.0 7.0
sect163r2 81.0 63.5 12.0 69.0 7.0
sect193r1 96.0 73.8 12.2 83.8 6.8
sect193r2 96.0 73.8 12.2 83.8 6.8
sect233k1 115.5 87.0 12.5 103.0 7.0
sect233r1 116.0 87.4 12.5 103.5 7.5
sect239k1 118.5 89.1 12.5 106.0 8.0
sect283k1 140.5 104.0 12.8 127.7 8.7
sect283r1 141.0 104.3 12.8 128.2 7.2
sect409k1 203.5 146.5 13.3 190.2 8.2
sect409r1 204.0 146.9 13.3 190.7 -

sect571k1 284.5 201.0 13.8 270.7 -
sect571r1 285.0 201.3 13.8 271.2 -

Now, given our estimates for the number of group operations and DH-
oracle calls, we see that the smallest s for which NM �

√
|E| is s = 3.

The reduction cost is then (see Appendix A for general s)

(
149
6

lg p +
55
8

)
DH +

(
(
3
2

lg p +
13
2

)(3p1/3) + (
3
2

lg p +
511
4

) lg p

)
M.

As an illustration of the advantage gained over the previous results
presented in [11], we consider the security of DHP for secp256r1: The
DLP on this curve requires about 2128 computational steps, employing the
currently known methods. Using our auxiliary elliptic curve, we deduce
that the DHP cannot be solved in less than 2115.3 computational steps, as
opposed to 2108 from the previous paper. That is a gain factor of about
27.3 over the previously reported value in [11], see Table 1.

Since an amount of computation of about 2115.3 ≈ 5 · 1034 group
operations is infeasible with today’s computational power, one can draw
the conclusion that a secure implementation of a protocol whose security
depends on the intractability of the DHP on the curve secp256r1 can
safely be used, provided the DLP is really of the conjectured complexity.
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Note that the SECG standard [16] includes all the curves in the NIST
[12] and the most used ones in the ANSI [1] standards, covering the most
commonly used elliptic curves in practice.

5 Building the auxiliary elliptic curves

By the argument presented in the previous section, we need to construct
elliptic curves whose order is a product of three coprime numbers of
roughly the same size. That is qi ≈ p1/3. Muzereau et el. [11] used the
Complex Multiplication (CM) technique to build auxiliary elliptic curves
with smooth orders but this does not perform very well as p gets larger,
due to the prohibitive precision then needed for the calculations. In our
case, it proved to be computationally more efficient to generate random
elliptic curves and then test if their sizes are of the required form.

Let us estimate the probability that a number in a large interval cen-
tred around p is a product of three co-primes of roughly the same size.

Given three randomly chosen (positive) integers, we first want to com-
pute the probability that they are pairwise coprime. Let p be prime.
The probability that p divides two of these integers but not the third is
3/p2 · (1 − 1/p) and the probability that p divides all of them at once is
1/p3. So, the probability that p is not a common divisor of any two of
these integers is

1− 3
p2

(
1− 1

p

)
− 1

p3
= 1− 3

p2
+

2
p3

.

Hence, the probability that three randomly chosen integers are pairwise
coprime is ∏

p prime

(
1− 3

p2
+

2
p3

)
≈ 0.2867474.

The infinite product is clearly convergent but a closed form of its
value could not be obtained by the author. The numerical approximation
0.2867474 was obtained using PARI, [13].

For a large interval (m,n), the product should be taken only for p ≤
m−n. Now, since 1−3/p2+2/p3 is positive, strictly increasing approaching
1 from below, we deduce that the above estimate is a lower bound to the
actual probability we want.

In practice, for large p and corresponding Hasse intervals, the above
value proved to be a good estimate and it matched nicely with a Monte
Carlo simulation to estimate this probability over large Hasse intervals.
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For most cryptographic groups G from the SECG standard, auxiliary
elliptic curve E of the form y2 = x3−3x+b were successfully generated by
finding a suitable value of b. Appendix C specifies these values together
with the (prime) size of the group G, which is the characteristic of the
prime finite-field over which E is defined. The size of the elliptic curve
group |E| is given as a product of three coprime numbers of roughly equal
size.

When trying to generate the auxiliary elliptic curves, the main dif-
ficulty was to actually factor |E|. For large |G|, factorisation fails most
of the time and another random value of b is tried without any success.
This is the main reason for failing to produce the necessary data for the
three curves secp521r1, sect571r1 and sect571k1. However, two miss-
ing auxiliary elliptic curves from [11], viz. secp224k1 and sect409r1 were
successfully found. While first appears to have been just forgotten, the
second was due to the difficulty of generating the auxiliary elliptic curves
using the CM method.

6 Can we do better using Maurer’s approach

Here, it is argued that not much improvement can be made using Maurer’s
reduction, as described in Algorithm 1.

Just computing gx3
and (twice) checking the quadratic residuosity of

gx3−3x+b will cost at least

(2 + 2× lg(p/2))DH.

For s = 3 we find that the ratio of the estimated cost of this paper to this
bound is

149
6 lg p + 55

8

2 lg p
∼ 149

12
≈ 23.6.

Step 2 is not independent from the first so its cost can be reduced even
further, but the third step does not seem to have any corelation with the
previous steps. If we say that step 3 costs at least one exponentiation, to
compute one of the (|E|/qj)Q, then the ratio drops to

149
6 lg p + 55

8

(2 + 2/3) lg p
∼ 149

16
≈ 23.2.

Hence, it turns out that about 3 bits of security is all that can be
hoped for above the current work.
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7 Conclusion

Assuming the DLP is an exponentially hard problem, we have shown that
the Maurer-Wolf reduction with naive search yields a concrete security
assurance for the elliptic curves recommended by the current standards,
for which we could generate the auxiliary elliptic curves.

We have found two new auxiliary elliptic curves, missing from [11],
viz. secp224k1 and sect409r1. It remains open to find auxiliary ellip-
tic curves for the curves secp521r1, sect571r1 and sect571k1. These
will have sizes larger than 500 bits, which presents the current factoring
algorithms with a big challenge.
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A Complexity analysis of Algorithm 1

To simplify this task, each step of Algorithm 1 will be studied separately
and then the results will be added up to obtain the total average cost.
Step 1:

We first precompute g2i
for i = 1, . . . , blg pc. This will allow us to

compute any power gk with an average cost of 1
2 lg kM, using the double-

and-add algorithm of exponentiation. The precomputation requires blg pc
squarings, which costs

lg pM.

Without loss of generality, we set d = 0 at the start of this step. Then,
evaluating gz ← gx3−3x+b = gx3 · ((gx)3)−1 · gb requires

2DH + +1I + (4 +
1
2

lg b)M.

Note that

g(x+d)3−3(x+d)+b = gx3−3x+b · (gx2
)3d · (gx)3d2 · gd3−3d.

So for a second evaluation, we only need an extra(
3 +

3
2

lg(3d) +
3
2

lg(3d2) +
1
2

lg(d3 − 3d)
)
M ∼ (3 + 3 lg 3 + 6 lg d)M.

For the quadratic residuosity check we need to compute gz(p−1)/2
. First

pre-compute gz2i

for i = 1, . . . , blg p
2c, then the total cost is(

lg
p

2
+

1
2

lg
p− 1

2
)
DH ∼

(3
2

lg p− 3
2
)
DH.

Now, let ν be the number of iterations for step 1. Since Fp has (p−1)/2
quadratic non-residues, the probability for having ν = k iterations is

Pr[ν = k] =
(

p− 1
2p

)k−1

· p + 1
2p

.
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Hence, the expected number ν̄ of iterations for step 1 is

ν̄ =
∞∑

k=1

k · Pr[ν = k] =
p + 1
2p

∞∑
k=1

k

(
p− 1
2p

)k−1

=
2p

p + 1
≈ 2.

Thus the total average cost of this first step is lg pM + [2DH + 1I +
(4 + 1

2 lg b)M] + [(3 + 3 lg 3 + 6 lg d)M] + 2× (3
2 lg p− 3

2)DH. That is

(3 lg p− 1)DH + 1I + (lg p +
1
2

lg b + 6 lg d + 7 + 3 lg 3)M. (6)

Step 2: Following Algorithm 2, we treat three cases:

1. If p ≡ 3 (mod 4) then, using the precomputations from the previous
step, we can compute gz(p+1)/4

in an average of

1
2

lg
p + 1

4
DH ∼ (

1
2

lg p− 1)DH.

2. If p ≡ 5 (mod 8) then the computation of gz(p−5)/8
, gzs and gsu costs

(2 + 1
2 lg p−5

8 )DH ∼ (1
2 lg p + 1

2)DH on average.
If t = 1 then no further computation is needed and the total cost is
(1
2 lg p + 1

2)DH. Otherwise, t 6= 1 and then computing

gu·2(p−1)/4
= DH(gu, g(2(p−1)/4) mod p)

will cost an extra 1DH + (3
2 lg p−1

4 + 1
2 lg p)M.

Since t behaves like a random variable, the average cost for this case
is then (1

2
lg p +

1
2
)
DH +

1
2
(
1DH + (2 lg p− 3)M

)
.

3. Otherwise, we use the general (implicit) Tonelli and Shanks algorithm.
We first write p− 1 = 2e · w, where w is odd.
The initialisation step requires roughly (1

2 lg w−1
2 +2)DH. Finding the

exponent and reducing it requires (r+2)DH per iteration, and at most
e iterations are expected. Since r ≤ e, we will need e·(r+2) ≤ e·(e+2)
calls to the DH-oracle. Hence, the total number of the DH-oracle calls
is about (

1
2

lg
w − 1

2
+ 2 + (e + 2)e

)
DH.

Since p is odd, we can easily see that the expected value of e is

∞∑
k=1

k · Pr[e = k] =
∞∑

k=1

k · (1/2)k = 2.
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Bearing this in mind, we get w = p/2e = p/4 and the total cost is
then estimated to be (1

2
lg p +

17
2
)
DH.

Note: When concluding, we will use the weighted average of the costs
above, which is (1

2
lg p +

15
8
)
DH +

1
8
(2 lg p− 3)M. (7)

Step 3: Before entering the j-loop, we first pre-compute 2iQ for i =
1, . . . , blg |E|1−1/sc. This is enough since qj are of roughly the same size,
so qj ≈ |E|1/s and then |E|

qj
≈ |E|1−1/s.

Using equation (2), the cost of precomputation is found to be about

(8DH + 4I + 14M)
(

1− 1
s

)
lg |E|.

We also pre-compute 2iP for i = 1, . . . , blg |E|c in affine coordinates3.
According to equation (4), this costs about

(1I + 4M) lg |E|.

Now, let j be fixed (We want to analyse the cost of one j-loop). The
cost for computing Qj = (guj , gvj , gwj ) such that (uj , vj , wj) = |E|

qj
Q,

given by equation (3), is about(
8DH +

5
2
I +

1
4
(3 lg p + 13)M

)
γj ,

where we have set γj = lg(|E|/qj). For the evaluation of Pj = |E|
qj

P , in
affine coordinates, equation (5) gives(

1
2
I +

3
2
M

)
γj .

For the i-loop, we note that gw2
j and gw3

j need to be computed only
once for each j-loop, which costs 2DH.

Now fix i. Computing iR = (i−1)R+R, in affine coordinates, can be
achieved with one elliptic curve addition costing 1I + 3M, since (i− 1)R
has been computed and 1R = R is trivial.
3 We need i up to lg |E| as we will use these precomputed values in step 4 too.
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The cost of comparison is about 2× 3
2 lg pM = 3 lg pM.

On average there will be qj/2 i-loops for each j-loop, and therefore
the average cost of the i-loop is

qj

2
(
1I + 3(lg p + 1)M

)
.

Hence, the cost per one j-loop is

(8γj + 2)DH + (
1
2
qj + 3γj)I +

(
3
2
(lg p + 1)qj +

1
4
(3 lg p + 19)γj

)
M.

Noting that

s∑
j=1

γj =
s∑

j=1

lg
|E|
qj

= (s− 1) lg |E|,

we find that the total cost for step 3, without the precomputation costs,
is on average

(8(s− 1) lg |E|+ 2s)DH +

(
1
2

s∑
i=1

qj + 3(s− 1) lg |E|

)
I+

+

(
3
2
(lg p + 1)

s∑
i=1

qj +
1
4
(3 lg p + 19)(s− 1) lg |E|

)
M.

Adding the precomputation costs, we finally get the total cost of step 3

(8(s− 1/s) lg |E|+ 2s) DH +

(
1
2

s∑
i=1

qj + (3s + 2− 4
s
) lg |E|

)
I+(

3
2
(lg p + 1)

s∑
i=1

qj +
(1
4
(3 lg p + 19)(s− 1) + 18− 14

s

)
lg |E|

)
M.

(8)

Step 4: We use the Chinese Remainder Theorem to reconstruct k mod
|E| from k ≡ kj (mod qj), j = 1, . . . , s. We compute

k =
s∑

j=1

kj ·
|E|
qj
· q̂j (mod |E|),

where q̂j =
(
|E|
qj

)−1
mod qj . This requires sI+2sM operations. Note that

inversions are computed in Fq1 , . . . , Fqs .
For computing kP , in affine coordinates, we use the previously pre-

computed values of 2iP . So this exponentiation would cost only (1I +

17



3M)1
2 lg k. Taking k mod |E| to be |E|

2 on average, we find the average
cost of step 4 to be

1
2
(lg |E| − 1)I +

3
2
(lg |E| − 1)M. (9)

Conclusion : We conclude that the total cost for Algorithm 1 is(
8
(
s− 1

s

)
lg |E|+ 7

2
lg p + 2s +

7
8

)
DH

+

(
1
2

s∑
i=1

qj + (3s +
5
2
− 4

s
) lg |E|+ 1

2

)
I

+

 3
2(lg p + 1)

∑s
i=1 qj +

(
1
4(3 lg p + 19)(s− 1) + 39

2 −
14
s

)
lg |E|+

+5
4 lg p + 1

2 lg b + 6 lg d + 3 lg 3 + 41
8

M.

Neglecting small terms and making the approximation4 |E| ≈ p and
b ≈ p/2, the average cost of Algorithm 1 is then found to be

{(
8s− 8

s
+

7
2

)
lg p + 2s +

7
8

}
DH +

(
1
2

s∑
i=1

qj + (3s +
5
2
− 4

s
) lg p

)
I+

+

{
3
2
(lg p + 1)

s∑
i=1

qj +
(

1
4
(3 lg p + 19)(s− 1) +

85
4
− 14

s

)
lg p

}
M.

Note that if we take qj to be of roughly the same size and fix B to be
of this size then

s ≈ log |E|
log B

≈ log p

log B

and then
s∑

j=1

qj ≈
s∑

j=1

B = sB ≈ B log p

log B
=

B lg p

lg B
.

In practice, the cost of an inversion is at most 10M, see [2, p. 37].
Using this fact we have now established Theorem 1, stated on page 8.

4 |E| = p+1−t where t ∈ [−√p,
√

p] is the Frobenius trace, so E = p(1+(1−t)/p) ≈ p,
b ≈ p/2 is the average value of b, and d is small.
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B Explicit and implicit point multiplication

We use projective coordinates in step 3 of Algorithm 1. Below, we give
the formulae for implicit point multiplications on elliptic curves defined
over a field of prime characteristic greater than 3. The formulae for the
explicit case and their costs can be found in [2].

Doubling a point on an elliptic curve Let P = (X : Y : Z) and
Q = 2P = (X ′ : Y ′ : Z ′). (Recall that we chose a = −3)

Explicit doubling costs 8M, and the formula for implicit doubling is

gY 2
= DH(gY , gY )

gZ2
= DH(gZ , gZ)

gY 4
= DH(gY 2

, gY 2
)

gλ1 = {DH(gX · (gZ2
)−1, gX · gZ2

)}3 4m, 1i

gλ2 = (DH(gX , gY 2
))4 2m

gλ3 = (gY 4
)8 3m

gX′
= DH(gλ1 , gλ1) · (gλ2)−2 2m, 1i

gY ′
= DH(gλ1 , gλ2 · (gX′

)−1) · (gλ3)−1 2m, 2i

gZ′
= DH((gY )2, gZ) 1m

The cost of implicit doubling is therefore 8DH + 4I + 14M.

Adding two distinct points on an elliptic curve Let P = (X1 : Y1 :
Z1), Q = (X2 : Y2 : Z2) and R = P + Q = (X3 : Y3 : Z3).
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Explicit addition costs 16M, and implicit addition is done as follows

gZ2
1 = DH(gZ1 , gZ1)

gZ3
1 = DH(gZ2

1 , gZ1)
gZ2

2 = DH(gZ2 , gZ2)
gZ3

2 = DH(gZ2
2 , gZ2)

gλ1 = DH(gX1 , gZ2
2 )

gλ2 = DH(gX2 , gZ2
1 )

gλ3 = gλ1 · (gλ2)−1 1m, 1i

gλ4 = DH(gY1 , gZ3
2 )

gλ5 = DH(gY2 , gZ3
1 )

gλ6 = gλ4 · (gλ5)−1 1m, 1i
gλ7 = gλ1 · gλ2 1m
gλ8 = gλ4 · gλ5 1m

gλ2
3 = DH(gλ3 , gλ3)

gλ3
3 = DH(gλ2

3 , gλ3)
gλ7λ2

3 = DH(gλ7 , gλ2
3)

gX3 = DH(gλ6 , gλ6) · (gλ7λ2
3)−1 1m, 1i

gλ9 = gλ7λ2
3 · (gX3)−2 2m, 1i

gY3 = {DH(gλ9 , gλ6) · (DH(gλ8 , gλ3
3))−1}1/2 1m, 1i, 1sqrt

gZ3 = DH(DH(gZ1 , gZ2), gλ3)

The cost of implicit addition is therefore 16DH + 5I + 8M plus one
explicit square root extraction (i.e. in G).

For the square root extraction, we can either use general purpose
algorithms or simply raise to the power (p + 1)/2 ≡ 2−1 (mod p) in G,
which costs about 3

2(lg p− 1)M. Employing the latter approach, the cost
of addition becomes

16DH + 5I + (
3
2

lg p +
13
2

)M.

These results are summarised in the table on page 6.

C The auxiliary elliptic curve groups

C.1 Elliptic curve domain parameters over Fp

secp112r1
|G| = 4451685225093714776491891542548933
b = 2281028298640880380471050241629229
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|E| = 161721374756 · 170510910317 · 161437658771
secp112r2
|G| = 1112921306273428674967732714786891
b = 206183575593038548653640501094854
|E| = 105310592296 · 103373879227 · 102230759539
secp128r1
|G| = 340282366762482138443322565580356624661
b = 296382216672105127948448095681044076642
|E| = 7551279841752 · 6513487018025 · 6918394582717
secp128r2
|G| = 85070591690620534603955721926813660579
b = 73019542618206173582301377146548133543
|E| = 4222485329260 · 4376586107537 · 4603369401979
secp160k1
|G| = 1461501637330902918203686915170869725397159163571
b = 1014269469389219214184903107646149695236127481640
|E| = 11130827212809215 · 11394976247906837 · 11522811061606267
secp160r1
|G| = 1461501637330902918203687197606826779884643492439
b = 1231565154230325865757423073063591837019188457168
|E| = 11174885494467645 · 11008949181540889 · 11879833598755579
secp160r2
|G| = 1461501637330902918203685083571792140653176136043
b = 19878710007803495986099641303621720692363507758
|E| = 10573725526879272 · 11520572597065679 · 11997678180434227
secp192k1
|G| = 6277101735386680763835789423061264271957123915200845512077
b = 1094708638413029664629646177364452405008715587623144058105
|E| = 16352962116221436126 · 17705499411507224387 ·

21679764265977655387
secp192r1
|G| = 6277101735386680763835789423176059013767194773182842284081
b = 73398673199696175201906191077775951800878826985233013574
|E| = 17294274520438999164 · 19491494149529285201 ·

18621372472744345117
secp224k1
|G| = 2695994666715063979466701508701964034651032708312007454\
8994958668279
b = 24618590432167307909930264143550961204039679464315847760\
586750945971
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|E| = 25996959705011679445066 · 33448358726421720956541 ·
31004280361955770972381

secp224r1
|G| = 2695994666715063979466701508701962594045780771442439172\
1682722368061
b = 861814932527596025116148711861115855634130668475173705465\
8821880904
|E| = 29343613141744570024644 · 31798414632322188707593 ·

28893487975414890420151
secp256k1
|G| = 115792089237316195423570985008687907852837564279074904\
382605163141518161494337
b = 5860372311642139591868908991386138368626851126235832204\
6880666663466737354099
|E| = 47494383239999767419320745 · 45175228939925617688211569 ·

53967993991985944506666061
secp256r1
|G| = 115792089210356248762697446949407573529996955224135760\
342422259061068512044369
b = 4765589410146331676223652613201639325305727084000142383\
9782911257030924437529
|E| = 50851524730203743853228640 · 55497037692343386526156881 ·

41030339309908399787973083
secp384r1
|G| = 394020061963944792122790401001436138050797392704654466\
67946905279627659399113263569398956308152294913554433653942643
b = 8989010369169358436741847681979570105581243690574208263\
269556059650466158270056995485882025406947986682587367889624
|E| = 339869870481891547400546585225179213290 ·

349579759801582203099222931053813745553 ·
331634259739663319085318305031105092059

secp521r1
Not available due to hardness of factoring.

C.2 Elliptic curve domain parameters over F2m

sect113r1
|G| = 5192296858534827689835882578830703
b = 987637099543013757029545810016098
|E| = 178524038025 · 170996556499 · 170088694619
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sect113r2
|G| = 5192296858534827702972497909952403
b = 4583769363017101608245187708458901
|E| = 173146840968 · 166401825973 · 180213306239
sect131r1
|G| = 1361129467683753853893932755685365560653
b = 1258328605209306875070716696495675196119
|E| = 11939631029912 · 10689621208893 · 10664640354101
sect131r2
|G| = 1361129467683753853879535043412812867983
b = 358232342344119392058404230806453594114
|E| = 11466564749342 · 10619089660293 · 11178378760169
sect163k1
|G| = 5846006549323611672814741753598448348329118574063
b = 177673376973323847770354736271782956689983248537
|E| = 18247804538816661 · 19436468698941551 · 16482812332852169
sect163r1
|G| = 5846006549323611672814738465098798981304420411291
b = 1587404867306359898884819339154082781653585209324
|E| = 17869920899977912 · 17551363444944923 · 18639137321795381
sect163r2
|G| = 5846006549323611672814742442876390689256843201587
b = 2956283323980422889291478477370320953355731576940
|E| = 18200719603559559 · 17568086274440101 · 18282950480080931
sect193r1
|G| = 6277101735386680763835789423269548053691575186051040197193
b = 35338895987916163832451188982915353767627436600288649159
|E| = 16547960255111188472 · 19478515037898861263 ·

19474165359321867611
sect193r2
|G| = 6277101735386680763835789423314955362437298222279840143829
b = 441755957568112116066633401133360511847396492629731764429
|E| = 19387762096509288342 · 18577800791543661067 ·

17427583967788534019
sect233k1
|G| = 3450873173395281893717377931138512760570940988862252126\
328087024741343
b = 25122149205491735595137688390486707351370368980297988538\
30832766551245
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|E| = 155403009344278118554232 · 153385740717714666739125 ·
144772003913287824778231

sect233r1
|G| = 6901746346790563787434755862277025555839812737345013555\
379383634485463
b = 70409381647557063417408192870522518425634682631728828182\
1773151878529
|E| = 206799617030336682555416 · 195185490238925230580889 ·

170986465134593155152949
sect239k1
|G| = 2208558830972980411979121875928648149482165613217098488\
87480219215362213
b = 27650235244228507853355450435057293014412082341226059038\
361077531582683
|E| = 543814925489365240837668 · 610576362599114416948097 ·

665147345183743261991485
sect283k1
|G| = 3885337784451458141838923813647037813284811733793061324\
295874997529815829704422603873
b = 28183552298654367145273437136771989603707301993060462481\
46777682199067799961811453900
|E| = 16292450803352497273678817784 ·

15201361952350557812684097049·15687721231974421411325545219
sect283r1
|G| = 7770675568902916283677847627294075626569625924376904889\
109196526770044277787378692871
b = 71767445486180876851805109646321526052188997926851304655\
95965436250552932458637035413
|E| = 16932408152570400028840713015 ·

19857620455536755941661666843·23110686327095779427460999989
sect409k1
|G| = 3305279843951242994759576540163855199142023414821406096\
4232439502288071128924919105067325845777745801409636659061773\
1358671
b = 13877074019970923581077302466204224976964264102344770827\
4370480173588453714079223650928941369852833083698503107547969\
459853
|E| = 54923628603232455334113678631129360414184 ·

62030988940606152064529997029577410596573 ·
97015317302467505937973376689033052671801
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sect409r1
|G| = 6610559687902485989519153080327710398284046829642812192\
8464879830415777482737480520814372376217911096597986728836656\
7526771
b = 13817711446362728360145301111436486530925505507402770142\
258673028256246338430064054266470642072686266547046134340903\
3831354
|E| = 87268656040437200019781889318456334448900 ·

81063003278915230074335552542219354685229 ·
93445254974986510684197220630040488205129

sect571k1
Not available due to hardness of factoring.

sect571r1
Not available due to hardness of factoring.
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