
Digital Object Identifier (DOI) 10.1007/s00200-003-0144-2
AAECC 14, 415–438 (2004)

The Middle Product Algorithm I

Speeding up the Division and Square Root of Power Series

Guillaume Hanrot1, Michel Quercia2, Paul Zimmermann1

1 INRIA-Lorraine/LORIA, 615, rue du jardin botanique, 54602 Villers-lès-Nancy Cedex, France
(e-mail: {hanrot, zimmerma}@loria.fr)
2 23 rue de Montchapet, 21000 Dijon, France (e-mail: michel.quercia@prepas.org)

Received: July 20, 2000; revised version: November 24, 2003
Published online: February 3, 2004 – © Springer-Verlag 2004

Abstract. We present new algorithms for the inverse, division, and square root
of power series. The key trick is a new algorithm – MiddleProduct or, for
short, MP – computing the n middle coefficients of a (2n− 1)× n full product
in the same number of multiplications as a full n × n product. This improves
previous work of Brent, Mulders, Karp and Markstein, Burnikel and Ziegler.
These results apply both to series and polynomials.

Keywords: Middle product, Inversion, Division, Square root, Newton’s method.

Introduction

One of the major tools for performing arithmetic or computing special func-
tions is Newton’s iteration. Indeed its quadratic rate of convergence (so that the
number of correct digits or terms doubles at each step) and its self-correcting
character make it especially suitable for this kind of computations.

In full generality, Newton’s rule for computing a root of a differentiable
function f (x) can be written as xk+1 = xk − f (xk)/f

′(xk). As a rule of thumb,
the term xk should be seen as the main term, whereas f (xk)/f

′(xk) should
be seen as the correcting term. In particular, not all the digits of f (xk)/f

′(xk)

are significant, since the low weight ones will be corrected in the next iter-
ation. Furthermore, since f (xk) is supposed to tend to zero quickly, one can
expect important cancellations in its evaluation. The present paper shows how
to evaluate only the meaningful part of f (xk), i.e., the “middle” digits, in some
situations where the evaluation of f is mainly based on a multiplication. As a
consequence, new algorithms for inversion, division and square root are derived.

Another application of the “middle product” is the efficient computation of
some transposed multiplications [11].

416 G. Hanrot et al.

We will make use of the following notations: M(n) denotes the complex-
ity of the underlying multiplication algorithm on two polynomials1 of degree
n; K(n) denotes the complexity of Karatsuba’s algorithm, given by K(1) =
1, K(n) = 2K(�n/2�) + K(�n/2�); FFT (n) denotes the complexity of the
Schönhage-Strassen multiplication algorithm [10].

The paper is organized as follows: §1 describes the basic trick in the two
most usual nontrivial multiplication models, namely Karatsuba and FFT. §2
and §3 show how this trick can be used to compute the square and the inverse
of a power series; §4 and §5 study the problem of computing the quotient and
square root of power series.

In §6, an implementation of these algorithms is presented, which confirms
the complexity results in practice.

We conclude the paper by a table summarizing the previous and new worst-
case complexities under the Karatsuba and FFT models, for the middle product,
inverse, quotient, square and square root operations, following work of Brent
[1], Mulders [9], Burnikel and Ziegler [2].

Finally, an appendix gives a formal description of how to transform any
multiplication algorithm of a certain type into a middle product algorithm with
the same complexity; this is linked to the so-called transposition principle.

1 Newton’s Inverse Iteration and the Basic Trick

Newton’s iteration for computing 1/A – where A is a number, a polynomial,
or a series – follows the recurrence:

xk+1 = xk + xk(1− Axk). (1)

Suppose we are looking for an approximation of 1/A to precision n. In the last
step of Newton’s iteration, xk is then accurate to precision n/2, and we have
to compute Axk to precision n, where the n/2 most significant2 coefficients –
or bits – of Axk vanish with 1. To get an approximation xk+1 to precision n of
1/A, we multiply xk by the n/2 most significant coefficients of 1 − Axk. The
cost of this last step was 3M(n/2) so far: 2M(n/2) for the product Axk which
splits into two products of n/2 coefficients, and M(n/2) for the product of xk by
1−Axk. The total cost of Newton’s iteration to compute 1/A to precision n is

1 It may seem more natural to express the complexities of operations on power series in term
of multiplications on power series (short products) instead of multiplications on polynomials
(full products). For example, if M∗(n) denotes the complexity of a short product, Brent gives in
[1, Table 7.1] upper bounds of 3M∗(n), 4M∗(n), and 5.5M∗(n) for the inverse, quotient, and
square root respectively. However all known subquadratic algorithms for short products are based
on full products, and in the FFT case, it is not even known whether a short product can be computed
faster than a full product! This explains our choice of the full product as basic operation.
2 By most significant, we mean the low order terms in the case of power series, and the leftmost
digits in the usual notation for floating-point numbers.

The Middle Product Algorithm I 417

thus 3FFT (n) for FFT multiplication and 3
2K(n) for Karatsuba multiplication

[6].
As we know in advance that the upper n/2 bits of Axk will vanish with 1, a

natural question is the following: is there a faster way to compute directly the
n/2 required bits – from position n/2 to n – of the product Axk? We give in this
section a positive answer under the Karatsuba and FFT models, and show this
result applies to many multiplication algorithms. Note that other papers already
investigated the computation of only part (usually the most significant bits) of
the product of power series or floating-point numbers. See e.g. [8], [9].

1.1 Karatsuba Model for n a Power of 2

We first describe our trick and the corresponding algorithm in the simple case
when n is a power of 2, and when the underlying multiplication algorithm is
the Karatsuba method.

Basic trick. For the sake of clarity, we suppose A is a Taylor series in the
variable t (at t = 0). Assume we have A = a0 + a1t + a2t

2 and x = x0 + x1t .
We have

Ax = a0x0 + (a0x1 + a1x0)t + (a1x1 + a2x0)t
2 + a2x1t

3

and we want to compute

(a0x1 + a1x0)t + (a1x1 + a2x0)t
2.

The algorithm works as follows (see Fig. 1):

Algorithm MiddleProduct.
Input: x = x0 + x1t, A = a0 + a1t + a2t

2

Output: h = a0x1 + a1x0 and l = a1x1 + a2x0

1. α← (a0 + a1)x1

2. β ← a1(x1 − x0)

3. γ ← (a1 + a2)x0

4. h← α − β

5. l← γ + β.

Now we can use this idea recursively (note that here and in the sequel we use
MP as a shortcut for MiddleProduct). This yields the following algorithm,
described in the case when n is a power of 2. See §1.2 for the general case.

Algorithm MP([x0, . . . , xn−1], [a0, . . . , a2n−2]).
0. If n = 1, return [a0x0]
1. p← n/2.
2. α← MP([xp, . . . , x2p−1], [a0 + ap, . . . , a2p−2 + a3p−2])
3. β ← MP([xp − x0, . . . , x2p−1 − xp−1], [ap, . . . , a3p−2])

418 G. Hanrot et al.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

u′ v′

u v

A0 A1 A2 A3

X1

X0

u+ v = α = MP(X1, [A0, A1]+ [A1, A2])
v − u′ = β = MP(X1 −X0, [A1, A2])
u′ + v′ = γ = MP(X0, [A1, A2]+ [A2, A3])

Fig. 1. MiddleProduct recursion.

4. γ ← MP([x0, . . . , xp−1], [ap + a2p, . . . , a3p−2 + a4p−2])
5. Return [α − β, γ + β].

Theorem 1 When n is a power of two, Algorithm MP returns [cn−1, . . . , c2n−2]
where ck =

∑
i+j=k aixj , using exactly K(n) = nlog2 3 ring multiplications.

1.2 Karatsuba Model: The Odd Case

In this section, we generalize the trick described above to deal with the case
when n is not a power of 2. If R is the coefficient ring of our power series,
and y := [y0, . . . , yn−1] ∈ Rn, z := [z0, . . . , z2n−2] ∈ R2n−1, we define
MP(y, z) = [

∑
i+j=k yizj]n−1≤k≤2n−2.

Theorem 2 Karatsuba’s algorithm can be adapted so as to yield an algorithm
computing MP(y, z) in K(n) multiplications.

Proof. Consider the following algorithm:

Algorithm MP-Karatsuba([y0, . . . , yn−1], [z0, . . . , z2n−2]).
0. If n = 1, return [y0z0].
1. n0 ← �n/2�, n1 ← �n/2�.
2.α← MP-Karatsuba([yn0, . . . , yn−1], [z0+zn1, . . . , z2n1−2+z3n1−2])
3. If n is even

3.1 β ← MP-Karatsuba([yn1 − y0, . . . , yn−1 − yn0−1],
[zn1, . . . , z3n1−2])

else
3.2 β ← MP-Karatsuba([yn0, yn1 − y0, . . . , yn−1 − yn0−1],

[zn1, . . . , z3n1−2])

The Middle Product Algorithm I 419

4. γ ← MP-Karatsuba([y0, . . . , yn0−1], [zn1+z2n1, . . . , zn1+2n0−2+
z2n−2])

5. Return [α0 − β0, . . . , αn1−1 − βn1−1, γ0 + β0, . . . , γn0−1 + βn0−1].

It is easily checked that the number MP(n) of multiplications on an input
of size n satisfies MP(1) = 1, MP(n) = 2MP(�n/2�)+MP(�n/2�), hence
MP(n) = K(n).

A straightforward calculation or using the general formulation developed
in the appendix then allows one to prove that this algorithm indeed computes
MP(y, z).
�

1.3 The FFT Model

Theorem 3 Schönhage-Strassen’s FFT algorithm can be adapted so as to yield
an algorithm computing MP(y, z) in FFT (n) multiplications.

Proof. We give the algorithm and refer to the general framework described in
the appendix for a detailed proof.

As for the complexity, the algorithm amounts to three FFTs of size 2n,
which is exactly the same as what is done in a single FFT multiplication.

Algorithm MP-FFT([y0, . . . , yn−1], [z0, . . . , z2n−2]).
0. ω← primitive (2n)-th root of unity
1. α← FFT(ω, [yn−1, . . . , y0, 0, . . . , 0

︸ ︷︷ ︸
n

])

2. β ← FFT(ω−1, [z0, . . . , z2n−2, 0])
3. γ ← FFT(ω, [α0β0, . . . , α2n−1β2n−1])
4. Return [γ0/2n, . . . , γn−1/2n].

FFT(a, v) computes [
∑2n−1

i=0 amivi]0≤m≤2n−1, where a is a root of unity of
order 2n. At step 3, γ = [cn−1, . . . , c2n−2, c2n−1, c2n + c0, . . . , c3n−2 + cn−2],
where ck =

∑
i+j=k yizj .
�

1.4 General Situation

The two algorithms described in that section can be generalized: to any multi-
plication algorithm of a certain – quite general – kind, we can associate a middle
product algorithm of the same complexity. (See [5, Def. 8] for the definition of
a bilinear algorithm.)

Theorem 4 From any bilinear (n, n) multiplication algorithm, one can derive
an algorithm computing a (n, 2n − 1) middle product with exactly the same
number of ring multiplications.

420 G. Hanrot et al.

Since the proof of that theorem is quite technical, and not required in the
rest of the paper, we postpone it in an appendix.

In the following sections, we consider an algorithm MP(y, z) taking y with
n terms, z with 2n−1 terms, and returning their middle product, with the same
complexity – K(n) or FFT (n) depending on the computation model – than
multiplication. We then use this algorithm to build new algorithms for basic
operations on power series or polynomials: square, inverse, quotient, square
root. Sometimes to simplify the algorithms we allow z to have more terms;
in such a case we consider only the first 2n − 1 terms from z, and we write
MP(y, z, n) to avoid confusion. We also write mul(a, b) for the full product of
two series or polynomials of n terms (giving 2n− 1 terms), mul high(a, b)

for the (short) product of two series of n terms, giving the n most significant
terms, of order 0 to n− 1, and mul low(a, b) for the short product giving the
n− 1 least significant terms, of order n to 2n− 2.

2 Squaring Power Series

In this section, we show how to use the MP algorithm to compute the square of
a power series, or equivalently the upper (or lower) half part from the square
of a polynomial.

Theorem 5 Using the MP algorithm, one can compute the square of a power
series of order n in R(n) ≤ K(n)+1

2 ring multiplications under the Karatsuba
model.

Proof. We use the following algorithm. Let A =∑n−1
i=0 ait

i = A0 + tpA1, we
have A2 = A2

0 + 2A0A1t
p mod tn, plus an extra term a2

pt2p when n is odd. At
step 3 we have α = A2 mod tn−p, and at step 4 (where the second argument
of MP should read [2a2] for n = 3) β gives the coefficients of degree n − p

to n − 1 of A2
0 + 2A0A1t

p, thus α + tn−pβ, plus a2
pt2p when n is odd, gives

A2 mod tn.

Algorithm MP-square([a0, . . . , an−1]).
1. If n = 1, return [a2

0].
2. p← �n/2�
3. α← MP-square([a0, . . . , an−p−1])
4. β ← MP([a0, . . . , ap−1], [an−2p+1, . . . , ap−1, 2ap, . . . , 2an−1])
5. If n mod 2 = 1 then βp−1 ← βp−1 + a2

p

6. Return [α0, . . . , αn−p−1, β0, . . . , βp−1].

The number R(n) of ring multiplications satisfies the recurrence R(n) =
R(�n/2�)+M(�n/2�)+(n mod 2), with R(1) = 1. In the Karatsuba model, as-
sume that R(k) ≤ K(k)+1

2 for k < n. If n = 2k, we have R(n) = R(k)+K(k) ≤
3K(k)+1

2 ≤ K(n)+1
2 . If n = 2k + 1, then R(n) = R(k + 1) + K(k) + 1 ≤

The Middle Product Algorithm I 421

K(k+1)+2K(k)+3
2 ≤ 2K(k+1)+K(k)+1

2 ≤ K(n)+1
2 , using the fact that K(k) + 2 ≤

K(k + 1).3
�

3 Power Series Inversion

In this section, we explain how the MP algorithm can be applied, when plugged
into Newton’s iteration, to compute inverses.

Theorem 6 Using the MP algorithm, one can inverse a power series of order
n in I (n) = K(n) − 1 ring multiplications under Karatsuba’s model, and
I (n) ∼ 2FFT (n) using FFT.

Remark. The analysis of all the FFT variants from now on is biased by the fact
that exact FFT complexity (i.e., exact formulas for FFT (n)) highly depends
on the implementation. We shall thus content ourselves with “reasonable esti-
mates”, assuming mainly that FFT (2n) ∼ 2FFT (n) and FFT (n + 1) ∼
FFT (n).

Proof. We describe the algorithm, which simply rests on Newton’s iteration,
with the usual product replaced by an MP call.

Algorithm MP-inv([a0, . . . , an−1]).
0. If n = 1, return [1/a0].
1. p← �n/2�.
2. α← MP-inv([a0, . . . , an−p−1])
3. β ← MP([α0, . . . , αn−p−1], [a1, . . . , an−1, 0], n− p)

4. γ ← mul high([α0, . . . , αp−1], [β0, . . . , βp−1])
5. Return [α0, . . . , αn−p−1,−γ0, . . . ,−γp−1].

The algorithm performs just one division. The number I (n) of ring multipli-
cations is given by I (1) = 0, I (n) = I (�n/2�)+M(�n/2�)+M(�n/2�). Under
Karatsuba’s framework, we have I (n) = K(n)− 1, since I (n)+ 1 satisfies the
same recurrence as K(n). In the FFT case, one gets I (n) ∼ 2FFT (n).
�

Remark. The mul high call at step 4 of MP-inv has a better complexity
than K(n) for most values of n if Mulders’ algorithm is used, which results in
a better overall complexity for MP-inv. See [9] for more details.

3 It can be shown that K(n + 1) − K(n) = 2z(n)+1 where z(n) is the number of zeroes in the
binary expansion of n.

422 G. Hanrot et al.

4 Power Series Division

4.1 Newton’s Method

From our inversion algorithm, we can mechanically deduce a division algorithm
as follows:

Theorem 7 The quotient of two order n power series – Mulders’short division
– can be computed in 4

3K(n) under the Karatsuba model, and 5
2FFT (n) under

the FFT model.
As a consequence, the division with remainder of a polynomial of degree

2n− 1 by a polynomial of degree n can be performed in 7
2FFT (n).

Proof. We use Karp and Markstein’s trick [7] to incorporate the dividend in the
last Newton’s iteration. The corresponding algorithm is as follows:

Algorithm MP-div-KM([b0, . . . , bn−1], [a0, . . . , an−1]).
0. If n = 1, return [b0/a0].
1. p← �n/2�.
2. α← MP-inv([a0, . . . , an−p−1]);
3. β ← mul high(α, [b0, . . . , bn−p−1]);
4. γ ← MP([β0, . . . , βn−p−1], [a1, . . . , an−1, 0], n− p);
5. δ← mul([α0, . . . , αp−1], [bn−p − γ0, . . . , bn−1 − γp−1]);
6. Return [β0, . . . , βn−p−1, δ0, . . . , δp−1].

The total cost is equivalent to that of one inversion plus one short multiplication
of size n/2, i.e., I (n)+M(n/2), or 4

3K(n) with Karatsuba, and 5
2FFT (n) using

the FFT.
�

Remark. In the above algorithm we consider that the mul high call at step
3 costs M(n − p) multiplications. Actually it may be less expensive when
one uses Mulders’ short product under the Karatsuba model. Nevertheless, the
worst-case complexity 4

3K(n) already improves on the previous best-known
algorithm of average complexity ∼ 1.397K(n) from Mulders [9, Table 6].
However, see also §4.2.

4.2 Direct Division Using MP

Algorithm MP may also be used directly – i.e., without Newton’s iteration – to
compute the quotient of polynomials or power series. This new algorithm is
described and analyzed in this section.

Assume that we are dividing B by A, and split B as (B0, B1), and A as
(A0, A1). Let the quotient be Q = (Q0, Q1). The algorithm is illustrated by
Figure 2.

The Middle Product Algorithm I 423

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Q1

Q0

A0 A1

B0

r =

MP(Q0, A)

B1 − r

Fig. 2. Algorithm MP-divide.

Namely, the upper part of the quotient Q0 is obtained by dividing B0 by
A0. The lower part is then obtained by dividing B1 minus the middle terms of
the product AQ0 – hence MP(Q0, A) – by A0. This gives more formally the
following algorithm:

Algorithm MP-divide ([b0, . . . , bn−1], [a0, . . . , an−1]).
0. If n = 1, return [b0/a0].
1. p← �n/2�.
2. α← MP-divide([b0, . . . , bn−p−1], [a0, . . . , an−p−1]).
3. r ← MP(α, [a1, . . . , an−1, 0], n− p).
4. β ← MP-divide([bn−p − r0, . . . , bn−1 − rp−1], [a0, . . . , ap−1]).
5. Return [α, β].

Theorem 8 Algorithm MP-dividewith inputs of n terms correctly computes
the first n terms of their quotient, using D(n) = K(n)− n ring multiplications
under Karatsuba model.

Proof. The correctness follows easily from the explanations of the picture
above. Let D(n) be the number of multiplications in the base field, Dd(n)

be the number of divisions. Then one has Dd(n) = Dd(�n/2�) +Dd(�n/2�),
and Dd(1) = 1, hence Dd(n) = n. As for D(n), we have D(n) = D(�n/2�)+
D(�n/2�) +M(�n/2�), D(1) = 0. Under Karatsuba model, we get D(n) =
K(n)−n by a simple induction, since the recurrence relations are closely related
to those that one obtains for Karatsuba method.
�

In the case of the FFT, we get for n large enough the “reasonable estimate”
D(n) ∼ 1

2FFT (n) log2(n). As a consequence, Newton’s method should be
preferred in that case.

4.3 Division With Remainder

Consider two series A and B of n terms. Since Algorithm MP-divide com-
putes their quotient Q in K(n) operations, and the remainder can be ob-

424 G. Hanrot et al.

tained from B −AQ in K(n) additional operations, this yields a division with
remainder in 2K(n) operations, which equals the best known complexity in the
Karatsuba model [2]. (Considering series at infinity instead of zero, all results
transpose to polynomials.)

We show in this section how to compute the remainder, i.e., the low part
from AQ, in 2

3K(n) operations, which gives a division with remainder in 5
3K(n)

operations.
In the following algorithm we assume that the high part S of AQ is known

(which is the case in division, since this is just the high part of the dividend B).

AlgorithmShortRem([a0, . . . , an−1], [q0, . . . , qn−1], [s0, . . . , sn−1]).
0. p← �n/2�.
1. T ← mul low([ap, . . . , an−1], [qp, . . . , qn−1]).
2. If n is even

2.1. U ← mul([a0 + ap, . . . , ap−1 + an−1], [q0 + qp, . . . , qp−1 +
qn−1]);

2.2 Return [u0+up− t0− s0− sp, . . . , up−2+u2p−2− tp−2− sp−2−
sn−2, up−1 − sp−1 − sn−1, t0, . . . , tp−2]

else
2.3 U ← mul([a0+ap, . . . , ap−2+an−1, ap−1], [q0+qp, . . . , qp−2+

qn−1, qp−1]);
2.4 Return [up−1−t0−sp−1, u0+up−t1−s0−sp, . . . , up−4+u2p−4−

tp−3−sp−4−s2p−4, up−3+u2p−3−sp−3−s2p−3, up−2+u2p−2−
sp−2 − sn−1, t0, . . . , tp−3].

Theorem 9 Algorithm ShortRem correctly computes the low half of AQ,
and uses 2

3K(n) operations under the Karatsuba model, when A and Q have
n terms.

Proof. The idea is that the remainder comes from the computation AQ, which
Karatsuba decomposes as three multiplicationsA0Q0,A1Q1 and (A0+A1)(Q0+
Q1). But in the present case, the upper half is already known, and we can recover
A0Q0 from it and the two other products.

More precisely, put A = A0 + tpA1, Q = Q0 + tpQ1, and write A1Q1 =
T0 + tn−pT , A0Q0 = Z0 + tpZ1, (A0 + A1)(Q0 + Q1) = U0 + tn−pU1,
S = S0 + tn−pS1.

The low part of the remainder is simply the low part of A1Q1, i.e., T . By
definition, S is the high part of

A0Q0 + tp(A0Q1 + A1Q0)+ t2pA1Q1. (2)

If n is even, S0 = Z0 and S1 = Z1 + U0 − T0 − Z0. This implies that Z1 =
S1 + T0 − U0 + S0.

The high part of the remainder is the high part of the low part of (2), i.e.,
the low part of (A0Q1+A1Q0) plus the high part of A1Q1, namely T0+U1−
T − Z1 = U0 + U1 − T − S0 − S1.

The Middle Product Algorithm I 425

If now n is odd, we have S0 = Z0, S1 = Z1 + t (U0 − T0 − Z0), hence
Z1 = S1 + tS0 + tT0 − tU0, and the high part of the remainder is U1 − T −
Z1 + tT0 = tU0 + U1 − T − tS0 − S1, and the result follows.

The computation of T is a �n2�×�n2� product, which costs K(�n/2�); that of
U = (A0+A1) · (Q0+Q1) is a full �n2�×�n2� product, which costs K(�n/2�).
Thus ShortRem costs K(�n/2�)+K(�n/2�) ∼ 2

3K(n).
�

Remark. Since we only need the sum of U0 or tU0 and U1, we may replace
the full product (A0 +A1) · (Q0 +Q1) by a product mod tp − 1, which would
directly give the sum U0 + U1 or tU0 + U1. If p is even or, better, divisible by
a large power of 2, the evaluation of such a product can be improved by simple
FFT-like techniques, using the fact that (x, y)
→ (x + y)/2 + tk(x − y)/2 is
an isomorphism from R[t]/(tk − 1)×R[t]/(tk + 1) onto R[t]/(tp − 1), when
p = 2k, if the characteristic of the ring R is odd.

Remark. When using FFT multiplication, Algorithm ShortRem is of little
interest, since it replaces a multiplication of size n by two multiplications of
size n/2. However, the fact that the product (A0+A1)(Q0+Q1) is needed only
modulo tp − 1 (whereas FFT might compute it modulo t2p − 1) can probably
be used to speed up things.

5 Square Root of Power Series

5.1 Newton’s Method

From our division algorithm, we can derive a square root algorithm by the
classical Newton’s iteration xk+1 = xk + A−x2

k

2xk
.

Theorem 10 The square root of a power series of order n can be computed
in S(n) ≤ K(n) ring multiplications under the Karatsuba model, S(n) ∼
7
2FFT (n) under the FFT model.

Proof. The corresponding algorithm is as follows:

Algorithm MP-sqrt([a0, . . . , an−1]).
0. If n = 1, return [

√
a0].

1. p← �n/2�.
2. α← MP-sqrt([a0, . . . , an−p−1]);
3. β ← mul([α1, . . . , αn−p−1], [α1, . . . , αn−p−1]);
4. γ ← MP-divide([an−p − βn−p−2, . . . , an−1 − βn−3], 2α);
5. Return [α0, . . . , αn−p−1, γ0, . . . , γp−1].

426 G. Hanrot et al.

where at step 4 it is assumed that βn−p−2 = 0 if n = 2, βn−3 = 0 if n is
even, and 2α is truncated to p terms. The number S(n) of ring multiplications
satisfies S(1) = 0, S(n) = S(�n/2�) + D(�n/2�) +M(�n/2� − 1). We get
S(n) ≤ K(n)− n under the Karatsuba model and S(n) ∼ 7

2FFT (n) under the
FFT model.
�

Corollary 1 The square root (resp. square root with remainder) of a power
series can be computed in 3

4K(n) (resp. 5
4K(n)) multiplications under the

Karatsuba model, and 3FFT (n) (resp. 4FFT (n)) multiplications under the
FFT model.

Proof. If one replaces the full product from step 3 by a short square giving the
n − p − 1 high order terms of α2 (see §2), one gets S(n) ≤ 3

4K(n) under the
Karatsuba model. In practice, one just needs to replace the call to mul by a call
to MP-square.

For the FFT model, instead of dividing A−x2
k by xk at step 4 of MP-sqrt,

we multiply by yk where yk = yk−1+ yk−1(1− xkyk−1) is an approximation of
1/
√

A, computed together with xk. For the last step, this replaces one division of
size n/2 by one multiplication of size n/2 – the last yk is not needed – and for the
preceding steps this replaces one division of size n/2j by three multiplications
of size n/2j for j ≥ 2, whence a total gain of M(n/2) for D(n) ∼ 5

2M(n).
To get the complexities for the square root with remainder, just add 1

2K(n)

under the Karatsuba model (using Algorithm MP-square) and FFT (n) under
the FFT model.
�

5.2 A Variant

We can also give a slightly more general algorithm.Assume that A is given to
precision n, and we have an approximation A = S2+ tpR to precision p. Write
S ′ = S+ δtp, with δ of order n−p. One has A = S ′2+Rtp− δtp(2S ′ − δtp).
To get the right S ′, we just need that Rtp − δtp(2S ′ − δtp) be 0 to precision
n, hence δ = R/(2S + δtp) to precision n− p. This identity is meaningful as
soon as p > 0, since the quotient is performed “online”: the term of degree
k of δ only depends on the terms of δ of degree ≤ k − p. However for our
recursive algorithm to work, all the first half bits of (2S + δtp) are needed to
compute the first half of δ. Hence we can give an “in place” formulation of
MP-divide finding δ as soon as p > (n − p)/2, i.e., p > n/3. Algorithm
MP-sqrt corresponds to the case p = n/2, hence we can ignore the term δtp,
and simply compute R/(2S) using MP-divide.

Precisely, MP-div-inplace(a, q, �, n) computes the quotient of
[a0, . . . , an−1] by [q0, . . . , qn−1] and puts the result in [q�, . . . , q�+n−1].

AlgorithmMP-div-inplace ([a0, . . . , an−1], [q0, . . . , q�+n−1], �, n).
0. If n = 1, q�← a0/q0. Return.

The Middle Product Algorithm I 427

1. p← �n/2�.
2. MP-div-inplace(a, q, �, n− p);
3. γ ← MP([q�, . . . , q�+n−p−1], [q1, . . . , qn−1, 0]);
4. MP-div-inplace([an−p−γ0, . . . , an−1−γp−1], q, �+n−p, p).

Algorithm MP-sqrt-generic([a0, . . . , an−1], p).
0. If n = 1 return [

√
a0].

1. α← MP-sqrt-generic([a0, . . . , ap−1]);
2. β ← MP-square(α);
3.MP-div-inplace([ap−βp−2, . . . , a2p−2−β0, a2p−1, . . . , an−1], 2α,

p + 1, n− p);
4. Return [α0, . . . , αp−1, 2α0, . . . , 2αn−p−1].

One can then try to optimize the choice of the splitting point p.A theoretical
analysis in the Karatsuba model, taking p = �βn�, gives βopt ≈ 0.411, with a
cost ≈ 0.734K(n). Experimental observations yield the following rule:
• for n between 2k and 2k + 2k−1, choose p = 2k−1, except for n = 2k + 1

where one should choose p = 2k−1 + 1;
• for n between 2k−1 + 2k and 2k+1, choose p = n− 2k.

Using those simple rules, we seem to get the optimal number of multiplica-
tions up to a 5% loss; furthermore those rules seem to be asymptotically optimal.
The asymptotic behaviour for S(n)/K(n) is then lim sup S(n)/K(n) = 3/4 (eg.
forn = 2k where we use in fact the first algorithm) and lim inf S(n)/K(n) seems
to be 17/28 (roughly 0.607... for n up to 226), and obtained for n = 2k + 2k−1.
On average we get 2−25 ∑226−1

k=225
S(k)

K(k)
≈ 0.6607....

6 Implementation Results

Since the algorithms we propose offer only a gain on the constant factor, it
seemed to us that a realistic (by opposition with complexity estimates) imple-
mentation was required. We describe it shortly in the present section, and give
experimental results on several architectures.

We choose to implement the algorithms on power series with coefficients in
Z/pZ, withp the largest prime such thatp2 fits into a machine word (p = 65521
on 32-bit machines, p = 4294967291 on 64-bit machines).

For small sizes of arguments, quadratic algorithms are used. The optimal
threshold for each algorithm is determined by a tuning program. Experiments
have been done for series from degree 16 to 2000.

We discuss the results algorithm by algorithm.

6.1 Middle Product

The middle product algorithm has been compared with Karatsuba’s algorithm.
The thresholds with the quadratic version are very similar on all architectures,

428 G. Hanrot et al.

though slightly smaller for the middle product. In practice, we recover the
expected result MP(n) ≈ K(n). We sometimes get (ev6 and k7) a little better,
roughly 0.9K(n).

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP
K(n)

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP
K(n)

Middle product on a k7-550MHz Middle product on a ev6-500MHz

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP
K(n)

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP
K(n)

Middle product on a sparcv9-296 MHz Middle product on an R10K-194 MHz

6.2 Short Square

We have compared theMP-square algorithm, of theoretical complexity 1
2K(n)

(see §2),4 with the following algorithm:

Algorithm Kara-square([a0, . . . , an−1]).
0. If n = 1 return [a2

0].
1. p← �n/2�;

4 A referee proposed the following Mulders-like trick to improve MP-square: take p = �(1−
β)n� instead of p = �n/2�, which leads to the recurrence R(n) = R(βn) + K((1 − β)n) +
R((2β − 1)n) under the Karatsuba model, with an optimal β ≈ 0.560, and a theoretical aver-
age cost of about 0.481K(n). The same idea also applies to Kara-square with p = �βn�,
βopt ≈ 0.581, and a cost of about 0.485K(n).

The Middle Product Algorithm I 429

2. α← mul([a0, . . . , an−p−1], [a0, . . . , an−p−1]);
3. β ← mul high([a0, . . . , an−p−1], [an−p, . . . , an−1]);
4. Return [α0, . . . , αn−p−1, αn−p + 2β0, . . . , αn−1 + 2βp−1].

The theoretical complexity of this algorithm is 2M(n
2), i.e., 2

3K(n) with
Karatsuba multiplication. However, a square is usually less expensive to com-
pute than a product, and costs 2

3K(n) under reasonable assumptions. With the
average gain due to Mulders’ algorithm, we get an algorithm of practical com-
plexity about 0.5K(n).

On the following diagrams, the upper curve is the time for execution of a
full square using Karatsuba, the middle one is the time for computing a short
square using Kara-square and the lower one the time for computing a short
square using MP-square.

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

square
MP-Square

Kara-Square
K(n)/2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

square
MP-Square

Kara-Square
K(n)/2

Short square on a k7-550MHz Short square on a ev6-500MHz

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

square
MP-Square

Kara-Square
K(n)/2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

square
MP-Square

Kara-Square
K(n)/2

Short square on a sparcv9-296 MHz Short square on an R10K-194 MHz

430 G. Hanrot et al.

6.3 Division

We have compared our MP-divide algorithm with Burnikel-Ziegler division
[2], in which we have used short products to compute the remainder associated
to the high part of the quotient. We get the following diagrams (lower curve is
MP-divide):

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP-Div
Kara-Div

K(n)

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP-Div
Kara-Div

K(n)

Division on a k7-550MHz Division on a ev6-500MHz

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP-Div
Kara-Div

K(n)

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

MP-Div
Kara-Div

K(n)

Division on a sparcv9-296 MHz Division on an R10K-194 MHz

6.4 Square Root

We have compared our MP-Sqrt algorithm (lower curve) with Karatsuba
square root [13], in which we have used the Kara-square algorithm. We
get the following diagrams:

The Middle Product Algorithm I 431

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sqrt
MP-Sqrt
3/4 K(n)

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sqrt
MP-Sqrt
3/4 K(n)

Square root on a k7-550MHz Square root on a ev6-500MHz

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sqrt
MP-Sqrt
3/4 K(n)

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sqrt
MP-Sqrt
3/4 K(n)

Square root on a sparcv9-296 MHz Square root on an R10K-194 MHz

6.5 Synthesis

The complexity results obtained in this paper, which might be subject to caution
since they deal with constants, are reliable. Our experiments confirm that we
really obtain those constants in practice. We even get slightly better since the
middle product seems to perform slightly better than Karatsuba on a variety of
machines.

7 Conclusion

This paper presents new algorithms for basic operations on polynomials or
power series. Those algorithms are based on a new algorithm, called middle
product, that computes the n middle coefficients of a (2n − 1) × n product
as efficiently as a full n × n product. Table 1 gives a detailed analysis of the

432 G. Hanrot et al.

Table 1. Previous and new best-known complexities for several operations on power series and
polynomials, under the Karatsuba and FFT models, within O(n) memory usage.

Karatsuba model FFT model

previous this paper previous this paper

Square 2
3 K(n) 1

2 K(n) [Th. 5] 2
3 M(n) 2

3 M(n)

Middle product 2K(n) K(n) [Th. 2] 2M(n) M(n) [Th. 3]

Inverse 3
2 K(n) [2] K(n) [Th. 6] 3M(n) 2M(n) [Th. 6]

Quotient 3
2 K(n) [2] K(n) [Th. 8] 7

2 M(n) 5
2 M(n) [Th. 7]

. . . with remainder 2K(n) [2] 5
3 K(n) [Th. 9] 9

2 M(n) 7
2 M(n) [Th. 7]

Square root K(n) [13] 3
4 K(n) [Co. 1] 7

2 M(n) 3M(n) [Co. 1]

. . . with remainder 3
2 K(n) [13] 5

4 K(n) [Co. 1] 9
2 M(n) 4M(n) [Co. 1]

number of coefficient operations used by those algorithms, compared to previ-
ously known algorithms.5

An implementation in Maple of these algorithms is available at the URL
http://www.loria.fr/∼zimmerma/papers/MP.mpl.

It is possible to obtain floating point versions of the middle product algo-
rithm using only O(1) extra memory – with respect to the polynomial version –
at each recursion step. This, and the applications to multiprecision floating point
arithmetic, is a work in progress and will be presented in a forthcoming paper
[3].

In [11], Victor Shoup asks if a matrix/vector product of the following form
can be reduced to a single multiplication of polynomials of degree less than n:








v0 v1 · · · vn−1

v1 v2 · · · vn

...

vn−1 vn · · · v2n−2















b0

b1
...

bn−1








.

This is exactly MP([bn−1, . . . , b0], [v0, . . . , v2n−2]), whence the “middle prod-
uct” algorithm partially answers to that open question: it does not reduce the
matrix/vector product to a single n×n product, but to the same number of ring
multiplications, provided the product algorithm uses linear forms. This is a par-
ticular instance of the “transposition principle” problem [4, Open Problem 6] in
the case of Toeplitz matrices: if M is the (2n−1)×n matrix with Mi,j = xi−j for
0 ≤ i−j < n, and Mi,j = 0 otherwise, y is the vector (a0, . . . , an−1)

T , and z is
the vector (a2n−2, . . . , a0)

T , then M ·y gives the full product of [x0, . . . , xn−1]

5 For the sake of simplicity, we consider that a full square costs as much as a full product, and
we don’t reuse Fourier transforms when a given variable is used in several multiplications.

The Middle Product Algorithm I 433

and [a0, . . . , an−1], whereas MT · z gives MP([x0, . . . , xn−1], [a0, . . . , a2n−2]),
in reversed order.

The algorithms of Table 1 need only a O(n) memory space, i.e., propor-
tional to the input size. If one enables a larger memory usage, then other algo-
rithms exist. In particular, the relaxed DAC-multiplication proposed by van der
Hoeven in [12] can be adapted to yield a division with remainder in exactly K(n)

scalar operations, using O(n log n) memory. However the “fast variant” from
[12, §4.3.1], which works within O(n) memory, requires more than 2K(n)

operations asymptotically.

Acknowledgements. The authors wish to thank one of the anonymous referees for his clever
comments that greatly helped to improve the presentation of the results, and Éric Schost who
pointed out the link with the transposition principle.

References

1. Brent, R.P.: The complexity of multiple-precision arithmetic. In: The Complexity of Compu-
tational Problem Solving, R.S. Anderssen and R.P. Brent, (eds.), University of Queensland
Press, 1976, pp. 126–165

2. Burnikel, C., Ziegler, J.: Fast recursive division. Research Report MPI-I-98-1-022, MPI
Saarbrücken, 1998

3. Hanrot, G., Quercia, M., Zimmermann, P.: The Middle Product Algorithm, II. Floating point
arithmetic. In preparation

4. Kaltofen, E.: Challenges of symbolic computation: My favorite open problems. J. Symbolic
Comput. 29(6), 891–919 (2000)

5. Kaminski, M., Kirpatrick, D.G., Bshouty, N.H.: Addition requirements for matrix and trans-
posed matrix products. J. Algorithms, 9, 354–364 (1988)

6. Karatsuba, A.A., Ofman, Y.P.: Multiplication of multiplace numbers by automata. Dokl.
Akad. Nauk SSSR 145(2), 293–294 (1962)

7. Karp,A.H., Markstein, P.: High-precision division and square root.ACM Trans. Math. Softw.
23(4), 561–589 (1997)

8. Krandick, W., Johnson, J.R.: Efficient multiprecision floating point multiplication with exact
rounding. RISC-Linz Report Series 93-76, RISC-Linz, Johannes Kepler University, 1993

9. Mulders, T.: On short multiplications and divisions. AAECC 11(1), 69–88 (2000)
10. Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292

(1971)
11. Shoup, V.: Efficient computation of minimal polynomials in algebraic extension of finite

fields. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic
Computation (Vancouver, Canada), S. Dooley, (ed.), ACM, pp. 53–58

12. van der Hoeven, J.: Relax, but don’t be too lazy. J. Symbolic Comput. 34(6), 479–542 (2002)
13. Zimmermann, P.: Karatsuba square root. Research Report 3805, INRIA, 1999

Appendix. The General Situation

In this section, we give a more general and formal presentation of the trick
described in §1. This presentation is suitable for any bilinear multiplication

434 G. Hanrot et al.

algorithm, and gives, in the case of Karatsuba and FFT multiplication, cor-
responding algorithms of the same complexity for the middle product (see
Theorems 2 and 3). In the sequel, R is any commutative ring.

Theorem 11 Let Mp,q,n : Rp×Rq → Rn and �n,p,q : Rn×Rp → Rq be the
bilinear forms defined by

Mp,q,n(y, z) =



∑

j+k=i+p−1

yjzk





0≤i<n

�n,p,q(x, y) =



∑

i+j=k

xiyj





0≤k<q

.

Then, for any (X, Y, Z) ∈ Rn × Rp × Rq , we have

(X | Mp,q,n(Y, Z)) = (�n,p,q(X, Ỹ) | Z), (3)

where (|) denotes the canonical inner product of two vectors of the same length
and Ỹ = (yp−1−i)0≤i<p.

The �n,p,q and Mp,q,n bilinear mappings are related to the product of power
series in the following way. Let X = (x0, . . . , xn−1) ∈ Rn, Y = (y0, . . . , yp−1)

∈ Rp and Z = (z0, . . . , zq−1) ∈ Rq . We have

�n,p,q(X, Y) =
(∑

i+j=0

xiyj , . . . ,
∑

i+j=q−1

xiyj

)

=
(

coefficients of t0, . . . , tq−1 in (
∑

xit
i)(

∑
yj t

j)
)
;

Mp,q,n(Y, Z) =
(∑

j+k=p−1

yjzk, . . . ,
∑

j+k=n+p−2

yjzk

)

=
(

coefficients of tp−1, . . . , tn+p−2 in (
∑

yj t
j)(

∑
zkt

k)
)
.

For p = n and q = 2n − 1, �n,p,q and Mp,q,n correspond respectively to the
usual multiplication and the middle product.
Proof. [Theorem 11] We have

(X | Mp,q,n(Y, Z)) =
n∑

i=0

xi

∑

0≤j<p
0≤k<q

j+k=i+p−1

yjzk =
∑

0≤i<n
0≤j<p
0≤k<q

i+p−1−j=k

xiyj zk

=
∑

0≤i<n
0≤j<p
0≤k<q
i+j=k

xiyp−1−j zk

=
∑

0≤k<q

zk

∑

0≤i<n
0≤j<p
i+j=k

xiyp−1−j = (�n,p,q(X, Ỹ) | Z),

which concludes the proof.
�

The Middle Product Algorithm I 435

We are now able to prove our main result, Theorem 4:

Proof of Theorem 4. Suppose that we have a formula

�n,p,q(X, Y) =
�∑

m=1

(am | X)(bm | Y)cm (4)

with am ∈ Rn, bm ∈ Rp and cm ∈ Rq . Such a formula will be called “a
decomposition of �n,p,q into � ring multiplications”. Then we have according
to Theorem 11

(X | Mp,q,n(Y, Z)) = (�n,p,q(X, Ỹ) | Z)

=
�∑

m=1

(am | X)(bm | Ỹ)(cm | Z).

Therefore, X being an arbitrary vector in Rn:

Mp,q,n(Y, Z) =
�∑

m=1

(bm | Ỹ)(cm | Z)am, (5)

and Mp,q,n can also be decomposed into � ring multiplications, with same
coefficients.
�

Remark. Formulas (4)–(5) show that the complexities of a (n, n) full product
and a (n, 2n−1) middle product are equal when one only counts multiplications
between linear forms in the operands. However, if one also takes into account
the time to compute those linear forms and the time to combine the products,
then the complexities of �n,n,2n−1 and Mn,2n−1,n remain comparable according
to the transposition principle (see the following paragraph).

Matrix multiplication. With the above notations, let us write am = (am,1, . . . ,

am,n), bm = (bm,1, . . . , bm,p), cm = (cm,1, . . . , cm,q) and let A, B, C be the
(�, n), (�, p) and (�, q) corresponding matrices. Then formulas (4)–(5) read:

�n,p,q(X, Y) = CT ·((AXT)∗(BY T)), Mp,q,n(Y, Z) = AT ·((BỸ T)∗(CZT)),

where ∗ denotes the component-wise product of two vectors of length �. From
the “transposition principle” [5, Def. 8 and Th. 4], we conclude that one can
transform a bilinear algorithm P computing �n,p,q(X, Y) into a bilinear algo-
rithm M computing Mp,q,n(Y, Z). If α(X), β(X) and γ (X) denote the number
of additions, multiplications by a known scalar and multiplications between two
indeterminates for algorithm X then we have

α(M) = α(P)+ q − p, β(M) = β(P), γ (M) = γ (P).

436 G. Hanrot et al.

X = X0 X1 X2

�� n0 �� n0

Y = Y0 Y1 Y2

Ỹ = Ỹ2 Ỹ1 Ỹ0

Z = Z0 Z2

�� 2n1 − 1 �� 2n0 − 1

Z10 �� n1 �� 2n1 − 1

Z11 �� n1 �� 2n0 − 1

Fig. 3. Karatsuba and MP splitting.

This means, in the case p = n, q = 2n − 1, that from any multiplication
bilinear algorithm using M(n) multiplications in R we can derive an algorithm
for MP using M(n) multiplications in R, and n− 1 more additions.

We now illustrate how the algorithms of Theorems 2 and 3 can be obtained
from Theorem 11.

The Karatsuba Model

Let X = (xi)0≤i<n ∈ Rn, Y = (yj)0≤j<n ∈ Rn and Z = (zk)0≤k<2n−1 ∈ R2n−1.
Write n = n0 + n1, with 0 < n0 ≤ n1 and split X, Y in the following way.

X = [X0, X1, X2] with X0 = (x0, . . . , xn0−1),

X1 = (xn0, . . . , xn1−1), X2 = (xn1, . . . , xn−1),

Y = [Y0, Y1, Y2] with Y0 = (y0, . . . , yn0−1),

Y1 = (yn0, . . . , yn1−1), Y2 = (yn1, . . . , yn−1).

Note that the subvectors X1 and Y1 are empty when n0 = n1. Furthermore, we
define Z0, Z10, Z11 and Z2 as the following subvectors of Z:

Z0 = (z0, . . . , z2n1−2),

Z10 = (zn1, . . . , z3n1−2), Z11 = (zn1, . . . , zn1+2n0−2),

Z2 = (z2n1, . . . , z2n−2).

Karatsuba’s method amounts to make a recursive call on low halves and
high halves of the operands, and on the differences of those operands, i.e., to
compute

a = �n1,n1,2n1−1([X0, X1], [Y0, Y1]),

b = �n0,n0,2n0−1(X2, Y2),

c = �n1,n1,2n1−1([X0 −X2, X1], [Y0 − Y2, Y1]),

The Middle Product Algorithm I 437

and then the high part of the result is b, the low part is a and the middle part is
a − c + b. In our formalism, we write

(�n,n,2n−1(X, Ỹ) | Z) = (�n1,n1,2n1−1([X0, X1], [Ỹ2, Ỹ1]) | Z0 + Z10)

−(�n1,n1,2n1−1([X0 −X2, X1], [Ỹ2 − Ỹ0, Ỹ1]) | Z10)

+(�n0,n0,2n0−1(X2, Ỹ0) | Z2 + Z11).

Then, using equation (3) and Karatsuba’s method, we can write

(X | Mn,2n−1,n(Y, Z)) = (�n,n,2n−1(X, Ỹ) | Z)

= (�n1,n1,2n1−1([X0, X1], [Ỹ2, Ỹ1]) | Z0 + Z10)

−(�n1,n1,2n1−1([X0 −X2, X1], [Ỹ2 − Ỹ0, Ỹ1]) | Z10)

+(�n0,n0,2n0−1(X2, Ỹ0) | Z2 + Z11)

= ([X0, X1] | Mn1,2n1−1,n1([Y1, Y2], Z0 + Z10))

−([X0 −X2, X1] | Mn1,2n1−1,n1([Y1, Y2 − Y0], Z10))

+(X2 | Mn0,2n0−1,n0(Y0, Z2 + Z11))

= (X | [α − β, γ + low(β)])

where
α = Mn1,2n1−1,n1([Y1, Y2], Z0 + Z10),

β = Mn1,2n1−1,n1([Y1, Y2 − Y0], Z10),

low(β) = (β0, . . . , βn0−1),

γ = Mn0,2n0−1,n0(Y0, Z2 + Z11).

X being an arbitrary vector of Rn, we infer:

Mn,2n−1,n(Y, Z) = [α − β, γ + low(β)]. (6)

This formula is exactly Algorithm MP-Karatsuba from §1.2.

The FFT Model

Let ω be a primitive (2n)-th root of unity, X ∈ Rn, Y ∈ Rn and Z ∈ R2n. The
FFT algorithm becomes, in our formalism,

438 G. Hanrot et al.

�n,n,2n(X, Y) = 1

2n

2n−1∑

m=0

((ωmi)0≤i<n|X)((ωmj)0≤j<n|Y)(ω−mk)0≤k<2n.

Hence we obtain from (4)–(5) the formula

Mn,2n,n(Y, Z) = 1

2n

2n−1∑

m=0

((ωmj)0≤j<n|Ỹ)((ω−mk)0≤k<2n|Z)(ωmi)0≤i<n.

In more classical notations, if f (2n)
m is the m-th component of the direct

Fourier transform, and g(2n)
m that of the inverse one, we get

∑

0≤j<n
0≤k<2n

j+k=i+n−1

yjzk = 1

2n

2n−1∑

m=0

ωmif (2n)
m (ỹ, 0, . . . , 0)g(2n)

m (z), 0 ≤ i < n,

which is exactly Algorithm MP-FFT from §1.3.
This means that MP(y, z) can be computed in two Fourier transforms of size

2n and one inverse Fourier transform of size 2n, which is exactly the same as
for a full n× n product.

Remark. The preceding formulas are still valid if we suppose X of length n+1:

�n+1,n,2n(X, Y) = 1

2n

2n−1∑

m=0

((ωmi)0≤i≤n|X)((ωmj)0≤j<n|Y)(ω−mk)0≤k<2n,

Mn,2n,n+1(Y, Z) = 1

2n

2n−1∑

m=0

((ωmj)0≤j<n|Ỹ)((ω−mk)0≤k<2n|Z)(ωmi)0≤i≤n,

therefore we can compute the n+1 middle coefficients of the product (
∑

yj t
j)

(
∑

zkt
k) with no additional operation (assuming no particular optimization).

