Accelerated Verification of ECDSA Signatures

Adrian Antipal, Daniel Brown'!, Robert Gallant', Rob Lambert!, René
Struik!, and Scott Vanstone?

! Certicom Research, Canada
{aantipa,dbrown, rgallant,rlambert, rstruik}@certicom .com
2 Dept. of Combinatorics and Optimization, University of Waterloo, Canada
savansto@uwaterloo.ca

Abstract. Verification of ECDSA signatures is considerably slower than
generation of ECDSA signatures. This paper describes a method that can
be used to accelerate verification of ECDSA signatures by more than 40%
with virtually no added implementation complexity. The method can
also be used to accelerate verification for other ElGamal-like signature
algorithms, including DSA.

1 Introduction

The elliptic curve digital signature algorithm (ECDSA) [1, 3,7] is a widely stan-
dardized variant of the original ElGamal signature scheme. As is the case with
most ElGamal signature schemes, ECDSA has the property that signature ver-
ification is about twice as slow as signature generation (and many times slower
if the signer is afforded the luxury of precomputation). The opposite is true in
the RSA signature scheme with small encryption exponent e, where signature
verification is many times faster than generation. Thus speeding up ECDSA
signature verification is a problem of considerable practical importance.

This paper describes a new method that can be used to accelerate signature
verification for ECDSA and related signature schemes. The method is quite
simple, is independent of the techniques employed for field arithmetic and elliptic
curve arithmetic, and requires very little additional resources, such as memory or
code space. The advantages of the new method are most apparent for ECDSA*, a
slightly modified version of ECDSA. However, the advantages can also be enjoyed
if the signer appends a small number of bits (“side information”) to standardized
ECDSA signatures. We emphasize that, other than this extra information, the
new method does not require any changes to the standardized specifications of
ECDSA. Thus, the extended signatures are still conformant with the existing
ECDSA standards.

In the most favorable setting, if one uses an elliptic curve of prime order over a
prime field, only 1 or 2 bits of side information are needed to accelerate signature
verification by about 40%.

The remainder of the paper is organized as follows. In §2 we describe ECDSA*
and show that its security is equivalent to that of ECDSA. Some relevant mathe-
matical background is collected in §3. The new verification methods for ECDSA*
and ECDSA are presented and analyzed in §4. Summary conclusions appear in
§5.

2 Modified DSA and ECDSA

We next present a modification of DSA and ECDSA in the general setting of a
cyclic group.

1. System-wide parameters. Let G be a (cyclic) group of prime order n with
generator GG and identity element O. Let f : G — Z,, be a suitable conversion
function. Let H : {0,1}* — Z,, be a collision-resistant hash function.

2. Initial set-up. Each communicating party A selects a random integer d €
[1,n — 1] and publishes its public key @ = dG. The parameter d is kept
private to A.

3. Signature generation.

Input: Message m € {0,1}*, private key d.

Output: Signature (R, s).

ACTIONS:

(a) Select a random integer k € [1,n — 1]. Compute R := kG and r := f(R).
(b) Compute s € Z,, from the equation H(m) = sk — dr (mod n).

(¢) If r=0o0r s =0, go to Step 3a; otherwise, return (R, s).

4. Signature verification.

Input: Signature (R, s), message m € {0,1}*, public key Q € G associated

with entity A.

Output: Acceptance or rejection of signature as originating from A.

ACTIONS:

(a) Compute r := f(R).

(b) Verify that r and s are integers in the interval [1, n—1]. If any verification
fails, return ‘reject signature’.

(c) Verify that R = s~!(eG + rQ), where e := H(m). If verification fails,
return ‘reject signature’; otherwise, return ‘accept signature’.

Note 1. The function f is usually defined over a superset of G. If so, one can
usually evaluate f(R) without explicitly checking that R € G first, since if the
verification equation holds and if s € Z,, then R € G (since G, Q € G).

Observe that if the signature verification equation holds, then s~ (eG+rQ) = R
and, in particular, f(s=*(eG + rQ)) = f(R) = r. The original scheme is the
one with signature (7, s) and verification equation f(s™1(eG + rQ)) = r, rather
than the corresponding quantities (R, s) and s~!(eG +rQ) = R in the modified
scheme.

It is easy to see that, in either scheme, a signature o obtained from the signature
generation algorithm with input (m,d) is always accepted by the corresponding
signature verification algorithm with input (o, m, Q), where Q = dG.

The following result shows that the original and the modified schemes are equally
secure.

Theorem 2. Consider the original and the modified signature schemes. The
following statements are equivalent:

1. (r,s) is a valid signature with respect to (m,Q) in the original signature

scheme;
2. (R,s) is a valid signature with respect to (m, Q) in the modified signature
scheme for precisely one point R in the set o(r) :={X € G | f(X) =r}.

Moreover, one can efficiently convert a valid signature in either scheme to a valid
one in the corresponding scheme. Thus, the original and the modified schemes
are equally secure.

Proof. Let R := s 1(eG+rQ) for some s € Z. One has R € G, since G, Q € G.
It follows that R € ¢(r) if and only if f(R) = r. The result now follows by
comparing the conditions under which either scheme accepts signatures. O

We will exploit the relationship between a signature scheme and its modified
scheme in the remainder of the paper. In particular, we are interested in specific
instantiations that correspond to DSA and ECDSA.

DSA and DSA*

The DSA* scheme is an instantiation of the modified signature scheme with
the following system-wide parameters: G C Z, is a subgroup of prime order
n of the multiplicative group Z;, where p is a suitably chosen prime num-
ber, and |Z,| = p — 1 = nh. The conversion function f : Z, — Z, is de-
fined by f(z) := ((z mod p) mod n). We define the hash function H by
H(z) := SHA-1(x) (mod n). For these parameters, the original scheme cor-
responds to the Digital Signature Algorithm (DSA) as standardized in [3].

ECDSA and ECDSA*

The ECDSA* scheme is an instantiation of the modified signature scheme with
the following system-wide parameters: G C E(F,) is a subgroup of prime or-
der n of some suitably chosen elliptic curve group E(F,), F, is a finite field,
and |E(F,)| = nh. (We assume h is small, so n =~ ¢.) The conversion func-
tion f : E(Fy) — Z, is defined by f(z,y) := T (mod n), where (x,y) is an
elliptic curve point in affine representation and where 7 is the standard® in-
teger representation of the field element x € F,. We define the hash function
H by H(z) := SHA-1(z) (mod n). For these parameters, the original scheme
corresponds to the Elliptic Curve Digital Signature Algorithm (ECDSA) as stan-
dardized in [1, 3].

3 see, e.g., [1]

3 Mathematical Preliminaries

In this section, we introduce some well-known results from number theory that
facilitate the exposition in the rest of the paper.

Definition 3. (Simultaneous Diophantine Approzimation Problem)

Let &1,...,& € R, let € > 0, and let B be a positive integer. Find integers
Di,s-..,Pe,q with q € [1, B] such that

bi

-2
q

gg for alli,1 <i <. (1)

This problem has a solution with € > B~1/¢ as was shown by Dirichlet [2] based

on an argument involving the pigeon-hole principle.

Theorem 4. [2], [6, Theorem 200] Let &1,...,& € R and let B be a positive

integer. Then the system of inequalities

_bi
q

&i

1
< — foralli,1 <i</
qB

has an integer solution with p1,...,pe,q € Z and q € [1, BZ].

We are mainly interested in the following corollary, which states that integers in
Z,, can be written as rational numbers involving integers that are significantly
smaller (in absolute value) than n.

Corollary 5. Let ay,...,a¢ € Z and let B be a positive integer. Then the sys-
tem of congruence relationships

v(ag,...,0p) = (u1,...,ur) (mod n)
has an integer solution with |uyl, ..., |u/ <n/B and v € [1, BY].

Proof. We apply Theorem 4 with &; := «;/n. Let p1,...,pe, q be integers with
q € [1, B], such that

Q; P

1
< — foralli,1 <i<V/.
- . 5 forallil<i<

q

Consequently, one has
|ga; —pin| <n/B foralli,1 <i</.

Now, define u; := qa; — p;n and v := ¢. Since vo; = u; (mod n), the result
follows. a

We give some examples that turn out to be useful later on. All examples assume
that n is a prime number and that B’ < n, so as to ensure that v is invertible
modulo n. We will ignore rounding issues involving the parameter B, since these
obscure the exposition and are irrelevant in our applications (which use very
large integers n).

Ezample 6. (¢ = 1) Let n be a prime number. Any integer © € Z, can be
written as = u/v (mod n), where u and v are integers such that |u| < nt=¢
and 1 < v < n® (take B := n® with 0 < ¢ < 1). In particular, one may have
lul < vnand 1 < v < /0 (take € := 1) or |u| < n?? and 1 < v < ¢/n (take
e:=1/3).

This example can be generalized as follows.

Ezample 7. (¢ > 1) Let n be a prime number. Any integers z1,...,x¢ € Zy,
can be written as z; = u;/v (mod n) (1 < i < ¥¢), where uy,...,up, and v are
integers such that |uyl,...,|us] < n'=° and 1 < v < n’® (take B := n® with
0 < & < 1/¢). In particular, one may have |uyl, ..., |ue] < n®/“*D and 1 < v <
n (D) (take € := 1/(£ + 1)) or |ual,. .., |ue| < n?¥/CHD and 1 < v < /(41
(take e :=1/(2¢+1)).

It is well-known that the problem of finding good solutions to the simultane-
ous Diophantine approximation problem is equivalent to the problem of finding
‘short’ vectors in a particular lattice. We make this statement more precise and
(for completeness) provide a short proof.

Theorem 8. [8] Let &,...,& € R, let 0 < € < 1, and let B be a positive
integer. Consider the lattice L(A) = {xA | x € Z'T'} that is generated by the
rows of the matriz A defined by

1000
0100
A=
0--0 1 0
&1 & - & ¢/B

The lattice L(A) has a nonzero vector'y with (small) norm ||y|ls < € if and only
if the simultaneous Diophantine approzimation problem defined by Equation (1)
has an integer solution p1,...,pe,q € Z with q € [1, B].

Proof. Let p1,...,pe,q be integers, with ¢ € [1, B], such that the system of
inequalities defined by Equation (1) is satisfied. Then y = xA, with x :=
(—=p1,...,—pe,q), has norm ||y||eo < ¢, since y = (¢€1 — p1,-.-.,9E — pe, ge/ B).
Conversely, if y = (¢€1 — p1,...,9& — pe,qe/B) has norm ||y|lec < &, then
lg| € [1,B] and p1,...,pe,q (or their negatives, if ¢ < 0) are a solution to the
system of inequalities defined by Equation (1). a

Thus, one can use any algorithm that finds ‘short’ vectors in lattices to find good
solutions to the simultaneous diophantine approximation problem.

Although the L3 lattice basis reduction algorithm is commonly used to find short
vectors, our ultimate goal is to improve the time to verify a signature, and the
L? algorithm may be too cumbersome to meet this goal. Later, we wish to write

an element x € Z,, as ¢ = u/v (mod n), where u and v are integers such that
|u| < v/n and |v| < y/n, as in Example 6. We outline how to use the Euclidean
algorithm directly to find w and v, and refer the reader to [4] for more details.

When the Extended Euclidean Algorithm is used to find the greatest common
divisor of n and x (which is 1, since n is prime), the algorithm produces a
sequence of equations

sin+tix=r; fori =0,1,2,..., (2)

where so = 1,t0 =0,r9=n,s1 =0,t; =1,r, =z, and r; > 0 for all 7. At each
step of the algorithm, the value of |r;| decreases, and the extended Euclidean
algorithm stops when this value becomes 1. At that iteration ¢ of the algorithm
when 7; first becomes less than y/n, it can be shown that very likely the value
of |t;] is also close to /n. Choosing v = r; and v = t;, we see from (2) that
x = u/v (mod n), and so we have found appropriate values of u and v.

The procedure above produces integers u and v with |u|, |v| ~ y/n such that z =
u/v (mod n). It is easy to see that the same procedure can be used to write z =
u/v (mod n) with |u| ~ n?/3 and |v| ~ n'/3 or, more generally, with |u| ~ n'=¢
and |v| ~ n® (where 0 < € < 1). Thus, all representations of an integer x € Z,
described in Example 6 can be realized using the extended Euclidean algorithm.
This procedure can be generalized to produce simultaneous representations of
integers x1, ..., Ty € Zy, in this format, as described in Example 7, using lattice
basis reduction techniques for (£+1)-dimensional lattices. This can be done quite
efficiently for ¢ = 1,2, 3 using, e.g., the techniques described in [9].

4 Fast Verification of ElGamal-Like Signatures

In this section, we describe a method for considerably speeding up the verifi-
cation of signatures in ElGamal-like signature schemes, as described in §2. We
then exploit the relationship between these signature schemes and their modified
schemes to explore speed-ups of signature verifications in the latter. Although
our method applies quite generally, we are mainly interested in the concrete
speed-ups of signature verifications in ECDSA* (§4.1) and ECDSA (§4.2).

For the modified signature schemes, checking a signature (R, s) over some mes-
sage m relative to public key @ involves checking that s~1(eG +rQ) = R, where
e := H(m). Here, the point G is a system-wide parameter and can be consid-
ered fixed, while the points @ and R cannot be considered fixed, since these
vary according to signer and message. The main idea of the paper is that one
may replace this equation by any (nonzero) scalar multiple hereof and evaluate
the transformed equation instead. Thus, one may replace the original signature
verification equation by

(ves ™ MG + (vrs™HQ —vR = O (3)

for any v € Z). In particular, if one chooses v such that both v and w :=
vrs~!(mod n) are integers that are significantly smaller than n, such as having
only half the bit-length of n, one can often considerably speed-up the computa-
tion of the left-hand side of this equation and, thereby, the verification itself. The
potential acceleration is suggested by the observation that for most groups G of
practical interest to us, the cost of computing a multiple kP of some unknown
point P € G is proportional to the bit-size of the scalar multiple & involved. If
P is a fixed point and some storage is available, one can accelerate the point
multiplication kP by precomputing some data that depends solely on P and
storing this for subsequent use. If P is an unknown point, similar acceleration
techniques can be used, but are less effective, since one cannot amortize their
cost over time. A similar observation can be made regarding the cost of multiple
point multiplications, where one computes a linear combination of points in G
and can accelerate the computation by carrying out common elements hereof
only once, rather than for several points separately. Also here, the cost of com-
puting a multiple point multiplication usually depends on the maximum bit-size
over all scalar multiples corresponding to unknown points. This suggests that
one can indeed considerably accelerate the verification of Equation (3) by choos-
ing v € Z; such that the scalars u := vrs~!(mod n) and v corresponding to
variable points Q and — R, respectively, both have relatively small bit-size.

One can find a suitable value for v by writing = := r/s (mod n) as z =
u/v (mod n), where u and v are integers of approximately half the bit-size
of n or, more generally, of 1 — ¢ and ¢ times the bit-size of n, respectively, where
0 < e < 1 (see Example 6). For efficient algorithms for computing v and v of
this form, see §3.

We now compare in more detail the cost of checking the original signature verifi-
cation equation with that of checking the transformed equation discussed above,

to give some more insight into the potential acceleration. We then give some
concrete speed-ups for ECDSA* and ECDSA in §4.1 and §4.2.

We denote by t the bit-length of n, i.e., t := [logy(n + 1)], where n is the order
of the group G. For convenience, we denote k ~ L iff |k| < L. We assume that
sufficient storage is available to store a few points of G.

We distinguish two cases, depending on whether a (nontrivial) fixed multiple of
the public key @ is available. This multiple of Q may be made available to the
verifier by including it in the signer’s certificate for Q.

Case 1: Only one point multiple of @) available (Q itself)

One can write the original signature verification equation in the following form:

AG + 1@ = R, where A\, ~ n, (4)

Similarly, one can write the transformed signature verification equation in the
following form:

2Go + MG1 +uQ —vR = O, where Ao, A1, u, v ~ y/n, (5)
where Gy := G and where G := 2[*/21G is a precomputed multiple of G.

Notice that the transformed equation involves 4 half-size point multiplications,
whereas the original equation involves 2 full-size point multiplications.

Case 2: Two point multiples of @) available (Q itself and another multiple of
this point)

One can write the original signature verification equation in the following form:

MGo + MG+ p0Qo + 11Q1 = R, where Ao, A1, po, 1 ~ /n, (6)

where Gy := G, where G; = 2[*/21G is a precomputed multiple of G, where
Qo := Q, and where Q; := 2[t/21Q is a precomputed multiple of Q.

Similarly, one can write the transformed signature verification equation in the
following form:

MGo+ MG+ AGa+uoQo+ui1Qr —vR = O, where Ao, A1, A2, ug, u1,v ~ /n,

(7)
where Gy = G, where G; := 2[*/31G and G, := 22[/31G are precomputed
multiples of G, where Qo = Q, and where Q, := 2[*/31Q is a precomputed
multiple of Q.

Notice that the transformed equation involves 6 third-size point multiplications,
whereas the original equation involves 4 half-size point multiplications.

4.1 Fast Verification of ECDSA* Signatures

In the previous section, we obtained a potential acceleration of signature veri-
fications for a family of ElGamal-like signature schemes. Here, we explore the
concrete speed-up for ECDSA* .

From the case analysis in the previous section, it follows that the transforma-
tion of the signature verification equation significantly reduces the size of the
scalar multiples involved in this equation (if one can store a single precomputed
multiple of the generator of G). As a result, we might expect a considerable
speed-up of signature verifications, since this eliminates a large number of point
doubling operations, a common element in multiple point multiplications. We
expect significant improvements, both for prime curves and for random binary
curves. For Koblitz curves, we can only expect a marginal improvement, since
for those curves the Frobenius map (which assumes the role of point doubling)
comes almost for free.

A precise analysis is difficult to give, due to the large number of point multiplica-
tion methods available. We compare the cost of checking the original signature
verification with that of checking the transformed equation by combining the
Non-Adjacent Form (NAF) representation for scalars with the multiple point
multiplication method, and using the Joint Sparse Form (JSF); for details, see
[10], [5, Chapter 3, §3.3.3]. We distinguish the same two cases as in the previous
section.

We adopt the following notation: By A and D, we denote the cost of a single
point addition and point doubling operation, respectively. By m, we denote the
bit-length of finite field elements in Fy, i.e., m := [log, ¢|. We assume the elliptic
curve E(F,) to have a small co-factor h, so that m =~ [log,n]. As before, we
denote k ~ L iff |k| < L.

Case 1: Only one point multiple of @ available (Q itself)

Consider the original signature verification equation in the format of Equa-
tion (4) and represent A and p in JSF. Compute the left-hand side of this equation
via multiple point multiplication. Since A, i ~ n, this gives a running time of
approximately (m/2+2)A+mD operations. Similarly, consider the transformed
signature verification equation in the format of Equation (5) and represent Ao
and A1, resp. © and v, in JSF. Compute the left-hand side of this equation via
multiple point multiplication. Since Ag, A1, u, v ~ y/n, this gives a running time
of approximately (m/2+4)A+ (m/2)D = (2-m/4+4)A+ (m/2)D operations?.

Case 2: Two point multiples of @) available (Q itself and another multiple of
this point)

Consider the original signature verification equation in the format of Equa-
tion (6) and represent Ao and A1, resp. po and pq, in JSF. Compute the left-hand
side of this equation via multiple point multiplication. Since Ao, A1, fto, 1 ~ /7,
this gives a running time of approximately (m/2 +4)A + (m/2)D = (2-m/4 +
4)A+ (m/2)D operations. Similarly, consider the transformed signature verifica-
tion equation in the format of Equation (7) and represent Ao and A1, A2 and uo,
resp. u1 and v, in JSF. Compute the left-hand side of this equation via multiple
point multiplication. Since Ag, A1, A2, ug, u1,v ~ </n, this gives a running time
of approximately (m/2+6)A+ (m/3)D = (3-m/6+6)A + (m/3)D operations.

Rough analysis for P-38/ curve

We provide a rough analysis of the relative efficiency of the ECDSA* verification
procedure described in this paper compared to the traditional procedure for
ECDSA verification. Our analysis is based on the elliptic curve curve P-384

4 Here, 4 point additions account for computing Go + G1 and Qo &+ Q1, which is
necessary for using the 2 JSFs.

defined over a 384-bit prime field and specified by NIST [3]. All NIST prime
curves have co-factor h = 1, so by Hasse’s theorem, the bit-size of the order of
the cyclic group G is approximately m = 384. We consider each of the scenarios
described under Case 1 and Case 2 above. We ignore the relatively minor cost
of running the Extended Euclidean Algorithm to compute the half-size integers
u and v.

We assume the points to be represented using Jacobian coordinates and that the
cost S of a squaring in Z, is slightly less than the cost M of a multiplication (we
take S &~ 0.8M). With Jacobian coordinates, one has A ~ 8M + 35S and D =
4M + 4S5 (see [5, Table 3.3]). Substitution of S ~ 0.8 M now yields A ~ 10.4M
and D ~ 7.2M and, hence, D/A =~ 0.69.

If the verifier has access only to the public key @ of the signer and not to a
multiple hereof (Case 1), the cost of verifying the signature using the traditional
verification method is roughly 194A + 384D =~ 459A, while the corresponding
figure for the new method is 196 A+ 192D = 328 A. As a result, the new method
yields a speed-up of 40% over the old method.

Similarly, if the verifier has access to the public key @ of the signer and a suitable
multiple hereof (Case 2), the corresponding figures are roughly 1964 + 192D =
328 A for the traditional method and 198 A4 + 128D = 286 A for the new method.
Thus, in this case, the new method yields a speed-up of 15% over the old method.

Implementation on ARM7TTDMI platform

We implemented the fast verification procedure of ECDSA* signatures on an
ARMTTDMI processor running at a 50MHz clock rate and compared this with
the traditional ECDSA verification procedure. We assumed the same scenario as
considered in the rough analysis above (in particular, we chose the same curve
P-384), but did consider the cost of computing the half-size integers u and v
required for fast verification. We restricted ourselves to Case 1. The following
data was obtained:

signature generation time: ~100 ms;

traditional ECDSA verification time: 209 ms;

fast ECDSA* verification time: 154 ms.
speed-up: 36%.

The experimental data supports the rough analysis we did above for the signature
verification step.

4.2 Fast Verification of ECDSA Signatures

In the previous section, we obtained a speed-up of ECDSA* signature verifica-
tion. To make this efficiency improvement applicable to ECDSA as well, one
needs to convert the ECDSA signature (r,s) over some message m to a cor-
responding ECDSA* signature (R, s) over the same message, i.e., one needs to

reconstruct the ephemeral elliptic curve point R from the signature component r.
Obviously, one could compute R := s~ !(eG+rQ) directly, but this has the same
computational cost as the traditional method for ECDSA signature verification
and can, therefore, never yield an acceleration of signature verification. In this
section, we consider alternative and more efficient mechanisms for reconstructing
R from r. First, however, we provide a general framework.

By Theorem 2, one has R € {(z,y) € G | f(T) = r} (the set of candidate points).
Notice that for each r # 0, the set of candidate points has even cardinality, since
elliptic curve points and their inverses have the same z-coordinate (and G has no
points of order 2). Thus, one cannot uniquely extract the value of R from the set
of candidate points alone, since candidate points come in pairs (R, —R). It turns
out, however, that in most cases there is only 1 candidate point (up to taking
inverses in G). In all cases, one can apply the fast ECDSA* verification procedure
for each candidate point that is not discarded based on some side information
and accept the ECDSA signature if and only if any verification using such an
admissible point succeeds. By Theorem 2, this alternative procedure is equivalent
to the original signature verification procedure for ECDSA.

The ECDSA verification cost via this procedure depends on the number of ad-
missible points. In particular, if the set of admissible points is a singleton set,
then ECDSA signature verification has the same cost as ECDSA* signature ver-
ification and the speed-up determined in §4.1 is attainable. We are now ready
to discuss alternative mechanisms for reconstructing R from r.

Append explicit side information to ECDSA signatures

A simple method to make sure that the set of admissible points contains only one
point is to supplement a traditional ECDSA signature (r, s) with some additional
information, so as to ensure that one can uniquely (and efficiently) reconstruct
R from r and this side information.

To illustrate this, consider an elliptic curve E(Z,) of prime order n defined over
the prime field Z,. We consider two cases. If n > ¢, the z-coordinate of R is equal
to r. Thus, a single bit of side information is sufficient to efficiently determine the
y-coordinate of R. If n < ¢, one can deduce from Hasse’s theorem that g < 2n.
Hence, the z-coordinate of R is equal to r or r 4+ n, with the correct value being
determined by a single extra bit of information. Thus, in this case, two bits of
side information are sufficient to efficiently determine the point R.

More generally, if the elliptic curve E(F,) defined over the finite field F, has co-
factor h, the xz-coordinate of R can assume at most h + 1 values (h if |[E(F,)| >
q). Thus, [logy(h + 1)] + 1 bits of side information are sufficient to efficiently
determine the point R.

Since most elliptic curves used in practice have a small co-factor (e.g., the NIST
curves [3] have co-factor h = 1 (for prime curves) or h = 2,4 (for binary curves)),
adding a few bits of side information suffices to uniquely reconstruct R from r.

Observe that sending r with side information is similar to sending R in com-
pressed form, but allows the use of ECDSA, rather than requiring the use of the
modified scheme ECDSA* .

The general procedure for ECDSA signature is described below.

Accelerated ECDSA signature verification.

Input: Signature (r, s), message m € {0,1}*, public key Q € G.
Output: Acceptance or rejection of signature relative to Q.
ACTIONS:

1. Verify that r and s are integers in the interval [1,n — 1]. If any verification
fails, return ‘reject signature’.

2. Compute the set of candidate points ¢(r) := {(z,y) € G | f(T) =r}.

3. Determine the set of admissible points R := ®(r) C ¢(r) by filtering out
those candidate points that do not satisfy side constraints. If this set is
empty, return ‘reject signature’.

4. Compute e := H(m).

5. Write := r/s as * = u/v (mod n), where u and v are integers that are
significantly smaller than n.

6. Select an arbitrary point R € R. Compute S := (v-es)G +uQ — vR. Set
R :=R\{R}.

7. While (S # O and R #) do the following:

(a) Select an arbitrary point R’ € R.
(b) Compute S’ := S+ v(R — R/).
(c) Set (R,S):=(R',S’) and R:=R\ {R}.

8. If S = O, return ‘accept signature’;otherwise, return ‘reject signature’.

Analysis of computational workload

The computational workload of the above algorithm is determined by the cost
of computing admissible points and the cost of ECDSA* signature verifications.
If an ECDSA signature gives rise to ¢t admissible candidate points, then the
expected workload of the above algorithm is (¢ + 1)/2 ECDSA* verifies. For
example, if h = 1 and no side information is available, then ¢ = 2 and the average
workload is 1% ECDSA* verifies, which is still less than a traditional verification.
If side information is available and ¢ = 1 then only a single ECDSA* verification
is required. In general, it can be shown that there are at most 2(h + 1) possible
choices for the R-value. Clearly, the most favourable case is where ¢ = 1. Note
that the incremental cost of computing another ECDSA* verification is the cost
of computing v(R — R').

5 Conclusions

We have presented a method for accelerating ECDSA verification by roughly
40%. The only price one pays for the speedup is that a small number of bits
needs to be appended to traditional ECDSA signatures. We emphasize that this
change does not affect conformance to the existing ECDSA standards.

The speedups are also applicable to verification of DSA signatures o = (r, s).
However, the side information one needs to efficiently recover R from r will be
greater than the size of o itself. Thus the advantage that DSA enjoys over RSA
in terms of signature size is lost.

It is also evident that the speedups apply to the elliptic curve versions of many
other variants of the ElGamal signature scheme.

References

1. ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry:
The Elliptic Curve Digital Signature Algorithm (ECDSA), American National
Standard for Financial Services, American Bankers Association, January 7, 1999.

2. G.L. Dirichlet, ‘Verallgemeinerung eines Satzes aus der Lehrere von Kettenbriichen
nebst einigen Anwendungen auf die Theorie der Zahlen,” Bericht iiber die zur
Bekanntmachung geeigneter Verhandlungen der Koniglich Preussischen Akademie
der Wissenschaften zu Berlin, pp. 93-95, 1842.

3. FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Process-
ing Standards Publication 186-2, US Department of Commerce/National Institute
of Standards and Technology, Gaithersburg, Maryland, USA, January 27, 2000.
(Includes change notice, October 5, 2001.)

4. R. Gallant, R. Lambert, S.A. Vanstone, ‘Fast Point Multiplication on Elliptic
Curves with Efficient Endomorphisms,’ in Proceedings of Advances in Cryptology —
CRYPTO 2001, Lecture Notes in Computer Science, Vol. 2139, pp. 190-200, 2001.

5. D.R. Hankerson, A.J. Menezes, S.A. Vanstone, Guide to Elliptic Curve Cryptogra-
phy, New York: Springer, 2003.

6. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edi-
tion, Oxford: Oxford University Press, 2000.

7. D.J. Johnson, A.J. Menezes, S.A. Vanstone, ‘The Elliptic Curve Digital Signa-
ture Algorithm (ECDSA),” International Journal of Information Security, Vol. 1,
pp. 36-63, 2001.

8. L. Lovasz, ‘An Algorithmic Theory of Numbers, Graphs and Convexity,” CBMS-
NSF Regional Conference Series in Applied Mathematics, Band 50, STAM Publi-
cations, 1986.

9. P. Nguyen, D. Stehlé, ‘Low-Dimensional Lattice-Basis Reduction Revisited,” in
Proceedings of Algorithmic Number Theory — ANTS VI, Lecture Notes in Computer
Science, Vol. 3076, pp. 338-357, 2004.

10. J. Solinas, ‘Low-Weight Binary Representations for Pairs of Integers,” Centre for
Applied Cryptographic Research, Corr 2001-41, University of Waterloo, Ontario,
Canada, 2001.

