
The Full Cost of Cryptanalytic Attacks

Michael J. Wiener

20 Hennepin St., Nepean, Ontario, Canada K2J 3Z4
michael.wiener@sympatico.ca

Abstract. An open question about the asymptotic cost of connecting
many processors to a large memory using three dimensions for wiring is
answered, and this result is used to find the full cost of several cryptan-
alytic attacks. In many cases this full cost is higher than the accepted
complexity of a given algorithm based on the number of processor steps.
The full costs of several cryptanalytic attacks are determined, including
Shanks’ method for computing discrete logarithms in cyclic groups of
prime order n, which requires n1/2+o(1) processor steps, but when all
factors are taken into account, has full cost n2/3+o(1). Other attacks an-
alyzed are factoring with the number field sieve, generic attacks on block
ciphers, attacks on double and triple encryption, and finding hash colli-
sions. In many cases parallel collision search gives a significant asymp-
totic advantage over well-known generic attacks.

Key words. Cryptanalysis, Discrete logarithm, Factoring, Number field
sieve, Parallel collision search, Meet-in-the-middle attack, Double en-
cryption, Triple encryption, Hash collision.

1 Introduction

The resources required to carry out an algorithm are often described in terms
of the number of steps and amount of memory required. For example, some
algorithms with input n may require Θ(n) steps and Θ(n) memory elements.1

Does this make the algorithms’ overall cost Θ(n), Θ(n2), or something else? The
purpose of this paper is to show how requirements for the number of steps and
memory can be combined in a meaningful way to give an overall assessment of
the cost of an algorithm.

Current practice in stating the cost of an algorithm is very processor-centric;
we count the total number of operations performed by all processors. An ex-
ception is the work of Amirazizi and Hellman on time-memory-processor trade-
offs [1], which is closely related to the topic of this paper.

To examine this focus on processors, we take a superficial look at the com-
ponents that make up a processor: memory elements, logic gates, and lengths
of wire, among other components. Each clock cycle these components perform
1 We use the usual asymptotic notation O(·) for an upper bound, Ω(·) for a lower

bound, Θ(·) for a tight bound, and y(n) = o(x(n)) means that y(n)/x(n) goes to
zero as n goes to infinity.

their functions: memory elements maintain or change state, logic gates perform
boolean operations, and wires carry current. Viewed at this level, there is lit-
tle difference among processors, memory chips, and communications devices; all
contain memory elements, logic gates, and wires. All of these components per-
form a “step” every clock cycle regardless of whether they are considered part
of a processor, memory device, or communications device. All of these steps
count in measuring the cost of an algorithm performed on a particular collec-
tion of hardware. The reader need not become concerned at this point that we
will engage in tedious attempts to count all components and their steps. We are
concerned with asymptotics; some constant amount of computation may require
billions of component steps, but we will be satisfied to call its cost Θ(1).

To illustrate what it means to count all costs, consider the example of an
algorithm run on a processor in Θ(n) steps using Θ(n) memory. There are Θ(n)
components that each take Θ(n) steps, and it may seem harsh to say that the
full cost is Θ(n2), but that is the real cost if you hook up one lonely PC to a
large memory. This cost comes from a combination of the algorithm and the
way it is implemented. If the algorithm is parallelized across Θ(n1/2) processors
(all accessing the one large memory in parallel) so that the time is reduced to
Θ(n1/2), but there are still Θ(n) components (dominated by the memory), then
the full cost is reduced to Θ(n3/2). One may be tempted to say that only a small
fraction of the memory is actually doing anything at any one time, and that the
full cost should really be Θ(n). Unless the majority of the memory that is idle
could be used for something else, which seems unlikely, this is not a useful view.
If the entire memory is unavailable for other purposes for the full duration of
the algorithm execution, then its full cost should be charged during each unit of
time of the computation.

The full cost of an algorithm run on a collection of hardware is the num-
ber of components multiplied by the duration of their use. This is called the
throughput cost by Lenstra et al. [9], and is also used by Bernstein [2]. To say
something useful about an algorithm itself rather than the combination of the
algorithm and the hardware that implements it, we seek the implementation of
the algorithm that minimizes full cost. This often involves choosing the optimal
degree of parallelism. Another factor that can affect this full cost is the number
of instances of the algorithm run at once, called simultaneity by Amirazizi and
Hellman [1] who used the full cost approach.

In defense of the processor-centric method of measuring algorithm cost, it
sometimes turns out that improved attacks are found that reduce memory re-
quirements without changing the number of processor steps. An example is the
improvement in computing discrete logarithms in groups of prime order n from
the method attributed to D. Shanks by Knuth [7, p. 591], which requires storage
for n1/2 group elements, to Pollard’s rho method [15], which requires that only a
small constant number of group elements be stored (see Section 4). By counting
only processor steps in attacks when choosing key sizes, the cryptographer is be-
ing conservative. However, this should not be turned around to say that Shanks’
method and the rho method have the same full cost because they do not.

2

Throughout this paper the tight bound Θ(·) is used frequently instead of
the more familiar upper bound O(·). This should not be taken to mean that a
particular problem cannot be solved with less cost than the asserted tight bound.
What it means is that the particular approach taken to solving the problem
has the asserted cost. For example, multiplying two n-bit numbers is known to
require O(n log n) steps, but most implementations use a technique that takes
Θ(n2) steps.

The rest of this paper is organized as follows. In Section 2 we answer an open
question about the cost of connecting many processors to a large memory, and
objections to this cost analysis are discussed in Section 3. The cost analysis is
then used to assess the full costs of several types of cryptanalytic attacks: discrete
logarithm computation (Section 4), factoring (Section 5), attacking block ciphers
(Section 6), double encryption (Section 7), and triple encryption (Section 8), and
finding hash collisions (Section 9). For the attacks on encryption and multiple
encryption, only the basic electronic codebook mode is considered. Handschuh
and Preneel deal with attacks on multiple encryption with various modes of
operation [5].

2 Full Cost of Connecting Many Processors to a Large
Memory

For cryptanalytic attacks that require a large memory, we often require the use
of parallel processors to minimize the full cost of the attack. This leads to the
need to connect many processors efficiently to the same large memory. We are
concerned with the case where the processors repeatedly access random locations
in the large memory in parallel rather than the case where each processor is
operating within its own small section of the memory. To illustrate what we
mean by “parallel,” consider the case where 1000 small processors access a large
memory broken into 1000 blocks. If the processors generate a memory access
every 100 ns, then the memory must support 1000 memory accesses every 100 ns.
For most attacks, a processor need not be blocked while waiting for a read or
write operation to complete; many access requests can be dispatched with the
results returning sometime later, possibly out of order.

We consider first the case of n processors accessing n blocks of memory
at a high rate, and then deal with the more general case where the number of
processors and number of memory blocks are not equal, and the required memory
access rate may be lower.

2.1 Connecting n Processors to n Blocks of Memory

Figure 1 shows one way to connect eight processors to eight blocks of memory
using switching elements to take two streams of requests and sort them based on
one bit of the memory address. Only the components for sending the requests
are shown. A similar set of components is required to send data back to the pro-
cessors. The requests include three address bits indicating which memory block

3

is being accessed. The initial stream of requests from each processor contains
all memory addresses (shown as XXX). The first column of switching elements
sorts these requests (into addresses 0XX and 1XX) based on the most significant
memory block address bit. The second column sorts based on the second bit,
and the last column sorts based on the bottom bit.

processors memory

XXX

XXX

XXX

XXX

1XX

1XX

1XX

1XX

0XX

0XX

0XX

0XX

1XX

1XX

0XX

0XX

11X

11X

10X

10X

01X

01X

00X

00X

11X

10X

01X

00X

111

110

101

100

011

010

001

000

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

�
���*

����*

HH
HHj

HH
HHj

-

-

-

�
���*

�
�

���

�

J
J

J
J

JĴ

@
@

@@R

HH
HHj

-

Fig. 1. Switching network connecting processors to memory.

This architecture can be extended to n = 2k processors and memory blocks
using Θ(n log n) switching elements. This would seem to be the dominant cost,
but what about the wires? Amirazizi and Hellman treated the cost of the wires
as no more than a logarithmic factor times n, but left it as an open problem
requiring further study [1]. The linear arrangement of the processors and memory
elements in Fig. 1 is not optimal for minimizing wire length, but it is instructive
to analyze this case first. To count wire length, treat the columns of components
as being right beside each other so that only vertical distance is considered. Then
the wires connected to the processors and the wires connected to the memory
have length 0. The total length of wire connecting the first two columns of
switching elements is 4, and the total length of wire connecting the last two
columns of switching elements is 8, for a total of 12. For 16 processors and
memory blocks, the total wire length would be 8+16+32 = 56. In general for 2k

processors and memory blocks, the total wire length is 2k−1(2k−1− 1) = Θ(n2).
More than half of this total wire length is between the last two stages where
there are n wires of average length n/2. By packing the memory elements in
two dimensions, the average distance covered by the wires between the last two
stages can be reduced to Θ(n1/2) for a total wiring cost of Θ(n3/2). The total
volume of wire is proportional to its length, and therefore the volume of wire is
also Θ(n3/2), so that the wires have to be packed in three dimensions to limit
the longest wires to Θ(n1/2) in length. We cannot pack wires any tighter than
filling three dimensions, and thus the cost of wiring cannot be less than Θ(n3/2)

4

for this method of connecting processors to memory. The cost of wiring in this
network dominates all other costs including switching elements, processors, and
memory. The idea that wires dominate costs may be hard to believe at first, but
calling them “wires” is a little misleading. Very high speed communications over
even a short distance such as a meter requires more than just a simple wire.

For optimal performance, the switching elements in Fig. 1 cannot wait for
one memory access request to get to the next switching element before sending
another. The wires must be pipelined using repeaters or latches so that many
memory access requests can be in transit at one time.

Is it possible to reduce wiring costs below Θ(n3/2) with some different method
of connecting processors to memory? The surprising answer is that it is not
possible. Suppose that the total length of wire needed is Θ(n1+z) for some z ≥
0, and that the processors, memory, and switching network are packed into a
cube (see Fig. 2). Because the volume of wire is Θ(n1+z), the cube must have
edges of length Θ(n(1+z)/3). Assume that the memory blocks and processors
are distributed uniformly throughout the cube so that the cube can be divided
into three disjoint regions A, B, and C containing roughly equal numbers of
processors and memory blocks by parallel planes X and Y that are a distance
Θ(n(1+z)/3) apart. (These assumptions will be removed in the proof of the more
general result in Section 2.2.) About one-third of the memory access requests
from region A are destined for region C. Thus there are Θ(n) requests that must
be carried a distance Θ(n(1+z)/3). It may be possible to merge multiple streams
of requests onto a single wire (perhaps with fiber optics), but only a constant
amount of this is possible. It is necessary to run Θ(n) wires over the distance
Θ(n(1+z)/3) for a total cost of Θ(n(4+z)/3). We assumed initially that the wire
cost was Θ(n1+z). Solving (4 + z)/3 = 1 + z yields z = 1/2. Thus, the wiring
cost cannot be reduced below Θ(n3/2), which was achieved by the architecture
in Fig. 1.

� -

� -
A

B

C

X

Y

Fig. 2. Processors, memory, and switching network arranged in a cube.

Closely related to this result is Rosenberg’s work where he showed that
for several types of circuits of dimension n, the total area required in a two-
dimensional realization including wiring is n2+o(1), and the total volume required
in a three-dimensional realization is n3/2+o(1) [16].

To reduce wiring costs below the Θ(n3/2) bound requires that more than a
constant amount of information be carried through a constant volume, which
seems not to be possible with current wired and wireless technologies. One idea

5

for avoiding this limitation is to have the columns of switching elements commu-
nicate by firing photons directly to the next column [19]. This results in a more
than constant number of photons occupying each unit of space. However, if some
form of optic cable is required or repeaters are required, then Θ(n3/2) compo-
nents are needed. Thus, it seems likely that this idea can only give a constant
speed-up (but perhaps the constant is large).

To test whether the results so far seem reasonable, we move to the more
familiar context of interconnected computers. In this setting the processors are
the computers’ central processing units, and the large memory is the collective
memories in all the computers. Each computer generates a stream of memory ac-
cess requests to and from the memories of the other computers (and occasionally
its own). Each computer also satisfies external requests by either writing data
into its own memory or reading data from its memory and sending the result
back to the requesting computer. These computers may be connected by a local
area network or perhaps the internet. Does it make sense that the cost of con-
necting the computers exceeds the cost of the computers themselves? Imagine
that all internet-connected computers are each generating millions of memory
access requests per second. This is a much more demanding scenario than what
is handled by the current internet. Generally, data rates into browsers are in the
millions of bytes per day range rather than millions of bytes per second. Also,
browsers tend to collect data from a small number of servers per day, rather
than accessing millions of other computers per second. The internet would have
to be many orders of magnitude more expensive to handle this more demanding
task. The alternative is to use the internet as it is and have the problem being
solved take several orders of magnitude longer to complete.

2.2 General Case

To this point we have considered the case where each processor generates memory
requests at a data rate of Θ(1) bits per unit time. However, some cryptanalytic
attacks require a lower memory access rate. For example, if each processor gener-
ates a request of size log n every n units of time, we say that the memory access
rate per processor is (log n)/n. Also, the number of processors and number of
memory blocks may not be equal. A result about the total number of compo-
nents required in the general case is given in Theorem 1, whose proof makes use
of the following lemma.

Lemma 1. When n non-overlapping objects of unit area are in a plane, there
exist two parallel lines, top and bottom, at least a distance (n/5)1/2 apart such
that the total object area (excluding any gaps) above the top line is at least n/5,
and the total object area below the bottom line is at least n/5.

Proof. Choose any two parallel lines Y and Z that divide the total object area so
that three-fifths of the area is between the lines and the two regions outside the
lines each have one-fifth of the object area. Some of the objects may be split by
a line so that their areas are split across two regions. Let Y ′ and Z ′ be parallel

6

lines such that they are perpendicular to Y and Z and they divide the region
between Y and Z into three sub-regions with each sub-region holding one-fifth
of the total object area. The rectangle defined by the four lines must have area
at least n/5 because it contains object area n/5. One side of this rectangle has
to be at least (n/5)1/2 long. Therefore, one of the pairs of lines must be at least
(n/5)1/2 apart. Both pairs of lines are such that the two regions outside the lines
contain at least one-fifth of the object area, which completes the proof. ut

The following theorem gives the total component cost for the general case.

Theorem 1. The total number of components required to allow each of p pro-
cessors uniformly random access to m memory elements at a memory access rate
r, including the components in the processors, memory, switching elements, and
wires is Θ(p + m + (pr)3/2).

Proof. Proving this result requires finding an architecture that meets the as-
serted number of components to establish the upper bound, and showing that
it is not possible to use fewer components to establish the lower bound. Group
the processors into pr groups of 1/r processors each. Each group has a mas-
ter processor that “speaks” for the group, and all memory access requests are
passed serially from one processor in the group to the next until they are ag-
gregated into a stream of Θ(1) requests per unit time at the master processor.
Divide the memory into pr pieces of size m/(pr) each. Use a switching network
as shown in Fig. 1 to connect the processor groups to the memory pieces. This
requires Θ(pr log(pr)) switching elements. Let c be the total number of com-
ponents, and let w be the total length of wire. The volume occupied by the
components is then Θ(c), and the average length of the wires between the last
two columns of switching elements is Θ(c1/3). There are pr of these wires for
a total wire cost of w = Θ(prc1/3). Because the total number of components c
is at least as large as the number of processors p, we have w = Ω(p4/3r). This
is more than the cost of the switching elements Θ(pr log(pr)) because memory
cannot be accessed at a faster than constant rate r = O(1), and log p = o(p1/3).
Therefore, we can ignore the cost of the switching elements. The total number
of components is then c = Θ(p + m + w) = Θ(p + m + prc1/3). This simplifies
to c = Θ(p + m + (pr)3/2). Note that this does not mean that the wiring cost is
Θ((pr)3/2). In fact, w = Θ(pr(p1/3 + m1/3) + (pr)3/2), but the two extra terms
cannot be larger than both p + m and (pr)3/2 and thus are not needed in the
expression for c. By finding an architecture that meets the bound claimed in this
theorem, we have established that it is an upper bound.

To establish the lower bound, we will show that the wiring cost is w =
Ω((pr)3/2) without making assumptions about the location of processors and
memory. Choose a plane X such that half of the processors are on each side (see
Fig. 3). Any processor or memory element intersecting plane X is considered
to be on both sides because the internal wiring of the processor or memory
element extends to both sides of the plane. Plane X divides the memory into
two disjoint subsets with one subset having at least half of the memory. Without
loss of generality, assume that at least p/2 processors are left of plane X, and

7

m/2 memory elements are on the right. Let the units of r be such that the
memory accesses by at most 1/r processors can be carried on a single wire,
or equivalently for parallel access with 64 data lines and 64 address lines, the
memory accesses for at most 128/r processors can be carried on 128 wires. Half
of the memory accesses from the p/2 processors on the left are destined for the
m/2 memory elements on the right requiring pr/4 wires to cross plane X. If
the wire cross sections have unit area, then by Lemma 1 there exist two parallel
lines on plane X at least a distance d = (pr/20)1/2 apart such that pr/20 of the
wires cross X above the top line and pr/20 of the wires cross below the bottom
line. In Fig. 3 these lines are perpendicular to the page and are the intersection
of planes A and D with plane X. Let B and C be planes parallel to A and D
that divide the space between A and D into thirds (with B between A and C).
The pr/20 wires above plane A carry memory accesses from at least p/10 of the
processors to the m/2 memory elements on the other side of X. The number of
these processors that are more than d/3 = Θ((pr)1/2) away from plane A must
be o(p) or else the total wire length connecting these processors to plane X
would be Θ((pr)3/2). Therefore, p/11 of these processors must be above plane
B. By similar reasoning, m/11 of the memory elements must be below plane C.
One-eleventh of the memory accesses from the p/11 processors above plane B
are destined for the m/11 memory elements below plane C requiring pr/121
wires to cross planes B and C, which are a distance d/3 = Θ((pr)1/2) apart.
Thus there must be a subset of the wires requiring total length Θ((pr)3/2) so
that the overall wiring cost is Ω((pr)3/2). This establishes the lower bound and
proves that the number of components required is c = Θ(p + m + (pr)3/2). ut

?

6

� -

� -

� -

� -
A

B

C

D

X

pr/20 wires

pr/20 wires

d = (pr/20)1/2

d/3

d/3

d/3

p/11

m/11

p/2 m/2

Fig. 3. Planes dividing processors and memory for proof of Theorem 1.

We now relate the full cost of an algorithm to the traditional count of the
number of processor operations in the following corollary.

Corollary 1. For an algorithm where p processors access a memory of size m
at rate r, and the total number of processor operations is T , the full cost of the
algorithm is F = Θ((T/p)(p + m + (pr)3/2)).

8

Proof. By Theorem 1, the number of components required for this algorithm is
c = Θ(p+m+(pr)3/2). Multiplying c by the time spent by each processor, T/p,
gives the full cost of the algorithm: F = Θ((T/p)(p + m + (pr)3/2)). ut

If we rewrite the full cost from Corollary 1 as F = Θ(T (1+m/p+p1/2r3/2)),
we see that F = Ω(T), and that F = Θ(T) if and only if p = Ω(m) and
r = O(p−1/3). Therefore, the full cost of an algorithm is never less than the
traditional count of processor steps, and we have equality when the amount of
memory per processor is O(1) and the memory access rate is sufficiently low.
This memory access rate restriction applies only to the memory common to all
processors; the processors can access their own private memories of size O(1) at
high rate without increasing full cost.

The case where the memory access rate r is high will occur several times in
analyzing attacks making it convenient to use the following corollary.

Corollary 2. For an algorithm where the rate r at which p processors access a
memory of size m is high, 1/r = mo(1), the memory size is independent of the
number of processors, and the total number of processor operations is T , the full
cost of the algorithm is a minimum of F = Θ(Trm1/3) when p = Θ(m2/3/r).

Proof. By Theorem 1, the number of components required is c = Θ(p + m +
(pr)3/2). Because r is high, the first term, p, is not significant. Multiplying c
by the time spent by each processor, T/p, gives the full cost of the algorithm:
Θ((T/p)(m + (pr)3/2)). This full cost is a minimum of F = Θ(Trm1/3) when
p = Θ(m2/3/r). ut

Thus, when the memory access rate is high, the full cost is proportional to
the total number of processor steps multiplied by the cube root of the memory
size, and this full cost is achieved when the number of processors is proportional
to the two-thirds power of memory size. This does not mean that when the
memory size is 1 Gbyte (109 bytes), there have to be a million processors. A
detailed analysis of some attack that does not ignore constant factors may show
that the optimal number of processors is p = (m/109)2/3.

3 Objections

Here we address two possible objections to the analysis of wiring costs in Sec-
tion 2. The first objection is an argument that wiring costs are higher than
indicated in Theorem 1, and the second objection is an argument that for prac-
tical purposes, wiring costs are actually lower.

The first objection is that in silicon, we are essentially confined to two-
dimensional designs, and that the cube in Fig. 2 is unrealistic. If circuits are
confined to having Θ(1) thickness, then the total component cost in Theorem 1
goes up to Θ(p + m + (pr)2) due to higher wire costs. This line of argument
makes sense for a design that is confined to a single chip, and even when mul-
tiple chips are placed on a board there is a limit to the number of layers of

9

interconnect available. However, as multiple boards are placed in racks, the de-
sign becomes quite three-dimensional. Connections between the first and last
boards in a rack or between racks do not have to run the full lengths of all inter-
vening boards. For cryptanalytic problems whose size is in the current range of
interest, it is definitely necessary to use multiple boards to complete the attack
in a reasonable time, and therefore it is reasonable to treat the complete circuits
as three-dimensional.

The second objection is that wires are quite thin and cheap compared to
processors and memory blocks, and there is no danger that we will design cir-
cuits so large that the wires will fill up space to the point where the rest of the
components have to be spread out to make room for wires. Unfortunately, we
cannot connect processors to memories with long cheap wires without degrading
performance. Just the extra time for conducting electricity through a meter-long
wire is significant, and there are other long wire effects that limit speed as well.
Memory access requests would need to be pipelined with latches at some fixed
spacing to avoid speed reductions. These wires plus pipelining components take
up space on boards and add significantly to costs. As the number of processors
and memory blocks gets into the thousands, making all the high-speed con-
nections becomes costly. To address the objection that wires are thin, Vitányi
treated wires as having no volume in showing that exponential computations
cannot be completed in polynomial time with parallelism [22]. In our case if
wires are assumed to have zero thickness but non-zero cost per unit length, the
wiring costs in Section 2.1 drop from Θ(n3/2) to Θ(n4/3), the number of compo-
nents in Theorem 1 drops to Θ(p+m+pr(p+m)1/3), the full cost in Corollary 1
drops to Θ((T/p)(p + m + pr(p + m)1/3)), and Corollary 2 is unaffected. The
zero-volume wire assumption only leads to a reduced full cost for designs where
the wiring cost is dominant, as was the case in Section 2.1. However, for the
optimized cryptanalytic designs described in the following sections, the wiring
costs never dominate, and therefore the conclusions would be unaffected if wires
were treated as having no volume.

4 Discrete Logarithm Problem

Many cryptographic schemes are based on the difficulty of solving the discrete
logarithm problem: given a generator g of a cyclic group G of prime order n
and an element gx in G, find x. Shoup showed that a generic discrete logarithm
algorithm, one that does not exploit any special properties of the encodings of
group elements, must perform Ω(n1/2) group operations [17]. He also said that
“one cannot substantially improve upon the Pohlig-Hellman algorithm using
generic algorithms.” This is true with respect to the number of group operations
performed. However, when the full cost of the attack is considered, it is possible to
improve upon the Pohlig-Hellman algorithm [14] (which uses Shanks’ method).
Pollard’s rho method [15] is not deterministic, but it eliminates the large memory
needed by Shanks’ method, reducing the full cost to Θ(n1/2) times the cost of

10

performing a group operation. This makes Shoup’s bound tight with respect to
both number of group operations and full cost.

In the following subsections we examine Shanks’ method and the rho method
in more detail to determine their full costs for both the case where a single
logarithm is sought and the more general case where many logarithms within
the same group are sought.

4.1 Shanks’ Method

Shanks’ method for computing a discrete logarithm (also called the baby-step
giant-step algorithm [11, p. 104]) proceeds as follows. Pre-computation: choose
a positive integer a, compute ga in Θ(log a) group operations, and compute and
store (i, gia) for 1 ≤ i ≤ dn/ae in a hash table with gia as the index. Logarithm
computation: take the group element y = gx with unknown index x and compute
and look up ygj in the table for j = 0, 1, . . . until one of the ygj is found in
the table. We now have ygj = gia for some i and j, which gives x = ia − j.
If log a = O(n/a), then the pre-computation requires Θ(log a + n/a) = Θ(n/a)
group operations and table writes, and the logarithm computation stage requires
at most a − 1 group operations and a table reads. The computed table can be
reused for multiple logarithm computations in the same group G.

Let us assume that the storage space required to represent a group element
is Θ(log n), the time t required to perform a group operation on a processor
is such that t = Ω(log n) and t = no(1), and the time required for the hash
computation for table lookups is O(t). If s logarithms are to be computed, then
the total time spent across all p processors is T = Θ((sa + n/a)t). The memory
required is m = Θ((n/a) log n), and the memory access rate is r = Θ((log n)/t).
By Corollary 2, the full cost of the algorithm is F = Θ(Trm1/3) = Θ((sa +
n/a)(n/a)1/3(log n)4/3) when p = Θ(m2/3/r). This cost is a minimum of F =
Θ(s2/3n2/3(log n)4/3) when a = Θ((n/s)1/2) and p = Θ((sn/ log n)1/3t). Because
a cannot be less than 1, the cost grows linearly with s for s > n. The full cost
per discrete logarithm solution is F/s = Θ(n2/3(log n)4/3/s1/3). It is interesting
to note that the algorithm cost does not depend upon the time t required to
perform a group operation, but that the number of processors does depend on t.
This makes sense because the cost of the processors is insignificant compared to
the rest of the components required, and if the group operation time increases,
we can compensate by increasing the number of processors without affecting the
overall algorithm cost.

Two cases of interest are s = 1 and s = n. If only a single logarithm is to be
found, then the algorithm cost is Θ(n2/3(log n)4/3). If more than n logarithms are
to be found, then the algorithm becomes a simple table look up where the table
contains all group elements and their corresponding logarithms, and there are
p = Θ(n2/3t/(log n)1/3) processors accessing the table simultaneously. The cost
per logarithm in this case is Θ(n1/3(log n)4/3). For an attacker who uses Shanks’
method for computing discrete logarithms, the cost of the first logarithm is
n2/3+o(1), and thereafter the cost per logarithm drops to a minimum of n1/3+o(1).

11

4.2 Pollard’s Rho Method

Pollard’s rho method for computing discrete logarithms requires Θ(n1/2) group
operations and only needs enough memory for Θ(1) group elements. This is a
considerable reduction in memory requirements compared to Shanks’ method
which ultimately leads to a much lower full cost of the algorithm. If a group
operation takes time t = no(1) on a processor, and the space required to represent
a group element is Θ(log n), then the number of components is Θ(log n), and
the processor time is Θ(n1/2t), for a full cost of Θ(n1/2t log n).

To compute multiple logarithms efficiently requires parallel processing. Al-
though Pollard’s rho method cannot be directly parallelized efficiently, a related
method called parallel collision search [21] can be parallelized efficiently. When
parallel collision search is applied to a single discrete logarithm, all of the pro-
cessors work on the one problem. However, each processor could be working to
find a different discrete logarithm as long as the iterating function used by all
processors does not depend on the group element whose logarithm is sought.
This requirement is satisfied by an iterating function f : G → G suggested by
Teske [18], where G is partitioned into about 20 disjoint sets Ti, each set is as-
signed a fixed randomly chosen group element gxi with known logarithm xi, and
f(y) = ygxi if y ∈ Ti.

For parallel collision search to find s logarithms, T = Θ((ns)1/2t) pro-
cessor steps are required across p = Θ(s) processors. The memory must be
large enough for each processor to contribute Θ(1) group elements. The mem-
ory size is then m = Θ(s log n). With each processor writing Θ(1) group el-
ements to the memory during the time that it performs T/p = Θ((n/s)1/2t)
processor steps, the writing rate is r = Θ((s/n)1/2(log n)/t). By Corollary 1,
the full cost is F = Θ((T/p)(p + m + (pr)3/2)). Substituting for T , p, m, and
r in this equation, it can be shown that the full cost per solution is F/s =
Θ((t log n)((n/s)1/2+s3/4(log n)1/2/(n1/4t3/2))). This cost per solution is a min-
imum of Θ(n1/5t2/5(log n)6/5) when s = Θ(n3/5t6/5/(log n)2/5).

For an attacker who uses parallel collision search for computing discrete loga-
rithms, the full cost of the first logarithm is n1/2+o(1), and thereafter the cost per
logarithm drops to a minimum of n1/5+o(1). This is a considerable improvement
over Shanks’ method.

5 Factoring

Factoring an integer n using the number field sieve (NFS) [8] involves a rela-
tion collection step and a matrix step [3, 13]. The costs of these two steps are
traded off against each other in selecting NFS smoothness bounds [9]. Bern-
stein [2] observed that in the standard analysis of NFS, this trade-off is based
on the traditional measure of processor operations, but that the full cost is
actually higher. Define L(α) = e(α+o(1))(log n)1/3(log log n)2/3

, and let c = (92 +
26
√

13)1/3/3 = 1.90188 Then with the standard trade-off, both steps of
NFS require L(c) processor steps, but the matrix step requires L(c/2) memory.

12

With no parallelization and no adjustment of the smoothness bounds, the full
cost of NFS is L(3c/2). Bernstein designed a mesh sorting circuit for the matrix
step and adjusted the smoothness bounds to lower the full cost of factoring to
L((5/3)4/3) = L(1.97605 . . .) [2]. This same asymptotic cost is achieved by the
two-dimensional mesh routing network of Lenstra et al. [9].

The cost of the matrix step is dominated by the cost of multiplying a sparse
matrix A by a vector v, both over GF(2), and each with dimension D that is
determined by the smoothness bounds. Approximately D such multiplications
are required. Other operations, including inner products of vectors, are required
in the matrix step, but none have higher cost than the matrix-vector multipli-
cation. Each column of A has Do(1) non-zero entries. Because v is over GF(2),
multiplying A by v amounts to summing the columns of A corresponding to
non-zero elements of v. The columns of A are stored as a list of row indices
of the non-zero elements so that D1+o(1) storage is required. A single processor
version of the multiply proceeds as follows. Initialize the product vector elements
to zero. For each column of A whose corresponding bit in v is non-zero, and for
each row index r in the column, toggle bit r of the product vector. Repeating
this D times requires D2+o(1) time. The memory required is D1+o(1) making the
full cost D3+o(1). Bernstein’s circuit reduced this full cost to D5/2+o(1) [2].

A further improvement is possible using a design based on the circuit in
Fig. 1. Use D2/3+o(1) processors, each responsible for contributing D1/3+o(1) of
the columns of A to each product. It helps to think of each processor owning
the part of the memory corresponding to its part of A and its parts of v and
the product vector. Each processor sends row numbers through the switching
elements, and the row numbers corresponding to its part of the product vector
return. These returning row numbers are used by each processor to form its part
of the product vector. This reduces the multiply time to D1/3+o(1) using D1+o(1)

components (memory and wiring). The full cost of all D multiples is down to
D7/3+o(1). This asymptotic cost can also be achieved using a three-dimensional
version of Bernstein’s circuit or a three-dimensional mesh routing network [9].

A technicality here is that the design in Fig. 1 assumed that the memory ac-
cesses are uniformly distributed across all memory addresses. This is not the case
here because the rows of A do not all have the same density. We can compensate
for this by changing the addressing decisions in the switching elements. Suppose
that one-quarter of the non-zero elements of A are in the first R1 rows, the next
one-quarter are between rows R1 and R2, the next one-quarter are between rows
R2 and R3, and the final one-quarter are between rows R3 and D. Then the first
set of switching elements splits the streams of row numbers into those ≤ R2 and
those > R2. Half of the second set of switching elements use R1 as a threshold,
and the other half use R3 as a threshold. One technicality remains. This change
in addressing decisions only works if all rows have fewer than D1/3 non-zero
entries. Beyond this row density, some of the switching elements from the last
stage would still be swamped because too many accesses would be directed to
a single memory block. This can be handled by observing that if a switching
element sees two identical row numbers, it can simply throw them away because

13

they cancel each other. The switching elements already receive the row numbers
in pairs and can eliminate a pair if they are the same. If a fraction f of the
capacity of a switching element’s inputs consist of a single row number r, then
after elimination of (r, r) pairs, r is expected to make up 2f(1−f) of the capacity
of one of the switching element’s outputs. The output fraction is a maximum of
1/2 when f = 1/2. Thus, one row number never appears often enough to swamp
a switching element. The expected amount of row number elimination should
be taken into account when choosing the switching threshold for each switching
element.

We have shown that the cost of the matrix step can be reduced to D7/3+o(1).
Using the analysis of Lenstra et al. for when the general matrix exponent is
2ε [9], we have ε = 7/6 for this design, and the full cost of factoring is re-
duced to L((49/18)2/3) = L(1.94961 . . .). Comparing this to L(1.90188 . . .) for
the standard analysis of NFS based on processor steps, the difference is a factor
of L(0.04773 . . .), which is less than a factor of 5 when n = 21024 (ignoring the
o(1)).

One possible interpretation of this result is that past factoring efforts have
had a matrix step with high full cost, and maybe we can do much better with this
new approach. This may be true asymptotically, but not for factoring numbers
whose size is in the current range of interest. In past factoring efforts, the matrix
step has been cheaper than the relation collection step, and even if the matrix
step were free, it would not be possible to speed up the relation collection step
much [9]. The results here on factoring should not affect the size of numbers
currently used for cryptographic purposes.

6 Encryption

Given a block cipher whose encryption and decryption functions are Ek(·) and
E−1

k (·), respectively, and a plaintext-ciphertext pair (P , C) where C = Eκ(P)
for a particular key κ chosen at random from a set of n keys, the cryptanalyst
wishes to find κ. It is assumed that either P is large enough that (P , C) uniquely
determines the key (which may mean that the size of P is actually a multiple
of the natural block size of the cipher), or that additional plaintext-ciphertext
pairs are known to the cryptanalyst to determine κ uniquely.

It is not unreasonable to assume that an attacker can obtain a known plain-
text. Most forms of electronic communications contain standard header fields
that change little if at all from one communication to the next. In many cases
the known plaintext is the same value for all communications of a particular
type over a long period of time.

One way to find the key is by exhaustive search: for each of the n keys,
decrypt C and see if the result is P . Exhaustive search is still possible when P is
not known if a “plausible” P can be recognized due to some known redundancy.
If the time required to encrypt or decrypt is t, and keys and texts are all of size
Θ(log n), then the full cost of this attack is Θ(nt log n).

14

For a chosen-plaintext attack, where the cryptanalyst gets to choose P , it is
possible to reduce the attack time by using an enormous memory. The attack
proceeds as follows. Choose a fixed plaintext P . Store (k, Ek(P)) for all n keys k
in a hash table with Ek(P) as the index. The memory required is m = Θ(n log n).
Look up C in the table to get κ. Using this very large table does not make sense
unless it is used to find at least s = Θ(n) keys. Suppose that there are s keys
to be recovered, and the time required to get the chosen plaintext P encrypted
is t = no(1). The memory access rate for each processor is r = Θ((log n)/t),
and the total number of processor steps is T = Θ(nt). By Corollary 2, the full
cost of the s attacks is a minimum of F = Θ(Trm1/3) = Θ((n log n)4/3) when
p = Θ(m2/3/r) = Θ(n2/3t/(log n)1/3) processors are used. The cost per solution
is Θ(n1/3(log n)4/3).

An interesting attack that provides some middle ground between exhaustive
search and table look up is Hellman’s time-memory trade-off [6], which proceeds
as follows. Pre-computation: choose a positive integer a and let b = dn/a2e.
Choose a constant plaintext P and a function h that maps ciphertexts to keys
so that f(k) = h(Ek(P)) defines a mapping of the key space onto itself. For
i = 1, . . . , b, choose a starting key xi,0 at random and iterate f on xi,0 a times
(xi,j+1 = f(xi,j) for j = 0, . . . , a − 1) to produce an ending key xi,a, and store
(xi,0, xi,a) in a hash table with xi,a as the index. Key recovery phase: use the
ciphertext C corresponding to chosen plaintext P to compute y0 = h(C) and
look up y0, y1 = f(y0), y2 = f(y1), . . ., ya−1 = f(ya−2) in the hash table to see
if any one of them is equal to one of the ending keys. Suppose that yd = xi,a.
Then there is a good chance that xi,a−d−1 = κ; otherwise we have a false alarm.
Iterate f on xi,0 (stored in the table with xi,a) to get the candidate key xi,a−d−1

and check it on some other plaintext-ciphertext pair.

The probability that the procedure above will succeed is Θ(1/a). Therefore,
this procedure must be repeated for Θ(a) rounds (with a different version of f
in each round created by changing the mapping h) before κ will be found. The
intent of the original algorithm is that all rounds of pre-computation should be
done ahead of time and have the same cost as an exhaustive search, and the key
recovery phase should be faster (per key) than exhaustive search. During pre-
computation, memory size is m = Θ(ab log n) = Θ((n/a) log n), and the memory
access rate is r = Θ((log n)/(at)). The full cost of pre-computation is the time
spent by each processor, Θ(nt/p), multiplied by the number of components (by
Theorem 1) c = Θ(p+m+(pr)3/2). Due to the iterative nature of the algorithm,
the maximum parallelism possible is p = Θ(n/a). The full cost is the cost of
exhaustive search, Θ(nt log n), when a = Ω(n1/4(log n)1/4/t3/4). If a is smaller
than this lower bound, then the wiring cost becomes dominant, and the pre-
computation cost exceeds the cost of exhaustive search.

The key recovery phase requires the same amount of memory as the pre-
computation, m = Θ((n/a) log n), but the memory access rate increases to r =
Θ((log n)/t), and the total number of processor steps is T = Θ(a2t). By Corol-
lary 2, the full cost per recovered key is Θ(Trm1/3) = Θ(n1/3(log n)4/3a5/3),
when p = Θ(m2/3/r) = Θ(n2/3t/((log n)1/3a2/3)). (When a = 1, this is the

15

same cost as the table look up method. This is because the time-memory trade-
off essentially becomes the same as the table look up method when a = 1.)
However, there is a catch here. We cannot parallelize the recovery of a par-
ticular key across more than Θ(a) processors. Therefore, we have to work on
p/a = Θ(n2/3t/((log n)1/3a5/3)) problems simultaneously to achieve the required
level of parallelism. The full cost of finding this number of keys turns out to be
Θ(nt log n), the same as the cost of exhaustive search. This means that even
if we perform the pre-computation in advance, we cannot recover a key with
less cost than exhaustive search, but we can find many keys with a total cost
the same as exhaustive search. Keep in mind that this is a statement concern-
ing asymptotics, and that there may be an advantage of a constant factor over
exhaustive search due to the relative costs of processors and memory. When a
is equal to the lower bound from the analysis of the pre-computation phase,
a = Θ(n1/4(log n)1/4/t3/4), the total number of keys that can be found for the
cost of exhaustive search is Θ(n1/4t9/4/(log n)3/4). It is interesting to note that
fewer processors are used in the key recovery stage than in the pre-computation
stage (n3/4+o(1) versus n1/2+o(1)). It actually makes sense to leave the extra
processors idle during key recovery. The higher memory access rate during re-
covery means that fewer processors can access the memory without driving up
the wiring costs.

The time-memory trade-off can be improved using the idea of distinguished
points. Suppose that some fraction of keys are considered distinguished (per-
haps those with a certain number of leading zero bits). Then instead of iterating
f on the starting keys exactly a times, we iterate until a distinguished key
is reached, with the distinguishing property chosen so that about n/a of the
keys are distinguished. The main difference this makes is in the key recovery
phase where it is only necessary to consult the memory when one of the yd

is distinguished, thereby lowering the memory access rate by a factor of a to
r = Θ((log n)/(at)). The total memory required can be reduced as well by in-
terleaving the Θ(a) rounds of pre-computation with the rounds of key recovery.
This allows each round of pre-computation to overwrite the results from the pre-
vious round, reducing memory requirements to m = Θ((n/a2) log n). The total
number of processor steps across p processors for the rounds of pre-computation
and recovery of s keys is T = Θ((n + sa2)t). By Corollary 1, the full cost of
this algorithm is Θ((t/p)(n + sa2)(p + m + (pr)3/2)). After substituting for m
and r in this expression, it can be shown that to limit the full cost to that of
exhaustive search, a = Θ((n/s)1/2), and p = Θ(s), which makes the full cost
Θ((nt/s)(s log n+(s3/2(log n)/(n1/2t))3/2)). The maximum number of keys that
can be found for a total cost of Θ(nt log n) is s = Θ(n3/5t6/5/(log n)2/5).

For a full cost equal to the cost of a single exhaustive search (n1+o(1)), Hell-
man’s time-memory trade-off can find n1/4+o(1) keys, and a modified version can
find n3/5+o(1) keys. The cost per recovered key can be reduced to n1/3+o(1) when
using the table look up method to find n1+o(1) keys simultaneously.

16

7 Double Encryption

Double encryption consists of encrypting each plaintext block twice with two
independent keys: C = Ek2(Ek1(P)). Because a meet-in-the-middle attack is
possible [4], double encryption is widely believed to offer little advantage over
regular single encryption. Here we do an asymptotic analysis of different attack
approaches.

The size of the key space for double encryption is n2, and we can use the
techniques for recovering many keys at once with a chosen-plaintext attack from
Section 6 replacing n with n2. However, we focus here on a known-plaintext at-
tack (with just enough plaintext to determine the keys uniquely) on one instance
of double encryption. The best generic attack on one instance of single encryp-
tion seems to be exhaustive search. Attacking double encryption by exhaustive
search is possible, but better approaches are a simple meet-in-the-middle attack
and a version based on parallel collision search [21, Section 5.3].

A simple meet-in-the-middle attack on double encryption is based on the
observation that Ek1(P) = E−1

k2
(C) and proceeds as follows. For each possible

key k1, compute Ek1(P) and store (k1, Ek1(P)) in a hash table indexed by
Ek1(P). For each possible k2, compute E−1

k2
(C) and look it up in the table.

Whenever, E−1
k2

(C) is in the table, we have a candidate key pair (k1, k2) that
can be tested on other plaintext-ciphertext pairs. The memory size required is
m = Θ(n log n), and if encryption and decryption take time t = no(1), then the
memory access rate is r = Θ((log n)/t), and the total number of processor steps
is T = Θ(nt). By Corollary 2, the full cost of a meet-in-the-middle attack on
double encryption is F = Θ(Trm1/3) = Θ((n log n)4/3).

For parallel collision search applied to meet-in-the-middle attacks, if there
are w memory locations (each of size Θ(log n) so that m = Θ(w log n)), the total
number of processor steps across p processors is T = Θ(n3/2t/w1/2) [21], and a
memory access of size Θ(log n) is made every (n/w)1/2 encryptions for a memory
access rate of r = Θ(w1/2(log n)/(n1/2t)). By Corollary 1, the full cost of the
algorithm is F = Θ((n3/2t/(w1/2p))(p + m + (pr)3/2)). This cost is a minimum
of Θ(n6/5t2/5(log n)4/5) when p = Θ(w log n) and w = Θ(n3/5t6/5/(log n)8/5).

In summary, the full cost of a known-plaintext attack on double encryption
using a simple meet-in-the-middle attack is n4/3+o(1), and this can be reduced to
n6/5+o(1) using parallel collision search. Therefore, double encryption does offer
some security advantage over single encryption (based on known attacks).

8 Triple Encryption

Not surprisingly, triple encryption consists of encrypting each plaintext block
three times, although the middle encryption is actually a decryption operation
in most implementations. There are two main variants: three-key triple encryp-
tion has three independent keys, C = Ek3(E

−1
k2

(Ek1(P))), and two-key triple
encryption has only two independent keys with the key for the first encryption
reused for the last encryption, C = Ek1(E

−1
k2

(Ek1(P))).

17

Three-key triple encryption can be attacked as follows. For each possible value
for key k1, perform a double encryption attack using Ek1(P) as plaintext and C
as ciphertext. For a key space of cardinality n, this increases the attack cost by
a factor of n over the cost of attacking double encryption. Using the results from
Section 7, the full cost of a known-plaintext attack on three-key triple encryption
using a simple meet-in-the-middle attack is n7/3+o(1), and this can be reduced
to n11/5+o(1) using parallel collision search. Lucks gives an interesting attack
that reduces the total number of processor steps by a constant factor at the cost
of requiring more known plaintexts and more memory [10]. However, the larger
memory causes this attack to have higher full cost than using parallel collision
search.

The more interesting case is two-key triple encryption. Merkle and Hell-
man [12] describe an attack that requires n chosen plaintexts that proceeds as
follows. Choose some fixed text M . For each possible key k, compute and store
(k, E−1

k (M)) in a hash table indexed by E−1
k (M). For each possible key k1,

compute E−1
k1

(M) and get it encrypted by the system under attack. Take the
resulting ciphertext C, and compute E−1

k1
(C). If k1 is the key being used by the

system under attack for the first and last encryptions of the triple encryption,
then those outer encryptions are stripped off, and we have E−1

k1
(C) = E−1

k2
(M).

Look up E−1
k1

(C) in the table to get a candidate value for k2. Test k1 and k2 on
other plaintext-ciphertext pairs. The memory size required is m = Θ(n log n),
and if encryption and decryption take time t = no(1), then the memory ac-
cess rate is r = Θ((log n)/t), and the total time spent by all processors is
T = Θ(nt). By Corollary 2, the full cost of this attack on two-key triple en-
cryption is F = Θ(Trm1/3) = Θ((n log n)4/3), the same cost as the simple
meet-in-the-middle attack on double encryption if we ignore the need for an
enormous number of chosen plaintexts.

A known-plaintext variant of the Merkle-Hellman attack requires fewer texts
at the cost of more computation [20]. Suppose that there are w known plaintexts.
Choose a constant M and seek a plaintext P such that Ek1(P) = M as follows.
Store the plaintext-ciphertext pairs in a first hash table indexed on the plaintext
values. For each possible key i, decrypt M and look up the resulting plaintext in
this first table. If it is there, then decrypt the corresponding ciphertext with key
i and put the text and i in a second table indexed on the text value. After the
second table is constructed, then for each possible key j, decrypt M and look
up the resulting text in the second table. For each appearance of the text in the
second table, we have a candidate key pair (i, j) to be tested on other plaintext-
ciphertext pairs. If this procedure does not succeed, then discard the second
table and repeat with another randomly chosen M . The second table is large if
the size of the message space u is less than n, and if u is small enough, the second
table contains repeated values that cause the run-time to be dominated by the
cost of checking candidate key pairs generated by the algorithm. To simplify the
analysis of this attack, we assume that the size of the message space u is at least
as large as the size of the key space (u ≥ n). This attack requires memory size
m = Θ(w log n), a memory access rate of r = Θ((log n)/t), and the total time

18

spent by all processors is T = Θ(unt/w). By Corollary 2, the full cost of this
attack on two-key triple encryption is F = Θ(Trm1/3) = Θ(nu(log n)4/3/w2/3),
which is never less than the cost of the Merkle-Hellman attack. The two attacks
have equal full cost (and are essentially the same attack) if u = n and w = u.

9 Hash Collisions

Given a hash function H(·) whose output space has cardinality n, the cryptana-
lyst wishes to find a collision, which is two inputs x1 and x2 such that x1 6= x2 and
H(x1) = H(x2). A simple approach is to repeat the following. Choose an input
x that has not been tried yet, and add the pair (x, H(x)) to a hash table indexed
by the H(x) value. (There is an unfortunate name clash here: a hash function is a
cryptographic operation, and a hash table is a type of list that allows fast access
without having to sort list entries.) If the hash output H(x) is already in the
table, then we have a collision. The expected number of iterations before a colli-
sion is found is Θ(n1/2). If the time required to hash an input is t = no(1), then
this attack requires a memory size of m = Θ(n1/2 log n), the memory access rate
is r = Θ((log n)/t), and the total number of processor steps is T = Θ(n1/2t). By
Corollary 2, the full cost of this attack is F = Θ(Trm1/3) = Θ(n2/3(log n)4/3)
when the number of processors used is p = Θ(m2/3/r) = Θ(n1/3t/(log n)1/3).

The simple attack’s large memory requirement can be eliminated using Pol-
lard’s rho method [15] adapted for hash collisions or the parallelized version [21].
These methods reduce the full cost of finding a hash collision to Θ(n1/2t log n)
possibly using only a single processor.

10 Conclusion

We can now answer the question posed in the Introduction: if an algorithm with
input n requires Θ(n) processor steps and Θ(n) memory elements, is its full
cost Θ(n), Θ(n2), or something in between? The answer depends on the number
of processors used and the rate at which those processors access memory. If
the algorithm cannot be parallelized, then its full cost is Θ(n2). If it can be
parallelized to an arbitrary degree, then its full cost is between Θ(n) and Θ(n4/3)
depending on the memory access rate.

In general, if an algorithm takes T processor steps spread across p processors,
with the processors accessing a common memory of size m at a rate r, the
algorithm’s full cost is F = Θ(T +Tm/p+Tp1/2r3/2). The first term is processor
costs, the second is memory costs, and the last is due to the cost of connecting
the processors to the memory. For the full cost to match the traditional measure
of algorithm cost, i.e., F = Θ(T), we must have p = Ω(m), and the memory
access rate must be low, r = O(p−1/3). This does not mean that in a real attack
there must be as many processors as bits of memory; the number of processors
may be p = m/109, for example.

19

If the full cost exceeds the number of processor steps for a particular approach
to an attack, this can be viewed as a failure to parallelize the attack properly. For
many attacks, it is not known whether such “proper” parallelization is possible.

Table 1 summarizes the costs of various cryptanalytic attacks using the best
available implementation to minimize cost by both the standard measure of
processor steps and the full cost measure.

Cryptanalytic Problem Attack Method Processor Steps Full Cost

One discrete logarithm Shanks n1/2+o(1) n2/3+o(1)

(prime group order n) Parallel collision search n1/2+o(1) n1/2+o(1)

n-th discrete logarithm Shanks no(1) n1/3+o(1)

(prime group order n) Parallel collision search no(1) n1/5+o(1)

Factoring n Number field sieve L(1.90188 . . .) L(1.94961 . . .)

Block cipher encryption All methods (first key) n1+o(1) n1+o(1)

(|key space| = n) Table lookup (n-th key) no(1) n1/3+o(1)

Double encryption Meet-in-the-middle n1+o(1) n4/3+o(1)

Parallel collision search n1+o(1) n6/5+o(1)

2-key triple encryption unlimited chosen texts n1+o(1) n4/3+o(1)

(|message space| = u ≥ n) w known texts (w ≤ u) n1+o(1)u/w n1+o(1)u/w2/3

3-key triple encryption Meet-in-the-middle n2+o(1) n7/3+o(1)

Parallel collision search n2+o(1) n11/5+o(1)

Hash collision Meet-in-the-middle n1/2+o(1) n2/3+o(1)

(|output space| = n) Parallel collision search n1/2+o(1) n1/2+o(1)

Table 1. Attack costs in processor steps and full cost.

In all cases in Table 1, the optimal design point did not have wire costs
exceeding both processor and memory costs. This means that the table entries
would be the same if wires were assumed to have no volume.

Acknowledgments

I thank Eran Tromer, Arnold Rosenberg, Arjen Lenstra, Bart Preneel, and the
anonymous referees for helpful comments on drafts of this paper.

References

1. H.R. Amirazizi and M.E. Hellman, Time-Memory-Processor Trade-Offs, IEEE
Transactions on Information Theory, vol. IT-34, no. 3 (1988), pp. 505–512.

2. D. Bernstein, Circuits for Integer Factorization: A Proposal, Manuscript, Nov.
2001, available at http://cr.yp.to/nfscircuit.ps.

20

3. D. Coppersmith, Solving Homogeneous Linear Equations over GF(2) via Block
Wiedemann Algorithm, Mathematics of Computation, vol. 62, no. 205 (Jan. 1994),
pp. 333–350.

4. W. Diffie and M. Hellman, Exhaustive Cryptanalysis of the NBS Data Encryption
Standard, Computer, vol.10, no.6 (June 1977), pp. 74–84.

5. H. Handschuh and B. Preneel, On the Security of Double and 2-Key Triple Modes
of Operation, Fast Software Encryption ’99, 6th International Workshop (LNCS
1636), Springer-Verlag, Berlin, 1999, pp. 215–230.

6. M.E. Hellman, A Cryptanalytic Time-Memory Trade-Off, IEEE Transactions on
Information Theory, vol. IT-26 (1980), pp. 401–406.

7. D.E. Knuth, The Art of Computer Programming, vol. 3: Sorting and Searching,
second edition, Addison-Wesley, Reading, MA, 1998.

8. A.K Lenstra and H.W. Lenstra, Jr. (eds.), The Development of the Number Field
Sieve (Lecture Notes in Mathematics 1554), Springer-Verlag, Berlin, 1993.

9. A.K. Lenstra, A. Shamir, J. Tomlinson, and E. Tromer, Analysis of Bernstein’s Fac-
torization Circuit, Advances in Cryptology–Asiacrypt 2002 (LNCS 2501), Springer-
Verlag, Berlin, 2002, pp. 1–26.

10. S. Lucks, Attacking Triple Encryption, Fast Software Encryption ’98, 5th Interna-
tional Workshop (LNCS 1372), Springer-Verlag, Berlin, 1998, pp. 239–253.

11. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, FL, 1997.

12. R. Merkle and M. Hellman, On the Security of Multiple Encryption, Communica-
tions of the ACM, vol. 24, no. 7 (July 1981), pp. 465–467. See also Communications
of the ACM, vol. 24, no. 11 (Nov. 1981), p. 776.

13. P.L. Montgomery, A Block Lanczos Algorithm for Finding Dependencies over
GF(2), Advances in Cryptology–Eurocrypt’95 (LNCS 925), Springer-Verlag, 1995,
Berlin, pp. 106–120.

14. S.C. Pohlig and M.E. Hellman, An Improved Algorithm for Computing Discrete
Logarithms over GF(p) and Its Cryptographic Significance, IEEE Transactions on
Information Theory, vol. IT-24 (1978), pp. 106–110.

15. J.M. Pollard, Monte Carlo Methods for Index Computation (mod p), Mathematics
of Computation, vol. 32, no. 143 (July 1978), pp. 918–924.

16. A.L. Rosenberg, Three-Dimensional VLSI: A Case Study, Journal of the ACM, vol.
30 (1983), pp. 397–416.

17. V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems, Advances
in Cryptology–Eurocrypt’97 (LNCS 1233), Springer-Verlag, Berlin, 1997, pp. 256–
266.

18. E. Teske, Speeding Up Pollard’s Rho Method for Computing Discrete Logarithms,
Algorithmic Number Theory Symposium III (LNCS 1423), Springer-Verlag, Berlin,
1998, pp. 541–554.

19. E. Tromer, Personal communication.
20. P.C. van Oorschot and M.J. Wiener, A Known-Plaintext Attack on Two-Key Triple

Encryption, Advances in Cryptology–Eurocrypt’90 (LNCS 473), Springer-Verlag,
Berlin, 1990, pp. 318–325.

21. P.C. van Oorschot and M.J. Wiener, Parallel Collision Search with Cryptanalytic
Applications, Journal of Cryptology, vol. 12, no. 1 (1999), pp. 1–28.

22. P.M.B. Vitányi, Locality, Communication and Interconnect Length in Multicom-
puters, SIAM Journal on Computing, vol. 17 (1988), pp. 659–672.

21

