
Speeding up Subgroup Cryptosystems

Martijn Stam



CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Stam, Martijn

Speeding up Subgroup Cryptosystems / by Martijn Stam.
Eindhoven: Technische Universiteit Eindhoven, 2003
Proefschrift. – ISBN 90-386-0692-3
NUR 918
Subject headings: cryptology / finite fields / elliptic curves / recurrences
2000 Mathematics Subject Classification: 94A60, 11T71, 14H52, 94A55

Cover: Paul Verspaget

Printed by Universiteitsdrukkerij Technische Universiteit Eindhoven



Speeding up Subgroup Cryptosystems

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. R.A. van Santen, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op woensdag 4 juni 2003 om 16.00 uur

door

Martijn Stam

geboren te Tilburg



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. A.K. Lenstra

en

prof.dr.ir. H.C.A van Tilborg

De totstandkoming van dit proefschrift is mede mogelijk gemaakt door de STW.



Opgedragen aan mijn lieve oma

Geertje den Ouden-Heijkoop





Preface

The title of this thesis contains the word cryptosystem. Originally cryptosys-
tems were used to make messages unintelligible for prying eyes; only the intended
receiver could make up what the message said. In the very early beginnings this
could be done by heart, then by hand using pencil and paper and later using tables
and sophisticated mechanical devices. Today computers are used most of the times
to implement cryptosystems that can provide confidentiality but also authenticity
and other services. Authenticity is comparable to signing a letter by hand; the re-
ceiver wants to be sure that the message does originate from whom he thinks it does.
A signature provides legal proof it does. Not surprisingly, this type of cryptosystem
is commonly referred to as a digital signature, even though it bears no structural
resemblance to handwritten signatures.

Subgroup cryptosystems are cryptosystems based on a specific number theoretic
assumption concerning the discrete logarithm problem. Ignoring the specifics for
now, the main point is that an honest user of such a cryptosystem has to perform
a task called exponentiation to, say, sign a message or decrypt what is called a
ciphertext. Such an exponentiation can be done in a reasonable amount of time.
An adversary who wants to break the system —by forging a signature or reading
a message not intended for him— has to compute a discrete logarithm. This is
assumed to be very hard, probably taking him the rest of the millennium.

Speeding up a subgroup cryptosystem is aimed at reducing the time a user needs
to wait, for instance to encrypt a message or verify a signature. This requires fast
exponentiation routines, either by performing less group operations or by reducing
the costs of the group operations.

Chapters 2 and 3 concentrate on the first possibility: reducing the number
of group operations. Chapter 2 gives an overview of several exponentiation rou-
tines and some relevant results in the theory of addition chains. Chapter 3 ex-
tends the notion of addition chain to second and third order. After reviewing
several binary algorithms and Montgomery’s Euclidean algorithm for second de-
gree, a third degree adaptation of the latter is presented, based on joint work with
Arjen K. Lenstra [180]. Proposition 3.34 also stems from this work.

The approach of reducing the costs of the group operation is taken in Chapters 4
and 5. In Chapter 4 several subgroups of finite field extension are discussed. Sec-
tions 4.3 and 4.5 show that in special subgroups of second respectively sixth degree
extensions squaring is cheaper than in the entire field. This includes joint work with
Arjen K. Lenstra [181]. The speedup of XTR, a related cryptosystem, using the

vii



viii PREFACE

techniques of Chapter 3 is discussed in Section 4.6 and is based on the aforemen-
tioned [180]. Chapter 5 discusses an improved Montgomery-like representation for
elliptic curves over binary fields [179]. An overview of similar techniques for curves
over prime fields is included.

The final chapter of this thesis is not concerned with subgroups but with black
box groups. Black box groups are groups for which a black box is used to implement
the group operations. Chapter 6 discusses efficient implementation of a specific black
box secret sharing scheme over an arbitrary finite abelian group. This requires
careful balancing between finding short addition chains and picking appropriate
parameters. This is joint work with R. Cramer.



Contents

Preface vii

List of Algorithms xi

Chapter 1. Introduction 1
1.1. Cryptology 1
1.2. Subgroup Cryptosystems 5
1.3. Recurrences 11
1.4. Computational Model 13

Chapter 2. Addition Chains 17
2.1. Introduction 17
2.2. Theoretical Aspects 19
2.3. Exponentiation Algorithms 25
2.4. Conclusion 43

Chapter 3. Higher Order Addition Chains 45
3.1. Motivation and Definitions 45
3.2. Binary Algorithms 50
3.3. Montgomery’s Euclidean Algorithms 55
3.4. Theoretical Remarks 67

Chapter 4. Finite Field Extensions 69
4.1. Introduction 69
4.2. Preliminaries 70
4.3. Quadratic Extensions 73
4.4. LUC 75
4.5. Sixth Degree Extensions 77
4.6. Speeding up XTR 81
4.7. Alternatives 88
4.8. Timings 90
4.9. Conclusion 90

Chapter 5. Montgomery-Type Representations 93
5.1. Introduction 93
5.2. Elliptic Curves 95
5.3. The Montgomery Representation 96

ix



x CONTENTS

5.4. Curves over Binary Fields 97
5.5. Prime Fields 101
5.6. Conclusion 106

Chapter 6. Optimizing a Black Box Secret Sharing Scheme 109
6.1. Introduction 109
6.2. Weak Black Box Secret Sharing 114
6.3. Weak Secret Sharing over the Integers 118
6.4. Weak Secret Sharing over an Extension Ring 121
6.5. Combining the Two Sharings 127
6.6. Picking the Extension 129

Bibliography 131

Samenvatting 141

Dankwoord 143

Curriculum Vitae 145



List of Algorithms

1.1 Unary Exponentiation 6

2.4 Unary Multi-Exponentiation 23
2.6 Improved Unary Exponentiation 25
2.7 Left-to-Right Binary Exponentiation 26
2.9 Right-to-Left Binary Exponentiation 27
2.12 Generic Left-to-Right Exponentiation 29
2.14 Generic Right-to-Left Exponentiation 31
2.23 Euclid’s GCD Algorithm 38
2.24 Euclidean Double Exponentiation 38
2.25 Euclidean Twofold Exponentiation 39
2.27 Euclidean Single Exponentiation 40

3.9 Second Degree Left-to-Right Binary Exponentiation 50
3.11 Second Degree Right-to-Left Binary Exponentiation 51
3.14 Third Degree Left-to-Right Binary Exponentiation 52
3.16 Third Degree Right-to-Left Binary Exponentiation 53
3.17 Schoenmakers’ Second Degree Double Exponentiation 53
3.20 Matrix-less Third Degree Double Exponentiation 54
3.22 Montgomery’s CFRC Algorithm 55
3.23 Classical Euclidean Step 57
3.25 Montgomery’s Euclidean Double Exponentiation 58
3.26 Bleichenbacher’s Twofold Adaptation 59
3.27 Iterative Euclidean Twofold Exponentiation 60
3.31 Single Exponentiation with Precomputation 61
3.33 Montgomery’s PRAC Algorithm 62
3.36 Third Degree Adaptation of CFRC 64
3.37 Third Degree Euclidean Double Exponentiation 64
3.39 Third Degree Euclidean Twofold Exponentiation 66

6.7 Determining the Minimal δα 120

xi





1

Introduction

1.1. Cryptology

1.1.1. An Ancient Art. An ancient art, cryptography was already practised by the
Romans. Messages were made unintelligible to enemies by shifting the letters of
the alphabet by three, so writing ‘d’ where ‘a’ is meant, ‘e’ where ‘b’ is meant,
etc. Such a method to hide messages from the opponent is called a cipher. The
shift-by-three cipher is called the Caesar cipher —after Julius Caesar— and is one
of the oldest ciphers known. In the centuries that followed cryptology remained
focused on finding ways to send messages that could only be read by the intended
recipient (cryptography): any eavesdropper should be unable to determine the orig-
inal message. Attempts to try and break such systems were mounted nevertheless
(cryptanalysis). Many ciphers were invented and subsequently broken.

All the ciphers had one thing in common. If the intended recipient can decrypt
a ciphertext but an eavesdropper cannot, then the recipient must possess something
the eavesdropper does not. Over the years this something has taken several forms.
For instance, for the Caesar cipher it is the knowledge that the ciphertext was
obtained from the plaintext by shifting the letters of the alphabet by three. For
the Enigma, a famous cipher used by the Germans during the Second World War,
both sender and recipient had a special mechanical device. In addition, the recipient
needed to know the initial setting of the machine used by the sender. By changing
the initial setting the device could be used over and over again, assuming both
sender and receiver used the same settings. In a way, this transforms the problem of
securely sending messages to agreeing upon initial states, which can be done before
the message is known.

1.1.2. A Scientific Approach. The security of a cipher such as the Enigma seemed
to rely on two factors. An adversary did not have an Enigma device, nor did he know
the initial setting used. Kerckhoffs’ principle states that the security should reside
in the secrecy of the initial setting alone (in fact, the allies did manage to obtain an
Enigma device and subsequently they broke the cipher, allowing them to effectively
eavesdrop on a significant part of Germany’s confidential communications and giving
them an important strategical advantage). For a precise description of Kerckhoffs’
principle a more formal description of what constitutes a cipher is required. Here
the notion of an algorithm is useful.

An algorithm is similar to a recipe: it is a “finite set of rules that gives a
sequence of operations for solving a specific type of problem” (Knuth, [89, p. 4]).

1



2 1. INTRODUCTION

An algorithm should have some input, some output and the number of operations
should be finite. An algorithm should also be definite (meaning that it is crystal
clear what has to be done) and effective (it should be known how to perform all the
steps).

A cipher is made up of an encryption algorithm and a decryption algorithm.
The encryption algorithm has as inputs the message that needs to be transmitted,
called the plaintext, and the initial setting, called the key. It outputs a ciphertext.
The decryption algorithm has as inputs the ciphertext and the key and outputs the
plaintext. Kerckhoffs’ principle states that even when the encryption and decryp-
tion algorithms are given to an adversary, he should not be able to determine the
plaintext from a ciphertext without knowing the key. If the inner workings of a
cryptosystem are not be disclosed to the general public, this is often derogatorily
called security through obscurity.

In the 1940s, Shannon laid the scientific foundations of cryptology by applying
his newly found information theory to encryption systems [168, 169]. Shannon’s
work provides a useful measure of the amount of information in a message and a
key. The main theorem of information-theoretic cryptography, is that the amount of
information that can be sent absolutely secure is at most as much as the information
present in the key. If more information is transmitted, an adversary can theoretically
retrieve part of the secret message (when given unlimited computing power). In
practice, adversaries are limited in their capabilities, which allows sending messages
longer than the key. But if there is a flaw in the system, a malicious eavesdropper
might be successful. Shannon’s pioneering work remained confidential for a few
years and cryptology remained an almost exclusively military affair with a strong
emphasis on the confidential transmission of data for a few decades.

1.1.3. A Modern Science. About thirty years ago this has changed and today
a large crypto-community is at work in academia and industry. This change came
about for two important reasons: the rise of the computer (and the Internet) and the
introduction of public key cryptography by Diffie and Hellman [58]. Traditionally,
cryptography was based on the premise that the sender and the intended receiver
shared a common secret in advance. This secret was then used to encrypt and
decrypt the message. Public key cryptography uses a different point of departure.
The receiver has some secret information which she keeps to herself, but a related
piece of information is made known to the world. The secret information is called
the private key, the information that is known to everyone the public key. A sender
uses the public key to encrypt the message. The recipient uses her private key to
decrypt the ciphertext. An important advantage of this setup over the ‘traditional’
one, is that the sender and receiver no longer need to share a common secret. In fact,
it suffices if the sender would look up the public key of the receiver in a directory
(phone book), as long as it is clear that the public key truly belongs to the person
it purports to.

At the core of public key cryptography are one-way functions. A one-way func-
tion is a function that is easy to compute but hard to invert, at least in practice.
The public key is often a one-way function applied to the private key. Diffie and



1.1. CRYPTOLOGY 3

Hellman proposed to use exponentiation of integers modulo a prime as one-way
function (the concept of a one-way function was known before). For encryption a
trapdoor one-way function is used: the function is hard to invert, except for someone
holding some extra piece of information. Although Diffie and Hellman introduced
the concept of a trapdoor one-way function, the world had to wait until 1978 for
Rivest, Shamir and Adleman to publish their paper [155] that contained the first
explicit trapdoor one-way function. It was, or rather is, based on the assumed in-
tractability to extract roots modulo a composite. The factorization of the modulus
allows easy root extraction, thus building in a trapdoor. The assumed intractability
of factoring assures that only the person who constructs the modulus by multiplying
two (or more) primes, knows this factorization.

A disadvantage of public key cryptography is that it is unknown how to prove
that a function is one-way. Proving that f can be computed efficiently is usually not
very difficult, but proving it is hard to invert is, well, hard. In practice, functions are
used that most people believe are hard to invert. If someone manages to find a way
to invert such a function efficiently (or significantly more efficient than previously
known), the cryptosystems that are based on this assumption fall apart or, in the
optimistic scenario, need to increase their key size.

The beauty of public key cryptography is that it not only changes the way
we encrypt messages, it also opens up the way for a variety of other possibilities.
Still reasonably close to encryption is key agreement: two parties want to agree
on a key, but they have to start from scratch and can only communicate over an
(authenticated) public channel (compare this with arranging a date in the presence
of your evil ex). A revolutionary new application are digital signatures. Diffie and
Hellman realized that, since only the ‘owner’ of the trapdoor could invert the one-
way function, the ability to compute the inverse of the message could effectively
prove that the message originates from the owner and also that the message has not
been tampered with. If hand-written signatures are used, it is actually much more
difficult to show that a message has (not) been tampered with.

In the 1980s cryptology really took off in the scientific community. New cryp-
tosystems were proposed, proven secure using a not-quite-right notion of security,
and subsequently broken. In the late 1980s the definitions appeared what constitutes
a good public key encryption scheme or a good digital signature scheme. Essential
in these definitions is a separation of concerns. There is broad description of the
type of scheme. For instance for a public key encryption scheme there are three
algorithms: one for encryption, one for decryption and one for key generation (this
is suddenly more important when a public key algorithm is used). Second, there is a
list of possible adversaries. There is for instance a difference between an adversary
who only knows the public key and an adversary who can decrypt almost all cipher-
texts. Finally, there is a list of goals for an adversary. Does he want to retrieve
the entire ciphertext or is he satisfied if he can check whether a certain ciphertext
and plaintext belong together? A cryptosystem is secure if even the most powerful
adversary having only this most modest goal cannot succeed. A proof of security
shows that if the adversary would be successful, he would also be able to solve some



4 1. INTRODUCTION

well-known mathematical problem that (almost) everyone believes to be very hard,
such as factoring integers.

At the same time, new exciting applications emerged, such as zero-knowledge
proofs and multi-party computation. A zero-knowledge proof allows someone to
convince another of a statement without revealing anything apart from the state-
ment itself and its validity. Loosely speaking, multi-party computation involves a
large number of players, each of whom has his own input and who together want
to compute something that depends on each of the inputs, for instance a list with
all their inputs sorted lexicographically. The challenge arises from the fact that
no player wants to reveal the specific input he has and some of the players might
be corrupt. In both zero-knowledge proofs and multi-party computation choices
have to be made: what to protect information-theoretically and what to protect
computationally. The theory of both areas is still developing further.

The Handbook of Applied Cryptography [121] and Schneier’s Applied Cryptogra-
phy [160] both illustrate the range of cryptography. It is interesting to see that the
more recent Handbook is more structured and scientific, almost as a silent witness
to the developments of cryptology. Bellare and Goldwasser’s lecture notes [66] give
a more theoretical treatment of (mainly) public key cryptography.

1.1.4. Cryptography in Practice. The advances in cryptology resulted that cryp-
tography slowly sips through in everyday life, albeit most often unnoticed. Espe-
cially in banking applications and on the Internet cryptography plays an important
role. Encryption of large portions of data is still based on modern versions of ci-
phers where sender and recipient use the same key. But public key cryptosystems
are used to ‘transmit’ this key and digital signatures are used to prove authenticity
of the message and protect it from tampering. Today digital signatures have a legal
status in several countries. Cryptology also finds it way on an increasing number
of smart cards. These cards can be used as an electronic purse or as a means of
identification, needed before receiving some privilege.

In all cases the attractiveness of using a public key cryptosystem strongly de-
pends on the time the system takes. If it would take several minutes to pay with a
smart card, hardly anybody will use it. An obvious solution is to use a faster smart
card, but a faster smart card is undoubtedly more expensive. A better approach
is to reduce the amount of work the smart card has to do, without affecting the
security of the scheme (the smart card is only used as an example). The efficiency
of cryptosystems has been studied for a long time. Almost every new cryptosystem
calls for a new efficiency optimization and sometimes a tweak of the cryptosystem
is more efficient and just as secure.

In this light the work of this thesis should be seen: the efficiency of several
cryptosystems is examined and optimized.

As a final remark of this section, a word on a problem not addressed in this the-
sis, but that forms a serious obstacle in the widespread acceptance of cryptography.
The weakest point of almost any system is often the human factor. Cryptosystems
seem to suffer from this ‘condition’ even more than any other system. A small
anecdote from everyday life will serve well to illustrate this.



1.2. SUBGROUP CRYPTOSYSTEMS 5

Bike theft is a serious problem in the Netherlands. A chain of hardened steel
used to attach the bike to some fixed object, such as a lamppost, might discourage
potential thieves. A foreigner not quite aware of the Dutch situation once used the
chain to attach his bike to a small pole only standing one meter high. Without
too much effort a thief can lift the chain over the pole, thereby releasing the bike
from the pole and enabling him to steal the bike (he can worry about detaching the
chain from the bike in his workshop). Even though the chain is good, it fails to
give proper protection as a result of improper use. Fortunately, if you do not lock
your bike properly, it gets stolen, which you will notice. Next time, common sense
suffices to make proper use of chain.

If you use a weak cryptosystem it is not clear how to find out that your opponent
is actually reading all your messages. As a result, there is much less awareness of
properly using cryptosystems. An extra problem is that most of what a cryptosystem
does, happens somewhere in the background and a computer is used (and needed)
to check the result. There is very little the average user can do to check whether
his computer program actually does what it should do (it is already quite difficult
to distinguish between a compressed file and an encrypted compressed file).

1.2. Subgroup Cryptosystems

1.2.1. Exponentiation. For a long time after the introduction of public key cryp-
tography in the late 1970s, it was hoped —and believed— that a rich and varied
field of one-way functions would be discovered. In their seminal paper, Diffie and
Hellman [58] exploit the (assumed) hardness of taking discrete logarithms. Shortly
after, Rivest et al. [155] describe a system ultimately based on the hardness of fac-
toring integers (once more assumed). Numerous attempts have been made to base
cryptosystems on problems as diverse as knapsacks, lattices, braid groups, coding
theory, and non-commutative groups, but the mainstay of todays public key cryp-
tosystems is based on the hardness of either factoring integers or computing discrete
logarithms in finite abelian groups of known order. In this thesis we will concentrate
on speeding up the latter type of cryptosystem.

For now, and for the rest of this thesis, let G denote a finite abelian group and
let 〈g〉 denote the subgroup of G generated by some element g ∈ G. If a group is
cyclic of known order x this will be made explicit by the notation Gx. The group
G will be denoted multiplicatively; the group multiplication will either be denoted
explicitly by · or by juxtaposition. The identity element is denoted by id. For
historical reasons the group G will be represented additively in the last two chapters
of this thesis.

For an element g ∈ G and a positive integer n performing an exponentiation
means computing

(1) gn =
n︷ ︸︸ ︷

g · g · . . . · g .

This is well defined since · is associative. Commutativity is not needed here, nor the
existence of inverses or the identity. This leads some authors to consider the problem
of exponentiation over monoids instead of finite abelian groups. Alternatively, one



6 1. INTRODUCTION

can also emphasize on the group being a Z-module, which will have applications
in Chapter 6. For negative integers n the exponentiation gn is defined as (g−1)−n,
where g−1 is the inverse of g in the group. Finally g0 = id by definition, so the
exponents behave as elements in the additive group Z (modulo the group order).

The naive way to perform an exponentiation is by repeated multiplication, as
described in the algorithm below. (The style of presentation of algorithms is based
on Knuth’s example [89].)

Algorithm 1.1 (Unary Exponentiation).
The algorithm takes a group element g and a nonnegative integer n as input and
returns gn. The algorithm maintains as invariant:

0 ≤ a ≤ n, A = ga .

1. [Initialization] Set a← 0 and A← id.
2. [Finished?] If a = n terminate with output A.
3. [Increase a] Set A← gA and a← a+ 1 and go back to the previous step.

This algorithm takes n − 1 group multiplications for positive n. If n is a k-
bit exponent, that is k = dlg(|n| + 1)e or, if n > 0, k = blg nc + 1, we see that
the runtime of Algorithm 1.1 is exponential in the bitlength k, which is out of the
question for values of k that are relevant for cryptographic applications. In Chapter 2
efficient algorithms will be reviewed that require at most 2k multiplications for an
exponentiation. (The notation lg stands for logarithm to base 2. The natural
logarithm is denoted by ln. When the base is inconsequential, log is used. The
function dxe returns the smallest integer ≥ x and bxc returns the greatest integer
≤ x.)

1.2.2. The Discrete Logarithm Problem (DLP). Whereas computing h = gn is
fairly easy, the opposite of computing n when given g and h can be quite hard.
The value n is called the discrete logarithm of h with respect to g, or n = logg h.
Computing n is aptly known as the discrete logarithm problem (DLP). We will
assume that the DLP is hard in the groups discussed in this thesis.

Related to the discrete logarithm problem are the computational and decisional
Diffie-Hellman problems. The computational Diffie-Hellman (CDH) problem entails
computing gnm given g, gn, and gm. The decisional Diffie-Hellman (DDH) problem
requires one to determine whether a given group element h equals gnm, where g, gn,
and gm are also given.

Although the descriptions of the problems above are easy enough, the formal
definition of hardness of for instance the DLP is somewhat involved. Typically it
involves a family G of finite cyclic groups and a security parameter k. The larger k,
the bigger the cardinality of the group chosen from G and the smaller the success
rate for an adversary trying to find discrete logarithms in the group. The sub-
tleties concerning assumptions based on the DLP are discussed in full by Sadeghi
and Steiner [158]. McCurley [120] and Odlyzko [139] review the DLP itself and
Boneh [24] gives extensive treatment of the DDH problem.



1.2. SUBGROUP CRYPTOSYSTEMS 7

The security of a lot of cryptographic protocols relies on the assumed hardness of
the CDH or DDH problem. Only assuming the hardness of the DLP is not sufficient
for these protocols. In some groups the DDH problem is easy, but the CDH problem
is still assumed to be hard. There are also some (black box) separation results.

Diffie and Hellman [58] suggested the use of the multiplicative group of the
integers modulo a prime or more generally, the multiplicative group of a finite field
for their famous key agreement protocol. We will write Zp for the integers modulo p
and Fpd for a finite field of characteristic p and extension degree d. The multiplicative
groups are Z∗p and F∗pd . Schnorr [161] proposed to use only a subgroup of prime
order q of Z∗p. The exponents can be reduced modulo q, which will typically be
significantly shorter than p, without affecting the security of the system. A natural
generalization is a prime order subgroup of F∗pd . Nowadays it is common to use a
prime order subgroup of a larger, better understood group, hence the name subgroup
cryptosystem. Section 1.2.4 contains some information on attacking the DLP in
these groups.

In 1985 Koblitz [93] and Miller [126] suggested to use groups based on elliptic
curves. The advantage of elliptic curves is that no subexponential algorithm is
known to solve the DLP over an elliptic curve. As a consequence the security
parameter k can be chosen relatively small (or the group order can be chosen small).
In Chapter 5 we discuss some aspects of the efficient implementation of elliptic curve
cryptograpy. A more thorough treatment is given by Blake et al. [17].

The use of hyperelliptic curves in cryptography was proposed later [94]. Efficient
arithmetic on hyperelliptic curves is considered by Lange [100].

1.2.3. Cryptographic Applications. Of the big pool of cryptosystems based on the
DLP, CDH and DDH assumptions, we will pick just a few, that cover the basics of
key agreement, encryption and signatures. Again, this is just a very small selection
to illustrate DLP-based cryptography and many other interesting applications of
subgroup cryptosystems exist.

All the examples below involve two parties, called Anna and Bob. We will
assume that they have already agreed upon some group Gq of order q and a generator
g of Gq. The discrete logarithm problem in Gq is assumed to be hard. For simplicity
we will assume that q is a prime.

Key Agreement. The idea of key agreement is that two parties that start with-
out sharing secret information, arrive at a common secret string at the end of the
key agreement protocol. The common secret string can subsequently be used as
the key for a symmetric encryption scheme. The scheme below is by Diffie and
Hellman [58].

Anna picks some element a ∈ Zq and she sends A = ga to Bob. At the same
time, Bob picks some element b ∈ Zq and he sends B = gb to Anna. Both are now
capable of computing gab. Bob by computing Ab and Anna by Ba. An adversary
knowing g and Gq and observing ga and gb needs to solve the CDH problem to
obtain the agreed upon key gab. The assumed hardness of the CDH problem implies
security of the key against eavesdroppers.



8 1. INTRODUCTION

Encryption. It took surprisingly long before a ‘pure’ encryption scheme based
on the DLP appeared in the literature. In 1985, ElGamal [60] proposed an en-
cryption scheme that is basically a Diffie-Hellman key agreement followed by group
multiplication of the message and the key. (Sometimes Diffie-Hellman key agreement
followed by an encryption ‘outside the group’ is called hybrid ElGamal encryption.)

Anna begins by picking an arbitrary a ∈ Zq as her private key. She publishes
A = ga, her public key. When Bob wants to send a message to Anna, he first
encodes the message as an element m ∈ Gq. He picks r ∈ Zq at random, computes
gr and Ar and sends the pair (mAr, gr) to Anna. Upon receiving this pair, Anna
can compute Ar herself as (gr)a, after which recovery of the message follows by a
division.

An interesting property of ElGamal encryption is that it is homomorphic: if en-
cryptions of m1 and m2 are given, the pointwise product of the ciphertexts decrypts
to m1m2. ElGamal encryption is semantically secure under the DDH assumption,
but it is important that the message is really an element in Gq. In particular it
is required that the message has order q. Embedding the message in a (cyclic)
supergroup of Gq in such a way that m does not necessarily have order q is a com-
mon mistake [109, 157]. Unfortunately, for subgroup cryptosystems it is not always
known how to efficiently embed a message in Gq.

Signature Schemes. There does not seem to be a single signature scheme based
on discrete logarithms that is used almost exclusively. The Digital Signature Algo-
rithm (DSA) has the benefit of being standardized by the NIST [136]. There should
be an efficient map embedding the group Gx into Zx, such that first exponentiating
and then applying this map is a one-way function (the composition of a one-way
function and an ordinary function is not necessarily one-way). To avoid technical
problems, we assume that the group has prime order. The public key of Anna is
A = ga and her private key is a.

To sign a message m, Anna first picks r ∈ Zx at random. She computes R = gr

and s = r−1(m+ aR) mod x, where R is mapped into Zx and m is hashed into Zx
using a cryptographically strong hash function. Anna sends the pair (s,R) along
with the message to Bob. If Bob knows Anna’s public key, he can verify the signature
by computing gms

−1
ARs

−1
. If this value equals R, the signature is valid.

1.2.4. Attacking the DLP. Algorithms that attempt to solve the DLP can be clas-
sified according to the extent in which the group structure (representation) is ex-
ploited. Shoup [172] shows that if the group is regarded as a black box (cf. 6),
the number of group operations to solve the DLP in a group of order n is at least
O(
√
n). This lower bound is achieved by Shank’s deterministic baby-step-giant-step

method [167], also requiring O(
√
n) memory. Only requiring constant memory but

probabilistic in nature, are Pollard’s ρ and λ methods [153, 154]. The ρ method
runs in time O(

√
n) and the λ method in O(

√
B) where B is an upper bound on

the exponent (possibly smaller than n, moreover the group order does not need to
be known in advance).



1.2. SUBGROUP CRYPTOSYSTEMS 9

Pohlig and Hellman [152] show that the discrete logarithm problem in a cyclic
group of composite order decomposes into the DLPs in the respective subgroups
of prime order. In theory this means that the group order should contain at least
one large prime factor to obtain a secure cryptosystem. In practice, the order of
the subgroup that is used, is often chosen to be prime itself (there are exceptions,
notably for protocols that also rely on the intractability of factoring). As a notational
convenience, Gq will always denote a subgroup of prime order q and, unless specified
otherwise, q will be a k-bit prime. Current practice based on conservative estimates
of the computational power (and prowess) of an adversary, suggests to use k in the
range 160 to 200.

For finite fields it is possible to use the index calculus method [70, 159] to com-
pute discrete logarithms. For fixed extension degree d and characteristic p tend-
ing to infinity, the heuristic asymptotic runtime of the index calculus method is
exp((1.923 + o(1))(ln pd)1/3(ln ln pd)2/3). Coppersmith [49] describes an improve-
ment for p = 2 and d growing. Later work generalizes this to fixed p and growing
d with a heuristic asymptotic runtime of exp((1.526 + o(1))(ln pd)1/3(ln ln pd)2/3).
Similar runtimes can be obtained for d fixed and p growing but of a special form
(for instance close to a power of two). For fixed d, it is customary to pick p such
that d lg p is in the range 1024 to 4096. These figures are based on experimental
results and runtimes of the index calculus method (also when applied to factor in-
tegers). More detailed analysis and recommendations of key sizes can be found in
the literature [105, 110].

Lenstra [104] discusses the implications the Pohlig-Hellman algorithm [152] has
for the discrete logarithm problem in finite fields Fpd . The multiplicative group F∗pd
has order pd − 1, which factors as the product of all Φs(p) where s is a divisor of d
and Φs(p) is the s-th cyclotomic polynomial evaluated in p (for background on finite
fields and cyclotomic polynomials, Lidl and Niederreiter [111] are quite thorough).
The subgroup of order Φs(p) can be efficiently embedded in F∗ps . Hence, for proper
divisors s of d the resulting discrete logarithm problem reduces to the discrete loga-
rithm in a proper subfield of Fpd which is widely believed to be considerably easier
than the problem in the extension field. The hardness of computing logarithms in
the group F∗pd must therefore reside in its cyclotomic subgroup of order Φd(p).

In line with the above, in Chapter 4 the discrete logarithm problem in finite fields
will be considered in a subgroup Gq of large prime order q and with Gq ⊆ GΦd(p). The
necessary condition q|Φd(p) also proves sufficient, in that Gq cannot be embedded
into any proper subfield of Fpd due to the following lemma [104, Lemma 2.4].

Lemma 1.2 (Lenstra). Let q > d be a prime factor of Φd(p). Then q does not
divide any Φs(p) for divisors s of d with s < d.

Menezes and Vanstone [122] suggested that using the group Gp2−p+1 ⊆ F
∗
p6

might just be using supersingular curves in disguise. Indeed, the order of the group,
p2 − p+ 1, corresponds nicely with the order of a supersingular curve over Fp2 and
the Weil or Tate pairing gives an embedding from the supersingular curve into the
cyclotomic subgroup of F∗p6 . It has been shown by Verheul [194] that the existence



10 1. INTRODUCTION

of an efficient homomorphism from the group Gp2−p+1 ⊆ F
∗
p6 to a supersingular

curve implies that the CDH problem can be efficiently solved for both groups as
well. This provides strong evidence that the group Gp2−p+1 is not a supersingular
elliptic curve of the same cardinality in disguise.

1.2.5. Attacking a Subgroup Cryptosystem. Suppose that a cryptosystem is prov-
ably secure under the DLP assumption (for some suitable definition of secure) and
that Gq is a group in which computing discrete logarithms is infeasible. In some
cases, it might still be possible for an adversary to launch an attack on the system,
especially if the users are not cautious. The two examples below show that even
with mathematically sound cryptosystems there are pitfalls to avoid when using the
system. (Our examples are slightly artificial, but the techniques do carry over to
more realistic settings.)

Suppose that Anna and Bob are performing a Diffie-Hellman key agreement
protocol (Section 1.2.3) and that Bob wants to know the discrete logarithm a of the
value A = ga Anna sends him. Suppose that somehow Anna sends Bob the key she
thinks they have agreed upon as soon as she has computed it. There are two ways
Bob might be able to learn a, one active and one passive method.

To begin with the passive method, Anna has to compute Ba, where B is the
group element gb given by Bob. Because Anna sends the result Ba to Bob as soon as
she is finished computing it, Bob knows exactly how long it took Anna to compute
Ba. If Anna has used Algorithm 1.1 to compute Ba, the time taken is proportional to
a−1. The time needed by Anna therefore reveals a to Bob. Even though in practice
Anna will not use Algorithm 1.1 —and if she does, then Bob can be expected to run
through the algorithm in the same time as Anna, obtaining a anyway—, information
on how long it took Anna to compute Ba using more advanced algorithms can be
very dangerous in the hands of an adversary. Especially smart cards suffer from so
called side-channel attacks, where an adversary monitors the power consumption and
duration of cryptographic operations using a secret key. Several countermeasures
are proposed in the literature to make presumably safer exponentiation routines,
but we will largely ignore this issue in Chapters 2 and 3.

Bob can also launch an active attack to try and find out a. Suppose that Bob
sends Anna some value B that is not in Gq but in another group for which Bob
knows how to solve the DLP. If Anna computes Ba and returns this value to Bob,
he will be able to determine a. If Anna would check that B ∈ Gq, she does not
have to fear this attack (since q is prime and the DLP self-reducible). Checking
that B is indeed an element of Gq can be quite expensive. Often it is necessary to
first check that B is in some (cyclic) supergroup G′ of Gq and subsequently that the
order of B is indeed q. The latter check usually requires a full exponentiation if Gq
is a proper subgroup of G′. The cost of membership testing of G′ differs greatly per
cryptosystem. If the order of G′ is only a small factor c bigger than that of Gq, an
alternative solution is enforcing an element B ∈ G′ into Gq by computing Bc and
use this value in the remainder of the protocol. In Chapter 4 we will address the
issue in more detail for the subgroups under consideration.



1.3. RECURRENCES 11

1.3. Recurrences

Exponentiation in a group can be generalized to computing remote terms in
a (linear) recurrence. There are several proposals to replace the exponentiation in
cryptographic protocols by the evaluation of remote terms in a recurrence relation.

The most famous recurrence relation is without doubt the Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, etc. The initial values are F0 = 0 and F1 = 1. Subsequent terms
are defined recursively by Fi+1 = Fi + Fi−1 for i > 0. The Fibonacci sequence
is an example of a second order linear recurrence over the integers. Lucas [116]
has studied the sequence extensively and introduced the following two families of
functions (now known as Lucas functions):

Un+2(P,Q) = PUn+1 −QUn, U0(P,Q) = 0, U1(P,Q) = 1 ;(2a)

Vn+2(P,Q) = PVn+1 −QVn, V0(P,Q) = 2, V1(P,Q) = P .(2b)

The Fibonacci numbers correspond to Un(1,−1). The numbers occurring in the
sequence Vn(1,−1) are known as Lucas numbers. Computing the Lucas functions
modulo a prime or an RSA-like composite has cryptographic applications, such as
the LUC cryptosystem [175] (discussed in Section 4.4).

Using modular arithmetic for the computation of the Lucas numbers shows that
it is possible to define recurrences over other commutative unital rings. Another
example are the Chebyshev polynomials Tn(x) = cos(n cos−1(x)). They satisfy the
recurrence Tm(x)Tn(x) = 1

2 (Tn+m(x) + Tn−m(x)) over Q[x]. Filling in m = 1 gives
the linear recurrence Tn+1 = 2xTn − Tn−1. This formula already incorporates the
initial value T1 = x. The other initial value is T0 = 1.

Another possibility is considering higher order recurrences. An example of a
third order linear recurrence is the Perrin sequence [1, 145], defined by

(3) An+3 = An+1 +An

and initial condition A0 = 3, A1 = 0, and A2 = 2. There does not seem to exist
a direct application of the Perrin sequence, but there is a pseudo-primality test
based on the Perrin sequence [1] (similar to a test based on the Lucas functions).
In Chapter 3 we use the adjective ‘Perrin’ for some third order analogues of second
order objects (that bear the adjective ‘Lucas’).

The recurrence relations we are interested in are of a slightly different form.
For a second order recurrence we consider the case where the term vn+m can be
computed as a function of vn, vm, and vn−m. (Loosely speaking, this corresponds
to being able to multiply two elements in a group only if their quotient is already
known.) Initial values v0 and v1 are given. Moreover, we will assume that v0 is fixed.
It will be denoted by v0 = id (corresponding to g0 = id). The value v1 is called
the base; the subscript will usually be dropped. An example of such a recurrence
are the Chebyshev polynomials. For a third order recurrence the term cn+m can be
computed as a function of cn, cm, cn−m, and cn−2m. The initial values are c0 = id, c1
and c−1.

In Chapter 3 we will discuss efficient algorithms to evaluate remote terms in
one of these recurrences (not necessarily linear). In Chapter 4 second and third



12 1. INTRODUCTION

order recurrences for LUC respectively XTR [107] are encountered. Both can be
rewritten as linear recurrences. The second order recurrences in Chapter 5 arising
from Montgomery’s elliptic curve representation are not linear.

As already mentioned, evaluating the n-th term in a recurrence can be regarded
as a generalization of exponentiation. Similarly, the DLP can also be reformulated:
given a recurrence (not necessarily linear, but preferably cyclic), and a ring element
r in the sequence, find n such that xn = r. In a group 〈g〉 the discrete logarithm is
unique modulo the order of the group. This property is lost even for cyclic linear
recurrences. The CDH and DDH problems allow even more freedom. Given two
ring elements r1 and r2, the computational Diffie-Hellman problem requires finding
some r3 such that n1 and n2 exist satisfying r1 = xn1 , r2 = xn2 , and r3 = xn1n2 .

Although higher order recurrences are not used in this thesis, we will briefly
discuss some relevant theory. This helps to understand the DLP based on recur-
rences and gives some backdrop for Chapters 3 and 4. There is also a small link
with Chapter 6. Higher order recurrences have cryptographic applications of their
own in stream cipher design and pseudorandomness generation.

A k-th order linear recurrence over a ring R is defined by

(4) xn+k = f0xn + f1xn+1 + · · ·+ fk−1xn+k−1, n ≥ 0 ,

where the coefficients fi ∈ R for i = 0, . . . , k − 1 are fixed. Initial values xi ∈ R for
i = 0, . . . k−1 are also given. The companion matrix of the recurrence (4) is defined
by

(5) M =


0 0 . . . 0 f0

1 0 . . . 0 f1

0 1 . . . 0 f2

...
...

. . .
...

...
0 0 . . . 1 fk−1

 .

This matrix has the property that, for n ≥ 0, the vector (xn, . . . , xn+k−1) can be
obtained from the vector of initial values (x0, . . . , xk−1) using the following formula:

(6) (xn, . . . , xn+k−1) = (x0, . . . , xk−1)Mn .

If f0 has a multiplicative inverse in R (equivalently, if M is invertible), the
recurrence is extended to negative terms by allowing n < 0 in (6). A recurrence is
cyclic iff Me = I for some positive integer e. The characteristic polynomial of the
recurrence is f(X) = Xk − fk−1X

k−1 − · · · − f1X − f0.
The DLP based on a recurrence can be reformulated in terms of the ring

R[X]/(f). Let the linear transform L from R[X]/(f) to R be defined by L(Xi) = xi
for 0 ≤ i < k, so L is based on the initial values of the recurrence. The transform
L is well-defined regardless of the initial values iff f is irreducible over R. By in-
duction it follows that in this case also L(Xi) = xi for i ≥ k. The DLP for a
recurrence therefore reduces to “inverting” L, that is given r ∈ R, computing an
element s ∈ 〈X〉 ⊆ R[X]/(f) subject to L(s) = r, and solving the DLP in R[X]/(f).
For the CDH and DDH problem similar arguments hold.



1.4. COMPUTATIONAL MODEL 13

In the special case that R is a finite field Fpd and f is irreducible over R of
degree e, the ring R[X]/(f) is isomorphic to Fpde . As a consequence, the DLP for
an e-th order recurrence over Fpd is as hard as the DLP in Fped (inverting L poses
no problems). Index calculus methods apply, as well as Lenstra’s observation that
the order of the recurrence should be a divisor of Φed(p). In particular this implies
that the security of LUC is the same as that in Fp2 and the security of XTR as that
in Fp6 .

For the sake of completeness, we list some results for fast evaluation of the n-
th value in a k-th order recurrence. Miller and Spencer Brown [125] show that it
suffices to compute the n-th power of the (k × k)-matrix M . This method runs in
time logarithmic in n and was reinvented by Urbanek [189], who gives running time
O(k3 log n). Since matrix multiplication in general can be done in O(klg 7) due to
Strassen [182] and theoretically even faster [50], this is clearly not optimal. Gries
and Levin [73] exploit the special form of the companion matrix to arrive at an
O(k2 log n) algorithm for evaluating xn. Fiduccia [63] notes that it is more efficient
to compute the n-th power of X modulo the characteristic polynomial, leading to
an O((k log k) logn) algorithm. (Fiduccia gives O(klg 3 log n) in general and only
the faster O((k log k) logn) if the recurrence is defined over a ring supporting a
fast Fourier transform. With Kaminski’s polynomial multiplication [83] the ring
no longer needs to support a fast Fourier transform to allow an O((k log k) logn)
algorithm.)

1.4. Computational Model

The ultimate goal in speeding up a cryptosystem is simple: it should take
users as little time as possible to do what they want or alternatively, they are
able to do more in the same time. It would therefore be natural to measure the
‘speed’ of a cryptosystem in seconds. Measurements in seconds can be obtained
by actually implementing a cryptosystem and running it on a computer. Using
different computers, different operating systems or different compiler options can
lead to different timings. Although a comparison between two cryptosystems can
be made this way, there is a disturbing influence of outside factors on the timings
acquired. A solution is to measure the number of operations (which we already did
in some of the previous paragraphs). The question is what sort of operations to
measure. The closest approximation to the actual runtime is the number of word
operations. Unfortunately, wordsizes are a property of the architecture, which would
introduce an unwanted outside influence in our timing.

Another approach to compare systems accurately is based on the algebraic na-
ture of the schemes. In the 1970s algebraic complexity theory was developed [143,
183, 184]. Loosely speaking, an operation in some algebraic structure is measured
in the number of basic operations. The actual runtime of a system is then obtained
by assigning to each of the basic operations in the algebraic structure the amount
of time it takes to perform this operation. Although algebraic complexity theory
puts a strong emphasis on lower bounds, upper bounds and asymptotic results and
we are more interested in optimizing specific instances of limited size.



14 1. INTRODUCTION

An important choice to be made is pointing out the basic operations. For-
tunately, the systems described in this thesis mostly use modular arithmetic. In
other words, they are based on a common algebraic structure, namely some field
Fp. Measurements made in the number of operations in Fp allow a good comparison
of systems (as long as they are based on roughly equally large primes p). Below
we will give a brief overview of Fp-arithmetic (our notation is based on Cohen and
Lenstra [47]). We conclude with Assumption 1.3 in order to measure all operations
in the number of Fp-multiplications. This makes it easier to compare systems and
it is a logical choice, since the dominating factor for the runtime of an algorithm is
usually the number of modular multiplications and squarings.

The algorithms discussed in Chapters 2 and 3 for performing an exponentiation
work for any group. The runtime is therefore first expressed in the number of group
operations required. In Chapters 4 and 5 the group operations are described and
the required number of Fp-operations per group operation is given. Combination of
the two types of measurement leads to the cost of an exponentiation for a specific
subgroup cryptosystem in the number of Fp-multiplications. In Section 5.4 the
number of F2l -multiplications is used as main measure and in Chapter 6 the group
is not specified, so only the number of group operations is counted.

1.4.1. Modular Arithmetic. We consider multiplying two l-bit numbers modulo
a third l-bit prime p. Although it is possible to perform the multiplication and
the reduction interleaved, usually both are performed separately. We use M to
denote the cost of multiplying two l-bit numbers (without modular reduction) and
D for reducing a 2l-bit number modulo an l-bit number. Since squaring a number
tends to be cheaper than a multiplication, we use S for the cost of squaring an
l-bit number (without modular reduction). The cost for performing a multiplicative
inverse modulo an l-bit number is denoted by I (so a division costs I+M +D). We
use A1 for adding two l-bit numbers (including a reduction if needed), and A2 for
adding two 2l-bit numbers (no reduction). A modular addition (of cost A1) typically
boils down to two or three plain l-bit additions (which makes it hard to determine
whether A1 > A2 or vice versa). Consequently, the stated numbers of additions
should be taken with a grain of salt. As another example, in Lemma 4.5 on page 74
the cost of subgroup squaring is approximated by 2S + 2D+A1, assuming that the
cost of subtracting one or multiplying by two is negligible compared to A1 and A2.

1.4.2. Multiplication. The schoolbook method for multiplication requires O(l2) bit
operations. Karatsuba’s often used method runs in O(llg 3) bit operations. Asymp-
totically faster methods exist, but for the range of l we are interested in these
methods are still more expensive. Knuth [90, Section 4.3] and Bernstein [15] give
good overviews of fast multiplication methods.

An important factor, the platform on which the multiplication is performed, is
hidden in the big O notation. As a small illustration, Brown et al. [36] describe
an implementation of modular arithmetic in assembly language on a Pentium II
400 MHz PC using the classical method where a multiplication of 192 bit numbers
takes about as long as 8 to 9 additions (of 192 bit numbers on the same machine).



1.4. COMPUTATIONAL MODEL 15

Addition is performed in O(l), so multiplication should be O(l) slower. That Brown
et al. report only a factor 8 to 9 (and not 192) is a result of using a 32-bit architecture
(the factor 8 to 9 is reasonably close to 192/32).

If several multiplications are to be performed, having a common or fixed mul-
tiplicand can lead to a speedup. This is especially true in a different computa-
tional model, where the building block of l-bit (modular) multiplication is l-bit
addition [18, 41–43, 82], which can be regarded as “exponentiation” in (Zn,+). It
is an aspect we do not take into account.

Squaring can usually be done slightly faster than a multiplication. This holds
both in theory and in practice. If for some reason squaring happens to be more
than twice as fast as a multiplication, the multiplications can often be replaced by
two squarings, since ab = ((a+ b)2 − (a− b)2)/4.

1.4.3. Reduction. Bosselaers et al. [28] compare three popular techniques to take
care of the modular reduction. The schoolbook method of reducing a 2l-bit number
by a l-bit modulus is by means of a long division. A disadvantage of this classic
method is its inability to reap profit from faster multiplication routines. In both
Barret and Montgomery reduction the division is replaced by multiplications (and
some overhead). Furthermore, the cost of the reduction is hardly affected if it is
fed numbers slightly larger than 2l-bits to reduce. Bosselaers et al. conclude that
all three methods give similar performance for moduli of cryptographic interest,
although their figures favour Montgomery-reduction by 10%.

Barrett reduction [10] is based on the observation that z mod n = z − nb znc
and, assuming z < 22l, b znc ≈ bb

z
2l−1 cb 22l

n c2
1−lc. If b 22l

n c is precomputed, the
reduction takes two (partial) multiplications plus some shifts and additions.

Montgomery [129] proposes to represent a number x mod n by xR mod n,
where R is a sufficiently large radix coprime to n. Multiplication of xR mod n
and yR mod n gives a 2l-bit number congruent to xyR2 modulo n. The reduction
operation mapping z to zR−1 mod n can be implemented based on the fact that
zR−1 ≡ (z + (zn′ mod R)n)/R mod n, where n′ = −n−1 mod R. By using a
suitable R (typically related to the word size), the reduction can be implemented
using only two (partial) multiplications plus some shifts and additions.

Reductions are significantly cheaper if the modulus has a ‘nice’ form. An ex-
ample is a modulus of the form 2l− 1, requiring only a shift and an addition for the
reduction of a 2l-bit number. Several generalizations are known. Special moduli are
used in elliptic curve cryptography (Chapter 5).

1.4.4. Inverses. Computing modular inverses is by far the most expensive basic
operation. Usually some variant of the extended Euclidean algorithm is used. For
bitlengths of cryptographic relevance Brown et al. [36] report a whopping 80 to 1
ratio for the costs I : (M + D). The reduction here is in fact negligible since the
modulus is ‘nice’. A lower ratio of 23 is reported by De Win et al. [198] using a
different inversion algorithm [7]. In this case, the reduction is real thereby lowering
the ratio.



16 1. INTRODUCTION

If several inversions have to be performed at the same time, Montgomery [130]
shows it is possible to trade all but one of the inversions for three Fp-multiplications
each [45, Algorithm 10.3.4].

1.4.5. Simplification. In the literature often a simplified model is used, where an
l-bit modular multiplication is the unit of measurement, a squaring costs 80% of a
modular multiplication, and additions are considered negligible.

Assumption 1.3. Let p be an l-bit prime. Let the runtime of an algorithm be
given in the number of operations A1, A2,M, S, and D (using modulus p). If the
total number of additions A1 and A2 is independent of l, then the runtime of the
algorithm measured in the number of Fp-multiplications can be realistically estimated
by assuming that A1 = A2 = 0, M = D = 0.5, and S = 0.3 measured in the number
of Fp-multiplications.

For exponentiations we always switch back to the simplified version, in order
to facilitate comparisons with other results given in the literature. When inversions
are needed, this will be explicitly mentioned.

1.4.6. Binary Fields. In Chapter 5 elliptic curves over F2l will be discussed. In this
case A1, D,M, S, and I refer to the respective F2l -operations based on polynomial
representation: addition l-bit addition “with reduction”; reduction of a 2l-degree
polynomial modulo an l-degree polynomial; multiplication of two l-degree polyno-
mials (without reduction); squaring an l-degree polynomial (without reduction);
and finally inverting an l-degree polynomial modulo another l-degree polynomial
(including reduction).

Hankerson et al. [74] provide an overview and comparison of several algorithms
to implement F2l arithmetic based on a polynomial basis. Elements of F2l are
represented as polynomials over F2 of degree lower than l and computations are
performed modulo an irreducible polynomial of degree l. The irreducible polynomial
chosen is usually a trinomial or pentanomial, resulting in a reduction costing only a
couple of additions (and some shifts). Additions themselves are merely (l-bit) XOR
operations. In F2[x] squaring is cheap since (

∑l−1
i=0 bix

i)2 =
∑l−1
i=0 bix

2i, requiring
only some shuffling (the reduction is counted separately).

Multiplication of two degree l-bit polynomials can take two different directions.
Quite common is to base it on l-bit additions, giving rise to algorithms similar to
those used for exponentiation. In this setting it pays off if several multiplications
have a common multiplicand. The other method is more akin to the large integer
arithmetic. Both polynomials are split in small parts and then several of the smaller
polynomials are multiplied and the results combined (for instance using Karatsuba’s
technique).

Inversions in F∗2l can be performed using an extended Euclidean algorithm but
alternatives exist. Measured in the number of F2l -multiplications an inversion is
said to cost between 3 multiplications by De Win et al. [198] and 10 multiplications
by Hankerson et al. [74]. We will adhere to 10 multiplications to ease comparison
with Hankerson et al. in Chapter 5.



2

Addition Chains

In this chapter several well known results and algorithms concerning addition
chains are reviewed. Addition chains are used to efficiently compute an exponenti-
ation or, more generally, several exponentiations. They are used for this purpose in
Chapters 4, 5, and 6. The algorithms for higher order chains discussed in Chapter 3
are based on the algorithms to compute ‘ordinary’ addition chains. No new results
are presented in this chapter, apart from possibly Lemma 2.29.

2.1. Introduction

In this chapter algorithms are described for speeding up exponentiations, i.e.,
the computation of gn, by reducing the number of group operations. Related to
the computation of gn and of practical importance, is the efficient computation
of gnhm, known as a double exponentiation. The most prominent application of
double exponentiation in cryptography is signature verification in ElGamal-like sig-
natures [60, 75, 124]. Also relevant in practice is the simultaneous computation
of gn and gm, called a twofold exponentiation. The encryption scheme by Cramer
and Shoup [55] is just one example of a cryptosystem that benefits from exploiting
simultaneous exponentiations.

When implementing a cryptosystem, using Algorithm 1.1 to perform the expo-
nentiations takes far too many steps (multiplications). More efficient methods are
needed. But what is the most economical way to compute gn?

Suppose we would keep track of all group elements that are successively com-
puted by an algorithm that computes gn (on input g and n). This list would begin
with g and eventually end with gn. Each new element will necessarily be formed
by multiplying two elements already appearing on the list (what else is there to
do?). Clearly, all intermediate values are powers of g. Since the exponents are addi-
tive, the problem can be reformulated in terms of addition chains. Addition chains
(Additionsketten) were introduced by Scholz [164].

In Section 2.2.1 the relevant definitions of addition chains are given, incorpo-
rating among others multi-exponentiation and simultaneous exponentiation. Al-
gorithms for multi-exponentiation and those for simultaneous exponentiation are
strongly related. The underlying principle, called duality, is discussed in Sec-
tion 2.2.2. Section 2.2.3 wraps up the theoretical part of this chapter, containing
for instance Pippenger’s bound on the asymptotic worst-case behaviour of addition
chains for simultaneous multi-exponentiation.

17



18 2. ADDITION CHAINS

Finding short addition chains is not the same as finding good exponentiation
routines. In fact, although for each exponentiation routine there is a unique addi-
tion chain, the converse is not always true and the different exponentiation routines
mapping to the same addition chain might not be equally efficient. In the theory of
addition chains it is customary to count the number of multiplications without dis-
tinction. In practice, group squarings are often cheaper than group multiplications.
A real-life situation might also put constraints on the memory available. We will
even encounter situations where longer addition chains lead to faster exponentiation
routines. In Section 2.1.1 some notation is introduced that corresponds better with
reality.

There is a vast body of literature about finding short addition chains and fast
exponentiation routines. Bernstein [16], Gordon [71], Knuth [90] and Menezes et
al. [121] all provide overviews (and there are more). We will concentrate on a
selection of algorithms that is most relevant to the remainder of this thesis. Hence
the emphasis is on exponents of bitlengths up to about 200. We distinguish between
two classes of algorithms: square-and-multiply algorithms and Euclidean algorithms.

The first category is the most popular and a large number of variations exist.
Best known are the binary algorithms discussed in Section 2.3.1. Especially the left-
to-right version (Algorithm 2.7) is easy to implement, relatively fast and it requires
only little memory. In Section 2.3.2 a large number of more advanced square-and-
multiply algorithms are discussed, including algorithms suitable for simultaneous
or multi-exponentiation. Some of these algorithms exploit cheap inversions in the
group.

The Euclidean algorithms are discussed in Section 2.3.3. In Section 2.3.4 a tech-
nique is discussed that exploits an endomorphism (other than inversion) and that is
used in Chapter 4. We briefly consider the possibility of (off-line) precomputation
for single exponentiation in Section 2.3.5. At the expense of memory, this can speed
up an exponentiation considerably if the base is fixed.

We ignore the possibility to speed up an exponentiation by adding a multiple
of the group order to the exponent [44]; we ignore susceptibility to side-channel
attacks; we ignore possibilities to parallelize; we hardly consider space requirements;
and finally, we largely ignore the time the control code of the algorithm takes.

2.1.1. Notation. Algorithm 1.1 takes n−1 group multiplications. When expressing
the runtime of an exponentiation algorithm the cost of a single group multiplication
will be denoted by α, so in the present case we have that the algorithm costs (n−1)α.
A more refined runtime analysis is possible, since the first group multiplication is
actually a group squaring. The cost of a single group squaring will be denoted by δ
since group squarings are often cheaper to perform than group multiplications. The
cost of an inversion in the group is denoted by ν. The runtime of the algorithm can
then be written down as (n− 2)α+ δ.

The choice of symbols α, δ, and ν is based on additive terminology in English
and the “canonical” mapping from the Latin alphabet to the Greek one. The use
of additive terminology is motivated on the one hand by the use of addition chains



2.2. THEORETICAL ASPECTS 19

Table 2.1. Cost examples measured in the number of Fp-multiplications

Group Cost of α Cost of α̇ Cost of δ
Section 4.3, Gp+1 ⊆ F∗p2 2.5 2.5 1.8

Section 4.7.1, F∗p2/F∗p 2.5 2 2
Section 4.5, Gp2−p+1 ⊆ F∗p6 12 12 6

Section 5.5.1, mixed Chudnovsky Jacobian 6.4 6.4 3.2

for fast exponentiation routines (Chapter 2) and on the other a desire to reserve
multiplicative terminology for the often underlying field arithmetic (Section 1.4).

Implicit in the notation are more or less identical runtimes for all multiplica-
tions in the group. For finite abelian groups, this is a realistic assumption. But for
instance for the integers the bitlength of the operands influences the cost of a mul-
tiplication. (A suitable model for integer exponentiation is also known [72, 119].)

In some cases, such as Algorithm 2.7 (the left-to-right binary algorithm), one of
the multiplicands will always be the same. The cost of these special multiplications,
with one multiplicand fixed, will be denoted by α̇. For the algorithm above this
would yield a runtime of (n−2)α̇+ δ. The separation of α̇ and α is especially useful
if the exponentiation routine is going to be used for mixed coordinate elliptic curve
cryptosystems: the exponentiation routine involves an affine part and a subsequent
projective part. Even if the affine part consists of the unary algorithm only, the
costs of the affine part will be counted using α instead of α̇. The projective part
can now use α̇ when one of the affinely precomputed values is used.

This example demonstrates that the use of α̇ is useful, but also somewhat
volatile. It is not invariant under duality (Section 2.2.2) and often tricky when
considering precomputation (Section 2.3). Table 2.1 contains an overview of some
examples based on modular arithmetic. The cost is measured in the number of
Fp-multiplications based on Assumption 1.3. The first two rows can be based on
the same primes (of at least 512 bits long) and the two bottom rows can both be
based on primes of at least 170 bits long.

2.2. Theoretical Aspects

2.2.1. Definitions. An algorithm to compute gn will compute intermediate powers
of g before finally arriving at gn. The list of these intermediate powers is called an
addition chain. The first element in this list is 1, which corresponds to g and the
last element in this list is n, corresponding to the desired power gn. More generally,
an element ci in the addition chain corresponds to the computation of gci in the
exponentiation algorithm. The elements ci in an addition chain reflect the fact that
gci can only be computed by multiplying to known powers of g.

Definition 2.1 (Traditional Addition Chain). An addition chain for a nonneg-
ative integer n is an increasing sequence

C = 〈c0, c1, . . . , ck〉 ,



20 2. ADDITION CHAINS

with all ci nonnegative integers, such that c0 = 1 and ck = n. Moreover, for all
0 < i ≤ k there exist j and j′, 0 ≤ j ≤ j′ < i, such that ci = cj + cj′ .

The length of C is defined to be l(C) = k. We denote by l(n) the smallest
integer l such that there exists an addition chain C for n with l(C) = l.

As a small example to demonstrate the correspondence between addition chains
and exponentiations, consider the chain 〈1, 2, 4, 5, 6, 11〉 of length 5. This chain
proves that g11 can be computed using only 5 multiplications by consecutively com-
puting g2, g4 = (g2)2, g5 = g4 · g, g6 = g4 · g2, and finally g11 = g5 · g6. Note
that g6 could also have been computed as g5 · g, showing that the mapping from
exponentiation algorithms to addition chains is indeed many-to-one.

Computing a short addition chain for a single exponent naturally generalizes to
computing a chain for multiple exponents. Consider for instance the simultaneous
computation of both g2 and g4 It is clear that gn = g2 is a simple byproduct of
the computation of gm = g4 = (g2)2. It follows that the simultaneous computa-
tion of two powers can be advantageous: the costs (number of multiplications) are
lower than the total costs of performing both exponentiations separately. In the
more general setting p exponents n1, . . . , np are given and gn1 up to gnp have to be
computed simultaneously, corresponding to an addition chain that contains all ni.
Such an addition chain is commonly referred to as an addition sequence. For conve-
nience, we write gn for the simultaneous exponentiation, where n is the (row) vector
(n1, . . . , np). This problem was first posed by Knuth [88, Section 4.6.3, Exercise 22].

Another possibility is the computation of gnhm, known as a double exponentia-
tion. The example n = 2 and m = 4 shows that multiplying the result of the single
exponentiations gn and hm is not always the most efficient method: computing
g2h4 as (gh2)2 takes only 3 multiplications whereas computing g2, h2, h4 and then
g2h4 takes 4. In the more general problem of multi-exponentiation a (row) vector
g = (g1, . . . , gm) of m group elements and a (column) vector n = (n1, . . . , nm)T of m
exponents is given. The multi-exponentiation

∏m
i=1 g

ni
i is denoted gn. Bellman [12]

posed the question how to perform multi-exponentiation efficiently. In response,
Straus [185] remarked that the problem of minimizing the number of multiplica-
tions to compute gn corresponds to finding a shortest addition chain for the column
vector n. Each base gi corresponds to a basis (column) vector ei (consisting of zeros
and a single one at position i).

The combination of multi-exponentiation and simultaneous exponentiation leads
in a natural way to simultaneous multi-exponentiation. Let g be a vector of m group
elements an let n1, . . . ,np be vectors of m exponents each. Let N be the matrix
having the vectors ni as its columns. The simultaneous computation of gn1 up to
gnp is denoted by gN .

The following definition, taken from Knuth and Papadimitriou [92], captures
both generalizations at the same time.

Definition 2.2 (Addition Chain). Let N = [nij ] be an m × p matrix of non-
negative integers such that no row or column of N is entirely 0. An addition chain



2.2. THEORETICAL ASPECTS 21

for N is a sequence

C = 〈c−m+1, c−m+2, . . . , c0, c1, . . . , ck, ck+1, . . . , ck+p〉
of m× 1 vectors, such that:
i. The vectors c−m+1, . . . , c0 are the m possible unit m×1 vectors, in their natural

order.
ii. For each j, 1 ≤ j ≤ p, the vector ck+j equals the jth column of N .
iii. For each i, 1 ≤ i ≤ k+p, there is a (smallest) integer r(i) ≥ 1, and a sequence of

r(i) integers 0 ≤ j(i, 1), . . . , j(i, r(i)) ≤ min(i−1, k), such that ci =
∑r(i)
q=1 cj(i,q).

The length of C is defined to be l(C) =
∑k+p
i=1 (r(i) − 1). We denote by l(N) the

smallest integer l such that there exists an addition chain C for N with l(C) = l.

Closely related to the definition above, is a graph-theoretic interpretation of
addition chains (attributed to Pippenger [149] by Knuth and Papadimitriou [92],
but Pippenger himself refers to Lupanov [117]). Given an addition chain C for
N , a directed acyclic graph GC = (VC , EC) is defined by letting the vertices VC =
{v−m+1, . . . , vk+p} correspond to the vectors in C. The set of arcs EC is given
by (vj , vi) ∈ EC iff j = j(i, q) for some q ≤ r(i). Note that multiple arcs are
possible (e.g., for c1 = 2c0 if m = 1) and that given any chain, the graph is not
necessarily unique. The sources of the graph, m in total, correspond to the bases
of the exponentiation (or the vectors ci with i ≤ 0). The values to be computed,
that is ci with i > k, are represented by the p sinks of the graph. The point is that
for each vertex the corresponding value in the addition chain can be computed by
adding the ‘vertices’ at the other ends of the incoming arcs.

?>=<89:;/.-,()*+1 44
** ((?>=<89:;2 44

**
66

?>=<89:;4 //
''?>=<89:;5

((?>=<89:;6 // GFED@ABC?>=<89:;11

The figure above shows the graph for the chain 〈1, 2, 4, 5, 6, 11〉, which is an
optimal chain for 11. All points (apart from the source) have indegree exactly 2,
nicely adhering to Definition 2.1. The restriction that the indegree should be exactly
2 is not imposed by Definition 2.2. This allows a more compressed representation of
an addition chain. Whenever a point has outdegree 1, the two points at both ends of
the arc can be joined. The same holds when a point has indegree 1. (An exception
should be made for sources and sinks if compression would result in changing their
being a source respectively a sink.) This compression method identifies chains that
are identical under the associativity and commutativity of addition (or, when used as
an exponentiation routine, under the associativity and commutativity of the group
operation).

In the example above, the points 5 and 6 have outdegree 1. Joining both with
11 leads to the condensed chain 〈1, 2, 4, 11〉. (Note that the vertex 11 is still a sink).
The chain still has length 5, but this might not be immediately clear. The graph
below corresponds to 〈1, 2, 4, 11〉. It is now easier to see that the length of the chain
is indeed 5 by counting the total number of arcs minus the number of non-sources
(8− 3 = 5).



22 2. ADDITION CHAINS

?>=<89:;/.-,()*+1 44
** ))?>=<89:;2 44

**

66
?>=<89:;4 33

++ GFED@ABC?>=<89:;11

Surprisingly, compressing chains can also give rise to a more efficient algorithm
to perform a specific exponentiation by trading multiplications for squarings or
reducing the amount of memory required. As an example, the chain 〈1, 2, 4, 5, 6, 11〉
can be computed for 2δ+ 2α̇+α. The chain 〈1, 2, 3, 4, 8, 11〉 (depicted by the graph
below) has the same compressed chain, but it can be computed for 3δ + α̇ + α.
Depending on the relative costs of α̇ and δ, exponentiation based on one or the
other chain will be cheaper.

?>=<89:;/.-,()*+1 44
**

77
?>=<89:;2 //

77

''?>=<89:;3
))?>=<89:;4 44

**?>=<89:;8 // GFED@ABC?>=<89:;11

Addition-Subtraction Chains. In some groups, such as those based on elliptic
curves, inversion is relatively cheap. Allowing inversions during the exponentiation
routine corresponds to taking the additive inverse of an element in the addition
chain. Definition 2.1 can be adapted to allow subtractions by requiring that for
each ak a pair i, j < k exists such that either ai + aj = ak or ai − aj = ak. This
relaxation gives rise to so-called addition-subtraction chains. The shortest addition-
subtraction chain is evidently at most as long as the shortest addition chain.

Word Chains. Negation is a special case of a group endomorphism. Sometimes
other endomorphisms are cheap to compute, for instance the Frobenius endomor-
phism in finite fields. Since the endomorphism group of a finite cyclic group of
order x is isomorphic to Zx, the application of an endomorphism is equivalent to
taking the appropriate power (in the case of Frobenius, p-th powering where p is
the characteristic of the field). For addition chains this translates to (free) multipli-
cation with a constant (p in the case of Frobenius). Von zur Gathen [195] defines
a p-addition chain as an addition chain where, in the terminology of Definition 2.1,
either ci = cj + cj′ or ci = pcj . This definition has the undesired side-effect that
application of the endomorphism increases the length of the chain, although this
can easily be resolved. In the graph-theoretic representation, the application of an
endomorphism corresponds to labelling an arc (with p for Frobenius, with −1 for
an inversion). The value corresponding to a vertex can now be found by adding
the vertices of the incoming arcs, after multiplication by the label belonging to that
arc. As an example, we could redraw the graph for 〈1, 2, 4, 11〉 in order to make the
squarings explicit.

?>=<89:;/.-,()*+1
2

//
55

?>=<89:;2
2

//
((?>=<89:;4

2
// GFED@ABC?>=<89:;11



2.2. THEORETICAL ASPECTS 23

Von zur Gathen also introduces word chains. Initially some finite alphabet of
cardinality p is given —these are the one-letter words. In each step two words
already in the chain may be concatenated. The link with the p-addition chains is
readily made.

2.2.2. Duality. Suppose we have an efficient algorithm to simultaneously compute
gn and gm. What does this buy us when we want to compute gnhm? Olivos [142]
studied this problem for general n, tightly linking addition sequences and vector
addition chains. The following theorem works for any combination of simultane-
ous multi-exponentiation. It is due to Knuth and Papadimitriou [92], although
Pippenger [149] already seems to exploit duality.

Theorem 2.3 (Knuth and Papadimitriou). Let N be as in Definition 2.2. Then
l(N)−m = l(NT )− p.

Proof: The gist of the proof is as follows. Given an addition chain C for N ,
consider its graph-theoretical representation. Knuth and Papadimitriou observe
that for any 1 ≤ i ≤ m and 0 ≤ j ≤ k+ p the number of distinct paths from v−m+i

to vj equals the ith component of the vector cj . Conversely, any directed acyclic
graph G with m sources and p sinks gives rise to some addition chain for an m× p
matrix. Reversing the directions of all arcs results in an addition chain for NT .
Moreover, the length C(G) is the sum of the indegree, minus one, over all nodes
except the sources. Q.E.D.

As a concrete example we consider the dual of Algorithm 1.1 (the version to
compute gi for all 0 < i ≤ n and not only gn). The dual algorithm will compute
gn =

∏n
i=1 g

i
i , where gi are arbitrary group elements and n = (1, . . . , n)T . The

algorithm is also described by Knuth [90] and Brickell et al. [32].

Algorithm 2.4 (Unary Multi-Exponentiation).
On input g and n = (1, . . . , n)T , the algorithm returns gn. It maintains as invariant:

0 < j ≤ n, A =
n∏
i=j

gi−j+1
i , B =

n∏
i=j

gi .

1. [Initialize] Set A← gn, B ← gn, and j ← n.
2. [Finished?] If j = 1 terminate with output A.
3. [Decrease j] Set B ← gj−1B,A← AB, and decrease j by one. Return to the

previous step.

Knuth and Papadimitriou show that the concept of duality is already interesting
for single exponentiation. For instance, reversing the arcs of the graph belonging to
〈1, 2, 4, 11〉 leads to the graph below for the addition chain 〈1, 2, 5, 11〉.

?>=<89:;/.-,()*+1 44
**

77

))?>=<89:;2 44
**?>=<89:;5 33

++ GFED@ABC?>=<89:;11



24 2. ADDITION CHAINS

An expanded version of this addition chain is 〈1, 2, 4, 5, 6, 11〉, as shown by the
graph below. This is somewhat curious, since 〈1, 2, 4, 5, 6, 11〉 can also compress to
〈1, 2, 4, 11〉.

?>=<89:;/.-,()*+1 44
** (( ((?>=<89:;2 44

**?>=<89:;4 //?>=<89:;5 //
((?>=<89:;6 // GFED@ABC?>=<89:;11

The duality of addition chains is closely related to the duality of matrix multi-
plication: given an m× p matrix N (over a ring R) and column vectors g of length
p and g′ of length m, consider computing Ng and NTg′ using only ring additions
and ring multiplications by constants (i.e., the linear complexity). Ignoring the ring
multiplications, matrix multiplication can be regarded as an exponentiation over an
additive group. Kaminski et al. [84] consider the duality aspects of matrix multipli-
cation. Interestingly, instead of defining linear complexity by means of straight line
programs, Kaminski et al. employ an equivalent, graph-theoretic description closely
related to the one used for addition chains. Indeed, the additions are modelled
identically and by labelling each arc by a nonzero ring element the multiplications
enter into the model. If a graph computes Ng, then reversing the arcs (but without
changing the labelling) will produce a graph that computes Ng′ (on appropriate
inputs). Clearly the number of multiplications by any specific ring element is ex-
actly the same for both N and NT (Fiduccia [62] already concluded that the total
number of multiplications required is identical, but he does not take into account the
number of additions). Translated to addition chains, this means that for instance
the optimal way to compute gN

T

requires exactly the same amount of squarings as
the optimal computation of gN . And the same holds for the number of inversions,
Frobenius endomorphisms, etc.

Bernstein [16] provides more thoughts on the duality of addition chains and its
relation with matrix multiplication.

2.2.3. Lower Bounds and Asymptotic Behaviour. Knuth [90, Section 4.6.3] gives
a fascinating account of the search for l(n) for general n and the theoretical ques-
tions that arise from it. Relatively easy to prove is the observation that l(nm) ≤
l(n) + l(m). Based on an exhaustive search for n < 220, Bleichenbacher and Flam-
menkamp [21] analyse the occurrence of l(nm) < l(n) + l(m), which is surprisingly
often if nm is odd. In the more general setting l(NM) ≤ l(N)+ l(M), where N and
M should have compatible dimensions. A big difference with the scalar version, is
that integers factor uniquely, whereas matrices do not decompose uniquely. Some
decompositions are more natural than others (Section 6.4.1 contains an example).
Most exponentiation algorithms can be rephrased in some sort of decomposition.

The asymptotic behaviour of l(N) for general N has been studied by Pip-
penger [149–151], who gives the following theorem.

Theorem 2.5 (Pippenger). Denote by L(m, p,B) the maximum of l(N) over
all m × p matrices N with entries ≤ B. If p = (B + 1)o(m) and m = (B + 1)o(p),



2.3. EXPONENTIATION ALGORITHMS 25

then

L(m, p,B) = min(m, p) lgB +H/ lgH+

+O(H
√

(lg lgH)/(lgH)3) +O(max(m, p))

where H = mp lg(B + 1).

The simple bound blg nc ≤ l(n) ≤ 2blg nc implies that the problem of determin-
ing whether an integer n admits an addition chain of length smaller than a given
l is in NP: the set of integers in the chain would form a witness of bitlength at
most 2(lg n)2. A shorter witness is possible by encoding for all elements i in the
chain the indices j and j′ (from Definition 2.1). This witness has bitlength at most
2 lgn lg(2 lg n).

Downey et al. [59] show that a graph with m edges and n vertices {ui, vi}, 0 <
i ≤ m has a minimum vertex cover of cardinality k iff l(1, 2, . . . , 2An, 2Au1 + 2Av1 +
1, . . . , 2Aum + 2Avm + 1) = An + m + k for all A ≥ 9m2. Since the minimum
vertex cover is NP-complete, so is the shortest addition sequence problem. Although
technically this does not imply that finding shortest addition chains for integers (or
fixed size N) is NP-hard, it certainly does not bode well.

The shortest addition chain for n can be found by checking all certificates (wit-
nesses), taking time O(nc log logn) for some constant c > 0. This is certainly not
polynomial in its input size blg nc; it is not even polynomial in n. However, by
clever searching and good pruning bounds to cut down the tree, Bleichenbacher and
Flammenkamp [21] determined l(n) for all n ≤ 220. Using a different approach (and
more time), Thurber [186] found all shortest addition chains for a given n, for a
large number of small values of n.

2.3. Exponentiation Algorithms

2.3.1. The Binary Algorithms. The unary algorithm (Algorithm 1.1) runs in time
α̇(n − 2) + δ returning all gi for 0 ≤ i ≤ n. Since these are n + 1 values only
two of which come for free (namely g0 and g1), the addition chain for the list
(1, . . . , n) is minimal. In a group where δ < α̇, that is where squaring is cheaper
than multiplication by a fixed multiplicand, the resulting exponentiation routine is
not the fastest though. All even powers can be computed with a squaring instead of
a multiplication. This leads to the algorithm below. (Note that if only gn is needed,
this algorithm requires much more storage than Algorithm 1.1).

Algorithm 2.6 (Improved Unary Exponentiation).
Let g be a group element and n a nonnegative integer. This algorithm maintains
0 ≤ a ≤ n and Gi = gi for all 0 ≤ i ≤ a as invariant. It returns gi for all 0 ≤ i ≤ n.

1. [Initialization] Set a← 0 and G0 ← id.
2. [Finished?] If a = n terminate with output (G0, . . . , Gn).
3. [Increase a] If a is even, set Ga+1 ← Gag else (a + 1 is even) set Ga+1 ←

G2
(a+1)/2. Increase a by one and return to the previous step.



26 2. ADDITION CHAINS

The runtime of this algorithm is dn−1
2 eα̇ + dn2 eδ. Often the algorithm is used

for precomputation in which case the fixed base cannot be (fully) exploited, since
the output would then require postprocessing to speed up the further use of the
precomputed Gi in subsequent multiplications.

If only gn is needed, a large number of Gi are computed that are not subse-
quently used for the computation of gn. By removing those excess computations a
leaner algorithm emerges, better known as the left-to-right binary algorithm. The
algorithm is quite often also referred to as the square-and-multiply algorithm. Even
when the inevitability for exponentiation routines to depend on squarings and mul-
tiplications is discarded, this term is misleading since a large family of algorithms
have a similar square-and-multiply structure, as discussed below.

Algorithm 2.7 (Left-to-Right Binary Exponentiation).
Let g be a group element and n some exponent with binary expansion

∑k−1
i=0 bi2

i

where all bi ∈ {0, 1}. The algorithm returns gn. It maintains as invariant

0 ≤ j ≤ k, a =
k−1∑
i=j

bi2i−j , A = ga .

1. [Initialization] Set j ← k, a← 0, and A← id.
2. [Finished?] If j = 0 terminate with output A.
3. [Square] (If j < k) Set a← 2a and A← A2.
4. [Multiply] If bj−1 = 1 set a← a+ 1 and A← Ag.
5. [Decrease j] Decrease j by one. Go back to Step 2.

If the exponent is chosen uniformly at random from the interval [2k−1, 2k), half
of the bi’s in the binary expansion can be expected to be nonzero (for 0 ≤ i < k−1).
Taking into account that in Step 4 one of the multiplicands is always the same,
Algorithm 2.7 takes on average (k − 1)δ + (k−1

2 )α̇.
The algorithm is related to Horner’s rule. If n(x) is defined as the polynomial∑k−1

i=0 bix
i, then n = n(2). The evaluation in x = 2 using Horner’s rule would

perform the same steps as the algorithm above, with the only difference that A is
not needed and a is output instead.

Example 2.8. Let n = 367. The binary expansion of 367 is (101101111)2,
which has length k = 9. Algorithm 2.7 therefore initializes with j ← 9, a ← 0, and
A ← id. We can skip Step 3 since j = k; performing it nevertheless would not
change anything, for a = 2a = 0 and A = A2 = id. In Step 4 we see that b8 = 1,
so we have to set a ← 1 and A ← g. Note that these substitutions do not require
any arithmetic operations. In Step 5 j is decreased by one and we return to Step 2.
Performing Steps 2 up to 5 once is called a round. Each round is labelled using the
value of j at the beginning of the round. For n = 367 we start with round 9 and
round 1 is the last full round (round 0 terminates in Step 2). In Table 2.2, the values
of the important variables of the algorithm are given at the end of Step 4 for each
round. (In future examples we will only mention the elements of the addition chain,
corresponding to a here, and take the corresponding group elements for granted. In



2.3. EXPONENTIATION ALGORITHMS 27

practice, only the group elements are important and a can be ignored.) The column
(Ini) stands for the situation just after the initialization (Step 1). The cost of each
round is also included in the table; adding up the values in this row give a total cost
of 8δ + 6α̇.

The dual of the left-to-right algorithm is the right-to-left algorithm. Conceptu-
ally all powers g2i are computed for i < k. The powers for which bi equals 1, are
needed: these are all multiplied together. By reading the bit representation of the
exponent from right to left, it is not needed to store all powers g2i simultaneously.
Nevertheless, the right-to-left binary algorithm needs more memory than its left-to-
right counterpart. It is also potentially slower, since the group multiplications no
longer have a common multiplicand. The runtime is ((k−1

2 )α+ (k− 1)δ on average.

Algorithm 2.9 (Right-to-Left Binary Exponentiation).
Given a group element g and an exponent n =

∑k−1
i=0 bi2

i, this algorithm computes
gn. It maintains the following invariant:

0 ≤ j ≤ k, a =
j−1∑
i=0

bi2i, b = 2j , A = ga, B = gb .

1. [Initialization] Set j ← 0, a← 0, b← 1 and A← id, B ← g.
2. [Finished?] If j = k terminate with output A.
3. [Multiply] If bj = 1 set a← a+ b and A← AB.
4. [Square] (If j < k − 1) Set b← 2b and B = B2.
5. [Increase j] Increase j by one and return to Step 2.

Example 2.10. Let n = 367 as above. Algorithm 2.9 initializes with j ← 0, a←
0, and b← 1 (ignoring the group elements A and B). In Table 2.3, the values of a
and b at the end of Step 4 for each round are given. The cost of each round is also
included in the table; adding up the values in this row gives a total cost of 6α+ 8δ
for the algorithm. If α > α̇, this is slower than the left-to-right algorithm applied
to n = 367.

2.3.2. Generic Square-and-Multiply Algorithms. Several generalizations of the bi-
nary algorithms are known that still have a distinctive square-and-multiply struc-
ture. The main difference is their increased freedom in what is multiplied in and
the ability to handle multi-exponentiation.

Table 2.2. The Left-to-Right Binary algorithm used for n = 367

j (Ini) 9 8 7 6 5 4 3 2 1
bj−1 − 1 0 1 1 0 1 1 1 1
a 0 1 2 5 11 22 45 91 183 367
A id g g2 g5 g11 g22 g45 g91 g183 g367

Cost 0 0 δ α̇+ δ α̇+ δ δ α̇+ δ α̇+ δ α̇+ δ α̇+ δ



28 2. ADDITION CHAINS

In all single exponentiation routines the first element to be computed is g2. This
raises the question whether it is possible to use g2 as well in Step 4 of Algorithm 2.7.
If the exponent is (re)written as n =

∑k′−1
i=0 (bi,1 + 2bi,2)2i where both bi,1 and bi,2

are either 0 or 1, Step 4 can be replaced by:
4’. [Multiply] If bj−1,1 = 1 set a← a+1 and A← Ag. If bj−1,2 = 1 set a← a+2

and A← Ag2.
It is possible that both bi,1 = 1 and bi,2 = 1 for the same i, resulting in two

multiplications during Step 4 for this i. The length of the expansion, k′, can deviate
slightly from the bitlength of n. It might seem for a moment that for this reason
the “new” method saves a squaring relative to the ordinary binary method by using
k′ = k − 2 and bk−2,2 = 1. This however is deceiving. The first time we need
to set A ← Ag2 in Step 4, the element g2 has not been computed yet. It needs
to be precomputed beforehand. The resulting algorithm costs exactly the same as
Algorithm 2.7 (in terms of group operations).

Much ado about nothing, then? Not really. The representation of n > 1 using
both bi,1 and bi,2 is certainly not unique. Suppose we somehow pick one that max-
imizes the number of i for which both bi,1 = 1 and bi,2 = 1. For all these i we have
to perform two multiplications in Step 4, first by g and then by g2. If g3 would also
be precomputed, we can replace the two multiplications by only one, leading to a
reduction of the runtime.

Example 2.11. Let n = 367. We can write this exponent as

367 = 2 · 27 + 1 · 26 + 2 · 24 + (1 + 2) · 22 + (1 + 2) · 20 .

and base the modified Algorithm 2.7 on the resulting bj,1 and bj2 . If no more
modifications are made, the total costs are 8δ + 6α̇, as shown by the first cost row.
(Here we can actually see one of the inadequacies of our notation, since the δ in the
precomputation, or initialization, might have different costs attached to it than the
other δ.) The second cost row captures the situation where g3 is precomputed as
well. The total costs are α+ 8δ + 4α̇.

This leads us to the general case. Let D be some set of integers, called the
dictionary (if inversion is cheap, D can contain negative numbers). First all gd are
precomputed with d ∈ D. Then the exponent is rewritten as n =

∑k′−1
i=0 bi,dd2i

where bi,d ∈ {0, 1} for all 0 ≤ i < k′ and d ∈ D. This is the encoding. The
left-to-right (no-longer-binary) algorithm is run on this encoding of the exponent.

Table 2.3. The Right-to-Left Binary algorithm used for n = 367

j (Ini) 0 1 2 3 4 5 6 7 8
bj − 1 1 1 1 0 1 1 0 1
a 0 1 3 7 15 15 47 111 111 367
b 1 2 4 8 16 32 64 128 256 256

Cost 0 δ α+ δ α+ δ α+ δ δ α+ δ α+ δ δ α



2.3. EXPONENTIATION ALGORITHMS 29

Table 2.4. The quaternary method used for n = 367

j (Ini) 7 6 5 4 3 2 1 0
bj,1 0 1 0 0 0 1 0 1
bj,2 1 0 0 1 0 1 0 1
a 2 5 10 22 44 91 182 367

Cost δ 0 α̇+ δ δ α̇+ δ δ 2α̇+ δ δ 2α̇+ δ
Cost′ α+ δ 0 α̇+ δ δ α̇+ δ δ α̇+ δ δ α̇+ δ

Algorithm 2.12 (Generic Left-to-Right Exponentiation).
Let g be a vector of m group elements and let n be a vector of m exponents. The
algorithm returns gn. Let D be some predetermined set of (column) vectors of
length m (that span Zm) and assume that the exponent can be written as n =∑k′−1
i=0 (

∑
d∈D bi,dd)2i where bi,d ∈ {0, 1}. The algorithm maintains as invariant

(from Step 3 onward):

0 ≤ j ≤ k′, a =
k′−1∑
i=j

(
∑
d∈D

bi,dd)2i−j , A = ga .

1. [Exponent Recoding] Write n =
∑k′−1
i=0 (

∑
d∈D bi,dd)2i where all bi,d ∈ {0, 1}.

2. [Precomputation] Compute Gd = gd for all d ∈ D for which bi,d = 1 for some
0 ≤ i < k′.

3. [Initialization] Set j ← k′,a← 0 and A← id.
4. [Finished?] If j = 0 terminate with output A.
5. [Square] (If j < k′) Set a← 2a and A← A2.
6. [Multiply] For all d ∈ D with bj,d = 1 consecutively compute a← a + d and

A← A ·Gd.
7. [Decrease j] Set j ← j − 1 and go back to Step 4.

The algorithm above incorporates a generalization to multi-exponentiation. Let
us forget this for a moment and assume m = 1. Given a dictionary, an exponent
is written as n =

∑k′−1
i=0 bi,dd2i. The number of nonzero bi,d is called the weight of

the representation. Any exponent may have several representations valid for a given
dictionary, possibly with different weights and different lengths. A description of
how to perform the encoding should be given alongside D.

Once the encoding is fixed, the precomputation requires the computation of
all gd for d ∈ D. This is a simultaneous exponentiation. For most dictionaries an
efficient implementation is obvious, for others the precomputation can be involved
(and subject to optimization). By doing the precomputation after the encoding, the
values in the dictionary that are not used in the encoding can be ignored, possibly
saving some multiplications.

After encoding and precomputation Steps 3 to 7 can be regarded as a multi-
exponentiation. Define nd =

∑k′−1
i=0 bi,d2i for all d ∈ D and let Gd = gd as in the

algorithm, then n =
∑
d∈D ndd and gn =

∏
d∈D G

nd
d . This multi-exponentiation



30 2. ADDITION CHAINS

is computed using a binary algorithm, reading all the exponents nd simultaneously
and interleaving the squarings. In fact, it does exactly what the entire algorithm
would do for a multi-exponentiation based on the trivial dictionary consisting of the
unit vectors only.

The situation for a multi-exponentiation, i.e., m > 0, is similar. The pre-
computation of all elements Gd = gd is a simultaneous multi-exponentiation, but
Steps 3 to 7 are still a single multi-exponentiation, where nd =

∑k′−1
i=0 bi,d2i and

gn =
∏

d∈D G
nd

d .

Example 2.13. Example 2.11 encompassed two cases: one with the precom-
putation of g3 and one without. Let us consider the latter first. The precomputed
elements g and g2 correspond to the dictionary D = {1, 2}. The exponent n is
rewritten as 367 = 1 · (26 + 22 + 20) + 2 · (27 + 24 + 22 + 20); in other words, n1 = 69
and n2 = 149. If g3 is precomputed as well, the dictionary is effectively D = {1, 2, 3}
and n is rewritten as n = 1 · 26 + 2 · (27 + 24) + 3 · (22 + 20), or n1 = 64, n2 = 144,
and n3 = 5.

A different interpretation is the following. First the dictionary D = {1, 2} is used
to transform the single exponentiation with n = 367 into a double exponentiation
with n =

(
69
149

)
. This double exponentiation is subsequently executed using D′ =

{
(

1
0

)
,
(

0
1

)
,
(

1
1

)
} (in terms of the single exponentiation, the vector

(
1
1

)
corresponds to

g3). This second dictionary is used to rewrite the exponent n as
(

69
149

)
= 64

(
1
0

)
+

144
(

0
1

)
+ 5
(

1
1

)
.

This two stage description is more natural if for instance the dictionary is D =
{1, 16}. The exponent can be rewritten as 367 = 22 · 16 + 15, corresponding to a
double exponentiation

(
15
22

)
=
(

(01111)2
(10110)2

)
. Using D′ = {

(
1
0

)
,
(

0
1

)
,
(

1
1

)
} is beneficial here

as well. The vector
(

1
1

)
corresponds to g17, but using D = {1, 16, 17} immediately

seems less clear.

The dual algorithm below performs the simultaneous exponentiation gn by re-
versing the order. In the first stage the exponents are read from right-to-left to
compute G̃d = gnd for all d ∈ D, which is a simultaneous exponentiation. In the
second stage gn is computed as gnj =

∏
d∈D G̃

dj
d for j = 1, . . . , p. This stage is

the dual of the precomputation of Algorithm 2.12 and, as such is a simultaneous
multi-exponentiation.

The cost of the left-to-right algorithm is that of the precomputation plus a
multiplication for each nonzero bi,d and k′ − 1 squarings for the processing of the
exponent. (In Step 6 initially a = 0 and A = id, so no real multiplication is needed
for A ← A · Gd, ‘saving’ a multiplication). More precise statements of the costs
follow when the dictionaries are being discussed. Conform Theorem 2.3, the dual
algorithm is slightly cheaper.

Algorithm 2.14 (Generic Right-to-Left Exponentiation).
Let g be a group element and let n be a vector of p exponents. The algorithm returns
gn. Let D be some predetermined set of (column) vectors of length p (that span Zp)
and assume that the exponent can be written as n =

∑k′−1
i=0 (

∑
d∈D bi,dd)2i where



2.3. EXPONENTIATION ALGORITHMS 31

bi,d ∈ {0, 1}. The algorithm maintains as invariant (Steps 2–5):

0 ≤ j ≤ k′, b = 2j , B = gb, ad =
j−1∑
i=0

(
∑
d∈D

bi,d)2i, Ad = gad .

1. [Exponent Recoding] Write n =
∑k′

i=0(
∑

d∈D bi,dd)2i where all bi,d ∈ {0, 1}.
2. [Initialization] Set j ← 0, b ← 1, and B ← g. For all d ∈ D set ad ← 0 and

Ad ← id.
3. [Multiply] For all d ∈ D with bj,d = 1 set ad ← ad + b and Ad ← AdB.
4. [Square] (If j < k′ − 1) Set b← 2b and B ← B2.
5. [Increase j] Set j ← j + 1.
6. [Almost finished?] If j < k′ return to Step 3.
7. [Collecting] Compute gnj =

∏
d∈D G̃

dj
d for j = 1, . . . , p using the dual of the

precomputation that comes with the dictionary.

Dictionaries for Single Exponentiation. If D = {1}, the exponent recoding is
unique, being the binary representation of n, and precomputation is trivial, since
nothing needs to be precomputed. As a whole, the resulting algorithm corresponds
to the left-to-right binary algorithm above.

If inversion, i.e., the computation of g−1, is cheap then single exponentiation
can be sped up by using a signed digit representation for the exponent correspond-
ing to D = {−1, 1}. The representation is no longer unique, not even for minimal
weight. The non-adjacent form (NAF) is the most common minimal weight represen-
tation [132, 191]. It derives its name from the property that there are no adjacent
nonzeros (equivalently, (

∑
d∈D bi,d)(

∑
d∈D bi+1,d) = 0 for all 0 ≤ i < k′ − 1). The

NAF is the unique representation with this property and it provably has minimal
weight. On average, the weight is k/3 and the length k′ is at most one more than k.
A disadvantage of the NAF is that computing it from the binary representation is
a right-to-left operation, making interleaving the exponent encoding and the actual
(left-to-right) exponentiation troublesome. Joye and Yen [80] describe an alterna-
tive encoding called the star form which has the same weight as the NAF, but that
can be obtained from left-to-right. The average runtime of the resulting algorithms
is kδ + 1

3kα̇.

Example 2.15. We only discuss the NAF for n = 367. The binary represen-
tation of 367 is (101101111)2. To obtain the NAF of 367, we start reading the
binary expansion from the right until we hit a 0, so we read (01111)2 = 15. There
are four adjacent nonzeros here, which is not allowed. By replacing 15 by 16-1
this problem can be solved. As customary in the literature, we write 1̄ for a −1
(or, more precisely, a 1 means that for that position bi,1 = 1 and bi,−1 = 0, a 1̄
means that bi,1 = 0 and bi,−1 = 1, and a 0 means that bi,1 = bi,−1 = 0). Replac-
ing 15 by 16-1 means replacing (01111)2 by (10001̄)2, leading to overall exponent
(101110001̄)2. We continue reading until we hit a 0 again. This time we read
(0111)2 —where the least significant 1 is the one we just inserted— which we re-
place by (1001̄)2. The exponent is now (11001̄0001̄)2. There are still two adjacent



32 2. ADDITION CHAINS

b
Table 2.5. The NAF used for n = 367

j (Ini) 10 9 8 7 6 5 4 3 2 1
bj−1 − 1 0 −1 0 0 −1 0 0 0 −1
a 0 1 2 3 6 12 23 46 92 184 367

Cost 0 0 δ α̇+ δ δ δ α̇+ δ δ δ δ α̇+ δ

1’s. By thinking a zero in front of them, we can replace (011)2 by (101̄)2 giving
367 = 512 − 128 − 16 − 1 = (101̄001̄0001̄)2. Table 2.5 gives a brief overview of the
important variables of Algorithm 2.12 based on this representation of the exponent.
The length of the new representation is one bit longer than the original, so k′ = 10.
The weight of the representation is 4. Algorithm 2.12 will take 9δ + 3α̇.

In the last step of the recoding, the length of the exponent was increased without
decreasing the weight. Using (11001̄0001̄)2 as encoding leads to a runtime of only
8δ + 3α̇. Either way, an improvement over the binary method is obtained.

The 2w-ary method, as implicitly described by Brauer [31], uses the dictionary
D = {d|1 ≤ d < 2w} where w is a parameter of the method. The exponent n is sim-

ply written in the 2w-ary number system as n =
∑d kw e−1
i=0 di2wi where 0 ≤ di < 2w,

i.e., bi,d = 1 iff i ≡ 0 mod w and di/w = d. The average weight is (1−1/2w)bk/wc+1
and the length k′ = k − (k mod w). A slightly more efficient variation starts to
read the blocks in the alternate direction, i.e., from left-to-right, which leads to the
slightly shorter length k′ = k − w for the encoding. The precomputation can be
done with the improved unary algorithm on input g and 2w − 1. It has often been
observed that the even elements in the dictionary can be removed. Suppose that
an element d ∈ D is divisible by 2j for j > 0 (and not by 2j+1). For all 0 ≤ i < k′

with bi,d = 1 we know that bi−j,d/2j = 0 since i− j 6≡ 0 (mod w). If we change the
representation by setting bi,d = 0 and bi−j,d/2j = 1 the same number is encoded.
The average weight of the 2w-ary method is 1 + 2w−1

2w (d kw e − 1).

Example 2.16. Let n = 367 = (101101111)2. The 4-ary method clumps to-
gether two bits at a time, so the encoding becomes (101 10 11 11 )2 = (101020303)2.
The elements that need to be precomputed are g2 and g3, which costs α+ δ. Work-
ing through the exponent costs 8δ + 4α̇, so the total cost is α + 9δ + 4α̇, which
only is an improvement over the binary method if δ + α < 2α̇. Table 2.4 shows the
computation in more detail.

The occurrence of 2 in the encoding can be avoided without changing the weight,
since (101020303)2 = (101100303)2. This is the improved 2w-ary method. For
the present case w = 2 there is little difference, since g2 is always needed for the
computation of g3 (however, in the improved version g2 can soon be forgotten, saving
some memory). Starting the encoding from the left results in a shorter encoding
with k′ = 8. The encoding is (10 11 01 11 1)2 = (20301031)2 and the resulting
exponentiation costs α+ 8δ + 4α̇.



2.3. EXPONENTIATION ALGORITHMS 33

As an alternative to using radix 2w, one could also pick any other radix R, giving
rise to the R-ary method. If R is not a power of two, the recoding of the exponent
will be more expensive and there will relatively more multiplications compared to
squarings (since taking an R-th power, the spine of the algorithm, will require
multiplications if R is not a power of two).

Example 2.17. To give an impression of the disadvantages of using a radix that
is not a power of two, we examine R = 3 and R = 5. If R = 3 the value g2 needs
to be precomputed, costing δ. The ternary representation of n is 367 = (111121)3.
It has length 6, requiring 6 − 1 = 5 cubings costing α + δ each and —we are a bit
unlucky here— weight 6, requiring 6 − 1 = 5 multiplications with either g or the
precomputed g2. The total cost is 5α+6δ+5α̇, which is significantly more expensive
than the binary method. If R = 5 is used, three values have to be precomputed,
costing α+ 2δ in total. The pentary representation is 367 = (2432)5. Taking a fifth
power costs α+2δ, and has to be performed thrice. Three additional multiplications
are needed, since the weight is 4. The total cost using the pentary representation is
4α+ 8δ + 3α̇. This too is more expensive than the binary method.

A well-known improvement over the 2w-ary method is the sliding window tech-
nique. The dictionary consists of all positive odd integers smaller than 2w. The
binary representation of n is then scanned either from left-to-right or from right-
to-left, each time trying to use as large a window as possible. This has the effect
of virtually increasing the window size by one. The precomputation requires the
computation of g2 and then one multiplication for each element in the dictionary
(apart from 1). The sliding window method costs on average ≈ 2w−1α+ kδ+ k

w+1 α̇

(based on an analysis by Cohen [46], who gives the more accurate runtime estimate
(2w−1 − 1)α+ (k − w(w−1)

2(w+1) )δ + ( k
w+1 −

w(w+3)
2(w+1)2 )α̇).

Example 2.18. The sliding window method with w = 2 recodes the exponent
367 as (1 011 011 11 )2 = (100300303)2. The precomputation of g3 costs α + δ and
the processing of the exponent costs 8δ+ 3α̇, bringing the total cost to 8δ+ 3α̇+α.
A small improvement can be obtained by writing (20300303)2, since it happens that
g2 is a byproduct of the precomputation. This variation costs only 8δ + 3α̇+ α.

The window methods can also be adapted to include cheap inversions. Avanzi [6]
gives an overview of several of these methods. As a rule of thumb, the availability of
inversions make your window effectively one bit longer. The signed sliding window
method [177] uses the dictionary D = {−2w+1,−2w+3, . . . , 2w−3, 2w−1}, which
can be precomputed for (2w−1 − 1)α + δ. The exponent is recoded in such a way
that of any w + 1 consecutive positions at most one of the bi,d is set. The average
behaviour has been studied by Cohen [46]. Roughly speaking, the algorithm will
on average take 2w−1α+ kδ + k

w+2 α̇.
Bos and Coster [25, 26] observe that if w grows, more and more elements in

the dictionary will not be used in the exponent recoding, so it makes no sense to
precompute these elements and it pays off to try and find an optimal addition chain
for those values that are used. Bos and Coster describe several heuristics, mostly



34 2. ADDITION CHAINS

based on Euclidean techniques (discussed in Section 2.3.3). Bos and Coster claim
there method produces chains of length 605 on average for a 512-bit exponent. This
is 5% faster than the sliding window method (with w = 5). As an aside, Bos and
Coster conclude with the remark that they expect improvements using simulated
annealing could get the figure below 600. Nedjah and de Macedo Mourelle [137]
describe an algorithm based on genetic algorithms for the computation of an addition
chain for one exponent only, but finding these chains is reported to take 4 to 6
seconds.

Example 2.19. Suppose that Bos and Coster’s heuristic is used for n = 367
with initial window size 4. The exponent is then cut in pieces as (1011 01111 )2 =
11 ·25 +15. The simultaneous computation of g11 and g15 can be done for α+3δ+ α̇
based on the chain 〈1, 2, 3, 4, 8, 11, 15〉. The actual computation takes α+ 6δ, so the
total costs are 2α + 9δ + α̇. (Note that we use an ordinary α and not a α̇ in the
final stage.)

A different approach is taken by Yacobi [200]. He proposes to use Lempel-Ziv
compression [205, 206] to recode the exponent. The elements in the dictionary are
considered as binary words (the binary representation of the element) and initially
the dictionary is empty. The binary expansion of the exponent is scanned from
left to right. Each time the longest word from the dictionary that fits as prefix of
the unscanned part of the exponent is selected and extended with the next symbol
(bit) in the exponent. This newly formed word is added to the dictionary and the
scanning of the exponent continues. The result of this method is that the dictionary
is slowly formed and a natural addition sequence for the elements in the dictionary
exists, costing δ if the ‘extension bit’ is a 0 and α + δ for a 1. (Actually, if the
extension bit is a 1, the dictionary could also be expanded with both extension bit
0 and 1.) Yacobi remarks that in the context of exponentiation a ‘sliding’ version
of the Lempel-Ziv algorithm can be used. Whenever the unscanned part of an
exponent has trailing zeroes, these zeroes can be skipped. Obviously the method
also works for other alphabets (to use compression terminology). In fact, it also
works for multi-exponentiation by using an alphabet consisting of vectors.

Example 2.20. Suppose the original Lempel-Ziv algorithm is used on the ex-
ponent 376. The exponent is then encoded as (1 0 11 01 111 )2 = 1 · 28 + 0 · 27 + 3 ·
25 +1 ·23 +7 ·20. Computing the dictionary costs 2α+2δ or 3α+3δ if the algorithm
does not exploit that (01)2 is already known. Processing the encoding costs 3α+ 8δ
or 4α+ 8δ if the algorithm uses a multiplication for 0 . The total costs are 5α+ 10δ
or 7α + 11δ for a silly implementation. Using the sliding version eases the compu-
tation. The exponent is encoded as (1 011 0111 1 )2 = 1 · 28 + 3 · 25 + 7 · 2 + 1 · 20.
Precomputation takes 2α+ 2δ and processing 8δ + 3α, for a total cost of 10δ + 5α.
The Lempel-Ziv algorithm can also be run with initial dictionary {(1)2}. In this
case the exponent is encoded as (10 11 0111 1 )2 = 2 · 27 + 3 · 25 + 7 · 2 + 1 · 20. If in
the precomputation stage (10)2 and (11)2 are used simultaneously, the total costs
decrease to 9δ + 5α.



2.3. EXPONENTIATION ALGORITHMS 35

Exponentiation based on the Lempel-Ziv algorithm is attractive if the entropy
of the source generating the exponent is low (and especially if the number of ones
is high). Other data compression methods can also be used for exponentiation
routines. Bocharova and Kudryashov [23] propose to use a variable-to-fixed length
source coding algorithm by Tunstall [188]. If the entropy of the source is 1, this leads
to the sliding window method [16]. (Well, to the same dictionary as used by the
sliding window method and the same encoding. If the dictionary is constructed on-
the-fly, as the dictionary is being built by Tunstall’s algorithm, the precomputation
seems to be costlier for Bocharova and Kudryashov’s version of the sliding window
method.) Gollman et al. [67] propose to use a dictionary that consists of elements
2i−1 for 0 < i ≤ w, corresponding to all-one sequences in the binary representation.
Precomputation for the dictionary takes α(w−1)+δ(w−1) and the average weight of
an encoding is ≈ 2w−2

2w−1k, so the total costs of this method are (k+w−2)δ+(w−1)α+
2w−2

2w−1kα̇. A more detailed analysis of the algorithm is provided by O’Connor [138].

Example 2.21. We will not give an example of using Tunstall source coding
and restrict ourselves to an example of Gollman et al.’s proposal. Let n = 367
be the exponent and suppose w = 4. The dictionary consists of {1, 3, 7, 15} and
an addition sequence for this dictionary is 〈1, 2, 3, 6, 7, 14, 15〉. The exponent is
subsequently recoded as (1 011 01111 )2 = 1 ·28 +3 ·25 +15 ·20. The precomputation
takes 3α+ 3δ and the processing 8δ + 2α̇, giving a total cost of 3Ga+ 11δ + 2α̇.

Pippenger [149] and Yao [202] suggest to split the exponent in d kw e pieces of
length w each based on the 2w-ary representation. (trailing zeroes might reduce the
effective length of some pieces). The difference with the 2w-ary method, is that the
dictionary D = {1, 2w, 22w, . . . , 2b

k−1
w cw} is used for this splitting. Precomputation

for this dictionary takes bk−1
w cwδ.

Yao uses a dual algorithm of the 2w-ary method. If n =
∑k′−1
i=0 ni2iw, he

first computes for all 1 ≤ d < 2w the product G̃d = gñd with exponent ñd =∑
0≤i<k′,ni=d 2iw. Since all the powers g2iw have already been computed, this costs

at most k′ = d kw e group multiplications. Combining everything can be done using
Algorithm 2.4 or the dual of Algorithm 2.6. (Yao uses a less efficient algorithm for
this final step [16].) The total costs are then at most (2w + d kw e − 2)α + (2w +
bk−1
w cw− 2)δ. Yao suggests to pick w = blg k− 3 lg lg kc to obtain good asymptotic

results, but for 60 < k < 200 it makes more sense to use w = 3. A big advantage
of Yao’s algorithm —actually his original motivation— is its cheap processing of
the exponent. Most of the work is done during the preprocessing, independent
of the exponent. As a result the algorithm is very well suited for simultaneous
exponentiation. As a concrete example, suppose that k = 160 and w = 3. For the
precomputation 159 squarings are needed, but subsequently only 60 multiplications
and 6 squarings per exponent are needed.

Pippenger tackles the resulting multi-exponentiation by using a dictionary that
contains all (0, 1)-vectors of length d kw e. If all these vectors would actually occur in
the encoding of the exponent, the precomputation of all these vectors would take



36 2. ADDITION CHAINS

(2d
k
w e − d kw e)α, but for decreasing window size w this will be less likely. Pippenger

uses an ingenious algorithm to compute only those vectors that are needed (part of
the algorithm will be described later). It is not too hard to see that the number of
multiplications needed cannot exceed the number of ones in the binary representa-
tion of the exponent, giving an average upper bound of k

2α. (In fact, if this value is
used the algorithm is no more efficient than the binary algorithms). The processing
itself can be expected to take slightly less than (α+ δ)(w− 1), so the total costs are
at most (2d

k
w e − d kw e+ w − 1)α+ (bk−1

w cw + w − 1)δ.

Example 2.22. Suppose w = 3 and the exponent is n = 367. The dictionary is
{1, 23, 26} so it takes 6δ to compute the corresponding values Gd. The exponent is
rewritten as (101 101 111 )2 = 5 · 26 + 5 · 23 + 7. The resulting multi-exponentiation
is based on the matrix

N =

1 0 1
1 0 1
1 1 1

 .

Computing the columns in this matrix costs 2α (only (1, 1, 1)T needs to be com-
puted). The processing of the exponent costs 2α+ 2δ. The total costs are 4α+ 8δ.

Dictionaries for Double Exponentiation and Beyond. The number of direct
applications of multi-exponentiation (beyond double exponentiation) in cryptogra-
phy is limited. Its main relevance lies in its interwovenness with single and double
exponentiation, which already showed a little from the generic square-and-multiply
algorithm but which will become even more potent when taking off-line precompu-
tation into account.

For a double exponentiation, i.e., the computation of gnhm for given group el-
ements g and h and two random k-bit exponents n and m, the trivial dictionary is
D = {

(
1
0

)
,
(

0
1

)
}. This requires no precomputation and the encoding is unique, fol-

lowing the binary expansions of both exponents. Hence, the weight of the combined
representation is k − 1 on average. The total runtime is (k − 1)α̇+ (k − 1)δ.

Interestingly, this is already faster than using two separate binary exponenti-
ations (and multiplying the results). One set of k − 1 group squarings is saved.
Actually, there is no reason to restrict this interleaving to the binary method. Any
two single exponentiation routines can be combined this way, saving on the number
of squarings. Generalization to more exponents is straightforward. Möller [127]
discusses several combinations, also taking into account the possibility of cheap in-
versions. We will limit ourselves to the sliding window and signed sliding window
method, depending on whether we can use a signed method or not.

A different approach is taken by Straus [185]. In the easiest case of double
exponentiation, the dictionary is chosen as D = {

(
0
1

)
,
(

1
0

)
,
(

1
1

)
}. The precomputa-

tion requires one multiplication (of gh, corresponding to
(

1
1

)
). Both exponents are

expanded binary and whenever possible
(

1
1

)
is used. The resulting weight of this

method, which is commonly called Shamir’s method, is only 3
4 (k − 1), one quarter

less than the trivial method. Note the resemblance with the method discussed at



2.3. EXPONENTIATION ALGORITHMS 37

the beginning of this section (which itself is nothing other than the 4-ary method
in disguise).

In the more general case, Straus proposed to precompute all vectors whose
components lie between 0 and 2w (exclusive). The exponent is chopped up in pieces
of w bits each, just like in the w-ary algorithm. Straus’ dictionary has cardinality
2mw − 1, including m unit vectors. Note that the case w = 1 corresponds to the
multi-exponentiation performed by the version of Pippenger’s algorithm we already
described. Straus did not distinguish between squarings and multiplications and
needs 2mw−m−1 operations for the precomputation. Those Gd for which d contains
even numbers only can be computed using a squaring. This affects 2(w−1)m − 1
elements. Computation of these elements can be skipped altogether by using a
sliding window technique, as proposed by Yen et al. [204]. Avanzi [6] gives an
analysis of the method. He also considers the method based on the NAFs of the
exponents instead of the binary expansions.

Pippenger also describes another algorithm based on the work of Lupanov [117].
Suppose m exponents of bitlength k are given, where km < 2m. This is the kind
of situation that arises from splitting the exponent as described for a single expo-
nentiation (the splitting technique can easily be extended for multi-exponentiation,
although the use of duality might be preferable). Precomputing all 2m (0, 1) vectors
is a bad idea. Most of these will not be used and the trivial dictionary consisting
of the m unit vectors will give better results. There is a big gap between these two
extremes. A gap that can be filled by partitioning the bases (or the input). Let t be
a parameter, for simplicity we will assume that t divides m. Partition the m bases
in m

t groups of t each and compute for each of these set of t exponents all 2t different
products. The cost of this precomputation is m

t (2t − t− 1)α and the main compu-
tation (Steps 4–7 of Algorithm 2.12) will cost approximately (mt

2t−1
2t k)α+ (k− 1)δ.

The two extremes correspond to the trivial divisors t = 1 and t = m.
If inversion is for free, one could consider combining the NAF with Shamir’s

trick based on D = {
(

0
1

)
,
(

1
0

)
,
(

1
1

)
,
(

1
−1

)
} and their negations. Given two random

exponents, each having a NAF of length about k and an expected number of 2k/3
zeroes, on average in 4

9 of the positions we encounter
(

0
0

)
. This leaves 5

9k nonzero
bi,d’s, resulting in a runtime of 2α+ (δ + 5

9 α̇)k.
Solinas [178] notes that computing the NAFs independent of each other might

not be optimal to minimize the number of nonzero bi,d. As an alternative he proposes
the joint sparse form. One of its most important properties is that there are at most
two consecutive nonzero bi,d’s. The joint sparse form can be efficiently computed
and on average, half of the resulting bi,d will be nonzero. The running time is
therefore 2α + (δ + 1

2 α̇)k. A window of size two requires more precomputation,
but is generally faster for larger bitlengths, with running time 10α+ (δ + 3

8 α̇)k, as
analysed by Avanzi [6].

2.3.3. Euclidean Algorithms. In its additive form, to perform a multiplication us-
ing only additions, doublings and halvings, Algorithm 2.9 has been dated back to



38 2. ADDITION CHAINS

the Egyptians living 2000 B.C. Exponentiation routines can also be based on a some-
what younger algorithm, the basics of which are described by Euclid (c. 300 B.C.).
Euclid’s algorithm returns the greatest common divisor of two positive integers.

Algorithm 2.23 (Euclid’s GCD Algorithm).
On input two nonnegative integers n and m this algorithm outputs gcd(n,m). It
keeps invariant

0 ≤ e < d, gcd(d, e) = gcd(n,m) .

1. [Initialize] If n > m set (d, e)← (n,m) else set (d, e)← (m,n).
2. [Finished?] If e = 0, terminate with output d.
3. [Decrease (d, e)] Set (d, e)← (e, d mod e) and return to the previous step.

A slight adaptation of the algorithm leads to the extended Euclidean algorithm:
it also returns how the greatest common divisor can be seen as a Z-linear combina-
tion of the input. Over the years Euclid’s algorithm has been successfully ported
to numerous other settings. Knuth [89, 90] and Cohen [45] give excellent coverage
of the algorithm. Akhavi and Vallée [4] give an overview, and average-bit complex-
ity analysis, of several variations to the classical version. The elementary equation
behind the classical version is d = bde ce + (d mod e) where 0 ≤ d mod e < e.
Redefining mod (and div corresponding to bde c) such that −e < (d mod e) ≤ 0
produces the surprisingly slow by-excess algorithm. If mod is redefined such that
−e/2 < (d mod e) < e/2 the centred variation emerges. In the subtractive algo-
rithm (d, e) is substituted with (d − e, e) (give or take the ordering). The binary
algorithm, finally, has (d, e) substituted with (e, (d − e)/2b) (here 2b is the largest
power dividing d− e).

We now turn our attention to double exponentiation with bases g and h and
exponents n and m. Suppose that g and h are in the same cyclic group 〈f〉, so
we could write g = fκ and h = fλ (it does not matter that we most likely cannot
actually compute κ and λ, existence is sufficient here). The double exponentiation
can be rewritten as gnhm = fnκ+mλ. Semba [165] and Bergeron et al. [14] exploit
this in a clever way.

Algorithm 2.24 (Euclidean Double Exponentiation).
On input two bases g = fκ and h = fλ and two nonnegative exponents n and m
this algorithm outputs gnhm. It keeps invariant

(7) 0 ≤ e < d, gcd(d, e) = gcd(n,m), ad+ be = nκ+mλ, A = ga, B = gb .

1. [Initialize] If n < m set (d, e) ← (m,n), (a, b) ← (λ, κ) and (A,B) ← (h, g)
else set (d, e)← (n,m), (a, b)← (κ, λ) and (A,B)← (g, h).

2. [Finished?] If e = 0, compute Ad using a single exponentiation routine and
terminate with output Ad.

3. [Decrease (d, e)] Compute Ab
d
e c using a single exponentiation routine. Set

(a, b) ← (bde ca + b, a), (A,B) ← (Ab
d
e cB,A), and (d, e) ← (e, d mod e). Re-

turn to the previous step.



2.3. EXPONENTIATION ALGORITHMS 39

In the algorithm above the restriction that g and h have to be in the same cyclic
subgroup can be removed by slightly changing the invariant (7) into

0 ≤ e < d, gcd(d, e) = gcd(n,m), AdBe = gnhm .

The dual of the algorithm above can be used to compute a twofold exponentia-
tion. One way of implementing the algorithm is by using a recursive version instead
of an iterative one.

Algorithm 2.25 (Euclidean Twofold Exponentiation).
On input a base g and two positive exponents n and m this algorithm outputs gn

and gm.
1. [Initialize] Let u = gcd(n,m). Compute gu using a single exponentiation

routine. Set (A,B) ← (gu, gu). If n > m set (d, e) ← (m/u, n/u) else set
(d, e)← (n/u,m/u).

2. [Finished?] If e = 0, terminate with output A and id.
3. [Decrease (d, e)] Set (A,B)← (ge, gd mod e) using a recursive call to this al-

gorithm (Step 1 will have u = 1). Compute Ab
d
e c using a single exponentiation

routine and terminate with output Ab
d
e cB and A.

The runtime of both algorithms will clearly depend on the single exponentia-
tion routine that is used. In the first iteration d and e might differ in bitlength
considerably, requiring a significant single exponentiation. However, in subsequent
iterations d and e will be approximately equally large and the single exponentia-
tions will only be small. Bos [26] reports a difference between the binary method
and optimal addition chains of only 2% (although his figure is not entirely general).
Simulations suggest an estimated average runtime of (0.72δ + 0.87α)k for k bits
exponents. A very crude application of the analysis of the Euclidean algorithm also
gives this result. The probability that the quotient bde c in Step 3 equals c is about
lg((c+ 1)2/((c+ 1)2 − 1)) and processing a quotient c costs (blg cc − 1)δ plus one α
for each 1 in the binary representation of c (assuming the binary algorithm is used
for the single exponentiation in Step 3). This results in an estimated average cost
for each time Step 3 has to be performed. The average can be numerically approx-
imated by assuming that the quotient bde c does not exceed some bound (the higher
the bound, the smaller the error in the estimate). The number of times Step 3 has to
be performed for a k-bit exponent is approximately 12(ln 2/π)2k. Multiplying this
with the average costs per step gives the aforementioned runtime (0.72δ + 0.87α)k.

Example 2.26. Let n = 22 and m = 15 and suppose two bases g and h are
given. Table 2.6 shows the values of the important variables during the performance
of Algorithm 2.24. The total cost is 5α+ 3δ.

Both algorithms can be generalized to more than two exponents. For a simulta-
neous exponentiation, let S be the set of exponents that need to be computed. Let d
and e be the two largest elements of S with d > e. Replace d in S with d mod e and
use the algorithm to perform the simultaneous exponentiation with this modified
set of exponents. Afterwards, gd can be reconstructed by (ge)b

d
e c(gd mod e) using a



40 2. ADDITION CHAINS

Table 2.6. Euclidean double exponentiation for n = 22 and m = 15

Round (Ini) 1 2 3
Based on 22 = 1 · 15 + 7 15 = 2 · 7 + 1 7 = 7 · 1 + 0

d 22 15 7 1
e 15 7 1 0
A g gh (gh)2 · g = g3h2 (g3h2)7 · gh = g22h15

B h g gh g3h2

Cost 0 α α+ δ α+ (2α+ 2δ)

single exponentiation routine for the exponentiation to the power bde c. The exact
analysis of the resulting algorithm seems quite hard [51], but there are a couple of
easy observations. The most important one is that the number of steps will likely
increase and at the same time the average value of bde c will decrease. The num-
ber of steps with bde c = 1 in particular will increase, and these steps are relatively
inefficient. For a triple exponentiation, simulations show an average runtime of
(1.20α+ 0.56δ)k for three random k-bit exponents.

Bergeron et al. [13] present a framework for performing single exponentiations
based on the Euclidean algorithms above. A single exponentiation gn is replaced
by the twofold exponentiation gn and gm with 0 < m < n. Algorithm 2.25 is called
to obtain gn and gm, the latter of which is discarded. (Alternatively, a double
exponentiation gn−mgm, 0 < m < n can be used.)

Algorithm 2.27 (Euclidean Single Exponentiation).
On input a base g and a positive exponent n this algorithm outputs gn.

1. [Special cases] If n is a power of 2, compute gn using repeated squarings. If
n = 3, compute g3 using a squaring and a multiplication. In both these cases,
terminate with output gn.

2. [Pick m] Pick m based on n using any chosen strategy (subject to 0 < m < n).
3. [Call twofold algorithm] Compute gn and gm using a call to Algorithm 2.25

on appropriate input. Terminate with output gn.

Bergeron et al. give a list of several strategies to pick m given n. Some of these
are non-deterministic, which requires one to exhaustively search all possibilities for
the optimal one before starting to do any group operations. Of special interest are
the deterministic strategies.

In the binary strategy m = bn2 c is used. The resulting single exponentiation
is equivalent to the left-to-right binary algorithm: the same group elements are
computed. The right-to-left binary algorithm emerges by choosing m = 2 (for
n > 3). Bergeron et al. also give the co-binary strategy m = bn+1

2 c.
The dichotomic strategy picks m = b n

2dblgnc/2e
c. The first time Step 3 is encoun-

tered, bde c = b nmc = 2b
k
2 c or maybe one more. The costs for this step are ≈ 0.5δ and

afterwards a more or less random double (or twofold) k
2 -bit exponentiation has to

be performed, which can be expected to cost ≈ (0.87α+ 0.72δ)k/2. The total costs



2.3. EXPONENTIATION ALGORITHMS 41

for a single exponentiation are (0.43α + 0.86δ)k which corresponds to a simulation
of 1000 random single k-bit exponentiations for k ∈ {20, 40, . . . , 2000}.

The third and final deterministic strategy, the factor strategy, is of theoretic
interest only. If n is prime it uses m = n − 1, otherwise m is chosen to be the
smallest prime divisor of n. This choice of m effectively requires one to factor the
exponent. For 160-bit exponents this is a not entirely trivial task that would be
too time consuming in a practical cryptographic application, for 1024-bit exponents
this would constitute a breakthrough in integer factorization.

Example 2.28. Let n = 367. The dichotomic strategy picks m = 22. The first
time in Step 3 (of Algorithm 2.25) b 367

22 c = 16 and a recursive call with exponents
22 and 367 mod 22 = 15 is made. The costs are α+ 4δ for computing the power of
16 and combining the result and 5α + 3δ for the recursive call (see Example 2.26),
or 6α+ 7δ in total.

Using the factor method initially picks m = 366, since 367 is prime. Computing
g366 is based on the factorization 366 = 2 · 3 · 61. The small primes take δ and α+ δ
and for 61 the factorization 60 = 22 · 3 · 5 is used, costing 2α + 5δ. Twice a large
prime was encountered, so the total cost is 5α+ 6δ.

2.3.4. Exploiting Endomorphisms. We already saw that the availability of free in-
version can reduce the costs of an exponentiation. Other easy-to-compute endomor-
phisms can also speed up an exponentiation.

In a finite field Fpe the Frobenius endomorphism (p-th powering) can be used to
split an exponent 0 < n < pe in e pieces all smaller than p. A multi-exponentiation
algorithm can be used to deal with the resulting exponentiation. If the characteristic
p is small, and the extension e large, the use of word chains and compression based
addition chains pays off: the cheap endomorphism takes on the role of squaring,
greatly reducing the total cost of the exponentiation.

A similar effect occurs with Koblitz curves or other elliptic curves where the
coefficients that define the curve are chosen from a smaller field than the points
on the curve (cf. Chapter 5). The Frobenius endomorphism φ satisfies a quadratic
equation that allows writing an exponent as n =

∑k′

i=0 niφ
i over Z[φ] where the ni

are smaller than the size of the field of the coefficients. (Blake et al. [17] give more
details.)

For a lot of elliptic curves used in cryptography the points are defined over
the same field from which the coefficients are drawn. In this case the Frobenius
endomorphism is actually the identity function and hence of little use. Gallant et
al. [64] point out that for some curves other relatively cheap endomorphisms can be
used to speed up the exponentiation. Suppose that the endomorphism corresponds
to (scalar) multiplication by p, then the exponent is written as n ≡ n1 + n2p mod q
where q is the group order and n1 and n2 are integers of roughly the same size as√
q. The exponent has been split in two pieces and a k-bit single exponentiation is

turned into a k
2 -bit double exponentiation.

Gallant et al. give several examples and an algorithm to perform the splitting
but they do not provide any proof that the resulting n1 and n2 are of the desired



42 2. ADDITION CHAINS

magnitude. In a special case, the lemma below shows that the split is indeed giving
small n1 and n2.

Lemma 2.29. Let q|(p2 − p+ 1) and let n ∈ Z, then there exist n1, n2 ∈ Z such
that n1 + n2p ≡ n mod q and |n1|, |n2| < 2

√
q.

Proof: Let L be the two-dimensional integral lattice {(e1, e2)T ∈ Z2 : e1 + e2p ≡
0 mod q}. If (e1, e2)T ∈ L, then

(e1 + e2)− e1p ≡ −e2p+ e2 + e2p
2 = e2(p2 − p+ 1) ≡ 0 mod q

so that (e1 + e2,−e1)T ∈ L. Let v1 = (e1, e2)T be the shortest non-zero vector
of L (using the L2-norm). It may be assumed that e1 ≥ 0. It follows that e2 ≥ 0,
because otherwise (e1 + e2,−e1)T or (−e2, e1 + e2)T ∈ L would be shorter than v1.
If v2 is the shortest of (e1 + e2,−e1)T , (−e2, e1 + e2)T ∈ L, then |v2| < 2|v1| and
{v1,v2} is easily seen to be a shortest basis for L, with e2

1 + e1e2 + e2
2 = q and

e1, e2 ≤
√
q. This implies that given {v1,v2} and any integer vector (−n, 0)T , there

is a vector (n1, n2)T with 0 ≤ n1, n2 ≤ 2
√
q such that (−n+n1, n2)T ∈ L. It follows

that −n+n1 +n2p ≡ 0 mod q, i.e., n ≡ n1 +n2p mod q as desired. Using the initial
basis {(q, 0)T , (−p, 1)T }, the vector v1 can be found quickly [45, Algorithm 1.3.14],
and for any n the vector (n1, n2)T can easily be computed. Q.E.D.

The case q|(p2 + 1) can be dealt with similarly. A more general and thorough
treatment is given by Sica et al. [174].

Example 2.30. Suppose p = 409 and q = 769, so q|(p2− p+ 1), and let g ∈ Gq.
The vector v1 from the proof above equals (17, 15)T and indeed 17+15·409 = 8·769.
It follows that v2 = (−15, 32)T . The vectors v1 and v2 satisfy (g, gp)v1 = (g, gp)v2 =
id. The exponent n = 367 corresponds to (367, 0)T = 15v1 − 7v2 + (7,−1)T ,
which means that g367 = g7 · (gp)−1. If inversions are problematic, we can also use
g367 = g24 · (gp)14. The last double exponentiation can be computed in 4δ + 4α.

2.3.5. Exploiting Precomputation. If the base is fixed, it pays off to precompute
certain powers of the base. These precomputed values are then stored and can be
reused for each exponentiation with that base that follows. For instance if single
exponentiation is based on Algorithm 2.12 all values gd with d ∈ D can be precom-
puted (instead of the on-line “precomputation” in Step 2 of the algorithm).

During the discussion of the generic square-and-multiply algorithm it was al-
ready remarked that the first phase (precomputation) consists of the simultaneous
computation of several powers of g (that is taken off-line now) and that the second
phase is in fact a multi-exponentiation combining the precomputed values. Along
these lines, Brickell et al. [32] write an exponent as n =

∑k′−1
i=0 bimiR

i with all
0 ≤ bi < h and mi ∈ M , where M is some predetermined set of integers and R

is the radix. All powers gmR
i

with m ∈ M and 0 ≤ i ≤ dlogR ne have to be pre-
computed and stored. The exponentiation itself is based on Algorithm 2.4. Brickel
et al. give several suggestions for R,M, and h, also exploiting inversions whenever
possible. If R is a power of two, M = {1} and h = R− 1 the algorithm is similar to
Yao’s algorithm.



2.4. CONCLUSION 43

Precomputation essentially offers a space-time trade-off. The more elements
are precomputed, the cheaper the exponentiations become. However, the first few
elements give the most spectacular improvement. After a while the gain per precom-
puted element decreases. For a 160-bit exponent, Brickell et al. describe a method
where 2244 elements are precomputed and on average 21.68 multiplications are still
needed for the exponentiation. They also describe another method requiring 2751
precomputed values resulting in an average runtime of 20.92 multiplications. Over
300 extra precomputed values reduce the runtime by only 3.5%. The methods by
Brickell et al. might not give the optimal trade-off.

De Rooij [56] proposes to deal with the multi-exponentiation that results from
splitting the exponent by using Algorithm 2.24. Unfortunately, this method is nei-
ther suited if the number of precomputed elements is too high nor if the exponent
is split in large pieces (so if the number of precomputed elements is too low).

Lim and Lee [112] describe what is now known as the comb method. It is
equivalent to (the simplified version of) Pippenger’s algorithm.

2.4. Conclusion

There is large number of exponentiation algorithms. The Euclidean algorithms
are in general slower than the square-and-multiply algorithms. The simple algo-
rithms benefit the most from cheap α̇ compared to α. The advantage of free inver-
sions becomes smaller if the algorithms become more complex (but still worthwhile
to exploit).

Table 2.7 contains an overview of some of the methods with or without inver-
sions. To improve readability, the runtimes are approximates; in Chapters 4 and 5
more accurate versions are used. For the applications we have in mind —based on
exponents of up to 200 bits and with free inversions in the group— a typical choice
is either the NAF or the signed sliding window method with w = 4 for a single
exponentiation. For a double exponentiation the JSF seems most appropriate, de-
pending on the specific application with or without windows. Single exponentiation
with a fixed base can be done using Pippenger’s algorithm with w = k/10 and t = 5
(other choices for w and t are possible of course, but this gives a very decent result
based on 62 precomputed values). The only disadvantage of Pippenger’s algorithm
is that it does not exploit free inversions.



44 2. ADDITION CHAINS

Table 2.7. Exponentiation Routines

Name Inv Expected Runtime Memory Required
Single exponentiation
binary No (δ + 1

2 α̇)(k − 1) 2
NAF/Star form Yes (δ + 1

3 α̇)k 2
sliding window No 2w−1α+ (δ + 1

w+1 α̇)k 2w−1

signed sliding window (SSW) Yes 2w−1α+ (δ + 1
w+2 α̇)k 2w−1

Double exponentiation
interleaved sliding windows No 2wα+ (δ + m

w+1 α̇)k m2w−1 −m+ 1
interleaved signed sliding window Yes 2wα+ (δ + 2

w+2 α̇)k 2w − 1
Joint Sparse Form (JSF) Yes 2α+ (δ + 1

2 α̇)k 5
windowed Joint Sparse Form Yes 10α+ (δ + 3

8 α̇)k 13
Single exponentiation with precomputation

simplified Pippenger (comb) No (δ + d kw e
t ( 2t−1

2t )α̇)(w − 1) d kw e
t (2t − 1)



3

Higher Order Addition Chains

In the previous chapter we discussed addition chains for first order recurrences.
In this chapter we will treat higher order addition chains for higher order recurrences
of a special form. In particular we will discuss Lucas chains for second order and Per-
rin chains for third order recurrences. Applications of these chains in cryptography
are discussed in Chapters 4 and 5.

3.1. Motivation and Definitions

Additions chains give rise to efficient algorithms to perform exponentiations in
multiplicative groups. In Section 1.3 higher order recurrences were described. Two
special classes of recurrences were considered: second order recurrences where the
(n+m)-th term could be computed based on the n-th, m-th and (n−m)-th term;
and third order where the (n− 2m)-th term was also necessary.

3.1.1. Lucas Chains. Efficient computation of second order recurrences can be done
with a special class of addition chains, known as strong addition chains, Lucas chains
or, according to Knuth, Chebyshev chains. We will however make a distinction be-
tween strong addition chains and Lucas chains. For the definition of a strong addi-
tion chain we follow the traditional definition of a Lucas chain [19, 128], resembling
Definition 2.1 of an addition chain. The inclusion of c0 = 0 is motivated by the need
of 0 for a doubling and the use of negative exponents to denote c−n = −cn later
on. The number of elements in C is k + 2 of which the first two are for free, so the
effective length is k.

Definition 3.1 (Strong addition chain). A sequence of nonnegative integers

C = 〈c0, c1, . . . , ck+1〉 ,

with c0 = 0 and c1 = 1 is called a strong addition chain if, for all 1 < i ≤ k + 1
there exist j, j′, and i′, 0 ≤ j, j′, i′ < i, such that ci = cj + cj′ and ci′ = cj − cj′ .

The length of the chain C is defined to be `L(C) = k. The length of the shortest
strong addition chain containing the set S ⊆ Z>0 is denoted `L(S).

In the previous chapter several addition chains for 11 were discussed. Neither of
these chains is a strong addition chain. In the chain 〈1, 2, 3, 4, 8, 11〉 for instance the
only option to construct 11 is by adding 8 and 3, but unfortunately the difference
8− 3 = 5 is not available. The chain 〈1, 2, 3, 4, 7, 11〉 is a strong addition chain. In

45



46 3. HIGHER ORDER ADDITION CHAINS

the graph corresponding to the strong addition chain, dotted lines are used to make
clear which differences are needed.

?>=<89:;/.-,()*+0 77 66
?>=<89:;/.-,()*+1 44

** ''

77 66
?>=<89:;2 //

''

77
?>=<89:;3

''

55
?>=<89:;4 //

((?>=<89:;7 // GFED@ABC?>=<89:;11

Considered as ordinary addition chains 〈1, 2, 3, 4, 7, 11〉 and 〈1, 2, 3, 4, 8, 11〉 are
equivalent because they have the same condensed chain 〈1, 2, 4, 11〉. This equivalence
does not carry over to strong addition chains, since only one of them is a strong
addition chain. The problem is the loss of associativity for strong addition chains.
If we take another look at their common partially condensed graph,

?>=<89:;/.-,()*+1 44
** ''?>=<89:;2

** ''

77
?>=<89:;3

((?>=<89:;4 33

++ GFED@ABC?>=<89:;11

then we see that there are three arrows pointing to 11. In the present case of strong
addition chains, 11 may be computed as (3+4)+4, but not as 3+(4 +4). Different
orders of computation may alter the set of differences. These differences might or
might not be in the chain.

Strictly speaking, 11 cannot be computed as (3 + 4) + 4 either, since calculating
3 + 4 requires the difference −1, which is negative (and therefore not in the chain).
Instead, 4 + 3 must be computed. This swapping trick always works to get rid of
possibly occurring negative differences.

For the applications we have in mind, inversion will typically be free and there
is no need to swap (in a way, commutativity is restored). In this case it makes sense
to allow subtraction steps as well (where the sum already has to be in the chain).
Allowing subtractions also gives a smoother transition to the third degree Perrin
chains (Definition 3.6).

Definition 3.2 (Lucas Chain). A sequence of nonnegative integers

C = 〈c0, c1, . . . , ck+1〉 ,
with c0 = 0 and c1 = 1 is called a Lucas chain if, after extending it to negative
coefficients by defining c−i = −ci for all 0 < i < k + 1, for all 0 < i ≤ k + 1 there
exist j, j′, and i′ all of absolute value smaller than i, such that ci = cj + cj′ and
ci′ = cj − cj′ .

The length of C is defined to be L2(C) = k. The length of the shortest Lucas
chain containing the set S ⊆ Z is denoted L2(S).

Sometimes a double exponentiation has to be performed during a cryptographic
protocol. In the present case of second order recurrences, let vκ and vλ be two bases
and n and m two exponents, then a double exponentiation requires computing
vκn+λm. If κ and λ were known, this would in fact be a single exponentiation,
but in general κ and λ are not known. However, if for instance n = m = 1, the
combination of vκ and vλ requires the ‘quotient’ vκ−λ or vλ−κ (in this case we can



3.1. MOTIVATION AND DEFINITIONS 47

use an incomplete chain for κ+λ by supposing that cj = κ, cj′ = λ, and ci′ = κ−λ
after which ci = κ + λ can be added to the chain). Therefore, in order to be able
to perform a double exponentiation with the bases vκ and vλ at least one auxiliary
base is needed.

It turns out that the number of auxiliary bases to perform a multi-exponentiation
given m bases, requires 2m−m−1 auxiliary bases. This can be proven by a concept
shown to us by P. Beelen. In accordance with Definition 2.2, vectors of length m are
used to model a multi-exponentiation. If we momentarily fall back to the notation
of group exponentiation of the previous chapter, we could say that gx and gy can
only be multiplied if the quotient gx−y is known. The result of the multiplication
is gx+y. Suppose several elements gx are known, for x ∈ S. We ask ourselves the
question which other elements can be constructed under multiplication, bearing in
mind we need to know the quotient of two elements we want to multiply. The iden-
tity element (corresponding to the all-zero vector) and inversion are for free. By
concentrating on the exponents, we get the following definition.

Definition 3.3 (Lucas set). A subset Λ ⊆ Z
m is called a Lucas set iff the

following holds:
(1) 0 ∈ Λ
(2) x ∈ Λ⇒ −x ∈ Λ
(3) x,y,x− y ∈ Λ⇒ x + y ∈ Λ

Given a set S ⊆ Zm the Lucas-closure of S is defined as the intersection of all Lucas
sets (in Zm) containing S.

For multi-exponentiation the bases should not depend on the exponents. In
other words, given m bases, it should be possible to perform a multi-exponentiation
given any set of m exponents. Considered as vectors, the bases together with the
auxiliary bases should span Zm. (The use of some negative exponents is hard to
avoid entirely, since the auxiliary vectors will have negative entries).

Theorem 3.4. The smallest subset S ⊆ Zm whose Lucas closure equals Zm has
cardinality 2m − 1.

Proof: Let S ⊆ Zm have Lucas closure Zm. Consider the closure rules modulo 2.
Since −x ≡ x mod 2 and x− y ≡ x + y mod 2 it follows that S modulo 2 should
equal Zm modulo two, apart from the all zero vector which comes for free in the
closure, and hence should have at least 2m − 1 elements.

The set S consisting of all (0, 1)-vectors of length m without the all zero-vector
has cardinality 2m − 1 and has Lucas closure Zm. The latter can be proven by
induction. Let z be a vector all of whose entries are in {−1, 0, 1}. If for some
0 < i ≤ m the entry zi = −1 define xi = 0 and yi = −1, so xi − yi = 1; if zi = 1
define xi = 1 and yi = 0, so xi − yi = 1; finally, if zi = 0, define xi = yi = 0 as well.
In all three cases zi = xi + yi and if the entire vectors are considered, x,−y,x− y
are all (0, 1)-vectors, hence z is in the Lucas closure of S.

Suppose that for some n ≤ 1 the Lucas closure of S contains all vectors in
Z
m with all entries in absolute value smaller than or equal to n (we just saw this



48 3. HIGHER ORDER ADDITION CHAINS

statement is true for n = 1). Let z be a vector with all entries in {−(n+1), . . . , (n+
1)}. It can be written as z = x + y where x’s entries are in {−n, . . . , n} and y is
a (−1, 0, 1)-vector. The entries of the difference x − y differ at most one from the
corresponding entry in x, but they can never be either −(n + 1) or n + 1. Hence,
by the induction hypothesis, all three vectors x,y,x− y are already in the closure
and hence by the third rule, z is as well. Q.E.D.

Although the above theorem does not exclude Lucas chains for vectors, it does
make them less appealing for large m. For ordinary addition chains, no auxiliary
bases were needed and for any fixed m a multi-exponentiation asymptotically costs
the same as a single exponentiation. For Lucas chains, the number of auxiliary
bases is exponential in m. It is an interesting open question whether the exponen-
tial number of initial vectors results in chains of exponential length as well, but
even for fixed m the costs are asymptotically higher than that of a single exponenti-
ation. Hence, we will restrict ourselves to the most relevant cases for cryptography:
m = 1 corresponding to single exponentiation and m = 2 corresponding to double
exponentiation.

Definition 3.5 (Vectorial Lucas Chain). A sequence of vectors in Z2

C = 〈c0, c1, . . . , ck+3〉 ,
with c0 = (0, 0)T , c1 = (1, 0)T , c2 = (0, 1)T , and c3 = (1,−1)T , is called a Lucas
chain iff, after extending it to negative coefficients by defining c−i = −ci for all
0 < i < k + 3, for all 0 < i ≤ k + 3 there exist j, j′, and i′ all of absolute value
smaller than i, such that ci = cj + cj′ and ci′ = cj − cj′ .

The length of C is defined to be L2(C) = k. The length of the shortest Lucas
chain containing the set S ⊆ Z2 is denoted L2(S).

3.1.2. Perrin Chains. Efficient computation of a third order recurrence based on
cn+m = α(cn, cm, cn−m, cn−2m) calls for an even stronger version of addition chain.
We call these Perrin chains, after the third order Perrin recurrence (3) on page 11.
It is assumed that inversion (i.e. computing c−n given cn) is cheap, similar to
addition-subtraction and Lucas chains. For the only application in this thesis, XTR
in Section 4.6, this is the case. Allowing negative exponents is advantageous if n−2m
is negative but n−m is positive. Unlike in the second order case, swapping n and m
will still give one negative and one positive term. If inversion is well-defined but hard
to compute, the initial value c−1 can be used to extend the Perrin chain to negative
exponents nevertheless: whenever cn+m is added to the chain, also put c−(n+m) in
the chain based on c−(n+m) = α(c−n, c−m, cm−n, cm−2n). Using induction it follows
that this always works. This method doubles, or almost doubles, the costs and is
not necessarily optimal, even when the Perrin chain used is.

Definition 3.6 (Perrin Chain). A sequence of nonnegative integers

C = 〈c0, c1, . . . , ck+1〉 ,
with c0 = 0 and c1 = 1 is called a Perrin chain if, after extending it to negative
coefficients by defining c−i = −ci for all 0 < i < k+1, for all 0 < i ≤ k+1 there exist



3.1. MOTIVATION AND DEFINITIONS 49

j, j′, i′ and i′′ all of absolute value smaller than i, such that ci = cj+cj′ , ci′ = cj−cj′ ,
and ci′′ = cj − 2cj′ .

The length of C is defined to be L3(C) = k. The length of the shortest Perrin
chain containing the set S ⊆ Z is denoted L3(S).

For double exponentiation, a mixture of Definition 3.5 and 3.6 can be used with
additional initial vector c4 = (1,−2)T . The number of required auxiliary bases
for multi-exponentiation based on Perrin chains increases even more compared to
Lucas chains, as demonstrated by the following theorem kindly shown to us by P.
Beelen [11]. Perrin sets are the third order analogue of Lucas sets.

Definition 3.7 (Perrin set). A subset Λ ⊆ Z
n is called a Perrin set iff the

following three hold:

(1) 0 ∈ Λ
(2) x ∈ Λ⇒ −x ∈ Λ
(3) x− y,x,y,x− 2y ∈ Λ⇒ x + y ∈ Λ

Theorem 3.8 (P. Beelen). Let S ⊆ Z
m have Perrin closure Zm, then the

cardinality of S is at least 3m−1
2 .

Proof: Let S ⊆ Zm have Perrin closure Zm. Consider the closure rules modulo 3.
The negation rule doubles the number of nonzero elements, but the addition rule
does nothing. Hence each element in S will give rise to at most two different con-
gruency classes in Zm3 . Since there are 3m of these classes and 0 comes for free, any
set with Perrin closure Zm has at least 3m−1

2 elements.
Let S be the set consisting of all (−1, 0, 1)-vectors of length m for which the first

nonzero entry is positive (so without the all zero-vector). The set S has cardinality
3m−1

2 . Rules (1) and (2) imply that all (−1, 0, 1)-vectors are in the closure. With
induction similar to the proof of Theorem 3.4 it follows that the Perrin closure is
indeed Zm. Q.E.D.

3.1.3. Notation. The use of v is reserved for second order and that of c for third
order recurrences. Similar to the case of exponentiation in a group, we will also
use α to denote the cost of applying α. The special case of computing v2n or c2n
from vn respectively cn corresponds to squaring in a group. Its costs will be denoted
similarly by δ. Computing c−n from cn corresponds to inversion and will be denoted
by ν, but the number of inversions will not be counted (either it is very cheap or it
is too expensive).

Lucas chains are used in Section 4.4 for LUC and in Chapter 5 for the Mont-
gomery representation of elliptic curves. LUC is linear and the application of δ
costs about 80% of that of α under Assumption 1.3. For the Montgomery represen-
tation a refinement is made. Since projective coordinates are used, having a fixed
operand speeds up the application of α. A distinction needs to be made which of
the three operands of α is fixed. We will use α̇i to denote these cheaper calls to the
recurrence relation where the i-th argument is fixed. For curves defined over binary



50 3. HIGHER ORDER ADDITION CHAINS

fields, applying δ costs about 40% of applying α and applying α̇3 costs about 80%
of applying α.

Perrin chains are used in Section 4.6 for XTR. XTR has the somewhat unusual
property that computing both c3n and c2n given cn costs less than δ + α. For this
reason triplings of this sort will be counted separately for Perrin chains, using the
symbol τ . (Occasionally τ will be used for Lucas chains as well, but for the runtimes
τ = δ + α is substituted.)

3.2. Binary Algorithms

3.2.1. Single Lucas. The binary Algorithms 2.7 and 2.9 for addition chains can
easily be adapted to produce strong addition chains by appropriate strengthening
of the invariant. Possibly as a result of this simple derivation [118], the algorithms
have been reinvented several times, which makes it hard to give proper credit. Most
popular is the left-to-right variant [101, 128, 156, 171, 203]. The right-to-left ver-
sion seems to appear in the literature slightly later [128, 203]. Both iterative and
recursive versions exist, we limit ourselves to the iterative version. The numerical
behaviour of the algorithms when applied to the evaluation of Chebyshev polyno-
mials is studied by Koepf [95]; the relevance of the algorithm for computer algebra
packages is discussed by Fateman [61].

Algorithm 3.9 (Second Degree Left-to-Right Binary Exponentiation).
This algorithm takes as input a base v and a positive exponent n and outputs vn
and vn+1. It has invariant

0 ≤ j < k, a =
k−1∑
i=j

ni2i−j , A = va, B = va+1 .

1. [Initialization] Set j ← k − 1, a← 1, A← v, and B ← δ(v).
2. [Finished?] If j = 0 terminate with output A and B.
3. [Decrease j] If nj−1 = 0, set a← 2a as well as B ← α(B,A, v) and A← δ(A).

Otherwise, set a← 2a+ 1, A← α(B,A, v) and B ← δ(B). Decrease j by one.
The left-to-right algorithm has the advantage that the difference is fixed, namely

the base v. This can be advantageous for instance when using the Montgomery rep-
resentation for elliptic curves [130] where precomputation on v makes the computa-
tion of α(B,A, v) cheaper than that of α(B,A,C) for general C (see also Chapter 5
for further details).

Lemma 3.10. Given a k-bit exponent n, Algorithm 3.9 takes α̇3(k − 1) + δk
operations.

Because the algorithm returns both vn and vn+1, it can sometimes be advanta-
geous to use exponent n′ = n − 1, thus obtaining vn and vn−1. Moreover, if only
vn is required, there are some minor improvements possible. First of all, there is no
need to compute B in the final step (j = 1). Secondly, if the exponent n is even,
it clearly pays off to divide n by two and at the same time doubling the base v



3.2. BINARY ALGORITHMS 51

(repeatedly until n is odd). Dividing out other primes will give a small decrease in
the number of α and δ needed [197]. The overhead (checking divisibility by some
odd prime), the lower probability that p divides n and the reduced gain if it does,
make this option less attractive.

The fact that the algorithm produces vn+1 (or alternatively vn−1) as a byproduct
is beneficial when used for precomputation (Section 3.3.4) and also eases the recovery
of y-coordinates for elliptic curves when the Montgomery representation is used
(Section 5.3.1).

The use of Algorithm 3.9 has also been proposed as a possible countermea-
sure against timing and power analyses. Unlike the standard binary algorithm,
Algorithm 3.9 performs the same operations per step independent of the binary
representation of the exponent. Whether the bit being read is zero or one, the
algorithm always performs a squaring (δ) and a multiplication (α), thus defeating
timing attacks. There are some subtleties though [34, 76, 81].

Algorithm 3.11 (Second Degree Right-to-Left Binary Exponentiation).
This algorithm takes input v and n and outputs vn. It has invariant

0 ≤ j ≤ k, a =
j−1∑
i=0

ni2i, A = va, B = v2j , C = v2j−a .

1. [Initialization] Set j ← 0, a← 0, A← id, B ← v, and C ← v.
2. [Increase j] If nj = 0, set C ← α(B,C,A) else set a ← a + 2j and A ←

α(B,A,C). Set B ← δ(B), and increase j by one.
3. [Is j = k?] If j < k go back to step 2, otherwise terminate with output A.

Lemma 3.12. Given a k-bit exponent n, Algorithm 3.9 takes time (α+ δ)k.

As noted by Montgomery [128], the right-to-left algorithm allows a (not very
impressive) precomputation trade-off, since the values v2j can be computed in ad-
vance for j = 1, . . . , k − 1. Each precomputed point saves one application of δ.
Moreover, it can also be assumed that the B are fixed in this case, which gives us:

Lemma 3.13. Given a k-bit exponent n and precomputed values v2j for j =
1, . . . , k − 1, then (a slight adaptation of) Algorithm 3.11 takes time α̇1k.

A slight change in the argumentation shows that a twofold exponentiation can
be performed in time (δ + 2α)k using the right-to-left algorithm.

3.2.2. Perrin Versions. Adams and Shanks [1] give an algorithm for efficient com-
putation of the Perrin sequence (3) on page 11, based on the doubling formula
A2n = A2

n−2A−n. Their method is somewhat involved and seems to depend on the
property of the Perrin sequence that An+2 is missing in the recurrence (3), which
enables computation of the odd term An based on the even terms An+1 and An+3.
Since there is no easy way to derive A−n given An, the algorithm has to compute
the negative exponents explicitly as well. The overall costs for computation given a
k-bit exponent are 6k applications of δ and 4k relatively cheap applications of (3).



52 3. HIGHER ORDER ADDITION CHAINS

The left-to-right binary algorithm has been described for third order recurrences
by Gong and Harn [68], and by Lenstra and Verheul [107]. The right-to-left method
does not seem to appear in the literature, but its derivation is straightforward.

Gong and Harn [68] use as invariant a =
∑k−1
i=j ni2

i−j , where 0 ≤ j ≤ k. They
also keep track of A = ca, B = ca+1, and C = ca−1. Initialization with j ← k, a ←
0, A ← id, B ← c, and C ← ν(c) is easy. Decreasing j by one requires setting
a ← 2a + nj−1. If nj−1 = 0, this boils down to A ← δ(A), B ← α(B,A, c, ν(C)),
and C ← α(A,C, c, ν(B)), all at once; for nj−1 = 1 it means simultaneously setting
A ← α(B,A, c, ν(C)), B ← δ(B), and C ← δ(A). A single step therefore costs
α̇3 +2δ if the bit nj−1 is set and 2α̇3 +δ otherwise. On average, for a k-bit exponent,
this yields 3

2 (α̇3 + δ)k operations. Gong et al. [69] later give an improvement,
based on something called the ‘maximum weight signed-digit representation’. The
resulting algorithm can be shown to be an elaborate equivalent of Lenstra and
Verheul’s algorithm (Algorithm 3.14 below).

Lenstra and Verheul [107] use a slightly different invariant, thereby getting rid
of the asymmetry between the two steps, requiring α + 2δ regardless whether the
bit nj is set or not. This has two advantages. Most importantly we can expect
Lenstra and Verheul’s method to be faster than Gong and Harn’s, since the cost
for performing δ is generally lower than that for α. Secondly, the uniformity of the
steps will help thwarting timing and power analyses.

Algorithm 3.14 (Third Degree Left-to-Right Binary Exponentiation).
On input n and c this algorithm returns cn. Alternatively, it can output the triple
(c2bn2 c, c2bn2 c+1, c2bn2 c+2). It maintains as invariant

0 ≤ j < k, a = 1 +
k−1∑
i=j+1

ni2i−j , A = ca, B = ca+1, C = ca−1 .

1. [Initialization] Set j ← k− 1, a← 1 as well as A← c,B ← δ(A), and C ← id.
2. [Finished?] If j = 0 terminate with output C if n0 = 0 and with output A

otherwise.
3. [Decrease j] If nj = 0, set a ← 2a − 1 and replace the triple (A,B,C) by

(α(C,A, ν(c), ν(B)), δ(A), δ(C)); else (nj = 1) set a ← 2a+ 1 and simultane-
ously A← α(B,A, c, ν(C)), B ← δ(B), and C ← δ(A). Decrease j by one and
go back to the previous step.

Note that in principle one could benefit from the fact that some of the arguments
are fixed throughout the protocols, as in Algorithm 3.9. For XTR this does not seem
to be of any consequence and we are not aware of any other computation where it
would be. For efficiency reasons it might be advantageous to precompute ν(c) once
at the beginning.

As discussed earlier the use of negations (or inversions) seems inevitable when
using third degree recurrences.

Lemma 3.15 (Lenstra and Verheul). Given a k-bit exponent n, Algorithm 3.14
takes time (α̇3 + 2δ)k.



3.2. BINARY ALGORITHMS 53

It is also possible to use a right-to-left algorithm. It only returns cn and not its
neighbours. It has almost the same runtime as Algorithm 3.14. Like the right-to-
left Lucas algorithm, some modest speedup is possible by precomputing all values
c2j for 0 < j < k. The resulting runtime (after precomputation) is reduced to
(α̇1 + δ)k. The adaptation for twofold exponentiation requires (2α + 3δ)k for two
k-bit exponents.

Algorithm 3.16 (Third Degree Right-to-Left Binary Exponentiation).
On input a base c and a k-bit exponent n this algorithm returns cn. It uses as
invariant

0 ≤ j ≤ k, a =
j−1∑
i=0

ni2i, b = 2j , A = ca, B = cb, C = cb−a, D = cb−2a .

1. [Initialization] Set j ← 0, a← 0, b← 1, A← id, and B,C,D ← g.
2. [Finished?] If j = k terminate with output A.
3. [Read bit nj ] If nj = 0, simultaneously set C ← α(B,C,A, ν(D)) and D ←

δ(C); otherwise (nj = 1), set a← a+b and simultaneously A← α(B,A,C,D)
and D ← δ(ν(A)).

4. [Increase j] Set b← 2b and B ← δ(B). Increase j by one and go to step 2.

3.2.3. Double Exponentiation. For ordinary addition chains Shamir’s trick can be
used to speed up multi-exponentiation. For double exponentiation this technique
can also be exploited for Lucas chains, as shown by Schoenmakers [163]. To ease
the exposition an auxiliary variable a is maintained, which is not actually needed
when the algorithm is implemented. Therefore the discrete logarithms κ and λ need
not be known in practice.

Algorithm 3.17 (Schoenmakers’ Second Degree Double Exponentiation).
This algorithm takes input bases vκ, vλ, and auxiliary vκ−λ and k-bit exponents n
and m. It outputs vnκ+mλ. The following invariant is maintained:

0 ≤ j ≤ k, a =
k−1∑
i=j

(niκ+miλ)2i−j , A = va, B = va+κ, C = va+λ .

1. [Initialization] Set j ← k, a← 0, A← id, B ← vκ and C ← vλ.
2. [Decrease j] Make a distinction between four cases.

i. If nj−1 = 0 and mj−1 = 0, set a← 2a and the corresponding (A,B,C)←
(δ(A), α(B,A, vκ), α(C,A, vλ)).

ii. If nj−1 = 1 and mj−1 = 0, set a ← 2a + κ as well as (A,B,C) ←
(α(B,A, vκ), δ(B), α(B,C, vκ−λ)).

iii. If nj−1 = 0 and mj−1 = 1, set a ← 2a + λ as well as (A,B,C) ←
(α(C,A, vλ), α(B,C, vκ−λ), δ(C)).

iv. Finally, if both nj−1 = 1 and mj−1 = 1, set a ← 2a + κ + λ, and set
(A,B,C)← (α(B,C, vκ−λ), α(B,A, vκ), α(C,A, vλ)) followed by (B,C)←
(α(A, vκ, B), α(A, vλ, C)).



54 3. HIGHER ORDER ADDITION CHAINS

In all cases, decrease j by one.
3. [Finished?] If j > 0 go back to step 2, otherwise terminate with output A.

Unless both bits are set, a step will cost one point doubling and two fixed differ-
ence additions. If both bits are set a step will cost three fixed difference additions
and two mixed additions.

Lemma 3.18 (Schoenmakers). Given k-bit exponents n and m, Algorithm 3.17
will on average cost ( 1

2 α̇2 + 2 1
4 α̇3 + 3

4δ)k.

An improvement to the above is possible, due to Akishita [5]. By doing some
lookahead, the cost of the most expensive step is reduced to three fixed difference
additions. The resulting runtime is summarized in Lemma 3.19.

Lemma 3.19 (Akishita). Given input bases vκ, vλ, and auxiliary vκ−λ and k-bit
exponents n and m, computing vnκ+mλ will cost at most (2 1

4 α̇3 + 3
4δ)k.

3.2.4. Binary Perrin Double Exponentiation. Adapting either Schoenmakers’ or
Akishita’s algorithm to third degree is troublesome. Lenstra and Verheul [107,
Algorithm 2.4.8] give a matrix-based method for double exponentiation costing two
(binary) single exponentiations. The method only works for linear recurrences (this
follows from its derivation, which is based on the observation contained in (6) on
page 12). Below is an improved version that get rids of the matrices, thereby giving
a minor speedup and a cleaner, more elegant algorithm. The algorithm is based on
a closer examination of Algorithm 3.14. The recurrence does not have to be linear
anymore, but the method does require that the exponent can be reduced modulo
an odd prime, say q.

Let cκ−1, cκ, and cκ+1 be given (for possibly unknown κ). Consider running
Algorithm 3.14 on k-bit input n with a modified initialization step, namely setting
A ← c2κ+1, B ← c2κ+2, C ← c2κ, corresponding to a ← 2κ + 1. The initialization
a← 2κ+ 1 is used instead of a← κ to ensure that a is initialized to an odd value.
Computing the desired values for A,B, and C from the given c’s is straightforward.
The invariant then contains a = 1 +

∑k
i=j+1 ni2

i−j where we artificially set nk = κ

(and not bother that most likely κ 6∈ {0, 1}). From the new invariant it follows that
the algorithm will terminate with a = 2kκ+ n+ 1− n0.

This can be used for a double exponentiation routine. To compute cnκ+m,
recode the exponent as

nκ+m ≡ n

2k
(2kκ+

m2k

n
) (mod q),

compute c̃ = c
2kκ+m2k

n

using the tweaked single exponentiation routine just de-
scribed and then c̃n′ with an ordinary single exponentiation routine where n′ = n

2k
.

The result is the desired double exponentiation. The double exponentiation method
is described in detail below.

Algorithm 3.20 (Matrix-less Third Degree Double Exponentiation).
Let m and n be integers with 0 < m,n < q, and let c, cκ, cκ−1, and cκ+1 be given.
This algorithm computes cnκ+m provided that cq = id.



3.3. MONTGOMERY’S EUCLIDEAN ALGORITHMS 55

1. [Exponent transformation] Set k ← blg qc, n′ ← n/2k mod q and m′ ←
m/n′ mod q.

2. [Initialization] Set j ← k − 1, a ← 2κ + 1, A ← α(cκ+1, cκ, c, ν(cκ−1)), B ←
δ(cκ+1), and C ← δ(cκ).

3. [Finished with c2kκ+m′?] If j = 0 go to step 5 after setting c̃ ← C if m′ is
odd, and c̃← A otherwise.

4. [Read bit m′j ] If m′j = 0, set a ← 2a − 1 and replace the triple (A,B,C) by
(α(C,A, ν(c), ν(B)), δ(A), δ(C)); else (m′j = 1) set a← 2a+ 1 and simultane-
ously A← α(B,A, c, ν(C)), B ← δ(B), and C ← δ(A).

5. [Decrease j] Decrease j by one, go back to step 3.
6. [Compute c̃n′ ] Compute c̃n′ using any single exponentiation routine on input

c̃ and n′. Output the result.
The runtime of the above algorithm depends on the time taken by the single

exponentiation in the final step.

Lemma 3.21. Algorithm 3.20 takes about (4δ + 2α)blg qc assuming that in the
final step one of the binary algorithms (3.14 or 3.16) is invoked.

This is a small constant number of operations better than [107, Algorithm 2.4.8].
For realistic choices of q the speedup achieved using Algorithm 3.20 is thus barely
noticeable. Nevertheless, it is a significant result because the fact that the matrices
as required for [107, Algorithm 2.4.8] are no longer needed, facilitates implemen-
tation of XTR. A more substantial improvement over the double exponentiation
methods just described that neither requires matrices nor a prime group order, can
be achieved using a Euclidean algorithm.

3.3. Montgomery’s Euclidean Algorithms

Independent from the development of Euclidean methods for ordinary addition
chains, Montgomery [128] discovered related methods for Lucas chains as improve-
ment over the binary (and binary-ternary) method.

Algorithm 3.22 (Montgomery’s CFRC Algorithm).
On input a base v, an exponent n and an auxiliary ‘exponent’ m satisfying 0 < m <
n and gcd(n,m) = 1 this algorithm outputs vn. It keeps invariant

0 ≤ e, 0 < d, gcd(d, e) = 1, ad+ be = n, A = va, B = vb, C = va−b .

1. [Initialize] Set (d, e)← (n−m,m), (a, b)← (1, 1) and (A,B,C)← (v, v, id).
2. [Finished?] If e = 0, terminate with output A.
3. [Decrease (d, e)] If d > e set b ← a + b, d ← d − e, as well as (B,C) ←

(α(A,B,C), ν(B)); else (d ≤ e) set a ← a + b, e ← e − d and (A,C) ←
(α(A,B,C), A). Go back to the previous step.

Montgomery gives a modification to get rid of the computation of ν(B) in step 3
if d > e. The adaptation to double exponentiation also follows from Montgomery’s
work [128, 131]. The algorithm derives its name CFRC from continued fractions.



56 3. HIGHER ORDER ADDITION CHAINS

Interestingly, Montgomery’s CFRC algorithm is based on the subtractive Eu-
clidean algorithm and not the classical Euclidean algorithm, like Algorithm 2.24.
The subtractive Euclidean algorithm has a runtime of O((log n)2) operations if both
n and m < n are chosen at random [201]. This is much worse than the binary al-
gorithm’s O(log n). Before discussing Montgomery’s solution to this problem, let
us investigate what happens if we try to use the classical Euclidean algorithm for
Lucas chains.

Recall that in Algorithm 2.24 the pair (d, e) is always substituted with (e, d
mod e). Since d mod e = d−bde ce, this can be regarded as a linear transformation

S =
(

0 1
1 −bde c

)
,

so the substitution involving d and e can be rewritten as (d, e) ← (d, e)S. (Of
course if S is allowed to depend on d and e anything can be regarded as a linear
transformation as long as (d, e) 6= (0, 0).) Let S′ be the 2× 2 matrix describing the
(a, b)-substitution where (a, b)← (a, b)S′. In the present case

S′ =
(
bde c 1
1 0

)
.

For exponentiation in a group and writing A = (A,B) this leads to A← AS′ nicely
corresponding to (A,B) ← (Ab

d
e cB,A). Two problems emerge when dealing with

Lucas chains.
The “quotient” C = va−b has to be computed as well. The auxiliary value,

a− b, will equal the first minus the second column of S′. We can make this specific
by writing

S′ =
(
bde c 1 bde c − 1
1 0 1

)
.

The second problem is computing vab de c+b
and vab de c+b−a

. Using a single ex-
ponentiation routine to determine vab de c

is of no use, since the result cannot be
combined with vb without knowing vab de c−b. The subtractive algorithm exploits the
fact that (

1 0
1 1

)k
=
(

1 0
k 1

)
.

If k = bde c is large, this is too expensive. A much better way to implement the
classical Euclidean step is based on an adaptation of Algorithm 3.11. For small
values the subtractive method is faster.

Algorithm 3.23 (Classical Euclidean Step).
This algorithm takes as input bases vκ, vλ, auxiliary base vκ−λ and a k-bit exponent
n. The algorithm outputs vκn+λ and vκ(n−1)+λ. It has invariant

0 ≤ j ≤ k, b = 2jκ, a1 = λ+
j−1∑
i=0

ni2iκ, a2 = λ+
j−1∑
i=0

(n− 1)i2iκ,

A1 = va1 , B = vb, C1 = vb−a1 , A2 = va2 , C2 = vb−a2 .



3.3. MONTGOMERY’S EUCLIDEAN ALGORITHMS 57

1. [Easy cases] If n < 11 use the subtractive Euclidean method.
2. [Initialization] Set j ← 0, a1, a2 ← λ,A1, A2 ← vλ, B ← vκ and C1, C2 ←

vκ−λ.
3. [Read bit nj ] If nj = 0, set C1 ← α(B,C1, A1) else set a1 ← a1 + 2j and

A1 ← α(B,A1, C1).
4. [Read bit (n−1)j ] If (n−1)j = 0, set C2 ← α(B,C2, A2) else set a2 ← a2 +2j

and A2 ← α(B,A2, C2).
5. [Square] (If j < k − 1) Set b← 2b, B ← δ(B), and increase j by one.
6. [Finished?] If j < k go back to step 3, otherwise terminate with output A1

and A2.

3.3.1. Double Exponentiation. We now return to Montgomery’s solution. He ob-
tains short Lucas chains by considering other Euclidean algorithms such as the
binary Euclidean algorithm as well. As already remarked, the substitution (d, e)←
(e, d mod e) can be regarded as a linear transformation S. If we consider other
substitutions for (d, e) this means other transformations S, so we can still write
(d, e)← (d, e)S and (a, b)← (a, b)S′ for some related transformation S′. In general,
the transformation S is given by

(8) S =
(
s11 s12

s21 s22

)
.

To uphold the invariant, it is required that the inner product ((d, e)S, (a, b)S′) is
equal to the old inner product ad + be. Although the choice of S will be based
on d and e, we will assume that a large number of pairs (d, e) lead to the same
transformation S. The relation between the old and the new inner product should
therefore hold for all a, b, d, e, implying that the adjoint (or transpose) of S′ equals
the inverse of S. In other words, we can write

(9) S′ = S−T =
1

s11s22 − s12s21

(
s22 −s21

−s12 s11

)
.

Example 3.24. Consider the transformation (d, e) ← ((d − e)/2, e) from the
binary Euclidean algorithm. The corresponding matrices S and S′ are:

(10) S =
(

1
2 0
− 1

2 1

)
, and S′ =

(
2 1 1
0 1 −1

)
,

so we see that (a, b)← (2a, a+ b). This step will therefore cost δ for computing the
new A and α for computing the new B. Since C will be the same (corresponding to
a− b, the third column in S′), the total costs for this step are α+ δ.

The matrix S in the example contains rational entries. This is allowed, but the
entries in S′ must be integer, otherwise the substitutions for A = va etc. cannot be
performed.

We call a matrix S ∈ Q2×2 admissible for a pair of positive integers (d, e) if
S−1 ∈ Z2×2, (d, e)S ∈ Z2

>0 and the greatest common divisor of the values obtained
by (d, e)S equals gcd(d, e).



58 3. HIGHER ORDER ADDITION CHAINS

Algorithm 3.25 (Montgomery’s Euclidean Double Exponentiation).
Given vκ, vλ, vκ−λ and integers n and m, this algorithm computes u = gcd(n,m)
and v(nκ+mλ)/u. Its invariant is

d > 0, e ≥ 0, ad+ be = nκ+mλ, gcd(d, e) = gcd(n,m),
A = va, B = vb, C = va−b .

1. [Initialize] Set (d, e)← (n,m). Moreover, set (a, b)← (κ, λ) and (A,B,C)←
(vκ, vλ, vκ−λ).

2. [Finished?] If e = 0, terminate with output d and A.
3. [Decrease (d, e)] Pick an admissible matrix S for (d, e) (e.g., based on the

first applicable rule in Table 3.1). Set (d, e)← (d, e)S and (a, b)← (a, b)S−T .
Update A,B, and C accordingly, respecting the invariant. Go back to step 2.

The runtime strongly depends on the particular choices of S. As it is, one
cannot even guarantee the algorithm to finish at all (for instance the identity-matrix
is admissible). Table 3.1 gives the set of rules proposed by Montgomery. (The
shorthand ≡n is used for congruency modulo n.) The first applicable rule (from
the top) will be picked by the algorithm. The first rule, M0, is simply a swap to
ensure d > e for the remaining steps. The rules M1, M2, M6, M7, and M8 are
collectively known as the ternary rules and the rules M4, M5, and M9 as the binary
rules. The remaining rule, M3, is the subtractive rule. If the subtractive rule is
called with e < d < 2e we speak of a Fibonacci step. If we refer to Algorithm 3.25
then Table 3.1 is used unless specified otherwise.

Table 3.1. Transformations proposed by Montgomery [128]

No. Type Condition Substitution (d, e) Costs
M0 (Swapping) d < e (e, d) ν
M1 Ternary e < d ≤ 5

4e, d ≡3 −e ((2d− e)/3, (2e− d)/3) 3α+ δ
M2 Ternary e < d ≤ 5

4e, d ≡6 e ((d− e)/2, e) α+ δ
M3 Subtractive d ≤ 4e (d− e, e) α
M4 Binary d ≡2 e ((d− e)/2, e) α+ δ
M5 Binary d ≡2 0 (d/2, e) α+ δ
M6 Ternary d ≡3 0 (d/3− e, e) 3α+ δ
M7 Ternary d ≡3 −e ((d− 2e)/3, e) 3α+ δ
M8 Ternary d ≡3 e ((d− e)/3, e) 3α+ δ
M9 Binary e ≡2 0 (d, e/2) α+ δ

Montgomery mentions several variations. A constant different from 4 can be
used in M3. Another option is discarding the ternary rules (henceforth we will refer
to the ternary steps as optional steps as well). For these steps it is convenient to keep
track of the residue classes of d and e modulo 3. These are easily updated if any of
the other steps applies, but require a division by 3 if either one of the optional steps
is carried out. Although the resulting Lucas chains are on average shorter including



3.3. MONTGOMERY’S EUCLIDEAN ALGORITHMS 59

the ternary steps, it depends on the implementation and the platform whether or
not an overall saving is obtained by including them. For most recurrences and in
most software implementations it will most likely be worthwhile.

If only the subtractive rule is allowed, without the restriction d ≤ 4e, a double-
exponentiation version of Montgomery’s CFRC-algorithm emerges.

3.3.2. Twofold Exponentiation. Bleichenbacher [19] gives a recursive adaptation
of Montgomery’s algorithm that can be used for twofold exponentiation. On input
a base v and positive exponents n and m with n > m, the algorithm returns vn, vm,
and vn−m. Table 3.2 lists the set of rules derived by Bleichenbacher (the corrected
version). Since Bleichenbacher was mainly interested in finding upper bounds on
the length of strong addition chains for integers of which he could determine the
exact value by a search algorithm, he did not allow step B2 and he did not optimize
for large n and m. For convenience, we use d and e in this table instead of n and m
(as they occur in the algorithm).

Algorithm 3.26 (Bleichenbacher’s Twofold Adaptation).
Given v and positive integers n and m, n > m, this algorithm computes u =
gcd(n,m) and returns u and the triple (vn/u, vm/u, v(n−m)/u).
1. [Finished?] If m = 0, terminate with output n and (v, id, v).
2. [Decrease (n,m)] Pick an admissible transformation S for (n,m), e.g., based

on Table 3.2. Set (d, e) ← (n,m)S and call the algorithm recursively on
input base d and exponents d and e to obtain corresponding u and (A,B,C).
Reconstruct to the original n and m (for a group this would require (A,B)←
(A,B)S

−1
and C ← A/B) and terminate with output u and (A,B,C).

Table 3.2. Transformations proposed by Bleichenbacher [19]
No. Condition Substitution(d, e) Costs
B0 (d− e) > e (d, d− e) α
B1 4(d− e) ≥ e (e, d− e) α
B2 d ≡2 0 (d/2, d− e) α+ δ
B3 e ≡2 0 (d− e, e/2) α+ δ
B4 d ≡2 e ((d+ e)/2, e) α+ δ

Twofold exponentiation can alternatively be described by working out the re-
cursion. This requires going through the algorithm one time only keeping track
of d and e and the substitutions performed. Once d = e, work your way back up
to d = n and e = m by performing the inverse of each step, but also keeping as
invariant A = vd, B = ve, and C = vd−e.

Algorithm 3.27 (Iterative Euclidean Twofold Exponentiation).
Given v and positive integers n and m, n > m, this algorithm computes u =
gcd(n,m) and returns u and the triple (vn/u, vm/u, v(n−m)/u). It keeps invariant

0 ≤ e < d, gcd(d, e) = gcd(n,m) ,



60 3. HIGHER ORDER ADDITION CHAINS

Table 3.3. Transformations proposed by Tsuruoka [187]

No. Condition Substitution(d, e)
R0a d < e (e, d)
R0b e < d− e (d, d− e)
R1a e ≤ 1.09(d− e), d ≡2 0 (d/2, e− d/2)
R1b e ≥ 2.92(d− e), d ≡2 0 (d/2, e− d/2)
R2 e ≥ 4.7(d− e), d ≡3 −e ((2d− e)/3, (2e− d)/3)
R3 e ≥ 3.9(d− e), e ≡3 0, 4e > 3d (e/3, 4e/3− d)
R4 e ≥ 3.9(d− e), e ≡2 0 (d− e/2, e/2)
R5 e ≥ 5.8(d− e), d ≡3 0, d > 3(d− e) (d/3, e− 2d/3)
R6 e ≥ 8(d− e), d ≡6 e ((d+ e)/2, e)
R7 Default (e, d− e)

and during the second half (steps 4 and 5) also

A = vd, B = ve, C = vd−e .

1. [Initialize] Set (d, e)← (n,m) and i = 0.
2. [Halfway?] (If e = 0, then both equal gcd(n,m).) If e = 0, set u← d, followed

by d← 1 and A← v,B ← id, and C ← v. Go to step 4.
3. [Decrease (d, e)] Given the current (d, e) pick a transformation Si, e.g., by

using Table 3.2. Set (d, e)← (d, e)Si and increase i by one. Go back to 2.
4. [Finished?] If i = 0 terminate with output u and (A,B,C).
5. [Loopback] Set (d, e)← (d, e)S−1

i , update A,B, and C accordingly, decrease
i by one and go back step 4.

Reversing the algorithm this way is similar to the notion of duality for addition
chains [92], which also boils down to matrix transposition. Therefore, we call the
steps S and ST duals of each other.

Example 3.28. The dual of the transformation in the previous example, and
more importantly, the corresponding substitution matrix, are:

(11) ST =
(

1
2 − 1

2
0 1

)
, and S−1 =

(
2 0 2
1 1 0

)
,

It follows that the dual costs for S are 2α+ δ since updating C requires a doubling,
updating A costs two calls to α and B is unaffected. This is more than the costs
for the ordinary step.

The costs for a step and its dual are not always the same which partially ex-
plains the difference in steps between for instance Montgomery and Bleichenbacher.
Tsuruoka [187] gives a rather involved set of transformations for Algorithm 3.26
with the purpose of optimization. Table 3.3 lists these rules and although the re-
sulting chains are indeed on average slightly shorter, it will take more time to check
which rule applies.



3.3. MONTGOMERY’S EUCLIDEAN ALGORITHMS 61

Since the rules M2, M3, M6, and M7 do not necessarily leave d > e invariant,
step M0 involving swapping and negations might be required for the double expo-
nentiation algorithm. In the twofold algorithms negations are never required, which
is an advantage.

3.3.3. Timings. Based on extensive simulations, the expected practical behaviour
of Montgomery’s Euclidean algorithms is well understood, and the practical merits
of the method are beyond doubt. However, a satisfactory theoretical analysis of
Algorithms 3.25 and 3.26 is still lacking. The rules given by Montgomery and
Bleichenbacher are reminiscent of the binary and subtractive Euclidean greatest
common divisor algorithms. Iterations of that sort typically exhibit an unpredictable
behaviour with a wide gap between worst and average case performance; see for
instance [8, 90, 190] and the analysis attempts and open problems in [128].

This is further illustrated in Section 4.6.3, where a third degree version (Algo-
rithm 3.37) is extensively tested for the specific case of XTR. Table 4.1 on page 84
shows that the average runtime is linear in the length of the exponent and that the
(standard) deviation from this average is fairly small. Figure 4.1 on page 85 depicts
the average runtime when the constant similar to 4 in rule M3 (Table 3.1) is changed.
The remarkable shape of the curves —both with at least four local minima— is a
clear indication that the exact behaviour of (in that case) Algorithm 3.37 will be
hard to analyse.

Conjecture 3.29. On input two random positive k-bit integers, Algorithm 3.25
takes on average (1.49α+ 0.33δ)k for a double exponentiation.

This compares favourably with Akishita’s runtime. The same is true for a
twofold exponentiation when compared to Algorithm 3.11. The twofold exponenti-
ation is a bit slower than the double exponentiation because it is not optimized as
much.

Conjecture 3.30. On input two random positive k-bit integers, Algorithm 3.26
takes on average (1.5α+ 0.5δ)k for a twofold exponentiation.

3.3.4. Applications to Single Exponentiation.
With Precomputation. Single exponentiation can be sped up by precomputing

v2bk/2c , effectively transforming a k-bit single exponentiation into a k/2-bit double
exponentiation that can be performed using Montgomery’s double exponentiation
algorithm. A minor detail is that v2bk/2c−1 is also required (corresponding to the
difference between 2bk/2c and 1). Fortunately, Algorithm 3.9 returns both. In the
algorithm below we assume that the order of the recurrence is q.

Algorithm 3.31 (Single Exponentiation with Precomputation).
Given an exponent n, a base v and precomputed values vt and vt−1 for known t,
this algorithm computes vn.
1. [Split the exponent] Compute non-negative integers n1 and n2 such that n =

n1 +n2t mod q and n1 and n2 are at most about
√
q. If lg(t mod q) ≈ (lg q)/2

then a long division suffices to compute the desired n1 and n2. Otherwise, use



62 3. HIGHER ORDER ADDITION CHAINS

a lattice-based method as described in Section 2.3.5. With the proper choice
of t this results in n1 and n2 that are small enough.

2. [Perform a double exponentiation] Use Algorithm 3.25 based on exponents n1

and n2 and bases v, vt and vt−1 in conjunction with Algorithm 3.33 to take
care of gcd(n1, n2) to compute vn1+n2t = vn. Terminate with output vn.

Corollary 3.32. On input a base v and precomputed values vb k2 c−1 and vb k2 c,
computation of vn takes on average (0.75α + 0.17δ)k for a k-bit integer n using
Algorithm 3.31.

Variations with other values instead of 2bk/2c are possible. The awkwardness
of (Lucas) multi-exponentiation in general makes further splitting of the exponent
inefficient (Section 2.3.5). For Algorithm 3.11 precomputation of all values v2j for
j = 1, . . . , k − 1 leads to a speedup that requires many more precomputed values
and can be expected to be slower unless α̇3 is considerably cheaper than α.

Without Precomputation. Although the algorithm in [128] actually describes
a double exponentiation, it was only used there for single exponentiations by com-
puting vn as vκ(n−r)+λr with κ = λ = 1 and r arbitrary. (A small variation could
use vn = vκn+λr with κ = 1, λ = 0 and r arbitrary.) The choice of r will then
determine the speed of the single exponentiation. Montgomery proposed setting
(n − r)/r ≈ φ, where φ = 1+

√
5

2 is the golden ratio. This will result in logφ
√
n

Fibonacci steps (type M3) costing one ordinary addition each, followed by what
looks like a random double exponentiation with exponents of magnitude about

√
n.

Montgomery also proposed to exploit the factorization of n —if it is known— but
this does not seem to provide much additional speedup.

Algorithm 3.33 (Montgomery’s PRAC Algorithm).
Given a base v and an exponent n, this algorithm computes vn.

1. [Make d odd] Let f2 be the highest power of 2 dividing n. Set d ← (n/2f2)
and A← δf2(v).

2. [Make d 6= 0 (mod 3)] Let f3 be the highest power of 3 dividing n. Set
d← d/3f3 and A← τf3(A).

3. [d = 1?] If d = 1, the algorithm terminates with output A.
4. [Initialize new gcd calculation] Let p > 1 be a divisor of d, not necessarily

prime (e.g., p = d). Set r ← b pφc (or a better value p/2 < r < p if known) and
set (d, e)← (rd/p, d− rd/p).

5. [Compute “Ap”] Run Algorithm 3.25 on input (A,A, id) and (d, e). Let the
output be u and Ã. Set d← u and A← Ã. Go back to step 3.

The analogue for twofold exponentiation is also known: computing both vn and
vr is sufficient for computing vn. Moreover, it is also necessary for at least some r.
This requires changing the final step into:

5’. [Compute “Ap”] Run Algorithm 3.26 on input base A and exponents d and
e. Let the output be u and (Ã, B̃, C̃). Set d ← u and A ← Ã. Go back to
step 3.



3.3. MONTGOMERY’S EUCLIDEAN ALGORITHMS 63

To analyse the effects of using r = b pφc we will assume that n is not divisible
by 6 and that in step 4 the trivial divisor p = n will be chosen. Moreover, we will
ignore the possibility that steps M1 or M2 are used (the proof of the proposition
can be extended to this case as well, since 5

4 < φ).

Proposition 3.34. In the call to Algorithm 3.25 in Step 5 of Algorithm 3.33,
the values of d and e in Step 3 of Algorithm 3.25 are reduced to approximately half
their original sizes using a sequence of approximately logφ

√
n ≈ 0.72 lgn iterations

using just Fibonacci steps.

Proof: Let m = round(logφ n). Asymptotically for m→∞ the values d and e in
Algorithm 3.33 satisfy d/e = φ+ ε1 with |ε1| = O(2−m). Furthermore, for m→∞,
the m-th Fibonacci number Fm satisfies Fm

Fm−1
= φ + ε2 with |ε2| = O(2−m). It

follows that e = Fm−1
Fm

d+ ε3, where |ε3| is bounded by a small positive constant.
Define (d0, e0) = (d, e) and (di, ei) = (ei−1, di−1 − ei−1) for i > 0. We claim

that

(12) di =
Fm−i
Fm

d− (−1)iFiε3

for 0 ≤ i < m. For i = 0 it follows from d0 = d = Fm−0
Fm

d− (−1)0F0ε3 and for i = 1
it follows from d1 = e0 = e = Fm−1

Fm
d + ε3. We proceed by induction on i. Suppose

that the statement is true for di and di−1. From di+1 = ei = di−1−ei−1 = di−1−di
and the induction hypothesis we obtain that

di+1 =
Fm−(i−1)

Fm
d− (−1)i−1Fi−1ε3 − (

Fm−i
Fm

d− (−1)iFiε3)

=
Fm+1−i − Fm−i

Fm
d− (−1)i+1(Fi + Fi−1)ε3

=
Fm−(i+1)

Fm
d− (−1)i+1Fi+1ε3 ,

proving our claim. Algorithm 3.25 as called from Algorithm 3.33 will perform Fi-
bonacci steps as long as ei < di < 2ei. But as soon as di > 2ei this nice behaviour
will be lost. From ei = di+1 and (12) it follows that di > 2ei is equivalent to

Fm−i−3

Fm
d < (−1)i−1Fi+3ε3.

Because Fm/d and |ε3| are both bounded by small positive constants, the first
time this condition will hold is when Fm−i−3 and Fi+3 are of the same order of
magnitude, i.e., m− i− 3 ≈ i+ 3. Thus, the Fibonacci behaviour is lost after about
m/2 = logφ

√
n iterations, at which point di ≈

√
n (this follows from (12)). Q.E.D.

If insufficient precision is used in the computation of r in Step 4 of Algo-
rithm 3.33, then ε3 in the proof of Proposition 3.34 is no longer bounded by a
small constant. It follows that di > 2ei already holds for a smaller value of i, imply-
ing that the Fibonacci behaviour is lost earlier. A precise analysis of the expected



64 3. HIGHER ORDER ADDITION CHAINS

performance degradation as a function of the lack of precision is straightforward. In
practice this effect is very noticeable.

A counting argument shows that random k-bit single exponentiations also lead
to random k

2 -bit double exponentiations. Given two k
2 -bit values d and e, there are

at most two k-bit values in the Fibonacci sequence with d and e as initial values.
Since there are roughly as many k-bit numbers as pairs of k2 -bit numbers, the double
exponentiation resulting after the Fibonacci steps will be random.

Putting the pieces together, we obtain the following corollary.

Corollary 3.35. Given a base v and a random k-bit exponent n, computing
vn using Algorithm 3.33 costs on average (1.47α+0.17δ)k if Algorithm 3.25 is called
in step 5 (cf. Conjecture 3.29) and on average (1.47α + 0.25δ)k if Algorithm 3.26
is called instead (cf. Conjecture 3.30).

3.3.5. Extension to Perrin Chains. Extending Algorithm 3.22 to third degree re-
currences is relatively straightforward by introducing D = ca−2b. The only difficulty
arises in step 3 if d > e. Setting b← a+ b would require D ← c−(a+2b) which would
require an additional application of α. If a and b are swapped the problem is re-
solved.

Algorithm 3.36 (Third Degree Adaptation of CFRC).
On input a base c, an exponent n and an auxiliary ‘exponent’m satisfying 0 < m < n
and gcd(n,m) = 1 this algorithm outputs cn. It keeps invariant

0 ≤ e, 0 ≤ d, gcd(d, e) = 1, ad+ be = n,

A = ca, B = cb, C = ca−b, D = ca−2b .

1. [Initialize] Set (d, e)← (n−m,m) and (A,B,C)← (v, v, id).
2. [Finished?] If e = 0, terminate with output A. If d = 0, terminate with

output B.
3. [Decrease (d, e)] If d > e set (a, b) ← (a + b, a), (d, e) ← (e, d − e), and

(A,B,C,D)← (α(A,B,C,D), A,B, ν(C)); else (d ≤ e) set a← a+b, e← e−d
and (A,C,D)← (α(A,B,C,D), A, C). Go back to the previous step.

The algorithm above is just as fast, or rather just as slow, as Montgomery’s
CFRC algorithm; improvements are needed. One option is implementing the clas-
sical Euclidean step based on Algorithm 3.16. We will leave this to the reader. The
method below is an adaptation of Montgomery’s Algorithm 3.25 to the present case
of third degree sequences.

Algorithm 3.37 (Third Degree Euclidean Double Exponentiation).
Given bases cκ, cλ, cκ−λ, and cκ−2λ and exponents n,m, this algorithm outputs
u = gcd(n,m) and c(nκ+mλ)/u. It uses invariant

d ≥ 0, e ≥ 0, ad+ be = nκ+mλ, gcd(d, e) = gcd(n,m),
A = ca, B = cb, C = ca−b, D = ca−2b .

(a and b are carried along for expository purposes only).



3.3. MONTGOMERY’S EUCLIDEAN ALGORITHMS 65

1. [Initialization] Let a = κ, b = λ, d = n, e = m, A = cκ, B = cλ, C = cκ−λ,
D = cκ−2λ

2. [Both even?] Set f2 ← 0. As long as d and e are both even, replace (d, e) by
(d/2, e/2) and f2 by f2 + 1.

3. [Both triple?] Set f3 ← 0. As long as d and e are both divisible by 3, replace
(d, e) by (d/3, e/3) and f3 by f3 + 1.

4. [Finished?] If d = 0 terminate with output e2f23f3 and B. If e = 0 terminate
with output d2f23f3 and A.

5. [Decrease (d, e)] Pick an admissible matrix S for (d, e) (e.g., based on the
first applicable rule in Table 3.4). Set (d, e)← (d, e)S and (a, b)← (a, b)S−T .
Update A,B,C and D accordingly, respecting the invariant. Go back to the
previous step.

Table 3.4. Transformations for Algorithm 3.37
No. Condition Substitution (d, e) Costs
Substitutions if d ≥ e
X1 d ≤ 4e (e, d− e) α
X2 d ≡2 0 (d/2, e) α+ 2δ
X3 d ≡2 e ((d− e)/2, e) α+ 2δ
X4 d ≡3 e ((d− e)/3, e) 2α+ τ
X5 e ≡2 0 (e/2, d) 2δ

Substitutions if e ≥ d
X6 e ≤ 4d (d, e− d) α
X7 e ≡2 0 (e/2, d) 2δ
X8 d ≡2 1 ((e− d)/2, d) α+ 2δ
X9 e ≡3 0 (e/3, d) 2α+ τ

X10 e ≡3 d ((e− d)/3, d) 2α+ τ
X11 d ≡2 0 (d/2, e) α+ 2δ

The asymmetry between the case d ≤ e and d ≥ e is caused by the asymmetry
between a and b, i.e., ca−2b is available but cb−2a is not. As a consequence, the
case ‘d ≡ 0 mod 3’ is slower than the case ‘e ≡ 0 mod 3’ (rule X9), and its inclusion
would slow down Algorithm 3.37.

Similarly to the Lucas case, we consider the ternary rules X4, X9, and X10
optional. Leaving them out slows down the algorithm a little bit.

Conjecture 3.38. On input two random positive k-bit integers, Algorithm 3.37
takes on average (1.38α+ 0.80δ + 0.05τ)k to perform a double exponentiation.

Strictly speaking, steps 2 and 3 are not necessary, since this part of the greatest
common divisor will come out any way. However, in practice the greatest common
divisor has to be dealt with as well; in this case it helps to already know f2 and f3.
Another small advantage is the mutual exclusion of for instance X2, X4, and X5,



66 3. HIGHER ORDER ADDITION CHAINS

which allows to play a little with their order in the table (this only affects the time
the control code takes).

Twofold exponentiation is also possible. Different substitutions are needed. Ta-
ble 3.5 gives an example but some room for optimization should remain, considering
the algorithm is slower than its double exponentiation counterpart.

Algorithm 3.39 (Third Degree Euclidean Twofold Exponentiation).
Given c and positive integers n and m, n > m, this algorithm computes u =
gcd(n,m) and returns u and the ordered tuple (cn/u, cm/u, c(n−m)/u, c(n−2m)/u). It
keeps invariant

0 ≤ e < d, 2f23f3 gcd(d, e) = gcd(n,m) ,
and during the second half (steps 6 and 7) also

A = cd, B = ce, C = cd−e, D = cd−2e .

1. [Initialize] Set (d, e)← (n,m) and i = 0.
2. [Both even?] Set f2 ← 0. As long as d and e are both even, replace (d, e) by

(d/2, e/2) and f2 by f2 + 1.
3. [Both triple?] Set f3 ← 0. As long as d and e are both divisible by 3, replace

(d, e) by
4. [Halfway?] If e = 0, set u ← 2f23f3d followed by d ← 0 and A ← c,B ←

id, , C ← c, and D ← c. Go to Step 6.
5. [Decrease (d, e)] Given the current (d, e) pick a transformation Si, e.g., by

using Table 3.5. Set (d, e) ← (d, e)Si and increase i by one. Go back to the
previous step.

6. [Finished?] If i = 0 terminate with output u and (A,B,C,D).
7. [Loopback] Set (d, e)← (d, e)S−1

i , update A,B,C andD accordingly, decrease
i by one and go back to the previous step.

Table 3.5. Transformations for Algorithm 3.39
No. Condition Substitution (d, e) Costs
Y0 e ≤ d < 2e (e, d− e) α
Y1 d ≤ 4e (d− e, e) α
Y2 d ≡2 0 (d/2, e) α+ 2δ
Y3 d ≡2 e ((d− e)/2, e) 2α+ 2δ
Y4 e ≡2 0 (d− e, e/2) α+ 2δ

Conjecture 3.40. On input two random positive k-bit integers, Algorithm 3.39
takes on average (1.7α+ 1.1δ)k to perform a twofold exponentiation.

Single exponentiation without precomputation follows the same idea as that for
Lucas chains. In fact, Algorithm 3.33 can be used with step 5 replaced either by
5’. [Compute “Ap”] Run Algorithm 3.37 on input (A,A, id, ν(A)) and d and e.

Let the output be u and Ã. Set d← u and A← Ã. Go back to Step 3.



3.4. THEORETICAL REMARKS 67

or by
5’. [Compute “Ap”] Run Algorithm 3.39 on input A and exponents d and e. Let

the output be u and (Ã, B̃, C̃, D̃). Set d← u and A← Ã. Go back to Step 3.
Proposition 3.34 remains valid.

Corollary 3.41. Given a base c and an exponent n, computing cn using Algo-
rithm 3.33 costs on average 1.41α+0.40δ+0.03τ per exponent bit if Algorithm 3.37
is called in step 5 (cf. Conjecture 3.38).

3.4. Theoretical Remarks

There are not a lot of theoretical results on strong addition chains, let alone
Lucas chains, Perrin chains, vectorial Lucas chains or even vectorial Perrin chains.
The binary algorithms and common sense give lg n ≤ L2(n) ≤ `L(n) ≤ 2 lgn and
lg n ≤ L2(n) ≤ L3(n) ≤ 3 lgn.

Montgomery proves that `L(mn) ≤ `L(m)`L(n) using the same kind of compo-
sition that is also known for addition chains. He also proves that if a strong addition
chain 〈c0, . . . , cl〉 is ordered and doubling step ci+1 = 2ci occurs, then ci divides all
subsequent cj with j > i. Therefore, unless n is highly composite, a chain will not
contain many doubling steps. A chain with only the initial doubling step c2 = 2c1
is called a simple chain by Bleichenbacher [19]. Even though Lucas chains are not
necessarily increasing, they can be sufficiently ordered to allow a similar argument.
Simply say that if i < j, then either ai < aj or it was not possible to put aj in the
chain at time i. The same decomposition result now holds.

Since strong addition chains are addition chains, a known lower bound on ad-
dition chains without doubling steps applies to simple chains. Montgomery gave a
slightly stronger interpretation for simple chains that seems fairly tight (Bleichen-
bacher [19], who computed `L(n) for n < 500000). The most efficient step in a
simple chain after the initial doubling is a Fibonacci step which is the basis for
the lower bound. Kutz [97] shows that the lower bound holds for most integers
(because most integers are not highly composite). Going through the proofs, it is
clear that having subtractions at ones disposal does not shorten the chain, hence
the same lower bound applies. The same lower bound also applies to Perrin chains.
Moreover, in the general case it will be hard to prove a better bound, since it is
tight for the primes in the Fibonacci sequence. Nevertheless, the Perrin chains gen-
erated by the algorithms in this chapter are significantly longer than corresponding
Lucas chains. Note that the CFRC algorithm gives the same length for both Lucas
and Perrin chain. This is an encouraging thought if only we knew how to pick the
optimal m for a given n. (Under some conjectures Montgomery proves that this
would give chains of length ≈ 1.77 lgn, which is slightly better than the heuristics
of Algorithm 3.37 when applied to single exponentiation.)

Although Montgomery’s PRAC algorithm performs splendidly, the binary algo-
rithm still seems to give the best average case asymptotic upper bound. It is not
hard to find integers n that perform worse for the PRAC algorithm than for the
binary algorithm.



68 3. HIGHER ORDER ADDITION CHAINS

Montgomery posed the question whether there exists some number n for which
the shortest Lucas chain is shorter than the shortest strong addition chain. We
conjecture this not to be the case.

Conjecture 3.42. The shortest strong addition chain for a positive integer n
is equally long as the shortest Lucas chain for that integer.

Meaningful lower bounds for vectorial Lucas chains or even Lucas sequences are
not known. These would have some implications on duality as well, although duality
does not hold the same way as it did for addition chains. A nice counterexample are
the chains for the vectors

(
n
1

)
and

(
n
n−1

)
—these are almost equally long— and the

sequences (1, n) and (n − 1, n). The first sequence can be computed in as little as
lg n doublings if n is a power of 2, whereas for the second sequence and the vectors
a binary algorithm seems optimal giving a length of about 2 lg n.



4

Finite Field Extensions

Recall that Gx, for a positive integer x, denotes a cyclic (sub)group of order x.
In this chapter we consider subgroups Gq of F∗pd with q a prime dividing the d-th
cyclotomic polynomial Φd evaluated at p with a focus on the groups Gp+1 ⊂ F∗p2 and
Gp2−p+1 ⊂ F∗p6 . For both subgroups it has been proposed to use trace maps to speed
up exponentiation, resulting in respectively LUC [175] and XTR [107]. We show
that computation in the subgroups can also be sped up without trace. Moreover,
we speed up XTR considerably and show that XTR works for p ≡ 3 mod 4 as
well without significant loss of efficiency compared to p ≡ 2 mod 3 (the original
proposal). The relevance of the cyclotomic subgroups for cryptography is explained
in Section 1.2.2.

4.1. Introduction

Computation in finite fields is a well studied problem. However, research tends
to emphasize bilinear complexity [102], asymptotic complexity [196], or binary
characteristic [2]. The case of large prime characteristic with small extension de-
gree has been studied less extensively, but Cohen and Lenstra [47] give efficient
implementations of squaring and multiplication for fields Fpd for even d ≤ 10 and
restricted congruency classes of p. Moreover, usually the entire field is discussed.
Lenstra [104] points out that, given a subgroup Gq of F∗pd , unless q divides Φd(p),
the group Gq can be embedded in a true subfield of F∗pd , thereby making the discrete
logarithm computation substantially easier given current understanding of the DLP.
However, efficient computation in the cyclotomic subgroups is not addressed in full
detail.

Currently the fastest exponentiation methods in the subgroups Gp2−p+1 and
Gp+1 use trace maps, resulting in respectively LUC [175] and XTR [107]. (We will
use the notation Tr1 for the trace from Fp2 to Fp and Tr2 for the trace from Fp6 to
Fp2 .) LUC and XTR have two main advantages compared to ordinary representation
of elements of Gq:

• It is shorter: for LUC, Tr1(g) ∈ Fp takes only half the space of representing
g ∈ Fp2 traditionally; for XTR Tr2(g) ∈ Fp2 , whereas representing an
element of Gq requires in general an element of Fp6 , i.e., three times more
bits.

69



70 4. FINITE FIELD EXTENSIONS

• It allows faster arithmetic, because given Tr(g) and n the value Tr(gn) can
be computed substantially faster than an exponentiation in the entire field
(Fp2 resp. Fp6).

Application of LUC and XTR is advantageous in protocols where the subgroup
operations are restricted to additions, and single or double exponentiations. But
for more involved protocols that also require ordinary multiplications of subgroup
elements or triple (or larger) exponentiations, they may lead to cumbersome manip-
ulations that outweigh the computational advantages. As a consequence, using trace
based representations in more complicated protocols may be inconvenient (unless of
course the small representation size is crucial).

For that reason, we consider in this chapter how exponentiation speedups in
Gp+1 and Gp2−p+1 can be achieved in such a way that other operations are not
affected, i.e., while avoiding trace based compression methods.

For quadratic extensions we show that for both p ≡ 2 mod 3 and p ≡ 3 mod 4
inversions in Gp+1 ⊂ F∗p2 come for free, and that squaring in Gp+1 is cheaper than in
the field Fp2 . This results in single and double exponentiations that cost about 60%
and 75%, respectively, of traditional methods. Both methods are still considerably
slower than LUC.

More substantial are our results concerning sixth degree extensions, i.e., the case
Gp2−p+1 ⊂ F∗p6 . We show that for both p ≡ 2 mod 9 and p ≡ 5 mod 9 inversions
in Gp2−p+1 are very cheap, while squaring in Gp2−p+1 is substantially faster than
in Fp6 . Moreover, the method implied by Lemma 2.29 can be used to transform a
k-bit single exponentiation into a k/2-bit double exponentiation (i.e., the product
of two k/2-bit exponentiations). Using appropriate addition chains this results in a
vastly improved single exponentiation routine, that takes approximately 26% of the
time cited in [107, Lemma 2.1.2.iii]. The improvement for double exponentiation
is less spectacular, requiring an estimated 33% compared to [107, Lemma 2.1.2.iv].
Somewhat surprisingly, the result is faster than the original XTR [107].

However, we also present a speedup for XTR. Part of the speedup is obtained by
applying the faster Fp2 arithmetic, derived from [47] and described in Section 4.3.
As a side result, we also show that XTR works for p ≡ 3 mod 4 just as well as for
p ≡ 2 mod 3. Application of Montgomery’s method as adapted to the third degree
in the previous chapter gives a total speedup of 60% for double exponentiation and
more than 35% for single exponentiation compared to [107].

After some preliminaries we describe our results on Fp2 and the group Gq ⊂
Gp+1 ⊂ F∗p2 . For completeness and comparisons we have included LUC as inter-
mezzo, before presenting our results on Gq ⊂ Gp2−p+1 ⊂ F∗p2 and XTR. We briefly
discuss alternatives based on subgroups of other finite fields and conclude with tim-
ings and comparisons.

4.2. Preliminaries

4.2.1. Finite Field Representation. In cryptography, d-th degree extensions of fi-
nite fields are most commonly represented using either polynomial or normal bases
(see [111] for definitions and details).



4.2. PRELIMINARIES 71

With a proper choice of minimal polynomial (such as a trinomial with small
coefficients), polynomial bases allow relatively efficient multiplication and squaring
in the sense that the usual reduction stage from a degree 2d−2 product to the degree
d − 1 result can be performed at the cost of cd additions in the underlying prime
field, for a very small constant c. In general, this is not the case for normal bases,
but they have the advantage that the Frobenius automorphism can be computed
for free. For polynomial bases the Frobenius automorphism can be computed at a
small but non-negligible cost.

Cohen and Lenstra [47] describe a class of polynomial bases combining the best
of both worlds. They are based on the rings Z[γ]/pZ[γ] where γ is a primitive
n-th root of unity, n is a prime power, and p is an integer of which primality is
to be determined. If p is indeed a prime and p generates Z∗n then Z[γ]/pZ[γ] is
isomorphic to Fp[γ] supporting identical representations. The following theorem, a
slight adaptation of [111, Theorem 2.47(ii)], says something about the extension
degrees one obtains using cyclotomic fields.

Theorem 4.1. Given a field Fpe with p prime and some n coprime to p. Then
the n-th cyclotomic field over Fpe is isomorphic to Fped where d is the least positive
integer such that ped ≡ 1 mod n.

This theorem implies d|φ(n). We fix e = 1. Furthermore, we concentrate on
d = φ(n), i.e., the case that p mod n generates Z∗n. This requires Z∗n to be cyclic,
so that n is either 2, 4, the power of an odd prime, or twice the power of an odd
prime. We ignore n = 2, since it does not lead to a proper extension.

Let Γ = (γ, γ2, . . . , γd) with γ a primitive n-th root of unity, then Γ is a basis
of Fpd over Fp. (Usually a basis is a set of elements, but a vector is easier to
manipulate.) It is understood that an element a ∈ Fpd is represented as a =
(a0, . . . , ad−1) ∈ (Fp)d, where a = Γ ·aT . We abuse notation by identifying a and a.

The cost of p-th powering in Fpd is virtually negligible. Since Φd(p) divides
pd/2 +1 for even d (which will be the case if d = φ(n), n > 2), inversion in the group
GΦd(p) comes almost for free by g−1 = gp

d/2
.

Of independent interest is membership testing for GΦd(p). We will henceforth
assume that membership of the finite field has already been tested. If d < 105, then
Φd(p) =

∑
i∈P p

i −
∑
i∈N p

i for appropriate index sets P and N . (If d ≥ 105 some
of the coefficients in the cyclotomic polynomial might be larger than 1 in absolute
value.) Let a ∈ Fpd . Since F∗pd is cyclic, a ∈ GΦd(p) if and only if aΦd(p) = 1, which

is equivalent to
∏
i∈P a

pi =
∏
i∈N a

pi . Testing this condition requires at most d
applications of the Frobenius automorphism and |P|+|N |−1 multiplications in Fpd .
Thus, for fixed d testing GΦd(p)-membership costs at most φ(d) multiplications in
Fpd . Given membership of x 6= 1 in GΦd(p), membership x ∈ Gq can be established
by verifying that xΦd(p)/q 6= 1, which can efficiently be done if the exponent Φd(p)/q
is small.

The relation
∏
i∈P a

pi =
∏
i∈N a

pi gives rise to d possibly dependent relations
of degree |P|. In some cases these relations can be used to speed up |P|-th powering



72 4. FINITE FIELD EXTENSIONS

in GΦd(p). This will be exploited to get fast squaring in GΦd(p) for d = 2, 6 in the
upcoming Sections.

A major ingredient when calculating modulo Γ is writing powers of γ higher than
d as linear combinations in Γ. This reduction is performed in two stages. First, all
powers higher than n are reduced using γn = 1; next the relation Φn(γ) = 0 is used
to map everything to powers of γ between 1 and φ(n). Since d = φ(n), we are done.
Note that only additions and subtractions are needed for the reduction.

Lenstra [104] only considers pairs (p, n) for which n is prime and for which p
generates Z∗n, because they lead to so-called optimal normal bases. The relevance of
such bases for characteristics > 2 is limited, and the ‘cheap’ reduction they achieve
(just 2d− 1 additions in Fp) is almost met by the somewhat wider class considered
above, in which n is a prime power.

4.2.2. Key Generation. Given n and d = φ(n) and a desired level of security, key
generation consists of two phases: sufficiently large primes p and q have to be found
with p generating Z∗n and q dividing Φd(p), after which a generator of Gq has to be
found.

Finding p and q. For small d standard security requirements lead to log p >
log q, cf. Section 1.2.2. In this case the obvious generalization of the method
from [107] can be used. First, an appropriately sized prime q is selected, where
q|Φd(p) may impose a priori restrictions on q (e.g., q ≡ 1 mod 3 for d = 6). Next, a
root r of Φd[x] ∈ Fq[x] is found and p is determined as r+ `q for ` ∈ Z≥0 such that
p is a large enough prime that generates Z∗n.

For larger d (or e > 1, cf. Theorem 4.1) one may aim for primes p that fit in
a computer word (i.e., lg p = 32 or 64). Although this may be advantageous, log p
becomes substantially smaller than log q. We are not aware of an efficient method
to find such p and q. If q is selected first, the probability is negligible that an
appropriate p exists such that q|Φde(p). If p is selected first, there is only a very
slim probability that Φde(p) has an appropriate prime factor, and finding it leads
to an unattractive integer factorization problem.

Finding a Generator of Gq. This problem is easily solved by selecting h ∈ Fpd
at random until g = h(pd−1)/q 6= 1, at which point g is the desired generator. A
faster method is described in [106, credited to H.W. Lenstra, Jr.]. First an element
h ∈ Gφd(p) is constructed directly and next g = hΦd(p)/q is computed. If g = 1
another h has to be generated. The specifics follow.

Let f ∈ Fp and let γ be a primitive n-th root of unity as in Section 4.2.1.
Consider hf = (γ + f)(pd−1)/Φd(p) ∈ Gφd(p). Since Φd(p) divides pd − 1 irrespective
of p, we can write (pd − 1)/Φd(p) as

∑d−φ(d)
i=0 fip

i. By separating the positive from
the negative coefficients by rp+ =

∑d−φ(d)
i=0,fi>0 fip

i and rp− = −
∑d−φ(d)
i=0,fi<0 fip

i we
obtain (γ+f)rp+ = hf (γ+f)rp− , giving rise to a system of d equations linear in the
coefficients of hf . Since the system only depends on p’s congruency class modulo n
(and not on p itself), solving the system can be done before actually picking p. The
resulting hf corresponding to several different choices for f can be hard coded in the
program. In Section 4.5.4 the details for Gp2−p+1 with p ≡ 2 mod 9 are presented.



4.3. QUADRATIC EXTENSIONS 73

4.3. Quadratic Extensions

In this section we discuss computations in Fp2 and Gp+1 ⊂ F
∗
p2 . Fast com-

putations in the full field Fp2 with p ≡ 2 mod 3 are important for XTR and have
been discussed by Lenstra and Verheul [107] (but without delaying the reductions,
cf. [47, Case pk = 3]). We show that the field arithmetic for p ≡ 3 mod 4 from [47,
Case pk = 4] can be used for XTR without significant loss of efficiency compared to
p ≡ 2 mod 3. The subgroup Gp+1 is not relevant for XTR, but it is the subgroup
on which LUC is based. We show that it yields some extra computational benefits
that are, however, still not competitive with LUC.

We first discuss the field arithmetic for p ≡ 2 mod 3 in general and then focus on
the subgroup. The case p ≡ 3 mod 4 is dealt with similarly, first the field arithmetic
and then the subgroup arithmetic. Suitable exponentiation routines that apply to
either case conclude this section.

4.3.1. Field Representation for p ≡ 2 mod 3.
Field Arithmetic. Let p and q be primes with p ≡ 2 mod 3 and q|(p+ 1). Then

p generates Z∗3 and Φ3(x) = x2 + x+ 1|(x3 − 1) is irreducible in Fp. Let γ denote a
root of Φ3(x), then γn = γ(n mod 3) and in particular γp = γ2. Hence Γ = (γ, γ2) is
an optimal normal basis of Fp2 over Fp. Using Γ instead of (1, γ) leads to slightly
fewer additions than the basis (1, γ) discussed in [47, Case p = 3]. Lemma 4.2
is easily implied by the formulae from [107, Section 2.1] (cf. [107, Lemma 2.1.1],
and [47, Case p = 3]). For the sake of completeness we provide the details.

Lemma 4.2. Let a, b, c ∈ Fp2 with p ≡ 2 mod 3.
i. Computing ap is free.
ii. Computing a2 costs 2M + 2D + 3A1.
iii. Computing ab costs 3M + 2D + 2A1 + 2A2.
iv. Computing ac− bcp costs 4M + 2D + 6A1 + 2A2.

Proof: Let a ∈ Fp2 be represented by (a0, a1) ∈ (Fp)2, i.e., a = Γ · (a0, a1)T =
a0γ+a1γ

2 (similarly for b and c). Using Fermat’s little theorem we have that ap0 = a0

etc. From (a0γ + a1γ
2)p = ap0γ

p + ap1γ
2p and γp = γ2 we obtain ap = a1γ + a0γ

2,
so p-th powering is essentially for free. Squaring a requires computation of a2 =
(a1 − 2a0)a1γ + (a0 − 2a1)a0γ

2, which can be done in the claimed 2M + 2D+ 3A1.
Multiplication of a and b can be done using Karatsuba’s technique by computing
ab = ((a0−a1)(b0−b1)−a0b0)γ+((a0−a1)(b0−b1)−a1b1)γ2 and then (iii) follows
by inspection. Computation of ac− bcp, relevant for XTR, boils down to computing
((b0−b1−a1)f0 +(b1 +a1−a0)f1)γ+((a0−a1 +b0)f0 +(b1−b0−a0)f1)γ2. This can
be done in several ways, all costing 4M + 2D and a handful of additions. Q.E.D.

Subgroup Arithmetic. Because xp+1 = 1 for x ∈ Gp+1, we find that inversion
in Gp+1 is equivalent to p-th powering and thus for free. Let a = a0γ + a1γ

2 with
a0, a1 ∈ Fp, so a ∈ Fp2 . Then a ∈ Gp+1 if and only if ap+1 = ap · a = 1, i.e.,
(a1γ + a0γ

2)(a0γ + a1γ
2) = 1. This is equivalent to a2

0 − a0a1 + a2
1 = 1, so that

Gp+1-membership testing costs M + S +D +A1 +A2 plus a comparison with one.



74 4. FINITE FIELD EXTENSIONS

This relation can also be exploited to speed up squaring in Gp+1, since the value
of a0a1 follows from a2

0 and a2
1 using only a handful of additions. More specifically,

a2 = (2− 2a2
0 − a2

1)γ + (2− a2
0 − 2a2

1)γ2, which costs 2S + 2D + 2A1 + 3A2.
Free inversion in Gp+1 also results in an advantage for simultaneous computa-

tion of ab and ab−1 for a ∈ Fp2 and b ∈ Gp+1: since there are only four possible
combinations aibj , four multiplications suffice.

Lemma 4.3. Let Gp+1 be the order p+ 1 subgroup of F∗p2 with p ≡ 2 mod 3 and
let a = a0γ + a1γ

2 ∈ Fp2 with Φ3(γ) = 0.
i. The element a is in Fp if and only if a0 = a1.
ii. The element a is in Gp+1 if and only if a2

0 − a0a1 + a2
1 = 1. Testing this costs

M + S +D +A1 +A2.
iii. Computing a−1 for a ∈ Gp+1 is free.
iv. Computing a2 for a ∈ Gp+1 costs 2S + 2D + 2A1 + 3A2.
v. Computing ab and ab−1 for b ∈ Gp+1 costs 4M + 4D + 6 min(A1, A2).

4.3.2. Field Representation for p ≡ 3 mod 4.
Field Arithmetic. Let p and q be primes with p ≡ 3 mod 4 and q|(p + 1).

Then p generates Z∗4 and Φ4(x) = x2 + 1 is irreducible in Fp. Let γ denote a
root of Φ4(x), then Γ = (1, γ) is a basis of Fp2 over Fp. (Since γ2 = −1 the basis
(γ, γ2) looks contrived and leads to slightly more complicated reductions.) This field
representation is identical to [47, Case pk = 4], although the number of additions
in our cost functions is slightly different.

Let a ∈ Fp2 be represented by (a0, a1) ∈ (Fp)2, i.e., a = Γ · (a0, a1)T = a0 +a1γ.
From γn = γ(n mod 4) and thus γp = γ3 = −γ it follows that ap = ap0 + ap1γ

p =
a0−a1γ so that p-th powering costs a modular negation. The cost of multiplication
is 3M + 2D+ 2A1 + 3A2 since ab = a0b0−a1b1 + ((a0 +a1)(b0 + b1)−a0b0−a1b1)γ.
The cost of squaring is 2M + 2D + 2A1 since a2 = (a0 + a1)(a0 − a1) + 2a0a1γ.
The cost of computing ac − bcp for a, b, c ∈ Fp2 is 4M + 2D + 2A1 + 2A2 since
ac− bcp = (b0 + a0)c0 + (b1 − a1)c1 + ((a1 − b1)c0 + (a0 + b0)c1)γ. By analogy with
Lemma 4.2 we get the following.

Lemma 4.4. Let a, b, c ∈ Fp2 with p ≡ 3 mod 4.
i. Computing ap costs A1.
ii. Computing a2 costs 2M + 2D + 2A1.
iii. Computing ab costs 3M + 2D + 2A1 + 3A2.
iv. Computing ac− bcp costs 4M + 2D + 2A1 + 2A2.

Subgroup Arithmetic. As in the p ≡ 2 mod 3 case, inversion in Gp+1 is equiv-
alent to p-th powering; it costs A1. Let a = a0 + a1γ with a0, a1 ∈ Fp, so a ∈ Fp2 .
Then a ∈ Gp+1 if and only if ap+1 = ap · a = 1, i.e., (a0 − a1γ)(a0 + a1γ) = 1 which
is equivalent to a2

0 + a2
1 = 1. So, Gp+1-membership testing costs 2S + D + A2. It

also follows that a2 = 2a2
0 − 1 + ((a0 + a1)2 − 1)γ for a ∈ Gp+1, which implies that

squaring in Gp+1 can be done faster than in Fp2 .

Lemma 4.5. Let Gp+1 be the order p+ 1 subgroup of F∗p2 with p ≡ 3 mod 4 and
let a = a0 + a1γ ∈ Fp2 with Φ4(γ) = 0.



4.4. LUC 75

i. The element a is in Fp if and only if a1 = 0.
ii. The element a is in Gp+1 if and only if a2

0+a2
1 = 1. Testing this costs 2S+D+A2.

iii. If a ∈ Gp+1, then computing a−1 costs A1.
iv. If a ∈ Gp+1, then computing a2 costs 2S + 2D +A1.
v. Computing ab and ab−1 for b ∈ Gp+1 costs 4M + 4D + 6 min(A1, A2).

4.3.3. Subgroup Exponentiation. Under Assumption 1.3 we get for the subgroup
Gp+1 for both p ≡ 2 mod 3 and p ≡ 3 mod 4 that δ ≈ 2S + 2D ≈ 1.6 field mul-
tiplications in Fp and that α ≈ 3M + 2D ≈ 2.5 field multiplications in Fp. In
both cases inversion is essentially available for free and group multiplication with a
fixed multiplicand offers no speedup, so α̇ = α. We can now directly apply existing
exponentiation routines as described in Chapter 2, Table 2.7.

For a single exponentiation we have to compute am, where m has roughly the
same bitlength k as q. Using the signed sliding window method with windows of
size 4, this requires about k + 1 squarings and 7 + k/6 multiplications in Gq. The
resulting number of Fp-multiplications is 19.1 for the precomputation plus 2.0 per
exponent bit.

For a double exponentiation we have to compute ambn for m and n of roughly
equal size and with m as above. This can be computed using the JSF resulting in k
squarings and k/2 multiplications in Gq. With Gq-arithmetic as above, this becomes
(2S + 2D)k + (3M + 2D)k/2 ≈ 2.85k multiplications in Fp. The precomputation
of ab and ab−1 uses Lemmas 4.3 and 4.5. Combination of these observations leads
to the following theorem.

Theorem 4.6. Let p and q be primes with q|p+1, p ≡ 2 mod 3 or p ≡ 3 mod 4,
and dlg qe = k. Let a, b be in the order q subgroup Gq of F∗p2 and m,n ∈ Zq. Under
Assumption 1.3

i. computing am costs on average 19.1 + 2k multiplications in Fp, and
ii. computing ambn costs on average 4 + 2.85k multiplications in Fp.

4.4. LUC

This section is included for completeness and comparison. We start with a
brief description of the basic principles of LUC, followed by runtime estimates for
exponentiation. We conclude with some remarks concerning the history of LUC. Like
the two schemes in the previous section, LUC exploits the group Gp+1 ⊆ F∗p2 , but
with a more concise representation and faster arithmetic. The LUC cryptosystem
derives its name from the Lucas sequence.

4.4.1. Description of LUC. Let p and q be primes such that q divides p + 1. In
the previous section we discussed calculation in Gp+1 directly. In LUC elements of
Gp+1 are represented by their trace over Fp. Let Tr1 : Fp2 → Fp be the trace over
Fp defined by Tr1(g) = g + gp. For g ∈ Gp+1 we have that gp = g−1 and hence
Tr1(g) = g+ g−1. From Tr1(g) = Tr1(gp) it follows that in LUC an element and its
conjugate are identified with each other.



76 4. FINITE FIELD EXTENSIONS

Since g ∈ Gp+1 implies that (X − g)(X − gp) = X2 − (g + gp)X + gpg =
X2 − Tr(g)X + 1, the roots of the polynomial X2 − Tr(g)X + 1 are g and its
conjugate gp. Hence, the trace of an element in Gp+1 determines the element up to
conjugacy. Moreover, given an element v ∈ Fp, it is the trace of an element g ∈ Gp+1

precisely when X2 − vX + 1 is irreducible over Fp.
Let vn ∈ Fp denote the trace over Fp of gn. The following statements are well

known.

Lemma 4.7. Let g ∈ Gp+1 and vn = Tr1(gn), then
i. v−n = vnp = vn for all n ∈ Z.
ii. vn+m = vnvm − vn−m for all n,m ∈ Z, costing M +D +A1 to compute.
iii. v2n = v2

n − 2 for all n ∈ Z, costing S +D to compute.

Proof: The first identity follows from Tr1(g) = g+ g−1 for g ∈ Gp+1. The second
identity can be verified as follows:

vn+m = gngm + gnpgmp + (gngmp + gmgnp)− (gngmp + gmgnp)

= (gn + gnp)(gm + gmp)− (gng−m + g−mpgnp)
= vnvm − vn−m .

The final claim is a corollary of the second claim for n = m using v0 = Tr1(1) = 2.
Q.E.D.

4.4.2. Efficient Computation.
Exponentiation. The methods to compute short Lucas chains from Chapter 3,

can be directly applied to LUC. From the previous section it is clear that under
Assumption 1.3 we have that α ≈ 1 and δ ≈ 0.8 measured in the number of Fp-
multiplications (and α̇ = α and ν = 0).

Corollary 4.8. Let p and q be primes with q|(p+1), let g ∈ Fp2 be a generator
of Gq, let vκ = Tr1(gκ), vλ = Tr1(gλ), and vκ−λ = Tr1(gκ−λ) and finally let n,m ∈
Zq. Under Assumption 1.3
i. computing vmκ costs on average 1.61 Fp-multiplications (cf. Conjecture 3.35);
ii. computing vmκ+nλ costs on average 1.75 Fp-multiplications (cf. Conjecture 3.29);
iii. computing vmκ and vnκ simultaneously costs on average 1.75 Fp-multiplications

(cf. Conjecture 3.30);
iv. computing vmκ and v(m−1)κ simultaneously costs 1.8 Fp-multiplications (based

on Lemma 3.10);
v. computing vmκ costs on average 0.88 Fp-multiplications if vtκ and v(t−1)κ are

given for some known t with lg t ≈ 1
2 lgm (cf. Conjecture 3.32).

Membership Testing. Testing whether an element v ∈ Fp is indeed the trace
of an element g ∈ Fp2 of order q|(p + 1) consists of two parts. The first part
tests whether v is the trace of an element g of order dividing p + 1. Since this
is the case iff X2 − vX + 1 is irreducible in Fp, a single, cheap Jacobi-symbol
computation suffices. Now that v is indeed the trace of an element in Gp+1 ⊆ Fp2



4.5. SIXTH DEGREE EXTENSIONS 77

the exponentiation machinery just described can be used to check whether vq = id
or not. This exponentiation costs about 1.61 lg q Fp-multiplications.

4.4.3. Historical Remarks. The history of LUC is a bit muddled. Müller and
Nöbauer [133] suggested replacing the exponentiation function in RSA by the eval-
uation of Dickson polynomials gk(1, x) where k takes the place of the exponent, x
that of the base and g is defined by

(13) gk(a, x) =
b k2 c∑
i=0

k

k − i

(
k − i
i

)
(−a)ixk−2i

working over a commutative unital ring. Müller and Nöbauer propose to use similar
rings as in RSA, that is Zn where the factorization of n is to be kept secret. Later
they use the identity gk(a, u + a

u ) = uk + ( au )k, where u is a unit in some exten-
sion ring, to “efficiently” compute gk(1, u) by lifting it to the extension ring and
afterwards going back again [134].

In 1993, Smith and Lennon [176] proposed to use the Lucas functions Vk(x, 1)
modulo an RSA modulus as alternative to RSA. Since Vk(x, 1) = gk(1, x), this
system is equivalent to the Dickson scheme.

Later, Smith and Skinner [175] presented the LUC cryptosystem modulo a
prime, instead of a composite, to be used for ElGamal and Diffie-Hellman. At
first the authors thought that no subexponential time algorithm existed. However,
the LUC cryptosystem turned out to be based on Fp2 since Vk(v, 1) = vk in our
notation [20, 98, 99]. At the same time several breaks that apply to careless im-
plementations of RSA and ElGamal were shown to work for their (careless) LUC
counterparts [22, 78, 79, 147, 148]. As a result of all this bad publicity, LUC was
not taken very serious any more.

LUC as described above is presented to match XTR and make as clear as possible
what is going on algebraically. Whenever we use LUC, we implicitly mean working
over a finite field. The term Dickson scheme can be used to refer to the RSA
analogues.

4.5. Sixth Degree Extensions

In this section fast exponentiation routines for the group Gp2−p+1 ⊂ F∗p6 with
p ≡ 2 mod 9 are described. Let f be a sixth degree irreducible polynomial over some
ground field, with root γ. Consider the extension induced by γ and represented by
a polynomial basis consisting of six consecutive powers of γ, such as (1, γ, . . . , γ5)
or (γ, γ2, . . . , γ6). The cost of computation in this representation depends on the
general question of how many ground field multiplications are needed to multiply
two degree five polynomials, and on specific properties of f . Therefore, a short word
on the multiplication of fifth degree polynomials in general, before going into details
about the field representation and the benefits the cyclotomic subgroup offers. These
results are then used in the subsequent exponentiation routines. We conclude this
section with an improved key selection method.



78 4. FINITE FIELD EXTENSIONS

4.5.1. Multiplication of Fifth Degree Polynomials. Multiplication of two polyno-
mials of degree five can be done in 18 multiplications plus a handful of additions
based on Karatsuba’s technique [9, 47, 85]. Indeed, let G(x) =

∑5
i=0 gix

i and
H(x) =

∑5
i=0 hix

i be two fifth degree polynomials. Write G = G0 + G1x
3 and

H = H0 +H1x
3 where G0, G1,H0, and H1 are second degree polynomials. Then

GH = G0H0 + (G0H1 +G1H0)x3 +G1H1x
6,

so that, with C0 = G0H0, C1 = G1H1, and C2 = (G0 − G1)(H0 − H1), it follows
that

(14) GH = C0 + (C0 + C1 − C2)x3 + C1x
6.

Each of the Ci can be computed using 6 multiplications in the ground field. For
example, because G0 = g0 + g1x+ g2x

2 and H0 = h0 + h1x+ h2x
2,

C0 = g0h0 + (g1h0 + g0h1)x+ (g2h0 + g1h1 + g0h2)x2 + (g2h1 + g1h2)x3 + (g2h2)x4,

so that, with c0 = g0h0, c1 = g1h1, c2 = g2h2, c3 = (g0 − g1)(h0 − h1), c4 =
(g0 − g2)(h0 − h2), and c5 = (g1 − g2)(h1 − h2), we have that

C0 = c0 + (c0 + c1 − c3)x+ (c0 + c1 + c2 − c4)x2 + (c1 + c2 − c5)x3 + c2x
4.

With similar expressions for C1 and C2 it follows that 18 ground field multiplications
(or squarings) suffice to compute the product GH (or the square G2).

If the gi and hi are l-bit numbers, and one is interested in an (unreduced)
product with 2l-bit or slightly larger coefficients, then computing C0 costs 6M +
6A1 + 7A2 and the cost of computing GH as in (14) is 18M + 24A1 + 21A2.

It remains to reduce GH modulo f , at a cost depending on f . This is discussed
in the remainder of this section for ground fields Fp with p ≡ 2 mod 9. In that case
the resulting coefficients still have to be reduced modulo p at a cost of 6D for l-bit p.

4.5.2. Field Representation for p ≡ 2 mod 9.
Field Arithmetic. Let p be prime with p ≡ 2 mod 9. Then p generates Z∗9

and Φ9(x) = x6 + x3 + 1 is irreducible in Fp. Let γ denote a root of Φ9(x), then
Γ = (γ, γ2, . . . , γ6) is a basis for Fp6 over Fp (in [47, Case pk = 9] the similar basis
(1, γ, . . . , γ5) is used).

Let a =
∑5
i=0 aiγ

i+1 ∈ Fp6 . From γn = γn mod 9 and thus γp = γ2 it follows
with Φ9(γ) = 0 that ap = a4γ+ (a0−a3)γ2 +a5γ

3 +a1γ
4−a3γ

5 +a2γ
6. Thus, p-th

powering costs A1. In a similar way it follows that p3-th powering costs 2A1. For
multiplication in Fp6 the method from Section 4.5.1 is used, with proper adjustment
of the powers of x, e.g., G = G0x+G1x

4. It follows with straightforward bookkeep-
ing that collecting corresponding powers of x in (14) combined with the modular
reductions costs 12A2 + 6D. (For the basis (1, γ, . . . , γ5) we find that the collecting
phase costs 14A2, which slightly improves the 18A2 reported in [47].) With Sec-
tion 4.5.1 it follows that multiplication can be done for 18M + 6D + 24A1 + 33A2.
Doing more elaborate collecting reduces the 33A2 to 29A2.



4.5. SIXTH DEGREE EXTENSIONS 79

Squaring follows by replacing 18M by 18S, but it can be done substantially
faster by observing that

G2 = (G0γ +G1γ
4)2 = (G0 −G1)(G0 +G1)γ2 + (2G0 −G1)G1γ

5,

with G0, G1 ∈ Fp[γ] of degree two. Computing this costs 9A1 for the preparation
of the multiplicands, two polynomial multiplications costing 6M + 6A1 + 7A2 each,
7A2 for the collection, and 6D for the final reductions. It follows that squaring can
be done for 12M + 6D + 21A1 + 21A2. (This is A2 more than reported in [47] for
(1, γ, . . . , γ5).)

Lemma 4.9. Let a, b ∈ Fp6 with p ≡ 2 mod 9.

i. Computing ap or ap
5

costs A1.
ii. Computing ap

2
, ap

3
, or ap

4
costs 2A1.

iii. Computing a2 costs 12M + 6D + 21A1 + 21A2.
iv. Computing ab costs 18M + 6D + 24A1 + 29A2.

Subgroup Arithmetic. Let a =
∑5
i=0 aiγ

i+1 ∈ Fp6 . Membership of one of the
three proper subfields of Fp6 is characterized by one of the equations ap

i

= a for
i = 1, 2, 3. Specifically, a ∈ Fp if and only if ap = a which is equivalent to the
system of linear equations (a0, a1, a2, a3, a4, a5) = (a4, a0 − a3, a5, a1,−a3, a2). The
solution a0 = a1 = a3 = a4 = 0 and a2 = a5 is not surprising since 1 + γ3 + γ6 = 0,
so an element c ∈ Fp takes the form −cγ3 − cγ6. Similarly, a ∈ Fp2 if and only if
ap

2
= a, which is equivalent to a = a2γ

3 + a5γ
6, and a ∈ Fp3 if and only if ap

3
= a

or a = (a3 − a4)γ + (−a3 + a4)γ2 + a5γ
3 + a3γ

4 + a4γ
5 + a5γ

6.
More interesting for cryptographic purposes is the subgroup Gp2−p+1 of F∗p6 , be-

cause that subgroup cannot be embedded in a proper subfield of Fp6 . The Gp2−p+1-
membership condition ap

2−p+1 = 1 is equivalent to ap
2
a = ap, which can be verified

at a cost of, essentially, a single Fp6-multiplication. From ap
3

= a−1 it follows that
inversion in Gp2−p+1 costs 2A1.

Computing ap
2
a− ap =

∑5
i=0 viγ

i+1 symbolically produces

(15)

v0 = a2
1 − a0a2 − a4 − a2

4 + a3a5 ;
v1 = −a0 + a1a2 + a3 − 2a0a3 + a2

3 − a2a4 − a1a5 ;
v2 = −a0a1 + a3a4 − a5 − 2a2a5 + a2

5 ;
v3 = −a1 − a2a3 + 2a1a4 − a2

4 − a0a5 + a3a5 ;
v4 = a2

0 + a1a2 + a3 − 2a0a3 − a4a5 ;
v5 = −a2 + a2

2 − a1a3 − a0a4 + a3a4 − 2a2a5 .

If a ∈ Gp2−p+1, then vi = 0 for 0 ≤ i < 6 and the resulting six relations can be
used to significantly reduce the cost of squaring in Gp2−p+1. Let V = (v0, v1, . . . , v5)
be the vector consisting of the vi’s. Then for any 6 × 6-matrix M , we have that
a2 + Γ · (M · V T ) = a2 if a ∈ Gp2−p+1, because in that case V is the all-zero vector.
Carrying out this computation symbolically, involving the expressions for the vi’s



80 4. FINITE FIELD EXTENSIONS

for a particular choice of M yields the following:
(16)

a2 = a2 + 2Γ ·


0 0 0 −1 0 0
0 −1 0 0 1 0
0 0 1 0 0 0
1 0 0 −1 0 0
0 −1 0 0 0 0
0 0 0 0 0 1

 · V
T = Γ ·


2a1 + 3a4(a4 − 2a1)

2a0 + 3(a0 + a3)(a0 − a3)
−2a5 + 3a5(a5 − 2a2)

2(a1 − a4) + 3a1(a1 − 2a4)
2(a0 − a3) + 3a3(2a0 − a3)
−2a2 + 3a2(a2 − 2a5)

 .

Given that we are working over a sixth degree extension, the six multiplications and
reductions required for (16) seem optimal. The additions can be taken care of in
several ways; a reasonable solution results in 6M + 6D + 9A1 + 12A2.

Lemma 4.10. Let Gp2−p+1 be the order p2 − p + 1 subgroup of F∗p6 with p ≡
2 mod 9 and let a = a0γ + a1γ

2 + · · ·+ a5γ
6 ∈ Fp6 with Φ9(γ) = 0.

i. The element a is in Fp if and only if a = a2γ
3 + a2γ

6.
ii. The element a is in Fp2 if and only if a = a2γ

3 + a5γ
6.

iii. The element a is in Fp3 if and only if a = (a3 − a4)γ + (−a3 + a4)γ2 + a5γ
3 +

a3γ
4 + a4γ

5 + a5γ
6.

iv. The element a is in Gp2−p+1 if and only if in relations (15) vi = 0 for 0 ≤ i < 6.
This can be checked at a cost of essentially 18M + 6D.

v. Computing a−1 for a ∈ Gp2−p+1 costs 2A1.
vi. Computing a2 for a ∈ Gp2−p+1 costs 6M + 6D + 9A1 + 12A2.

4.5.3. Subgroup Exponentiation. Exponentiation can be performed using the al-
gorithms described in Chapter 2. Under Assumption 1.3 the costs α ≈ 12 and
δ ≈ 6, both measured in the number of Fp-multiplications, follow from Lemmas 4.9
and 4.10. Fixed multiplicands do not seem to offer an advantage, so α̇ = α and
inversion is for free.

For a single exponentiation we have to compute am, where m has roughly the
same bitlength k as q. For the case q|(p2 − p+ 1) the Frobenius endomorphism will
save us some work, since m can quickly be written as m ≡ m1 + m2p mod q with
m1 and m2 of bitlength k/2 according to Lemma 2.29. Hence am can be rewritten
as am1(ap)m2 . This double exponentiation can be computed using the Joint Sparse
Form, resulting in a cost of about six Fp-multiplications per exponent bit.

A double exponentiation ambn, with logm ≈ log n and m as above, can be
rewritten as am1(ap)m2bn1(bp)n2 with ≈ k/2-bit m1, m2, n1, and n2. This quadru-
ple exponentiation can be computed using the JSF resulting in a total of about 9
multiplications in Fp per exponent bit.

Combination of these observations leads to the following theorem.

Theorem 4.11. Let p and q be primes with q|(p2 − p + 1), p ≡ 2 mod 9, and
dlog2 qe = k. Let a, b be in the order q subgroup Gq of F∗p6 and m,n ∈ Zq. Assuming
that M ≈ D,
i. computing am costs on average 12 + 6k multiplications in Fp, and
ii. computing ambn costs on average 24 + 9k multiplications in Fp, and



4.6. SPEEDING UP XTR 81

4.5.4. Key Selection. We elaborate on the improved key selection mentioned in
Section 4.2.2 and similar to [106, Algorithm 4.5]. With f ∈ Fp and hf = (γ +
f)(p6−1)/Φ6(p) it follows that hf (γ + f)(γ + f)p = (γ + f)p

3
(γ + f)p

4
. Solving this

equation for the coefficients of hf gives

(17) hf =
Γ

f6 − f3 + 1
·


−f + f2 + 3f3 − f4 − 2f5

−f − 2f2 + 3f3 + 2f4 − 2f5

(1− f2)3

f − f2 + f4 − f5

f − f2 + f4 − f5

−f3(1− 3f + f3)

 .

This gives h1/2 = 1
19 (0,−12, 9, 6, 6, 1) and h2 = − 3

19 (6, 2, 3, 2, 2, 8/3).
Given either h ∈ Gφd(p), the element g = h(p2−p+1)/q generates Gq unless g = 1.

The probability of failure may be expected to be q−1, independently for each h.
This is negligible. Theorem 4.11 does not apply for the exponentiation h(p2−p+1)/q

because the splitting of the exponent requires order q. However, using the signed
sliding window method and assuming that p is only slightly larger in size than q the
exponentiation takes about 8 log p+ 90 ground field multiplications.

Our methods work, and result in identical runtimes, as long as p mod 9 generates
Z
∗
9. Since φ(φ(9)) = 2, the only other case is p ≡ 5 mod 9.

4.6. Speeding up XTR

4.6.1. Introduction. The XTR public key system was introduced at Crypto 2000
by Lenstra and Verheul [107]. It is based on the same subgroup Gp2−p+1 ⊆ F∗p6 as
the system described in the previous section. From a security point of view XTR
is therefore, like LUC, a traditional subgroup discrete logarithm system. Lenstra
and Verheul have also written an overview of XTR, incorporating several improve-
ments [109].

This section contains several important speedups for XTR, while at the same
time simplifying its implementation. In the first place the field arithmetic as de-
scribed in [107] is improved by combining the modular reduction steps as described
in Section 4.3. More importantly, the Euclidean algorithms from Section 3.3.5 are
used instead of binary methods. These improvements result in an XTR double
exponentiation method that is on average more than 60% faster than the double
exponentiation from [107]. Such exponentiations are used in XTR ElGamal-like sig-
nature verifications. Furthermore, they result in two new XTR single exponentiation
methods, one that is on average about 60% faster than the method from [107] but
that requires a one-time precomputation, and a generic one without precomputation
that is on average 35% faster than the old method.

Examples where precomputation can typically be used are the ‘first’ of the two
exponentiations (per party) in XTR Diffie-Hellman key agreement, XTR ElGamal-
like signature generation, and, to a lesser extent, XTR-ElGamal encryption. The
new generic XTR single exponentiation can be used in the ‘second’ XTR Diffie-
Hellman exponentiation and in XTR-ElGamal decryption. As a result the runtime



82 4. FINITE FIELD EXTENSIONS

of XTR signature applications is more than halved, the time required for XTR
Diffie-Hellman is almost halved, and XTR-ElGamal encryption and decryption can
both be expected to run at least 35% faster (with encryption running more than
60% faster after precomputation).

4.6.2. Description of XTR. Let p and q be primes with q dividing p2 − p+ 1. For
g ∈ F∗p6 its trace Tr2(g) over Fp2 is defined as the sum of the conjugates over Fp2 of
g:

Tr2(g) = g + gp
2

+ gp
4
∈ Fp2 .

Because the order of g divides p6 − 1 the trace over Fp2 of g equals the trace of the
conjugates over Fp2 of g:

(18) Tr2(g) = Tr2(gp
2
) = Tr2(gp

4
) .

In XTR elements of Gp2−p+1 are represented by their trace over Fp2 . It follows
from (18) that XTR makes no distinction between an element of 〈g〉 and its conju-
gates over Fp2 . If g ∈ Gp2−p+1 then its order divides p2 − p+ 1, so that

Tr2(g) = g + gp−1 + g−p

since p2 ≡ p − 1 mod (p2 − p + 1) and p4 ≡ −p mod (p2 − p + 1). These relations,
together with Tr2(g−1) = Tr2(gp) = Tr2(g)p also imply that

(X − g)(X − gp
2
)(X − gp

4
) = X3 − Tr2(g)X2 + Tr2(g)pX − 1 .

If g ∈ Gp2−p+1 then the element g, or one of its conjugates, can be retrieved from
c = Tr2(g) by determining a root of the cubic X3 − cX2 + cpX − 1. Lenstra and
Verheul also show that any given c ∈ Fp2 is the trace of some element in Gp2−p+1 if
the cubic polynomial is irreducible over Fp2 .

Throughout this section, cn denotes Tr2(gn) ∈ Fp2 , for some fixed p and g of
order q dividing p2 − p + 1 as above. Note that c0 = 3 and c1 = c. The notation
cn nicely corresponds with the notation used for Perrin chains in Chapter 3, since
(proof omitted)

(19) cn+m = cncm − cpncn−m + cn−2m .

Efficient computation of cn given p, q, and c therefore depends of efficient im-
plementation of (19). Lenstra and Verheul propose to use the field arithmetic for
p ≡ 2 mod 3 described in Section 4.3.1 (but without the delayed reductions). From
Section 4.3.2 it follows that XTR can be implemented for p ≡ 3 mod 4 just as easily
without loss of efficiency compared to p ≡ 2 mod 3.

If we want to measure the cost of the elementary XTR operations in the number
of underlying Fp-multiplications, we use Lemma 4.2 for p ≡ 2 mod 3 and Lemma 4.4
for p ≡ 3 mod 4. These two lemmas are summarized below in the language of
Chapter 3.

Lemma 4.12. If p ≡ 2 mod 3 or p ≡ 3 mod 4 and assuming Assumption 1.3,
the costs of XTR operations measured in the number of multiplications in Fp is
α ≈ 3, δ ≈ 2 and τ ≈ 4.5. Moreover α̇i = α for i = 1, 2, 3, 4 and ν = 0.



4.6. SPEEDING UP XTR 83

Proof:
i. c−n = cnp = cpn. It follows that negations and p-th powers can be computed for

free.
ii. ca+b = cacb − cpbca−b + ca−2b. It follows that ca+b can be computed at the cost

of three multiplications in Fp if ca, cb, ca−b, and ca−2b are given.
iii. If ca = c̃1, then c̃b denotes the trace of the b-th power gab of ga, so that cab = c̃b.
iv. c2a = c2a − 2cpa takes two multiplications in Fp.
v. c3a = c3a − 3cp+1

a + 3 costs four and a half multiplications in Fp, and produces
c2a as a side-result.

Q.E.D.

Lenstra and Verheul [106–108] show how p, q, and c can be found quickly. In
particular there is no need to find an explicit representation of g ∈ Fp6 .

4.6.3. Efficient Computation.
Easy exponentiation. Lenstra and Verheul proposed Algorithm 3.14 (cf. [107,

Algorithm 2.3.7] to perform a single exponentiation. From Lemma 4.12 it follows this
will cost 7 Fp-multiplications per exponent bit. (Because of the not fully optimized
Fp2 arithmetic, Lenstra and Verheul report 8 Fp-multiplications per exponent bit.)

The double exponentiation method from [107] uses matrices. The cost of a
double exponentiation are roughly equal to two single exponentiations, that is 14
Fp-multiplications per exponent bit. Both Algorithms 3.20 and 3.37 do away with
the matrices, thereby removing the aesthetically least pleasing aspect of XTR. Re-
mark that Algorithm 3.20 does not achieve a noticeable speedup over the double
exponentiation from [107], since the matrix steps that are no longer needed, though
cumbersome, are cheap.

Using the third-degree adaptation of Montgomery’s Euclidean algorithm as de-
scribed in Section 3.3.5, considerably speeds up single and double exponentiation.
Plugging in the values for α, δ, and τ from Lemma 4.12 in the estimated runtimes
obtained in Chapter 3 gives us the following corollary:

Corollary 4.13. Let p and q be primes with q|(p2 − p + 1), let g ∈ Fp6 be a
generator of Gq, let cκ = Tr2(gκ), cλ = Tr2(gλ), and cκ−λ = Tr2(gκ−λ) and finally
let n,m ∈ Zq.
i. computing cmκ costs on average 5.2 Fp-multiplications (cf. Corollary 3.41);
ii. computing cmκ+nλ costs on average 6.0 Fp-multiplications (cf. Conjecture 3.38);
iii. computing cmκ and cnκ simultaneously costs on average 6.0 Fp-multiplications

(cf. Conjecture 3.40);
iv. computing cmκ, c(m−1)κ and c(m−2)κ simultaneously costs 7.0 Fp-multiplications

(cf. Lemma 3.15);
v. computing cmκ costs on average 3.0 Fp-multiplications if given c(t+1)κ, ctκ and

c(t−1)κ, where t is known and lg t ≈ 1
2 lgm.

In Table 4.1 the number of multiplications in Fp required by Algorithm 3.37
when applied to XTR is given, both with and without optional steps. Each set
of entries is averaged over the same collection of 220 randomly selected t’s, n’s,



84 4. FINITE FIELD EXTENSIONS

Table 4.1. Empirical performance of Algorithm 3.37 when applied
to XTR, with 0 < n,m < t.

multiplications in Fp

including steps X4, X9, and X10 without steps X4, X9, and X10
dlg te standard standard

= T average deviation σ σ/
√
T average deviation σ σ/

√
T

60 350.01 = 5.83T 20.5 = 0.34T 2.65 372.89 = 6.21T 30.0 = 0.50T 3.88
70 410.42 = 5.86T 22.2 = 0.32T 2.65 437.41 = 6.25T 32.6 = 0.47T 3.89
80 470.84 = 5.89T 23.7 = 0.30T 2.65 501.94 = 6.27T 34.8 = 0.44T 3.90
90 531.21 = 5.90T 25.2 = 0.28T 2.66 566.36 = 6.29T 37.0 = 0.41T 3.90

100 591.63 = 5.92T 26.5 = 0.27T 2.65 630.85 = 6.31T 39.1 = 0.39T 3.91

110 652.03 = 5.93T 27.8 = 0.25T 2.65 695.40 = 6.32T 41.1 = 0.37T 3.92
120 712.39 = 5.94T 29.1 = 0.24T 2.66 759.87 = 6.33T 43.0 = 0.36T 3.93
130 772.78 = 5.94T 30.2 = 0.23T 2.65 824.31 = 6.34T 44.6 = 0.34T 3.92
140 833.19 = 5.95T 31.5 = 0.22T 2.66 888.91 = 6.35T 46.4 = 0.33T 3.92
150 893.66 = 5.96T 32.5 = 0.22T 2.65 953.34 = 6.36T 48.1 = 0.32T 3.93

160 953.98 = 5.96T 33.6 = 0.21T 2.66 1017.79 = 6.36T 49.7 = 0.31T 3.93
170 1014.42 = 5.97T 34.7 = 0.20T 2.66 1082.36 = 6.37T 51.3 = 0.30T 3.93
180 1074.84 = 5.97T 35.7 = 0.20T 2.66 1146.88 = 6.37T 52.7 = 0.29T 3.93
190 1135.19 = 5.97T 36.6 = 0.19T 2.66 1211.34 = 6.38T 54.3 = 0.29T 3.94
200 1195.58 = 5.98T 37.6 = 0.19T 2.66 1275.82 = 6.38T 55.7 = 0.28T 3.94

210 1256.05 = 5.98T 38.5 = 0.18T 2.66 1340.23 = 6.38T 57.1 = 0.27T 3.94
220 1316.42 = 5.98T 39.5 = 0.18T 2.66 1404.75 = 6.39T 58.5 = 0.27T 3.94
230 1376.87 = 5.99T 40.3 = 0.18T 2.66 1469.36 = 6.39T 59.7 = 0.26T 3.94
240 1437.25 = 5.99T 41.2 = 0.17T 2.66 1533.89 = 6.39T 61.1 = 0.25T 3.94
250 1497.61 = 5.99T 42.0 = 0.17T 2.66 1598.22 = 6.39T 62.3 = 0.25T 3.94

260 1558.00 = 5.99T 42.9 = 0.17T 2.66 1662.80 = 6.40T 63.7 = 0.24T 3.95
270 1618.47 = 5.99T 43.8 = 0.16T 2.66 1727.31 = 6.40T 64.9 = 0.24T 3.95
280 1678.74 = 6.00T 44.5 = 0.16T 2.66 1791.85 = 6.40T 66.1 = 0.24T 3.95
290 1739.17 = 6.00T 45.3 = 0.16T 2.66 1856.32 = 6.40T 67.2 = 0.23T 3.94
300 1799.57 = 6.00T 46.1 = 0.15T 2.66 1920.88 = 6.40T 68.4 = 0.23T 3.95

and m’s, with t of the size specified in Table 4.1 and n and m randomly selected
from {1, 2, . . . , t − 1}. For regular double exponentiation t ≈ q, but t ≈ √q for
the application in precomputation. It follows from Table 4.1 that inclusion of the
optional steps leads to an overall reduction of more than 6% in the expected number
of multiplications in Fp.

For the optional steps it is convenient to keep track of the residue classes of
d and e modulo 3. These are easily updated if any of the other steps applies, but
require a division by 3 if either one of the optional steps is carried out. It depends on
the implementation and the platform whether or not an overall saving is obtained
by including the optional steps. In most software implementations it will most likely
be worthwhile.

It follows that XTR double exponentiation using Algorithm 3.37 is on average
faster than the XTR single exponentiation from [107] (given in Algorithm 3.16),
and more than twice as fast as the previous methods to compute cmκ+bλ ([107,
Algorithm 2.4.8 and Theorem 2.4.9] and Algorithm 3.20). An additional advantage
of Algorithm 3.37 is that, like Algorithm 3.20, it does not require matrices. These
advantages have considerable practical consequences, not only for the performance
of XTR signature verification (Section 4.8), but also for the accessibility and ease
of implementation of XTR.



4.6. SPEEDING UP XTR 85

2 3 4 5 6 7 8
5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

Constant

#
m

u
ls

/T

Including optional steps
Without optional steps  

Figure 4.1. Dependence of Algorithm 3.37 when applied to XTR
on the value of the constant.

In Figure 4.1 the average number of multiplications for dlog2 te = 170 is given
as a function of the value of the constant in rules X1 and X6 given in Table 3.4. The
value 4 is close to optimal and convenient for implementation. However, it can be
seen from Figure 4.1 that a value close to 4.8 is somewhat better, if one’s sole objec-
tive is to minimize the number of multiplications in Fp, as opposed to minimizing
the overall runtime. The curves in Figure 4.1 were generated for constants ranging
from 2 to 8 with stepsize 1/16, per constant averaged over the same collection of
220 randomly selected t’s, a’s, and b’s.

If Algorithm 3.37 is implemented using the slower field arithmetic from [107,
Lemma 2.1.1] as opposed to the improved arithmetic from Section 4.3, it can on
average be expected to require 7.4 log2(max(a, b)) multiplications in Fp. This is still
more than twice as fast as the method from [107] (using the slower arithmetic), but
more than 20% slower than Corollary 4.13.

Unlike the XTR exponentiation methods from [107], different instructions are
carried out by Algorithm 3.37 for different input values. This makes Algorithm 3.37
inherently more vulnerable to environmental attacks than the methods from [107]
(cf. [107, Remark 2.3.9]). If the possibility of such attacks is a concern, then utmost
care should be taken while implementing Algorithm 3.37.



86 4. FINITE FIELD EXTENSIONS

Further Improved Double Exponentiation. Other small improvements in the
running time of Algorithm 3.37 when applied to XTR can be obtained by distin-
guishing more different cases than implied by Table 3.4. The version presented in
Section 3.3.5 represents a good compromise that combines reasonable overhead with
decent performance. In practical circumstances the performance of Algorithm 3.37
is on average reasonably close to optimal. Almost 2% can be saved by using
Table 4.2 instead. The average cost to compute cmκ+nλ turns out to be about
5.9 log2(max(a, b)) multiplications in Fp. Omission of X3, X6, and X13 combined
with a constant 4 instead of 5.5 in Steps X1 and X9 leads to an almost 1% speedup
over Algorithm 3.37 based on Table 3.4.

Table 4.2. Improved Rules for Algorithm 3.37
No. Condition Substitution (d, e) Costs
Substitutions if d ≥ e
X1 d ≤ 5.5e (e, d− e) α
X2 d ≡2 e ((d− e)/2, e) α+ 2δ
X3 d ≤ 6.4e (e, d− e) α
X4 d ≡3 e ((d− e)/3, e) 2α+ τ
X5 d ≡2 0 (d/2, e) α+ 2δ
X6 d ≤ 7.5e (e, d− e) α
X7 de ≡3 2 ((d− 2e)/3, e) 2α+ δ + τ
X8 e ≡2 0 (e/2, d) 2δ

Substitutions if e ≥ d
X9 e ≤ 5.5d (d, e− d) α

X10 e ≡2 0 (e/2, d) 2δ
X11 e ≡3 d ((e− d)/3, d) 2α+ τ
X12 de ≡3 2 (d, (e− 2d)/3) 2α+ δ + τ
X13 e ≤ 7.4d (d, e− d) α
X14 d ≡2 1 ((e− d)/2, d) α+ 2δ
X15 e ≡3 0 (e/3, d) 2α+ τ
X16 d ≡2 0 (d/2, e) α+ 2δ

Fast Precomputation. To apply Corollary 4.13.v the values ct, ct−1, and ct−2

have to be precomputed for some t with lg t ≈ k/2. This precomputation costs 3.5k
Fp-multiplications and requires storage of three elements. The choice t = p leads
to a faster precomputation, while only marginally slowing down the preparation
of the exponents to be fed to Algorithm 3.37. From the triple (cp−2, cp−1, cp) two
values follow immediately given c, since cp = Tr2(gp) = Tr2(g)p = cp and cp−1 =
Tr2(gp−1) = Tr2(gp

2
) = c. According to [108, Proposition 5.7], the remaining value

cp−2 can be computed at the cost of a square-root computation in Fp. Here it is
assumed that the public key containing p, q, and c1 contains an additional single
bit of information to resolve the square-root ambiguity. (The statement in [108,
Proposition 5.7] that this requires a square-root computation in Fp2 , as opposed



4.6. SPEEDING UP XTR 87

to Fp, is incorrect. This follows immediately from the proof of [108, Proposition
5.7].) Thus, if p ≡ 3 mod 4 —facilitating square root extraction— recipients of XTR
public key data with p and q of the above form can do the precomputation of cp−2

at a cost of at most ≈ 1.3 lg p multiplications in Fp, assuming the owner of the key
sends the required bit along. The storage overhead (on top of c1) for t = p is just a
single element of Fp2 or even a single bit, as opposed to three elements for t ≈ 2

k
2 .

If p mod q ≈ √q, then non-negative a and b of order about
√
q in Step 1 of

Algorithm 3.31 can be found at the cost of a division with remainder. This is,
for instance, the case if p and q are chosen as r2 + 1 and r2 − r + 1, respectively,
as suggested in [107, Section 3.1]. However, usage of such primes p and q is not
encouraged in [107] because of potential security hazards related to the use of primes
p of a ‘special form’. As shown in Lemma 2.29 the condition q|(p2−p+1) is actually
sufficient for the existence of a good split, so no special primes are needed.

Corollary 4.14. Given an integer n with 0 < n < q and trace values c and
cp−2, the trace value cn can on average be computed in about 3k multiplications in
Fp using Algorithm 3.37.

Corollary 4.15. Given an integer n with 0 < n < q, a trace values c, and a
bit to resolve the ambiguity surrounding cp−2, the trace value cn can on average be
computed in about 3k + 1.3 lg p multiplications in Fp using Algorithm 3.37.

The owner of the key must explicitly compute cp−2 in order to compute the
ambiguity-resolving bit. Thus, the owner cannot take advantage of fast precompu-
tation. This adds a minor cost to the key creation.

The precomputation scheme may also be useful for XTR-ElGamal encryp-
tion [107, Section 4.2]. In XTR-ElGamal encryption the public key contains two
trace values, c1 and ck, where k is the secret key. The sender (who does not know k)
picks a random integer b, computes cb based on c1, computes cbk based on ck, uses
cbk to (symmetrically) encrypt the message, and sends the resulting encryption and
cb to the owner of k. If the sender uses XTR-ElGamal encryption more than once
with the same c1 and ck, then it is advantageous to use precomputation. In this
application two precomputations have to be carried out, once for c1 and once for ck.
The recipient has to compute cbk based on the value cb received (and its secret k).
Because cb will not occur again, precomputation based on cb does not make sense
for the party performing XTR-ElGamal decryption.

4.6.4. Historical. Carlitz [39] investigated sequences of the form cn = αn+βn+γn

where α, β, and γ are the roots of the polynomial 1−ux+vx2−x3. He showed that
c−n(u, v) = cn(v, u), cm+n = cm−nc−n − cmcn − cm−2n, and cmn = cm(cn, c−n). He
also noted the similarity with Chebyshev polynomials [40].

In 1999 Gong and Harn generalize the LUC cryptosystem, as described in terms
of a recurrent relation, to the third degree, reinventing much of the work of Car-
litz. The resulting cryptosystem needs to keep track of both positive and negative
exponents. As a consequence of this, the compression rate of the GH-cryptosystem
is only 2

3 , compared to LUC’s 1
2 or XTR’s 1

3 . The exponentiation routines are also



88 4. FINITE FIELD EXTENSIONS

much slower. For key generation, Gong and Harn propose working with an ele-
ment of order p2 + p + 1. Testing this order typically requires the factorization of
p2 + p + 1, which makes key generation [65] considerably more troublesome than
XTR key generation.

Brouwer et al. [35] show that it is possible to represent elements of the subgroup
Gp2−p+1 in F∗p6 with only two elements in Fp instead of the usual six. They use
minimal polynomials to achieve this system, which they playfully call LUCKIER.
The disadvantage is that for computations the roots of the minimal polynomial have
to be determined in order to perform the exponentiation in F∗p6 .

Lenstra and Verheul [107] combine the best of both worlds to arrive at XTR,
compression and speedup at the same time, without the need to switch back to the
extension field at any time. The key generation and related membership testing
have been improved by Lenstra and Verheul in later papers [106, 108].

4.7. Alternatives

Lenstra and Verheul [107] already point out that in principle XTR works for
any 6th degree extension. This is worked out in some detail by Lim et al. [113], but
the main problem, efficient key generation, is not addressed.

Brouwer et al. [35] conjecture that for d = 30 perhaps an even more efficient
representation can be obtained (although in that case too one would face awkward
key generation). Bosma et al. [27] argue that this conjecture is unlikely to hold
and that, if it would hold, the computations would be clumsy. Rubin and Silver-
berg [157] give further evidence against the existence of an efficient representation
for d = 30.

Generalizing XTR to other congruency classes of p is another possibility to
consider. To maintain the efficiency the Fp2-field arithmetic should allow application
of the Frobenius endomorphism virtually for free and fast multiplication.

Generalizing the tricks to work in Gp2−p+1 directly to other congruency classes
requires efficient application of the Frobenius endomorphism to allow splitting the
exponent and give free inversion. Using the seventh cyclotomic field this is possible,
but is unclear how to speed up the group squaring. Avanzi and Lange consider
a quadratic extension of a cubic extension. The Frobenius endomorphism in the
quadratic extension is used for free inversion. If the quadratic extension is based
on the third or fourth cyclotomic field this gives free inversion (and slightly cheaper
squaring as well). Splitting the exponent is not entirely for free, but still worthwhile.

Using other extension degrees is also possible. If the fifth cyclotomic field is
used for Gp2+1 ⊆ Fp4 inversions are for free and the exponent can be split, but once
more, it is unclear how group squarings can be sped up [144].

4.7.1. Quotient Groups. In an anonymous submission [207] it was suggested to
represent the group Gp+1 ⊂ F

∗
p2 by the isomorphic group F∗p2/F∗p. Suppose p ≡

2 mod 3, then the same arithmetic as in Section 4.3.1 can be used based on a root γ of
Φ3(x). Two elements a0 +a1γ and b0 +b1γ are in the same congruency class if either
both a1 = 0 and b1 = 0 or a0/a1 = b0/b1. As a consequence, elements with a1 6= 0



4.7. ALTERNATIVES 89

can be represented with a single element in Fp, namely a0/a1. Compressing a point
requires a single field inversion (or more precise, division by a1). Decompression
is for free, simply take a0/a1 + γ as representative. For the congruency class of
elements with a1 = 0 a special symbol must be used.

Arithmetic is based on Lemma 4.2 and the observation that multiplying an el-
ement of the form a0 + γ with b0 + b1γ can be done in 2M + 2D + 3A1. Since it
can be assumed that the base of the exponent is compressed, this gives a speedup.
Computing inverses in the group is basically for free using the Frobenius endomor-
phism and the order of the group: (a0 + a1γ)−1 = (a0 + a1γ)p = (a1 + a0γ). As a
side result, multiplication by the inverse of a compressed element can also be done
in 2M + 2D + 3A1. This can be summarized by saying that α = 2.5, δ = 2, α̇ = 2
and ν = 0, all measured in the number of Fp-multiplications.

Some care has to be taken when applying these figures directly to the runtimes
for the algorithms described in Chapter 2. The problem is that the multiplication
of two compressed elements does not result in a compressed element, so either extra
inversions are needed or some care has to be taken when using α̇. For a single expo-
nentiation based on the NAF all is fine; it costs 2.67 Fp-multiplications per exponent
bit. A double exponentiation gnhm costs 3 Fp-multiplications per exponent bit, if
the joint sparse form is used and we ignore the time it takes to compute compressed
representations of gh and gh−1. Using the signed sliding window method with w = 4
is an alternative, but somewhat involved since not all elements are compressed.

The quotient group approach is especially attractive if precomputation is used.
The compression gives both the benefit of a shorter representation and cheaper costs
to use the stored elements. For instance, if we use Pippenger’s comb with w = k/10
and t = 5, a single exponentiation based on the 62 precomputed elements will
take about 0.59k Fp-multiplications. This is more than 30% faster than LUC with
precomputation. Whereas extra precomputation for LUC seems ineffective, more
precomputation for the quotient group will lead to even faster single exponentiation
routines.

4.7.2. Algebraic Tori. Rubin and Silverman [157] suggest to use algebraic tori for
the compression of elements in Gp+1 and Gp2−p+1. The same compression rate as
LUC respectively XTR is achieved, but without the disadvantages of the trace-
methods. In particular, it is possible to decompress to the exact point in Gp+1 (or
Gp2−p+1) and not to one of its conjugates. Rubin and Silverman do not describe the
efficiency of the scheme (apart from the compression rate) in any detail. However,
for the scheme based on Gp+1 they derive a formula identical to the one for the
quotient group just discussed. For the group based on sextic extensions, it seems
the computations have to be performed in Gp2−p+1 after ‘decompressing’. It is
unclear whether this decompression is cheaper than for XTR (where two extra bits
can be used to point out the conjugate that is needed).



90 4. FINITE FIELD EXTENSIONS

4.8. Timings

To make sure that the methods introduced in this paper actually work, and to
discover their runtime characteristics, all methods based on sextic extension fields
were implemented and tested. In this section the results are reported, in such a way
that the results can easily and meaningfully be compared to the timings reported
in [107]. The resulting runtimes are reported in Table 4.3.

For XTR, Algorithm 3.20 was implemented, tested for correctness, and it was
confirmed that the speedup over the double exponentiation from [107] is negligible.
However, implementing Algorithm 3.20 was shown to be significantly easier than
it was for the matrix-based method from [107]. Thus, Algorithm 3.20 may still
turn out to be valuable if Algorithm 3.37 cannot be used. (For instance if one is
concerned about side-channel attacks, although this is not very common for double
exponentiation.)

XTR routines based on Algorithms 3.37, 3.33, and 3.31 with normal and fast
precomputation were implemented as well, and incorporated in cryptographic XTR
applications along with the old methods from [107].

The traceless method from Section 4.5 was also implemented using the same
subgroups Gq ⊂ Gp2−p+1 ⊂ F∗p6 for 170-bit p and q as XTR which facilitated testing
for correctness.

The timings for single exponentiations with precomputation do not include the
time needed for the precomputations. These times are given in separate rows.

Each runtime is averaged over 100 random keys and 100 cryptographic appli-
cations (on randomly selected data) per key. All times are in milliseconds on a
600 MHz Pentium III NT laptop, and are based on the use of a generic and not
particularly fast software package for extended precision integer arithmetic [103].
More careful implementation should result in much faster timings. The point of Ta-
ble 4.3 is however not the absolute speed, but the relative speedup over the methods
from [107].

The RSA timings are included to allow a meaningful interpretation of the tim-
ings: if the RSA signing operation runs x times faster using one’s own software
and platform, then most likely XTR will also run x times faster compared to the
figures in Table 4.3. For each key an odd 32-bit RSA public exponent was randomly
selected. ‘CRT’ stands for ‘Chinese Remainder Theorem’. For a theoretical com-
parison of the runtimes of RSA, XTR, ECC, and various other public key systems
at several security levels, refer to [105].

4.9. Conclusion

The results for second degree extensions improve previously reported ones, but
the resulting exponentiations are less efficient than the LUC exponentiations.

The XTR public key system as published in [107] is one of the fastest, most
compact, and easiest to implement public key systems. It is shown that it is even
faster and easier to implement than originally believed. The matrices from [107]
can be replaced by the more general iteration from Section 3.3.5. This results in



4.9. CONCLUSION 91

Table 4.3. RSA, old XTR, and new XTR runtimes.

method key setup signing verifying encrypting decrypting

1020-bit RSA with CRT 908 ms 40 ms 5 ms 5 ms 40 ms
without CRT 123 ms 123 ms

170-bit XTR old 64 ms 10 ms 21 ms 21 ms 10 ms
new, no prec. 62 ms 7.3 ms 8.6 ms 15 ms 7.3 ms

new, with prec. 4.3 ms 8.6 ms
precomputation 4.4 ms 8.8 ms

fast prec. 1.6 ms 6.0 ms

170-bit
Gq ⊆ Gp2−p+1 (no prec.) 85 ms 8.9 ms 13 ms 17.8 ms 8.9 ms

60% faster XTR signature applications, substantially faster encryption, decryption,
and key agreement applications, and more compact implementations.

The timings also confirm that our new methods for Fp6-subgroup exponentiation
are superior to the original XTR and almost competitive with the faster version of
XTR described in this chapter. This shows that the main reason to use XTR would
no longer be its speed, but mostly its compact —and sometimes inconvenient—
representation.

Protocols where traceless methods compare well to LUC and XTR are espe-
cially those based on homomorphic ElGamal encryption [60] such as Schoenmakers’
verifiable secret sharing scheme [162]. Another example is Cramer-Shoup encryp-
tion [55], based on the DDH assumption.

It is also conceivable to use a mixture of trace-based methods and direct com-
putation. Given an element in Gp+1 or Gp2−p+1 the cost of computing the LUC
respectively XTR representation is negligible. Going from LUC to Gp+1 requires a
square root computation in Fp, going from XTR to Gp2−p+1 can be done by comput-
ing the roots of a third degree polynomial over Fp2 . In both cases extra information
is needed to resolve root ambiguities.





5

Montgomery-Type Representations

This chapter discusses efficient arithmetic on elliptic curves. The emphasis lies
on representations where computations are performed on the x-coordinates only.
We discuss existing methods and present a new one for curves over binary fields,
giving rise to a faster addition routine than previous Montgomery-representations.

As a result a double exponentiation routine is described that requires 8.5 field
multiplications per exponent bit, but that does not allow easy y-coordinate recovery.
For comparison, we also give a brief update of the survey by Hankerson et al. [74]
and conclude that, for non-constrained devices, using a Montgomery-representation
is slower for both single and double exponentiation than projective methods with
y-coordinate.

5.1. Introduction

Since the introduction of elliptic curve cryptography in the mid 1980s, many
proposals have been made to speed up the group arithmetic. There are essentially
three ways to achieve this: speed up the arithmetic in the underlying field (e.g.,
binary, prime, optimal extension fields [9]), pick a convenient representation of the
group elements (e.g., affine, projective, Chudnovsky, ‘mixed coordinates’ [48]), or
choose a short addition chain (Chapter 2).

The effects of the three possible choices are certainly not independent as demon-
strated by for instance [9, 48, 86]. This is in particular the case if the so-called
Montgomery representation is used. The Montgomery representation was intro-
duced as part of a speedup of the elliptic curve factoring method [130], but has
been relatively uncommon in cryptographic applications. It was specifically tailored
for curves over large prime fields. (Actually, over large rings Z∗n, where failure to
invert would constitute a factoring success.) For the Montgomery representation
the general elliptic curve equation is replaced by

(20) EM : BY 2 = X3 +AX2 +X

over finite fields of odd characteristic. Because of its intended application in the ellip-
tic curve integer factoring method, the Montgomery representation was specifically
designed to speed up the calculation of the x-coordinate of nP , for large integers
n and points P on the curve EM . Montgomery’s representation is characterized
not so much by the particular form of the curve-equation, but mostly by the facts
that to add two points their difference must be known and that the y-coordinate
is absent. Furthermore, the order of the elliptic curve group must be divisible by

93



94 5. MONTGOMERY-TYPE REPRESENTATIONS

4 [140]. These facts have to be taken into account when one tries to take advantage
of the fast Montgomery representation based computation of nP in a cryptographic
context. For instance, the divisibility by 4 rules out the so-called NIST curves [136].

It is well known that for most cryptographic protocols a y-coordinate is not re-
ally needed; for instance, in Diffie-Hellman it adds only a single bit and ECDSA [77]
can be run with just x-coordinates. Nevertheless, if the y-coordinate of some point
P is needed, it can be computed efficiently if P ’s x-coordinate is known along with
the x-coordinate of some other point Q and both the x and y coordinates of P −Q.
Whether or not these data are available depends on the way P is computed. In the
Montgomery representation, and assuming P is the result of a scalar multiplication,
P is computed using a second order recurrence in the x-coordinate corresponding
to a Lucas chain (Chapter 3), because to add two points their difference must be
known.

For elliptic curves over fields of odd characteristic a generalization of Mont-
gomery’s result is known that is valid for general Weierstrass curves, including the
NIST curves [34, 76]. It leads to relatively slow scalar multiplication. Optimization
of those formulae leads to Montgomery’s results with the same restriction on the
curve group order, but slightly more freedom in the curve equation.

For elliptic curves over fields of characteristic two, the traditional Montgomery
representation based on the curve equation EM does not work, because the curve
isomorphism requires a division by 2. Adaptation of Montgomery’s representation
to fields of characteristic two based on the ordinary shortened Weierstrass form for
non-supersingular curves is considered in [3, 115, 192], resulting in a reasonably
fast single exponentiation routine without precomputation.

By introducing an alternative curve equation we further optimize the Mont-
gomery method for curves over binary fields, saving one finite field multiplication
for general point addition relative to earlier work. Compared to [115] this leads
to a speedup of about 15% for double exponentiation. Furthermore, we investi-
gate the consequences for single exponentiation with precomputation, y-coordinate
recovery, and two simultaneous exponentiations. The new methods apply to all
non-supersingular curves over F2l , irrespective of the group order.

The Montgomery representation is said to have three possible advantages: it
is fast, requires only few registers in memory and can serve as a hedge against
timing and power analysis attacks. From our results and comparison with other
work, we conclude that in the binary case the Montgomery representation is not as
fast as regular methods, for neither single nor double exponentiation. Furthermore,
the fastest Montgomery representation approach to either type of exponentiation
uses continued fraction based Lucas chains; as a consequence the protection against
timing and power analysis attacks is lost. So, despite the fact that our results
improve on previous results in this area, we conclude that the use of Montgomery
representations for elliptic curves over binary fields can hardly be recommended,
unless our results can be improved upon. Only if memory usage or timing and
power analysis are of serious concern, the Montgomery representations regain their
attractiveness.



5.2. ELLIPTIC CURVES 95

In Section 5.2 a brief overview of elliptic curves is given, based on the compre-
hensive work by Blake et al. [17]. In Section 5.3 the Montgomery representations
are considered in their full generality. Section 5.4 focuses on binary fields. Existing
representations are reviewed and a new one is introduced, that requires one field
multiplication fewer for a point addition. A comparison is made with the tradi-
tional way of doing elliptic curve arithmetic by means of projective coordinates. In
Section 5.5 curves over fields of odd characteristic are considered. These results are
mostly known. In Section 5.6 we present our conclusions.

5.2. Elliptic Curves

5.2.1. Curve Definition. An elliptic curve over a finite field F is the set of points
(X,Y ) ∈ F2 satisfying the long Weierstrass equation

(21) E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

together with a point at infinity, denoted O. The coefficients ai, i ∈ {1, 2, 3, 4, 6},
are taken from the field of definition F. The points on an elliptic curve form a
finite abelian group under the addition operation also known as the chord-tangent
process. The point at infinity, O, serves as group identity and the negation of a
point (X,Y ) is given by (X,−Y − a1X − a3).

In the literature several constants related to the ai are defined:

b2 = a2
1 + 4a2 ;

b4 = a1a3 + 2a4 ;

b6 = a2
3 + 4a6 ;

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 ;

c4 = b22 − 24b4 ;

c6 = −b32 + 36b2b4 − 216b6 ;

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 ;

j = c34/∆ .

Here ∆ is called the discriminant and the j stands for j-invariant. It can easily be
verified that the b’s satisfy

4b8 = b6b2 − b24 .
A curve is singular iff ∆ = 0; henceforth we will assume ∆ 6= 0. The j-invariant
characterizes (group) isomorphism classes over the algebraic closure F̄ of the ground
field: Two curves are isomorphic over F̄ if and only if their j-invariants are the same.
A curve is supersingular iff ∆ 6= 0 and j = 0.

We assume we are working in a cyclic subgroup of size q with generator P and
lg q ≈ k. As customary we use additive notation for the group operation.



96 5. MONTGOMERY-TYPE REPRESENTATIONS

5.2.2. Curve Arithmetic. Let Pi for 0 < i ≤ 5 be points on the curve and assume
that P3 = P1 + P2, P4 = P1 − P2, and P5 = 2P1. Moreover, we assume that O is
not among the Pi. This allows us to write Pi = (Xi, Yi) in affine coordinates or
Pi = (xi, yi, zi) in projective coordinates, usually with Xi = xi/zi and Yi = yi/zi.
Note that upper case characters are used for affine coordinates, and lower case ones
for projective coordinates. The following relations hold (cf. [17, Lemma III.2]):

X3 = (
Y1 − Y2

X1 −X2
)2 + a1(

Y1 − Y2

X1 −X2
)−X1 −X2 − a2(22)

X4 = (
Y1 + Y2 + a1X2 + a3

X1 −X2
)2 + a1(

Y1 + Y2 + a1X2 + a3

X1 −X2
)−X1 −X2 − a2(23)

X5 =
X4

1 − b4X2
1 − 2b6X1 − b8

4X3
1 + b2X2

1 + 2b4X1 + b6
.(24)

5.3. The Montgomery Representation

From (24) it follows that it suffices to know the x-coordinate of P to compute the
x-coordinate of 2P . Montgomery [130] observed that if the special curve equation
(20) is used, the product of the x-coordinates of P1+P2 and P1−P2 can be expressed
using only the x-coordinates of P1 and P2. The occurrences of the y-coordinates in
(22) and (23) cancel after applying the curve equation. If we consider a curve over
an arbitrary finite field and satisfying the long Weierstrass equation (21), we can
write the aforementioned product of x-coordinates as

(25) X3X4 = (−b8 − b6(X1 +X2)− b4X1X2 +X2
1X

2
2 )/(X1 −X2)2 .

Interestingly, the sum of the x-coordinates of P1 + P2 and P1 − P2 can also be
expressed using only the x-coordinates of P1 and P2.

(26) X3 +X4 = (b6 + b4(X1 +X2) +X1X2(b2 + 2(X1 +X2)))/(X1 −X2)2 .

To denote the difference between the two approaches we speak of the additive
Montgomery method if the group addition is based on X3 + X4 and of the multi-
plicative Montgomery method if it is based on X3X4. The terminology additive and
multiplicative method is also used by Izu and Takagi [76]. Note that the formula
for point doubling is independent of the choice for the multiplicative or additive
method. (Although there is some interaction when the formulae are optimized.)

5.3.1. Recovery of the y-Coordinate. The curve equation provides a way to de-
termine the y-coordinate of a given point using a square root computation. This
method is relatively expensive and one still needs to address the square root ambigu-
ity. Lopez and Dahab present an alternative [115, Lemma 3]. If two points P1 and
P2 are given by x-coordinate only and their difference P4 is fully specified, either
unknown y-coordinate can be retrieved in a small number of field multiplications.
Moreover, there is no square root ambiguity. The method from Lopez and Dahab
to recover the y-coordinate is described in more detail below (slightly generalized).

Assuming that P4 6= −P4 and given X1, X2, X4 and Y4, it is possible to deter-
mine Y2 efficiently. From formula (22) it follows how to determine Y1 if X1, X2, X3



5.4. CURVES OVER BINARY FIELDS 97

and Y2 are given, by using the curve equation (21) to get rid of the quadratic term
Y 2

1 . However, since the values (P,Q, P − Q) have the same additive relation to
each other as the values (P + Q,P,Q), the desired result follows from a suitable
re-indexing:

(27)

Y1 =
2a6 −X1(X2−X4)2 + a4(X2+X4) +X2X4(2a2+X2+X4)− (a3+a1X2)Y4

a3 + a1X4 + 2Y4
.

Note that a3 + a1X4 + 2Y4 = 0 iff Y4 = −Y4 − a1X4 − a3 or P4 = −P4, which
we assumed not to be the case. In practical applications P4 will typically be the
generator of a (sub)group for which the DLP is assumed to be hard, so it will
certainly have a higher order than two.

5.4. Curves over Binary Fields

5.4.1. Traditional Methods. Before discussing the Montgomery representation for
binary fields, a word on more traditional methods. Our point of departure is the
overview by Hankerson et al. [74].

For non-supersingular curves over fields of binary characteristic the long Weier-
strass equation is often replaced by the following short Weierstrass equation

(28) E : Y 2 +XY = X3 + a2X
2 + a6 .

For every curve of the form (21) there is an isomorphic curve of the form (28). More-
over, if the extension degree k is odd, a2 in (28) can be taken either 0 or 1. Hence
multiplications by a2 may be neglected. A curve of the form (28) has discriminant
a6 and j-invariant 1/a6.

Curve Representation. Skewed projective coordinates (x/z, y/z2) are the most
efficient curve representation known [86, 114]. Using skewed projective coordinates,
a general addition costs 14 field multiplications. However, if one of the points is given
in affine coordinates, this drops to 9 field multiplications. Doubling a point costs 4
field multiplications. King [86] notes that, if the point resulting from an addition is
subsequently doubled, a multiplication can be saved at the cost of a squaring. For
a large class of popular exponentiation routines, this effectively reduces the cost of
an addition to 8 field multiplications.

Exponentiation (or Scalar Multiplication). Hankerson et al. describe exponen-
tiation routines for three different settings: single exponentiation with a fixed base;
single exponentiation with an arbitrary base and double exponentiation with one
base fixed and the other arbitrary. This choice seems motivated by the facts that
signature generation is a fixed base exponentiation and signature verification is a
double exponentiation with one base fixed. However, with the introduction of fast
point counting algorithms it becomes more realistic to deviate from standardized
curves, which is why we also consider double exponentiations with both bases arbi-
trary. More details on the exponentiation methods can be found in Chapter 2.

For single exponentiation Hankerson et al. [74] propose a signed sliding window
(SSW) method with window size 4 (using the Montgomery representation is reported



98 5. MONTGOMERY-TYPE REPRESENTATIONS

Table 5.1. Expected number of field multiplications for point mul-
tiplication given a k-bit exponent, assuming I ≈ 10M .

Type Method Given in [74] Improvement
single SSW, w = 4 5.8k + 60 5.6k + 60
fixed single comb, w = k/8, t = 4 3.11k + 8 2.88k + 9
semi-fixed double comb+Montgomery-repr. 9.11k + 40 n.a.
semi-fixed double interl. SSW, w = 4 n.a. 7.24k + 60
double interl. SSW, w = 4 n.a. 7.24k + 108
double JSF n.a. 8k + 36

to be faster). This results in approximately 1 point doubling and 1
5 point additions

per exponent bit. Moreover, 3 points have to be precomputed, namely 3P, 5P , and
7P . This has to be done affinely and costs 8 multiplications and 4 inversions. If the
base is fixed, Hankerson et al. propose a fixed base comb of size 4. An exponentiation
will cost 1

4 point doublings and 15
64 point additions per exponent bit on average. The

number of precomputed points is 14. Note that this method does not exploit cheap
point negation.

The double exponentiation routine presented assumes one base is fixed and sim-
ply consists of two separate single exponentiation routines and multiplying the result
(using a fixed base comb and Montgomery respectively). A double exponentiation
without any fixed bases is not addressed. However, using the Joint Sparse Form it
will require 1 point doubling and 1

2 point additions per bit of the longest exponent.
Interestingly, this method already outperforms the double exponentiation routine
with fixed base given by Hankerson et al. Möller [127] proposes to interleave two
windowed NAF routines thereby saving one set of point doublings. For window size
4 this results in 8 points to be precomputed affinely and 1 point doubling and 2

5
point additions per exponent bit. Note that King’s improvement does not apply in
approximately 1

25 of the additions. Of the 8 points to be precomputed, half can be
done in advance if the base is fixed.

Table 5.1 summarizes these results. We give the number of field multiplications
for a k-bit exponent, according to [74] and with inclusion of the known speedups
just described. We use the same ratio as Hankerson et al., namely that one inversion
costs the same as 10 multiplications. The extra costs needed at the end to convert
back to affine coordinates are also included. For k = 163, compare with [74, Table
6].

5.4.2. Optimizing Montgomery. The first thing to note when optimizing the Mont-
gomery representation for curves over binary fields is the simplification that arises
when working with characteristic 2. Relevant examples are the following three:

b8 = a2
1a6 + a1a3a4 + a2a

2
3 + a2

4 ;

∆ = a4
1b8 + a4

3 + a3
1a

3
3 ;

j = a12
1 /∆ .



5.4. CURVES OVER BINARY FIELDS 99

Note that a non-singular curve is supersingular iff a1 = 0.
The doubling formula (22) also simplifies considerably, giving

(29) X5 =
X4

1 + a1a3X
2
1 + b8

(a1X1 + a3)2
.

For affine non-supersingular curves the work is minimized for a3 = 0 and a1 = 1,
requiring 2S+ I +M +D+ 2A1, basically an inversion and a multiplication (or one
division). Projectively we get

(30)
x5

z5
=
x4

1 + a1a3x
2
1z

2
1 + b8z

4
1

a1x2
1z

2
1 + a3z4

1

.

which costs at most 5M+5S+3A1. If a3 = 0 and either a1 = 1 or b8 = a2
1a6+a2

4 = 1,
this reduces to 2M + 3S +A1.

The recovery of the y-coordinates is also considerably simplified. For both
shortened Weierstrass as our proposed representation a3 = 0 and a4 = 0. If we
furthermore assume projective coordinates are used, then Lopez and Dahab [115]
show that (27) simplifies to

X1 =
a1z4x4z2x1

a1z4x4z2z1
;

(31a)

Y1 = y4 +
(x2z4 + x4z2)((x1z4 + x4z1)(x2z4 + x4z2) + z1z2x

2
4 + a1z1z2z4y4)

a1z1z2x4z4
.

(31b)

Simultaneous recovery of X1 and Y1 will therefore cost at most 15 multiplications
and 1 inversion. If z4 = 1, this reduces to 11 multiplications and 1 inversion. A
further reduction to 10 multiplications and 1 inversion is achieved if a1 = 1, which
is the case for the shortened Weierstrass form.

We will now review known methods of computations in the elliptic curve groups
over binary fields without using y-coordinates. Interestingly, these methods are
all based on a relationship for X3 + X4. Next, we analyse methods based on a
relationship for X3X4.

5.4.3. Additive Montgomery Formulae. Agnew et al. [3] mention computing with
x-coordinates only for non-supersingular curves over large extension fields of char-
acteristic two. By using the curve equation (21) it is possible to rewrite (22) as

(32) X3 =
Y1(a1X2 + a3) + Y2(a1X1 + a3) + (X1 +X2)(a4 +X1X2)

(X1 +X2)2
.

For X4 a similar formula can be obtained by replacing Y2 in (32) with Y2+a1X2+a3,
the y-coordinate of −P2. This shows that

(33) X3 +X4 =
(a1X1 + a3)(a1X2 + a3)

(X1 +X2)2
.



100 5. MONTGOMERY-TYPE REPRESENTATIONS

For the shortened Weierstrass form the above is simplified by setting a1 = 1 and
a3 = 0. The projective version presented in [3] based on these formulae is incorrect.

In 1993 the Montgomery representation is also mentioned in an article by
Menezes and Vanstone [123]. Here the affine version for supersingular curves over
fields of binary characteristic is given. In this case a1 = 0 and a3 = 1, so (33)
simplifies to

(34) X3 +X4 =
1

(X1 +X2)2
.

Since squarings can be neglected, an addition costs a single inversion. This affine
version is reported to present an improvement in storage requirements, but at a
considerable expense of speed.

In 1999 Lopez and Dahab [115] and Vanstone et al. [192] independently propose
correct projective versions for non-supersingular curves. Both proposals are based
on the short Weierstrass form. In both works the following formulae are given, easily
verified by (33) and (29):

x3

z3
=
x4(x1z2 + x2z1)2 + z4(x1z2)(x2z1)

z4(x1z2 + x2z1)2
;(35)

x5

z5
=
x4

1 + a6z
4
1

x2
1z

2
1

.

In both works emphasis is put on an addition with a fixed difference P4, which allows
setting z4 in (35) to 1. Such a fixed difference addition takes 4 field multiplications
and 1 squaring (for some reason Vanstone et al. report 2 squarings). It seems
that for an ordinary addition one needs 6 field multiplications and 1 squaring. A
point doubling takes 2 multiplications and, if a1/4

6 is precomputed, 3 squarings (and
here Lopez and Dahab use 5 squarings, which is more than needed even without
precomputation of a1/4

6 ). It is also noted that having a small a1/4
6 can reduce the

cost of multiplication with a
1/4
6 considerably, and therefore of a point doubling. A

similar argument holds for fixed difference addition if x4 is small.
In both works affine versions are also presented, but not worked out in full since

the inversions seem to deter. It is said that a point addition takes 2 multiplications,
a squaring and an inversion, whereas a doubling takes one multiplication fewer.

5.4.4. Multiplicative Montgomery Formulae. Originally, Montgomery derived his
formula for curves over large prime characteristic by multiplying X3 and X4, not by
considering their sum. Not surprisingly, a multiplicative version of Montgomery’s
trick also proves possible for curves over binary characteristic. For a curve, that is
non-singular and has coefficient a3 = 0, one obtains:

x3x4

z3z4
=

x2
1x

2
2 + b8z

2
1z

2
2

(x1z2 + x2z1)2
;

x5

z5
=
x4

1 + b8z
4
1

(a1x1z1)2
.



5.5. PRIME FIELDS 101

In the short Weierstrass form a1 will be 1, but b8 can be any field element. Hence,
computing x3 and z3 will take 6 field multiplications by computing (x1z2 + x2z1)
as (x1 + z1)(x2 + z2) − x1x2 − z1z2. The number of multiplications is one less if
P4 is fixed and z4 = 1. Setting b8 = 1 will reduce these costs to 5 respectively 4
field multiplications, while at the same time keeping the costs for a point doubling
the same. As an alternative, one could consider using the representation (x, z, xz).
This requires the same number of multiplications though, so should therefore not
be recommended.

If a3 = 0, then b8 = a2
1a6 + a2

4. Hence, b8 = 1 can be achieved by setting a4 = 0
and a6 = 1/a2

1. We therefore propose working on elliptic curves of the form

(36) E : Y 2 + a1XY = X3 + a2X
2 + 1/a2

1 ,

where a1 and a2 are in F2l . To ensure we do not exclude any interesting curves we
present the following lemma.

Lemma 5.1. Any non-supersingular curve over F2l is isomorphic to a curve
over F2l of the form (36).

Proof: Recall that all non-supersingular curves have a representation of the form
(28), having j-invariant 1/a6. A curve of the form (36) has j-invariant equal to a8

1.
Squaring is a permutation on F2l whence all elements have a unique eighth root in
F2l . Set a1 = a

−1/8
6 and let s ∈ F2l . Consider the admissible change of variables

given by

x = X/a2
1,

y = sX/a2
1 + Y/a3

1 .

This gives an isomorphism over F2l of a curve given by (28) and a curved defined
by

(37) 1/a2
1 + a2

1(a2 + s+ s2)x2 + x3 = a1xy + y2 .

It is easily verified that (37) is of the form (36). Q.E.D.

5.4.5. Exponentiation, also known as Scalar Multiplication. Table 5.2 contains an
overview of the various Lucas chain methods described in Chapter 3 when applied
to the Montgomery representation. Once again, α stands for a point addition and
δ for a point doubling. The notation α̇3 is used for a point addition with a fixed
difference, since these are cheaper. Old refers to [115] and [192]’s additive version,
New refers to the multiplicative version presented in Section 5.4.4. The column Y
denotes whether easy y-coordinate recovery using (31) is possible or not.

5.5. Prime Fields

5.5.1. Traditional Methods. An elliptic curve over a prime field Fp, p > 3 can be
represented using the short Weierstrass form

(38) Y 2 = X3 + a4X + a6 .



102 5. MONTGOMERY-TYPE REPRESENTATIONS

Table 5.2. Overview of asymptotic costs of scalar multiplication
based on Montgomery representation in F2l -multiplications per ex-
ponent bit.

Y General Old New
Group arithmetic
Doubling δ 2 2
Addition α 6 5
Mixed Addition α̇3 4 4
Single exponentiation
Binary Yes α̇3 + δ 6 6
Montgomery No 1.5α+ 0.25δ 9.5 8
Precomp. Montgomery No 0.75α+ 0.25δ 5 4.3
Double exponentiation
Akishita Yes 2 1

4 α̇3 + 3
4δ 10.5 10

Montgomery No 1.5α+ 0.5δ 10 8.5
Twofold exponentiation
Montgomery No 1.5α+ 0.5δ 10 8.5

Table 5.3. Operation counts for elliptic curve point addition and
doubling. A = affine, P = standard projective, J = Jacobian, and
C = Chudnovsky.

Doubling, δ General Addition, α Mixed Coordinates, α̇
2A→ A I + 2M + 2S A+A→ A I + 2M + 2S J +A→ J 8M + 3S
2P → P 7M + 3S P + P → P 12M + 2S J + C → J 11M + 3S
2J → J 4M + 4S J + J → J 12M + 4S C +A→ C 8M + 3S
2C → C 5M + 4S C + C → C 11M + 3S

Such a curve has j-invariant 6912a3
4/(4a

3
4 + 27a2

6). For a large class of curves it is
possible to use a4 = −3 (for example the NIST-curves).

Brown et al. [36] give an overview of efficient arithmetic on elliptic curves over
prime fields. If the group arithmetic is performed affinely, a point addition costs
2M + S + I + 5A1 + 3D and a point doubling 2M + 2S + I + 3A1 + 4D. (This is
a rare case where δ > α). The high costs of inversions are the reason to examine
projective coordinates.

The standard projective coordinates are (x, y, z) subject to X = x
z and Y = y

z .
Generally faster are Jacobian coordinates (x, y, z) satisfying X = x

z2 and Y = y
z3 .

Keeping track of z2 and z3 can save some work, giving rise to Chudnovsky Jacobian
coordinates. Cohen et al. [48] consider adding points with different coordinate
representations. This technique is known as mixed coordinate representation. The
main application is performing the precomputation affinely and the rest projectively.
Table 5.3 is a reproduction of [36, Table 5]. The modular reductions and modular
additions are not counted, moreover curves with a4 = −3 are assumed.



5.5. PRIME FIELDS 103

Exponentiation. The exponentiation routines described in Chapter 2 can be
used to perform a scalar multiplication. Table 5.4 contains an overview of the costs
for the most common exponentiations. based on Assumption 1.3. We would like
to point out that the application of Assumption 1.3 has the effect of seemingly
halving the number of operations required compared to the existing literature (for
instance Brown et al., count M = 1 and S = 0.85). For comparison with the
cryptosystems described in the previous chapter this deviation is reasonable. The
moduli used in elliptic curve cryptography allow fast reduction, whereas the use
of such moduli is not recommended for the cryptosystems discussed in Chapter 4.
Especially for the cryptosystems based on Fp6 the comparison is meaningful, since
moduli of comparable length can be used.

Quite often the projective point at the end of the computation is brought back
into affine format. This costs an inversion and some multiplications. If an inversion
costs as much as 80 multiplications and 160-bit curves are used, this effectively adds
half a multipication per exponent bit (which is significant). We do not count these
inversions for three reasons: all projective methods require one; in some protocols
the projective point actually suffices; and the relative cost of an inversion compared
to a multiplication greatly differs depending on who you listen to.

For an ordinary single exponentiation Brown et al. propose a signed sliding win-
dow method with window size w = 4 using the Chudnovsky-Jacobian representation
for the precomputation and the Jacobian representation for the main computations.
The costs for this method given a random k-bit exponent are 79M + 25S for the
precomputation and on average ≈ (4 + 11

6 )kM + (4 + 3
6 )kS for the processing of

the exponent. Under Assumption 1.3 this sums up to 47 + 4.3k measured in Fp-
multiplications. Using window size w = 3 leads to an average runtime of 21.4+4.5k.
For the sake of comparison, the (binary) NAF based on Jacobian coordinates (and
an affinely represented base), takes 4.8k Fp-multiplications on average for a single
exponentiation.

If inverses are not too expensive, it can be advantageous to mix even more
coordinates. First use Chudnovsky-Jacobion coordinates for the precomputation.
Use Montgomery’s simultaneous inversion trick [45, Algorithm 10.3.4] to obtain the
affine representations for these points. This costs roughly 6M + S per point plus
one inversion. For instance, using a window size w = 4 will lead to a runtime
of ≈ 70.1 + 4.0k Fp-multiplications plus one inversion (window size w = 3 gives
≈ 31.3 + 4.2k). If k = 192 and the cost of an inversion satisfies 15M + 2S =
8.1 < I < 25 we see that 31.3 + 4.2 · 192 + I < 47 + 4.3 · 192, so the mixture of
three representations outperforms the mixture based on only two representations.
A similar use of Montgomery’s simultaneous inversion trick is proposed by Okeya
and Sakurai [141].

For fixed-base single exponentiation a comb method can be used. Brown et al.
suggest a comb method based on w = k

8 and t = 4. In this case 30 points need
to be precomputed (and stored affinely). Any subsequent exponentiation takes ≈
15α̇+8δ

64 k−α̇−δ for a k-bit exponent, where α̇ represents the cost of adding a Jacobian



104 5. MONTGOMERY-TYPE REPRESENTATIONS

Table 5.4. Expected number of field multiplications for point mul-
tiplication given a k-bit exponent.

Type Method Implied by [36]
single signed sliding window, w = 4 4.3k + 47
fixed single fixed base comb, w = k/8, t = 4 1.54k − 7.8
semi-fixed double comb+window 5.9k + 47
semi-fixed double interleaved signed sliding window

with w = 4 and w = 6 4.9k + 47
double JSF (windowed) 5k + 49

and an affine point and δ that of a Jacobian point doubling. Assumption 1.3 leads
to the simplification 1.54k − 7.8, measured in the number of Fp-multiplications.

Brown et al. only consider a double exponentiation with one of the bases fixed.
In this case the exponentiations are performed separately, one using the comb
method and one using the window method. The total costs of this method are
(1.54k − 7.8) + (4.3k + 47) + 7.2 ≈ 5.9k + 47. The windowed JSF will in general be
faster and has the advantage that no base needs to be fixed. The precomputation
can mostly be based on mixed Chudnovsky and affine coordinates; the main compu-
tation uses mixed Jacobian and Chudnovsky coordinates. Interleaving two signed
sliding window methods seems slightly faster if one of the bases is fixed and large
windows for this base have been affinely precomputed.

5.5.2. Optimizing Montgomery. Montgomery [130] considers curves given by the
somewhat unusual curve equation (20). He shows that a point doubling can be
computed by

(39)
x5

z5
=

(x1 + z1)2(x1 − z1)2

4x1z1((x1 − z1)2 + ((A+ 2)/4)(4x1z1))
,

which costs 3M + 2S + 5D + 4A1 exploiting that 4x1z1 = (x1 + z1)2 − (x1 − z1)2

and assuming (A+ 2)/4 is precomputed. Point addition is based on

(40)
x3x4

z3z4
=

(x1x2 − z1z2)2

(x1z2 − z1x2)2
.

Using a Karatsuba-like technique, this can be rewritten as

x3

z3
=
z4((x1 − z1)(x2 + z2) + (x1 + z1)(x2 − z2))2

x4((x1 − z1)(x2 + z2)− (x1 + z1)(x2 − z2))2
,

from which it follows that a point addition costs 4M +2S+6D+6A1. Montgomery
notes that by storing xi+zi and xi−zi the number of additions reduces to 4 (without
affecting the number of additions needed for a point doubling). If the point P4 is
given affinely, that is z4 = 1, the costs reduce to 3M + 2S + 6D + 6A1.

Not all curves have a Montgomery-representation. Okeya et al. [140] give nec-
essary and sufficient conditions for a curve in the shortened Weierstrass form (38) to
have a Montgomery-representation. The equation X3 +a4X+a6 = 0 should have at



5.5. PRIME FIELDS 105

Table 5.5. Overview of average costs per bit of scalar multiplica-
tion based on Montgomery representation.

Y General Montgomery Weierstrass
Group arithmetic
Doubling δ 2.1 3.1
Addition α 2.6 4.6
Mixed Addition α̇3 2.1 4.1
Single exponentiation
Binary Yes α̇3 + δ 4.2 7.2
Montgomery No 1.5α+ 0.25δ 4.4 7.7
Precomp. Montgomery No 0.75α+ 0.25δ 2.5 4.2
Double exponentiation
Akishita Yes 2 1

4 α̇3 + 3
4δ 6.3 11.6

Montgomery No 1.5α+ 0.5δ 4.9 8.4
Twofold exponentiation
Montgomery No 1.5α+ 0.5δ 4.9 8.4

least one root in Fp, corresponding to the point (X0, 0) on the curve, and 3X0 + a4

should be a quadratic residue modulo p. The point (X0, 0) has order 2 which implies
that Weierstrass curves without a point of order 2 cannot be represented by (20).
On a Weierstrass curve the x-coordinate of a point of order 2 satisfies

b6 + 2b4X1 + b2X
2
1 + 4X3

1 = 0 .

The x-coordinate of a point of order 4 is a root of the polynomial (in x)

(−b34 +b2b4b6−4b26)+(4b2b8−4b4b6)X1 +40b8X2
1 +40b6X3

1 +20b4X4
1 +4b2X5

1 +8X6
1 .

The point doubling formula (24) is very similar to Montgomery’s formula (39)
if b6 = 0, b4 = 2, and b8 = −1, namely

x5

z5
=

(x2
1 − z2

1)2

x1z1(4x2
1 + b2x1z1 + 4z2

1)
.

In this case the addition formula is exactly identical to Montgomery’s. Although
representations with b6 = 0, b4 = 2, and b8 = −1 might at first look more general
than Montgomery’s, this is not the case.

One way to achieve b6 = 0, b4 = 2, and b8 = −1 is by using a curve with
a1 = a3 = a6 = 0 and a4 = 1, i.e., a curve with equation Y 2 = X3 + a2X

2 + a4X.

5.5.3. Using the Short Weierstrass Form. It follows from the introduction that
computing with only x-coordinates can be done for any curve given in Weierstrass
form. Brier and Joye [34] and Izu and Takagi [76] discuss fast x-coordinate only
arithmetic based on the short Weierstrass form (38). To ease comparison with the
traditional representations, we will assume a4 = −3, which saves some multiplica-
tions (one per group operation to be precise).



106 5. MONTGOMERY-TYPE REPRESENTATIONS

5.5.4. Exponentiation. In Table 5.5 an overview is given of the various Lucas chain
methods described in Chapter 3 when applied to the Montgomery representation.
Once again, α stands for a point addition and δ for a point doubling. The notation
α̇3 is used for a point addition with a fixed difference, since these are cheaper.
The column Y denotes whether easy y-coordinate recovery using (31) is possible or
not. The column Montgomery refers to Montgomery’s original representation (or
the equivalent one described in the section above) and the column Weierstrass to
applying the Montgomery-technique directly to a curve in short Weierstrass form.

5.6. Conclusion

Although elliptic curves over binary fields and those over prime fields can be
quite different in certain respects, there are also some striking similarities.

In both cases it turned out that if traditional coordinates are used and a dou-
ble exponentiation has to be performed with one base fixed, it is advantageous to
combine the double exponentiation (instead of performing two separate exponenti-
ations). It is unclear exactly how much gain can be obtained from the fact that one
base is fixed.

If Montgomery-like coordinates are used, the advantage of a fixed difference for
the binary Lucas algorithm was bigger than the shorter chain length provided by
the Euclidean algorithms. For curves over prime fields the difference in speed is
quite small though, as already remarked by Montgomery [130].

In some respects different conclusions need to be drawn for the binary curves
and the prime curves.

For curves defined over a binary field, comparing Table 5.1 with Table 5.2 shows
that the Montgomery representation is considerably slower than traditional meth-
ods, both for single and for double exponentiation. However, for single exponenti-
ation using the Montgomery form can still have two advantages. First of all, the
uniformity of the steps in the binary algorithm provides a hedge against timing
and power analysis. Using ordinary projective coordinates in conjunction with the
Lucas binary algorithm is substantially slower. Secondly, the Montgomery method
requires less memory during a computation.

For double exponentiation timing and power analysis are seldom of any concern,
but if they were, the fast double exponentiation routines by Akishita and Mont-
gomery would not provide a hedge. Of course one could run two single exponenti-
ations, recover the y-coordinates and add the result. As for memory requirements,
here the Montgomery representation clearly stands out. During the computation
three points have to be stored, each consisting of two F2l -elements. Moreover two
elements in Zq need to be stored (d and e in Algorithm 3.25). All in all 8l bits. On
the other hand, Solinas’ method precomputes four points of two F2l -elements each
(this includes the two bases). During computation, one point of three F2l -elements
is used. The exponents need to be recoded and stored as well. In total, this costs
13l bits. The method based on interleaving two windowed NAFs requires even more
memory.



5.6. CONCLUSION 107

For curves over a prime field, Tables 5.4 and 5.5 show that the expected runtimes
for the Montgomery-representation and the traditional technique are very close to
each other. So close in fact that changing the relative costs of field squarings,
multiplications and inversions might very well give different winners. For a single
exponentiation routine the Montgomery form has the additional benefits of higher
resistance against side channel attacks and lower memory requirements. A serious
disadvantage is that not all curves can be brought into Montgomery form. If the
Montgomery-technique is applied to the short Weierstrass form all curves can be
used, but the resulting exponentiation routines are significantly slower.

With the current status in solving the DLP over elliptic curves and solving
it over finite fields, cryptosystems based on Gp2−p+1 in the previous chapter and
elliptic curves can be based on primes of roughly the same length. This allows a
meaningful comparison (including XTR). Elliptic curves seem slightly faster, but
the margin is so small that a different S : M ratio and the additional cost for an
elliptic curve to bring the point back to affine representation, could turn the tables.





6

Optimizing a Black Box Secret Sharing Scheme

A black box secret sharing scheme for a threshold access structure is a linear
secret sharing scheme that works over any finite abelian group. In this chapter we
describe how to efficiently implement Cramer and Fehr’s black box secret sharing
scheme. Several tweaks are used to speed up the scheme. Some of these tricks have
applications for other threshold systems as well.

6.1. Introduction

In his glorious but bloody past the famous pirate Blackbeard has accumulated
great wealth. These days are all gone now, Blackbeard is turning grey and he
decides to hide his treasure on some uninhabited island. Only to his two most
trusted lieutenants he reveals the location of the loot. But, being pirates, he does
not trust either of them with the complete location. Blackbeard considers giving
one lieutenant the latitude and the other the longitude of the treasure island. He
realizes that the number of islands on a given parallel of latitude is fairly limited and
will probably enable a single lieutenant to find the treasure without too much effort.
How can Blackbeard share the secret location of the treasure among his lieutenants
in such a way that any single lieutenant learns essentially nothing more, than that
it is hidden on an island?

The problem above is an example of secret sharing. A dealer wants to share a
secret s among n participants, such that only certain qualified coalitions of them
can reconstruct the entire secret, but any non-qualified coalition should not learn
anything new about the secret. The structure of which sets are qualified and which
are not is commonly referred to as the access structure.

A special but simple access structure is used for threshold secret sharing. Given
a threshold t, the secret is distributed among the n participants in such a way that
any t + 1 participants can reconstruct the secret, but any t participants remain
clueless. (Here we adhere to the notation used by Cramer and Fehr [52], based on
multi-party computation.) Since at least one participant is needed for reconstruction
and at most n, it holds that 0 ≤ t < n. The case t = 0 allows any single participant
to reconstruct the secret. It can be dealt with by giving each player a copy of the
secret. If t = n−1, all participants are required for the reconstruction. The sharing
can be done additively by giving n − 1 participants random shares and the last
participant the sum of all shares and the secret (this approach does require that
the secret can be embedded in some finite abelian group, but this will not pose any

109



110 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

problems). We will henceforth assume that 0 < t < n − 1, thereby excluding the
trivial cases just mentioned.

6.1.1. Shamir’s Secret Sharing. Shamir’s secret sharing [166] is a well-known
method for threshold secret sharing over a finite field F. Given parameters n and t
defining the access structure and a secret s ∈ F, the dealer picks uniformly at ran-
dom a polynomial g ∈ F[x] subject to g(0) = s. Given n different evaluation points
αi ∈ F∗ known to everyone, the dealer hands out share si = g(αi) to participant i
for i = 1, . . . , n. The vector of shares (s1, . . . , sn)T is also called the share vector
and denoted s. Together t+1 players know t+1 points on a polynomial of degree t.
This allows them to determine the polynomial using Lagrange interpolation,

(41) g(x) =
∑
i∈A

si
∏

j∈A,j 6=i

x− αj
αi − αj

.

The secret is safe for any coalition of at most t players since for every possible value
of g(0) there is exactly one polynomial consistent with the shares in the hands of
a coalition of t players. (Without loss of generality, a qualified subset will always
consist of exactly t+ 1 players and a non-qualified subset of exactly t players.)

Shamir’s secret sharing is a special case of linear secret sharing. In a linear
secret sharing scheme the secret and the shares are elements in a group G (denoted
additively). If s and s′ are secrets and s and s′ the corresponding vectors of shares,
then the vector s + s′ should be a share vector for the secret s+ s′. A linear secret
sharing scheme can be interpreted in the following way. Given the group and the
access structure a d×e matrix M is defined. A secret s is shared by picking a random
vector g in Ge with g0 = s and computing the share vector s = Mg. The d shares
are then distributed among the participants in a predetermined way (so d ≥ n).
Reconstruction is also linear: the participants in a qualified subset A compute the
inner product of their shares and a reconstruction vector λλλ(A) to form the secret s.

6.1.2. Black Box Secret Sharing. In Shamir’s secret sharing, the matrix M is (a
part of) a Vandermonde matrix with entries in the field. In general, the elements
in M should come from a ring R such that the group G is an R-module. All finite
abelian groups are Z-modules, so a generic choice for R is the set of integers Z.
The only problem that occurs is that for the reconstruction based on Lagrange
interpolation the elements αi − αj need to be inverted in the ring R. If the group
order of G is known, the ring R can be chosen ‘modulo’ this group order.

Desmedt and Frankel [57] consider black box secret sharing. That is, given an
arbitrary finite abelian group G, they describe how to share a secret s ∈ G without
relying on the structure of G (other than that it is finite abelian). This requires that
the matrix M and all the reconstruction vectors λλλ(A) are independent of the group.

Definition 6.1 (Black Box Secret Sharing). Let n and t < n be nonnegative
integers and let M ∈ Zd×e. Then M is a black-box secret sharing scheme for n and t
with expansion factor d/n if the following holds. Let G be an arbitrary finite abelian
group. For an arbitrarily distributed s ∈ G let g = (g1, . . . , ge)T ∈ Ge be drawn
uniformly at random subject to g1 = s only. Define the share vector as s = Mg



6.1. INTRODUCTION 111

(each entry in s is handed out to exactly one participant). Let A ⊆ {1, . . . , n} be
some subset of participants, let MA ∈ ZdA×e denote the restriction of M to the rows
jointly owned by members of A, and let sA = MAg. Let λλλ(A) ∈ ZdA be defined
(independent of G) for all subsets A ⊆ {1, . . . , n} of cardinality at least t+ 1.
i. (Completeness) If A contains at least t+ 1 participants, then the inner product

(sA,λλλ(A)) = s with probability 1.
ii. (Privacy) If there are at most t participants in A, then sA contains no Shannon

information on s.

The expansion factor is a measure for the number of group elements each par-
ticipant gets. For the trivial cases t = 0 and t = n − 1 the expansion factor is 1;
for Shamir’s secret sharing over a finite field the expansion factor is also 1. Note
that the expansion factor is unrelated to the ‘size’ of the secret. The fact that the
secret should be (encoded as) a group element limits this size. For larger secrets
the secret will have to be encoded using several group elements, that can be shared
independent of each other.

Black box secret sharing schemes were originally introduced with threshold RSA
applications in mind. Several players share the private key d of an RSA system. The
public key consists of the product of two large primes n, known as the RSA-modulus,
and an integer e satisfying de ≡ 1 mod φ(n). The factorination of n is unknown
(the values d, e, and n have nothing to do with those used in Definition 6.1). If
the players want to sign a message m they need to ‘reconstruct’ md mod n without
knowing φ(n), the order of the group Z∗n. Although this specific problem, known as
threshold RSA signatures, was later solved without using black box secret sharing
schemes by Shoup [173], black box secret sharing remains the generic solution. It
also has applications for secure general multi-party computation based on black box
rings [54].

Desmedt and Frankel provide a solution for black box secret sharing with ex-
pansion factor O(n). They achieve this by defining a ring R = Z[X]/(f) and regard
Gdeg f as an R-module. The polynomial f is chosen in such a way, that there exist n
evaluation points in the ring such that the points themselves are all units, but also
all their differences are units in the ring. If Shamir’s secret sharing is performed
based on this module and these evaluation points, all the denominators occurring in
the Lagrange coefficients are units in R (and hence the division can take place in the
ring). The maximal cardinality of a subset of R such that all differences are units
is called the Lenstra constant of the ring R. Finding a polynomial f of low degree
but for which the ring Z[X]/(f) has a high Lenstra constant is an open problem in
number theory. However, a possible choice for f is the p-th cyclotomic polynomial
where p is the smallest prime larger than n. Since G itself is not an R-module, Gp−1

is used instead. This gives rise to the expansion factor p− 1, which is O(n).

6.1.3. Optimal Black Box Secret Sharing. Cramer and Fehr [52] prove that the
expansion factor for a black box secret sharing scheme is at least blg nc+ 1 for all t
and n with 0 < t < n − 1. Central in their work is the relationship between black
box secret sharing schemes and span programs, leading to the following theorem.



112 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

Theorem 6.2 (Cramer and Fehr). Let n and t < n be nonnegative integers and
let M ∈ Zd×e. Define ε = (1, 0, . . . , 0) ∈ Ze. Then M is a black-box secret sharing
scheme for n and t if and only if for A ⊆ {1, . . . , n} the following holds.
(Completeness) If |A| > t then ε ∈ im (MT

A ).
(Privacy) If |A| ≤ t then there exists a κκκ = (κ1, . . . , κe)t ∈ ker(MA) with κ1 = 1.

Cramer and Fehr also describe a clever scheme that achieves expansion factor
blg nc + 2. We will refer to this scheme as the CF scheme. In a nutshell, it shares
the secret twice using weak secret sharing schemes. A weak secret sharing scheme
allows the reconstruction of a multiple of the secret, which is not quite the same as
reconstructing s. Suppose δαs and δβs are reconstructed from the two weak secret
sharing schemes. By ensuring that δα and δβ are coprime, standard Euclidean
techniques can be used to recover the real secret s: let a and b be such that aδα +
bδβ = 1, then a(δαs) + b(δαs) = s.

The weak secret sharing schemes used by Cramer and Fehr are versions of
Shamir’s secret sharing scheme over extension rings of Z. This is similar to Desmedt
and Frankel’s scheme, but the important difference is that using two independent
weak schemes, circumvents the dependency on the Lenstra constant and greatly
reduces the extension degree of the rings that are used. More precisely, Cramer and
Fehr show that the integers can be used for one of the rings and that the other ring
can have a defining polynomial of degree blg nc+ 1. The overall expansion factor is
blg nc+ 2, as desired. Henceforth we will use the subscript α to indicate the integer
sharing and the subscript β to indicate the sharing over the extension ring. Cramer
and Fehr thus proved the following theorem for the expansion factor for a black box
secret sharing scheme.

Theorem 6.3 (Cramer and Fehr). Let n and 0 < t < n− 1 be given, then the
minimal expansion factor m′ of a black box secret sharing for n participants with
threshold t satisfies

blg nc+ 1 ≤ m′ ≤ blg nc+ 2 .

Secret sharing schemes can have additional desirable properties such as share
completeness and uniformity.

A threshold scheme satisfies the share-completeness property if any t partici-
pants can reconstruct the shares of the remaining n− t players when also given the
secret s, in addition to their own shares. This property can be useful in protocol
design, if it is necessary to simulate the view of an adversary in a security proof.
A closely related example exploiting this property is Shoup’s RSA threshold signa-
ture scheme [173]. Cramer and Fehr [53] give a slightly relaxed but more formal
definition of share-completeness. The CF scheme satisfies the relaxed version of the
share-completeness property.

Uniformity of a secret sharing scheme refers to what extent the shares behave
as uniformly random chosen elements. Clearly, if all elements were to be chosen
uniformly at random, no secret can ever be recovered. For a threshold scheme,
the best that can happen is the uniformity of any subset of t shares, that is, the
distribution of any subset of t shares is identical to the uniform distribution over



6.1. INTRODUCTION 113

GdA (here dA is the number of group elements that make up the t shares). In the
CF scheme, not even single shares are guaranteed to be uniformly distributed.

6.1.4. Topics of This Chapter. In this chapter we describe an efficient implemen-
tation of the CF scheme. Although Cramer and Fehr show that the number of
operations is bounded by a polynomial in the number of participants, they do not
optimize this number of operations. Implementing the scheme will require both calls
to the black box to perform group operations (mainly to add and subtract, but also
to compare and sample group elements) and operations outside the realm of the
black box group. We ignore the subtlety of partially black box groups. For instance
if the dealer of the secret knows the order of the group, but the participants do not.
The group will always be regarded as a black box.

Our main goal is to minimize the number of calls to the black box. (Our sec-
ondary goal would be to keep the work outside the black box to a minimum.) The
number of calls to the black box will be measured in ops (we use “ops” as a synonym
for “calls to the black box”). We will allow any polynomial time (pre)computation
that does not use black box calls. This model is strongly related to that under-
lying the definition of addition chains. Indeed, once the matrix M is determined,
minimizing the number of ops boils down to finding a shortest addition-subtraction
chain for MT , since computing Mg corresponds to computing gM

T

in the nota-
tion of Chapter 2. The distinction between different group operations made in that
chapter is not useful here, since a black box does not discriminate between them.

In Section 6.2 the weak black box version of Shamir’s secret sharing scheme on
which the CF scheme is based, is described. However, instead of putting the secret
in the constant term of the polynomial we propose putting the secret in the leading
coefficient of the polynomial. We call this the swapping trick. The main benefit
of the swapping trick is that privacy comes for free, strongly reducing the size of
the multiplicands δα and δβ . Other benefits of the swapping trick are a smaller
expansion factor if n is a power of two, less stringent conditions on the polynomial
f that defines the extension for the second sharing and slightly more uniformity
among the shares.

Section 6.3 concentrates on optimizing the sharing over the integers, whereas
Section 6.4 does the same for the sharing over the extension ring Z[X]/(f). In
both cases the most important aspect is trying to minimize δα respectively δβ . In
Section 6.4 we also discuss the implications the choice of f has for the efficiency of
the scheme. Efficient ways to combine δαs and δβs are discussed in Section 6.5.

In Section 6.6 we cheat a little bit. Given the theoretical constraints on f
given by Lemma 6.5 and the desirable properties derived in Section 6.4, we use an
exhaustive search to find polynomials f for n ≤ 41 (and the runtime for this search
is superpolynomial in n). Although there is no guarantee that the polynomials
suggested are in any sense optimal, we believe they offer good performance.

Although we do compare the new methods with those originally suggested by
Cramer and Fehr, this comparison is not entirely fair, for the simple reason that
Cramer and Fehr did not attempt to optimize the runtime of their scheme. To
illustrate the techniques in this chapter, the example n = 5 and t = 2 will be worked



114 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

out in detail throughout the presentation. This example shows that, even though
the speedup itself is asymptotic in nature, the benefits already become evident for
small numbers of participants. Moreover, experiments show that for n > 64 the
computations outside the black box already begin to get noticeable to the point of
being annoying. Of use for our comparison was an implementation of the original
CF scheme in Mathematica by Krook [96].

Also of relevance is Chapter 7 of King’s thesis [87], who describes an efficient
implementation of the black box secret sharing scheme by Desmedt and Frankel.
King concentrates on the application of the black box scheme for a threshold RSA
signature scheme and gives a comparison with Shoup’s threshold RSA version. This
comparison requires that the operations outside the black box are also taken into
account, since they can easily take up most of the time. This makes a comparison
with the present work harder.

6.2. Weak Black Box Secret Sharing

6.2.1. Reformulating Shamir Secret Sharing. With some adaptations Shamir’s
secret sharing scheme can be used for weak black box secret sharing. As already
described, if s ∈ G is the secret to be distributed, then the dealer will pick a
polynomial in G[x] of degree t + 1 at random, but with constant term s. Since G
is a Z-module, the polynomial can be regarded as a function g : Z → G. Given n
publicly known distinct elements αi in Z —a popular choice is αi = i— the dealer
hands out share g(αi) to participant i for i = 1, . . . , n.

The scheme described above is not a black box secret sharing scheme though.
It satisfies neither the completeness nor the privacy condition from Definition 6.1.
This can however be fixed by suitable multiplication of the secret by a constant,
giving rise to a weak black box secret sharing scheme. Before going into details, it
is useful to reformulate Shamir’s secret sharing scheme in terms of Definition 6.1 in
order to apply Theorem 6.2.

Given a secret s, the dealer chooses g = (g0, . . . , gt) in Gt+1 uniformly at random
with g0 = s. This vector can be identified with the polynomial g(x) =

∑t
i=0 gix

i.
The share vector s = (s1, . . . , sn)T is computed as Mg, where M ∈ Zn×(t+1) is the
Vandermonde matrix

M =


1 α1 α1

2 . . . α1
t

1 α2 α2
2 . . . α2

t

1 α3 α3
2 . . . α3

t

...
1 αn αn

2 . . . αn
t

 .

We will now describe how the scheme can be adapted to satisfy the completeness
and privacy properties.

6.2.2. Completeness. The completeness property relates to the ability of qualified
subsets to reconstruct the secret. Reconstruction of the polynomial (and hence of
the secret) based on Lagrange interpolation runs into trouble because of the divisions



6.2. WEAK BLACK BOX SECRET SHARING 115

by αi − αj . This problem can be taken care of by multiplying both sides of (41)
with some δα ∈ Z such that all the divisions can take place in Z. As a consequence,
δαs is recovered instead of the real secret s. A possible, generic, choice for δα is∏
i,j∈A,i 6=j(αi − αj). Better ways of determining δα are described in Sections 6.3.2

and 6.4.3.

6.2.3. Privacy. According to Theorem 6.2 a black box secret sharing scheme satis-
fies the privacy property iff it is not possible to find a vector κκκ with κ1 = 1 subject
to MAκκκ = 0 for |A| = t. We therefore determine the kernel of MA.

Lemma 6.4. Let α1, . . . , αt be distinct elements in Z. Define a0, . . . , at by∏t
i=1(x− αi) =

∑t
i=0 aix

i (as polynomials) and a = (a0, . . . , at)T . Define

MA =


1 α1 α1

2 . . . α1
t

1 α2 α2
2 . . . α2

t

...
1 αt αt

2 . . . αt
t


then kerMA = 〈a〉.

Proof: Any element r = (r0, . . . , rt)T ∈ Zt+1 can be regarded as a polynomial
r(x) =

∑t
i=0 rix

i. An element r ∈ Zt+1 is in the kernel of MA iff r(αi) = 0 for
i = 1, . . . , t. By construction, this is the case for the polynomial a (the fact that
a ∈ ker(MA) is already sufficient for the secret sharing).

Suppose a′ ∈ kerMA. Regarded as polynomials a′ has degree at most t and a
has degree exactly t. Exploiting the fact that a is monic, we see r = a′ mod a has
degree smaller than t. Since a nonzero polynomial of degree strictly smaller than t
cannot have t distinct zeroes, but, r(αi) = 0 for all i, we know that r = 0, implying
that a′ is a polynomial multiple of a. Since the degree of a is t and that of a′ at
most t, we also have that a′ is a scalar multiple of a. Q.E.D.

Cramer and Fehr fix the property by sharing a multiple ∆s of the secret where
∆ =

∏
0≤j<i≤n αi − αj with α0 = 0. The value ∆ is based on the determinant of

MA; it is a multiple of a0 =
∏

0<i≤n αi. Sharing (a multiple of) a0s is secure. The
proof is basically a reproduction of the (omitted) proof of Theorem 6.2. Let s be
the share vector resulting from sharing a0s. Given another secret s′, compute s′ =
s +M(a(s′ − s)). The share vector corresponds to the secret s′, which is unrelated
to s, but s′ restricted to the view of the adversary equals sA, since MAa = 0.

With a little trick, it is actually possible to discard the multiplication of the
secret completely. The observation that at = 1 suggests to use the leading coefficient
of the polynomial g to hide the secret. Indeed, since at = 1, privacy is guaranteed
immediately without the need to share a multiple of the secret. This trick is called
the swapping trick.

6.2.4. Side Effects. Putting the secret in gt saves a costly multiplication during
the dealing phase. This can also be felt in the reconstruction later on when the
two sharings are combined. An extra advantage is that the multiple of the secret



116 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

that is recovered no longer needs to be a multiple of n if n is prime, which relaxes
the condition on the polynomial f used to make the extension ring R = Z[X]/(f).
Moreover, the evaluation point 0 is available for which evaluation comes for free.
The extra evaluation also gives a small additional benefit if n is a power of 2 (more
will become clear in Section 6.2.5).

Reconstruction proceeds slightly differently. We are only interested in gt, so it
suffices to compute the leading coefficient of

∑
i∈A si

∏
j∈A,j 6=i

x−αj
αi−αj by comput-

ing
∑
i∈A si(δAλi) where λi =

∏
j∈A,j 6=i

1
αi−αj (we will use λi throughout, with A

implicitly understood).
Cramer and Fehr also discuss share completion and uniformity.
The share completion property still holds, since given the secret and t shares,

it is possible to first peel of the highest order of g using the secret and then use
the shares to reconstruct the remaining polynomial of degree t − 1. Note that the
reconstruction will introduce a factor δ to the polynomial, just as in the ordinary,
qualified set reconstruction described below (in specific, this means that the gt
instead of g0 trick is of no avail in Shoup’s threshold signature, since his ∆ stems
from the share completion property and not from the security property).

Uniformity is improved by using gt instead of g0. Multiplication of the secret
with ∆ in the g0 case means that the share i will always be a multiple of i of some
group element. Hence, unless the group order is coprime to n!, this cannot give a
uniform distribution. (In Shoup’s threshold RSA signature scheme, the group order
is known to be the product of two large primes; consequently ∆ is invertible modulo
the group order and is not really needed at all during the sharing). If gt is used, all
the individual shares look uniformly random, but it can be verified that g(i)− g(0)
is a multiple of i again, so the shares are not pairwise independent.

6.2.5. Conditions on the Extension. In this section we will derive necessary and
sufficient conditions on the polynomial f for the existence of βi ∈ R such that δβ
can be chosen coprime to δα. For the moment we will assume that δβ ∈ Z.

If δα = (n−1)! this implies that δβ should not have any (prime) divisors smaller
than n. Note that it is not possible to get rid of any of these primes, either by using
a different δα or even different αi ∈ Z, as can be shown by the pigeon hole principle.
For the reconstruction, it is required that αi − αj divides δα for all 0 < i < j ≤ n.
Clearly, a prime p divides δα iff αi ≡ αj mod p. Since there are n different values
of αi for all primes p < n collisions will occur and p|δα.

Lemma 6.5 (Cramer, Fehr, H.W. Lenstra, Jr.). Let f be a monic irreducible
polynomial in Z[x]. Then there exist βi ∈ Z[x]/(f), i = 1, . . . , n and δβ ∈ Z subject
to gcd(δβ , (n−1)!) = 1 and (

∏
0<i<j≤n βi−βj) divides δβ in the ring Z[x]/(f) iff for

all primes p < n the smallest irreducible factor of f modulo p has degree d satisfying
pd ≥ n.

Proof: Suppose the claimed δβ and βi exist. Since we can divide δβ by βi − βj in
the ring Z[X]/(f) for all i 6= j the factor δβ will be in the ideal generated by βi−βj .
The intersection of this ideal with the integers is a subgroup generated by dij . A



6.2. WEAK BLACK BOX SECRET SHARING 117

necessary and sufficient condition is that p 6 |dij for primes p < n. If we focus on any
specific prime p < n, we can consider all elements modulo p. Suppose that f ′ is an
irreducible factor of f modulo p, then we can write dij ≡ k(βi − βj) + k′f ′ mod p.
The condition p 6 |dij is equivalent to invertibility of (βi − βj) modulo f ′ and p. If
the degree of f ′ is d, computing modulo both f ′ and p corresponds to working in
Fpd . In a finite field the difference of two elements is invertible iff the two elements
are unequal. There are pd elements in Fpd , so there can be at most pd different
points βi.

This proves necessity of the condition on the smallest irreducible factors of f
modulo the primes smaller than n. Sufficiency follows by picking points βi modulo
(f ′, p) for all irreducible factors f ′ of f modulo p for all primes p < n. The CRT
implies that βi also exist modulo f simultaneously satisfying all the modulo (f ′, p)
congruencies. Q.E.D.

Filling in p = 2 in pd ≥ n gives the minimum value m = dlg ne. Cramer and Fehr
originally only consider f irreducible modulo all the primes p ≤ n. The relaxation
to polynomials f whose ‘smallest’ irreducible factor still has sufficiently large degree
is credited to H.W. Lenstra, Jr [53].

Two minor side effects of putting the secret in the leading coefficient are also
incorporated in Lemma 6.5. In the original CF scheme, the lack of interpolation
in 0 resulted in the condition that, for all primes p ≤ n the least degree d should
satisfy pd > n. The difference is that Cramer and Fehr need m = blg nc + 1 which
differs if n is a power of two and if n is prime, an extra constraint is laid to f .

If f happens to be irreducible modulo all primes p < n, it is possible to set βi
to the unique (0, 1)-polynomial that evaluates to i − 1 in the point 2. In this case
βi − βj will be a (−1, 0, 1)-polynomial of degree lower than m.

If f factors modulo some prime p < n, this choice is no longer guaranteed to
work. One of the factors of f might also be a factor modulo p of some βi − βj .
One way to find evaluation points in this setting is based on the Chinese Remainder
Theorem and the observation that for each 0 ≤ i < n, for each prime p and for each
irreducible factor f ′ of f (modulo p), there is a unique polynomial modulo p that
evaluates to i in p. In Section 6.4.3 some of the computational ramifications of this
approach are discussed (and they seem pretty severe).

Example 6.6. For n = 5 the required extension degree is dlg 5e = 3. An
example of an irreducible polynomial of degree 3 in F2[X] is X3 + X2 + 1. The
polynomial X3 + 2X2 + 1 is irreducible modulo 3. Applying the Chinese Remainder
Theorem yields f(X) = 1 + 5X2 + X3. This polynomial also illustrates one of the
additional benefits of putting the secret in the most significant coefficient during
the weak Shamir secret sharing. If the constant term would have been used, the
integer sharing would return a multiple of the secret divisible by 5, requiring f to
be irreducible modulo 5. Since f(−1) ≡ 0 mod 5 this is clearly not the case.

Another polynomial we will use in future examples is X3 − X − 1. This
polyniomal is irreducible both in F2[X] and F3[X], but has some computational
advantages compared to X3 + 5X2 + 1.



118 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

6.3. Weak Secret Sharing over the Integers

6.3.1. Optimizing the Sharing. The dealer has to perform a multi-point polynomial
evaluation. For single point polynomial evaluation over rings Horner’s rule is well
known. It rewrites the evaluation as

g(i) = g0 + i(g1 + i(g2 + . . . i(gt−1 + igt) . . . ) ,

taking t additions and t multiplications by i. When Horner’s rule is applied to
evaluate g(i) in the current black box setting, the number of required ops is t(l(i)+1),
where l is the function given in Definition 2.2. If Horner’s rule is applied on all n
interpolation points separately, the costs are O(tn log n) since

∑n
i=1 l(i) = O(n log n)

and the binary method (Algorithm 2.7) achieves this asymptotic bound, so there is
no need to use optimal addition chains.

In the present case, minimizing the number of black box calls for multi-point
polynomial evaluation requires finding a minimal addition-subtraction chain for the
matrix

Mα =



1 0 0 . . . 0
1 1 1 . . . 1
1 −1 1 . . . (−1)t

1 2 4 . . . 2t

1 −2 4 . . . (−2)t
...
1 n/2 (n/2)2 . . . (n/2)t


(here n is even, the case n is odd is similar).

Pippenger’s bound (page 24) gives the upper bound t2 lg n + nt2 lg n/(lg n +
2 lg t+ lg lg n) on the number of ops required. The lower order terms are neglected
and since t < n, it is clear that this runs in O(nt2). For fixed t and a growing
number of participants this is an improvement over Horner’s rule. As special cases
t = 1 and t = 2 can be mentioned.

For t = 1 at most ≈ 2n ops are necessary, since the (t + 1)-fold simultaneous
double exponentiation can be rewritten as a twofold simultaneous (t+1)-tuple multi-
exponentiation. These two multi-exponentiations can be performed separately and,
using duality once more, correspond to (t + 1)-fold simultaneous exponentiations.
One of these is for free (containing only ones), the other costs n ops counting in-
versions. The use of duality costs about n ops, so the total cost is indeed ≈ 2n
ops.

For t = 2 at most ≈ 4n ops are needed. In this case three multi-exponentiations
have to be performed. Two of these are identical to the case t = 1, the third
corresponds (after duality) to computing all the squares up to n/2. This can be
done surprisingly fast, for instance by exploiting the fact that a large number of
squares can be written as the sum of two previous squares (e.g., 32 + 42 = 52). The
total cost for computing all these squares is at most n ops (using a simplified version
of [90, 4.6.3, Exercise 38]). The total cost is then ≈ 4n ops, taking into account the
extra costs due to duality.



6.3. WEAK SECRET SHARING OVER THE INTEGERS 119

Traditional multi-point polynomial evaluation over rings is considerably cheaper
than this. However, in rings multiplications by constants are allowed (for free) and
the roots of the polynomial that is being evaluated can be used. In the present
case the coefficients of the polynomial are elements of a black box group, making
it improper to base the evaluation algorithm on specifics of these elements. The
concept of root is for instance not clearly defined over such a group. To summarize,
we want our method to be largely independent of the polynomial in G[x] that is
being evaluated.

We settle for the statement that the sharing of the Mα matrix asymptotically
can be done in O(tn log n) ops. If the secret would be hidden in the constant term
of the polynomial the dealer has to multiply the secret in order to achieve privacy.
The bitlength of the multiplicand is representative for the costs involved. If the
original proposal by Cramer and Fehr based on the determinant of Mα is used, this
seemingly innocent multiplication requires O(n2 log n) ops, which might very well
be more expensive than the rest of the integer sharing. If the smaller value n! is
used to fix the privacy property, the costs of the extra multiplication are O(n log n)
ops, which is bearable.

6.3.2. Optimizing the Reconstruction. During the reconstruction the participants
need to compute

∑
i∈A(δαλi)si, where si is an element of the group G and δαλi is an

integer. The size of δα directly reflects on the time it takes to do the reconstruction.
The value given by Cramer and Fehr is far from minimal. For simplicity we will
assume that the evaluation points are 0, . . . , n − 1 but it is clear that the same
arguments hold if αi = i− bn2 c for instance.

If the set of participants is known, it is quite easy to determine the minimal δA
necessary. Each participant i ∈ A needs to be able to divide by dA,i =

∏
j∈A,j 6=i(i−

j), so δα needs to be a multiple of this value. The minimal δα for a specific qualified
subset A is the least common multiple of all these dA,i where i ∈ A. If a more
uniform δα is desired that works for all qualified subsets of a given size, one could
attempt to compute the least common multiple of all dA,i, ranging over all subsets
A of cardinality t + 1 and i ∈ A. Unfortunately, the number of such sets A is not
polynomial in n if for instance t is linear in n.

There is an easy alternative though. If we focus on a single participant, then
we see that dA,i is a divisor of (

∏
0≤j<i i− j)(

∏
i<j≤n−1 j− i) = i!(n−1− i)!, which

itself is a divisor of (n−1)!. Hence δα = (n−1)! suffices, regardless of the threshold.
This is a known argument, also used by Shoup [173].

A slightly more advanced method gives the minimal value of δα given the thresh-
old. The trick is to look at the prime factorization of δα. We know that δα can be
written as

∏
p<n,p prime p

ep for suitable ep. After determining for each prime p < n
the minimal order ep in δα the minimal value of δα follows naturally. To determine
ep for a given prime, we will concentrate on the participant with the share 0 and
assume he is part of a qualified subset A of size t + 1, so dA,0 =

∏
0 6=j∈A j. De-

termining the minimal order of δα for a given prime boils down to determining the



120 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

maximum order of dA,i for this prime where all sets A of cardinality t+ 1 that con-
tain i have to be considered. This can be achieved by simply taking the t elements
in the set {1, . . . , n − 1} with maximal order. These t elements can be determined
by actually computing the order for all elements in {1, . . . , n− 1} and then sorting
them, but alternatively δα can be computed more directly using Algorithm 6.7. It
can be proven that the focus on the participant with share 0 does not result in a
loss of generality.

Two special cases are worth mentioning, since they are quite common in cryp-
tographic protocol design. These are the cases t = bn2 c and t = bn3 c. If a simple
majority is required, or t = bn2 c, there are for any given prime p at most bn−1

p c ≤ t
values that contribute, so δα = (n − 1)! is not only sufficient but also necessary
(unless δα is based on a single subset). If t = bn3 c for all primes p > 2 once more
bn−1

p c ≤ t, so only for p = 2 some gain can be expected.

Algorithm 6.7 (Determining the Minimal δα).
On input two integers n and t, 0 < t < n−1, this algorithm determines the minimal
δα.

1. [Initialize] Set p← 2 and d← 1.
2. [Finished?] If p ≥ n terminate with output d.
3. [Initialize subroutine] Set e← 0, t′ ← 0 and s← blogp(n− 1)c.
4. [Finished subroutine?] If t′ ≥ t set d ← dpe, set p to be the next prime and

go back to step 2.
5. [Decrease s] Set e← e+smin(t−t′, bn−1

ps c−t
′) and t′ ← t′+bn−1

ps c. Decrease
s by one and go back to the previous step.

Example 6.8. For n = 5 and t = 2 we have to consider p = 2 and p = 3. If
p = 2 then blog2 4c = 2, so initially s = 2. There is only one positive multiple of
4 smaller or equal to 4, contributing 2 to e. There are two even numbers smaller
or equal to 4, but one of these is 4 which we already counted. This gives a total
of e = 3 for p = 2. If p = 3 then blog3 4c = 1, so initially s = 1. Since there is
only one positive multiple of 3 smaller or equal to 4, we know that e = 1 for p = 3.
Combining the result gives δα = 2331 = 24. This result for δα happens to be equal
to (n− 1)!, which is not very surprising since t = bn2 c.

To put the value 24 in a little perspective, if the participants joining in the
reconstruction own the shares −2, 0, and 1, the least common multiple of 6, 2, and
3 suffices. Cramer and Fehr’s upper bound would yield δα = 34560.

For the actual reconstruction there are two main scenarios. Either the par-
ticipants all hand in their shares and some central authority computes the inner
product. The scenario corresponds to a single multi-exponentiation with t+ 1 bases
and exponents. In the second scenario each participant computes and publishes
(δαλi)si, corresponding to a single exponentiation. The combination of the mod-
ified shares takes t black box calls by a central authority. If δα is independent of
A, it is likely that gcdi∈A(δαλi) = δα/ lcmi∈A dA,i is unequal to 1. In this case it
could be advantageous to allow the individual players to use δ′α = lcmi∈A dA,i for



6.4. WEAK SECRET SHARING OVER AN EXTENSION RING 121

the computation of (δ′αλi)si and let the central authority take care of the factor
δα/δ

′
α that remains (after adding the modified shares).
In both scenarios the number of ops is mainly determined by the maximum

bitlength of δαλi. Since λi ≤ 1 for all i, this is clearly upper bounded by the bitlength
of δα. Using δα = (n − 1)! gives a bitlength of O(n log n). For comparison, the
bitlength of 1/λi is at least O(t log t) and at most O(t log n). For the determination
of the necessary addition chains, the factorization of the ‘exponents’ can be used to
find very good chains.

Example 6.9. Suppose that for n = 5 and t = 2 the qualified subset wanting
to reconstruct the secret owns the shares −2, 0, and 1. From Example 6.8 we know
that δα = 24 and, for this specific qualified subset, that δ′α = 6. The three relevant
Lagrange coefficients are λ−2 = 1/6, λ0 = −1/2, and λ1 = 1/3. Central reconstruc-
tion based on δ′α = 6 corresponds to a multi-exponent with exponent (1,−3, 2)T ,
which takes 4 ops. In the case of decentralized reconstruction, player ‘−2’ does not
need to do anything, player ‘0’ needs 2 ops and player ‘2’ 1 op. The combination
takes 2 extra ops, so the total number of ops is slightly larger than in the centralized
situation. Taking care of the discrepancy between δα and δ′α takes 2 ops.

6.4. Weak Secret Sharing over an Extension Ring

In this section we discuss efficient implementation of the weak black box secret
sharing over an extension ring R = Z[X]/(f). This scheme uses the fact that suf-
ficiently many copies of G can be regarded as an R-module. Before going into the
details of optimizing the dealing and the reconstruction we examine the computa-
tional aspects of this module, including which choices of f would lead to efficiency
improvements.

6.4.1. The Module Product. Let f ∈ Z[X] be the monic irreducible polynomial
of degree m, say f = Xm + fm−1X

m−1 + · · · + f1X + f0, that is used to define
the integral extension ring R = Z[X]/(f). The group Gm, consisting of m copies of
G under pointwise addition, can be regarded as an R-module. The obvious way to
denote an element g ∈ Gm is as a vector g = (g0, . . . , gm−1). The element g can
alternatively be represented by the polynomial g(X) = gm−1X

m−1 + · · ·+g1X1 +g0

(with gi ∈ G for i = 0, . . . ,m − 1). An element r ∈ R can be represented by the
polynomial r = r0 + · · · + rm−1X

m−1 or by the vector r = (r0, . . . , rm−1) where
ri ∈ Z for i = 0, . . . ,m−1. In some cases it makes more sense to use a polynomial of
degree higher than m− 1 to represent r. Throughout this section the link between
a vector g and the polynomial g will be used without constant reminder.

For g ∈ Gm and r ∈ R the module product y = r • g ∈ Gm is defined such
that y = rg mod f . (Alternatively, simply say that the group G = G[X]/(f) is
well defined under addition, abelian and is also a Z[X]-module, so in specific an
R-module. Isomorphy of G[X]/(f) with Gm does the rest.) For any r the module
multiplication is in fact a linear transformation from Gm to Gm, so we can associate
a matrix [r] ∈ Zm×m with r ∈ R such that r • g = g[r] for all g. The use of g[r]



122 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

and not the perhaps more natural [r]g is to bring the notation in line with that of
addition chains from Chapter 2.

The companion matrix of the irreducible monic polynomial f is defined to be
the following Zm×m matrix:

FT =


0 0 . . . 0 −f0

1 0 . . . 0 −f1

0 1 . . . 0 −f2

...
...

. . .
...

...
0 0 . . . 1 −fm−1

 .

The matrix F bears great resemblance with the companion matrix belonging
to a linear recurrence (Section 1.3). This is no surprise; for all k ∈ Z≥0 it holds
that (Xk, Xk+1, . . . , Xk+m−1) = (X0, X1, . . . , Xm−1)(FT )k. Also, with g ∈ Gm,
the reduction of the polynomial xig(x) will correspond to the vector gF i. This
allows us to be more specific about the matrix [r] ∈ Zm×m associated to r ∈ R and
satisfying r • g = g[r] for all g. Indeed,

r • g = r0g + r1Xg + r2X
2g + . . .

= r0gF 0 + r1gF 1 + r2gF 2 + . . .

= g(
∑
i=0

riF
i)

= g[r] .

From this we see that [r] =
∑
i=0 riF

i, where the maximum degree of r is deliber-
ately not specified.

Optimizing the number of ops for a module multiplication is equivalent to finding
a shortest addition-subtraction chain for the matrix [r]. In practice we will have
to settle for a reasonably short chain. Computing such a chain can of course be
done with the general techniques for computing short addition chains as described
in Chapter 2.

Given r, simply determine [r] and use an efficient addition-subtraction chain
algorithm to determine g[r]. Pippenger’s bound (Theorem 2.5) gives an accurate
indication of the asymptotics of the length of such a chain when the matrix [r] grows
bigger (the entries or the dimension). In order to apply the bound, an upper bound
on the entries of [r] is needed. Asymptotically, a good estimate for an upper bound
seems to be λdrf ||r||, where dr denotes the degree of r, ||r|| denotes the maximum
absolute values of the coefficients of r, and λf is the largest absolute value of the set
of eigenvalues. The latter is based on the fact that the characteristic polynomial of F
is f . The eigenvalues of F are therefore the roots of f (over C). Since f is irreducible
over Z, all eigenvalues are different, so F is diagonizable and the size of the entries
in F i is asymptotically dominated by the i-th power of the eigenvalue which is
largest in absolute value. (Using the well known fact that if F = QfΛfQf−1, then
F i = QfΛifQf

−1.)



6.4. WEAK SECRET SHARING OVER AN EXTENSION RING 123

Using the bound on the entries of [r] and the knowledge that [r] is an m by m
matrix, Pippenger’s bound implies that a module multiplication can be performed
at a cost of about

(m+
m2

2 lgm lg(λdrf ||r||)
) lg(λdrf ||r||) .

In the special case that only the first coordinate of [r]g is needed, this reduces to

(1 +
m

lgm lg(λdrf ||r||)
) lg(λdrf ||r||) .

Example 6.10. Suppose the module is based on f(X) = X3 + 5X2 + 1 and
(13X2 + 20X + 17) • g needs to be computed for some g. We first determine the
companion matrix of f , namely

FT =

0 0 −1
1 0 0
0 1 −5

 .

For the given r(X) = 13X2 + 20X + 17 the matrix of interest is

[r] = 17

1 0 0
0 1 0
0 0 1

+ 20

 0 1 0
0 0 1
−1 0 −5

+ 13

 0 0 1
−1 0 −5
5 −1 25


=

 17 20 13
−13 17 −45
45 −13 242

 .

There is an addition-subtraction chain of length 46 to compute [r].
The polynomial f(X) = X3 + 5X2 + 1 has a root of absolute value ≈ 5. The

polynomial f̃(X) = X3−X−1 is irreducible modulo 2 and 3 but the absolute value of
its root does not exceed 1.5, so one expects less costly module multiplications using
this polynomial. Indeed, using this polynomial to define the ring, multiplication by
r(X) = 17 + 20X + 13X2 boils down to computing g[r] where

[r] =

17 20 13
13 17 33
33 13 50

 ,

which can be computed in 34 ops. If only the first element of r • g is required, it
suffices to compute g(17, 13, 33)T , which can be done in 11 ops.

Polynomial Multiplication. Pippenger’s algorithm underlying his upper bound
does not directly exploit any special structure [r] might have. However, in this case
[r] certainly has some structure. One could for instance multiply the polynomials
g(x) and r(x) first and reduce the result modulo f afterwards. This method is based
on the decomposition [r] = [r̃][f ], where the matrix [r̃] represents the polynomial
multiplication and [f ] the subsequent reduction.



124 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

In the literature, polynomial multiplication is usually counted in the number of
ring multiplications. The number of multiplications needed to multiply two polyno-
mials of degree m − 1 is denoted by µ(m). It is well known that m ≤ µ(m) ≤ m2.
Using Karatsuba’s technique leads to µ(m) = O(mlg 3), but at the cost of enlarg-
ing the multiplicands in Z by a factor of at most m. Here the multiplications
are those defined by regarding G as Z-module which is a slightly different setting.
The number of group operations of G is then minimized by picking an appropri-
ate addition-subtraction chain corresponding to the freshly formed multiplicands.
This gives us either O(m2 log ||r||) or the faster O(mlg 3(log ||r||+ logm)) black box
group operations based on Pippengers upper bound. The number of operations
in Z is negligible (some additions). Note also that for certain regular polynomials
improvements are possible.

An alternative way is by directly determining an addition(-subtraction) chain
for the matrix [r̃]. This matrix is the following m by (2m− 1) matrix:

(42) [r̃] =


r0 r1 · · · rm−1 0 · · · 0
0 r0 · · · rm−2 rm−1 · · · 0
...

. . . . . .
...

. . . . . .
...

0 · · · 0 r0 r1 · · · rm−1

 .

After determining the polynomial rg, the result still needs to be reduced mod-
ulo f . This can be done using the matrix style introduced above, exploiting that
(Xm−2, Xm−1, . . . , X2m−2) = (X0, X1, . . . , Xm−1)Fm−1. More precisely, the ma-
trix [f ] is the (2m − 1) by m matrix that consists of an m ×m identity matrix in
the top rows and the transpose of the matrix Fm−1 in the bottom rows (there is
one row overlap). It helps if the largest entry of Fm−1 is still small. This is related
to the degree of f(X) − Xm. If this degree is large, the reduction will cascade,
giving rise to a big Fm−1. If the degree is at most bm−1

2 c, the largest entry of Fm−1

is the same as that of F . For m > 2 it is always possible to find a polynomial f
with coefficients at most

∏
p<n,p prime p and with the degree of f(X)−Xm at most

bm−1
2 c. As a result, the reduction will cost O(m2n) ops.

Example 6.11. We will consider the same module multiplication as in Exam-
ple 6.10 with the only difference that we swap the roles of f and f̃ , so we have
f(X) = X3 − X − 1 and f̃(X) = X3 + 5X2 + 1. We begin with the polynomial
multiplication based on r(X) = 13X2 + 20X + 17. The corresponding matrix is

[r̃] =

17 20 30 0 0
0 17 20 30 0
0 0 17 20 30

 .

There is an addition chain of length 27 for this matrix.



6.4. WEAK SECRET SHARING OVER AN EXTENSION RING 125

The reduction based on f requires finding an addition chain for the matrix

[f ] =


1 0 0
0 1 0
0 0 1
1 0 1
1 1 1

 .

For this matrix it is possible to find an optimal chain of length 4 by hand.
If the other polynomial, f̃ is used for the definition of the extension ring, the

relevant reduction is based on the matrix

[f̃ ] =


1 0 0
0 1 0
0 0 1
−1 0 −5
5 −1 25

 .

This time a little more effort is needed for finding an addition-subtraction chain by
hand, but a chain of length 10 can be found.

In both cases we see that this indirect method gives better chains than the direct
method.

Summary. We can distinguish between matrix multiplication on one side and
polynomial multiplication on the other to implement the module product r • g. An
important difference between the direct matrix version and the polynomial version
is that in the latter case the reduction matrix [f ] is fixed, so it is more worthwhile
to spend time optimizing it (first by choosing some ‘nice’ f , later by finding good
addition-subtraction chains for [f ]). Also, the complexity of r and of f are separated.
Note that in the case of an inner product the standard trick of delayed reduction
can be applied.

Also of interest is the special case where r = r1 · r2, for instance with r1 and r2

of degree smaller than m, since one can compute r • g then either as (r1 · r2) • g or
as r1 • (r2 • g). If the first approach is used, the matrix method seems to be better,
provided that f has only small eigenvalues.

6.4.2. Optimizing the Sharing. For the sharing over the extension ring the dealer
has to pick a random polynomial of degree t with coefficients in Gm. The leading
coefficient should correspond to the secret s ∈ G, for instance by using (s, 0, . . . , 0) ∈
Gm as leading coefficient. The polynomial is then evaluated in the points βi for
i = 1, . . . , n.

The obvious approach for this evaluation is by repeated application of Horner’s
rule (over the module). For each participant this requires t module additions and
t module multiplications with βi. The total number of module multiplications is
therefore O(t). If the βi are the (0, 1)-polynomials and a ‘nice’ polynomial f is
used, the polynomial approach for the module product yields that the sharing of
the B-matrix will cost O(tnm2) ops.



126 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

6.4.3. Optimizing the Reconstruction. Given a qualified subset A, the first job
during reconstruction is determining some δβ ∈ R such that for all i ∈ A the ring
element δβ is a multiple of

∏
j∈A,i 6=j βi − βj . The generic solution given by Cramer

and Fehr is (a small multiple of) δβ =
∏

0<i<j≤n βi − βj . Although this solution
works for all sets A of any cardinality and regardless of the specifics of f and the
βi, there is a price to be paid. The product ranges over n(n − 1)/2 factors most
of which of degree only slightly smaller than m, resulting in an overall degree of
O(mn2) for δβ .

Cramer and Fehr also suggest the special choice of polynomials βi being the
(0, 1)-polynomial evaluating to i in 2 for i = 1, . . . , n (or rather evaluating to i − 1
since evaluation in 0 is otherwise not used). The difference of two (0, 1)-polynomials
is a (−1, 0, 1)-polynomial. There are 3m = nlg 3 such polynomials of degree smaller
than m. The product of all these polynomials also suffices as δβ for all sets A of any
cardinality, but obviously only if the special βi are used. The new δβ has degree
O(mnlg 3) and reconstruction takes O(m2n1+lg 3) ops.

Further practical improvement is possible by considering the irreducible factors
of δβ (regarded as polynomial over Z[X]). The only factors that can occur are the
factors of the (−1, 0, 1)-polynomials, so the set of possible factors is polynomially
bounded (in n). For each irreducible polynomial the maximum power still necessarily
dividing δβ has to be determined. This power is computed by determining the
maximum power required for the reconstruction for each participant and taking the
maximum over all these powers. For a given participant the n − 1 differences can
easily be computed and for each of these differences how often they are divisible by
the irreducible polynomial in question. The sum of the t largest values gives the
maximum for the specific participant.

Unless n is a power of two, there is some freedom here which we will not exploit.
The number of (0, 1)-polynomials of degree smaller than m is larger than the number
of evaluation points needed and picking different sets arguably leads to different
runtimes (in fact, a similar argument holds for the integer sharing if n is not a
prime). It is hard to see how this would affect the runtime significantly and how
to cleverly make use of this relaxation. Note that different sets of evaluation points
might also lead to slightly different conditions on the polynomial f that defines the
extension degree.

Example 6.12. If n = 5 the degree of the extension is 3, so second degree
polynomials are used for evaluation. Let us use the set {0, 1, X, 1 + X,X2}. The
irreducible polynomials we need to consider are X,X + 1, X − 1 and X2 −X − 1.
For the polynomial X the table below shows that it appears at most three times.
Using similar tables for the other irreducible polynomials leads to δβ = X3(X +
1)(X − 1)2(X2 −X − 1).

To put this into perspective, the product of all relevant (−1, 0, 1)-polynomials
gives δβ = XX2(X2−1)(X−1)(X+1)(X2−X−1), which is a factor X+1 bigger.
The method by Cramer and Fehr would yield a δβ of degree 14, which is already
almost twice as much as the degree 8 of the improved δβ .



6.5. COMBINING THE TWO SHARINGS 127

0 1 X 1 +X X2
∑

(t = 2)
0 − 0 1 0 2 3
1 0 − 0 1 0 1
X 1 0 − 0 1 2

1 +X 0 1 0 − 0 1
X2 2 0 1 0 − 3

For reasons that will become clear in Example 6.15 we will use δβ = X3(X +
1)(X − 1)2(X2 −X − 1)(X2 −X + 1) in our next examples.

6.5. Combining the Two Sharings

Suppose the players have already reconstructed rα = δαs and rβ = δβs with
both δα and δβ positive integers. In order to obtain the secret s, values a and b have
to be found such that aδα + bδβ = 1. The extended Euclidean algorithm provides
unique a and b satisfying |a| < δβ and |b| < δα. Given these a and b the players can
then recover the secret as s = arα + brβ .

Although δα will always be an integer, there is no a priori reason why δβ should.
It is an element in Z[X]/(f) for sure, but the representation of δβ in Z[X] that is
used can be a (non-constant) polynomial, as shown by Example 6.12. In this case
rβ = δβ • (s, 0, . . . 0) is recovered and there are several ways to combine rα and rβ :
one can find a representation of δβ that is an integer, or one can directly construct
a and b in the extension ring R such that aδα + bδβ ≡ 1 mod f . Cramer and Fehr
suggest the second method, which we will describe in more detail first. We were
unable to make the first method competitive.

There might be an intriguing third method based on the observation that rβ =
(s, 0, . . . , 0)[δβ ] = (δ0s, . . . , δt−1s) for certain integers δi. If these δi are coprime,
it is possible to base the reconstruction on standard Euclidean techniques without
thinking about the ring Z[X]/(f) any more. This would make the integer sharing
redundant for the reconstruction, leading to the optimal expansion rate blg nc+ 1.

6.5.1. Direct Method. Let δβ , δα, and f be given for some n. By construction, δα
factors into primes smaller than n, say δα =

∏
p<n,p prime p

ep . To determine a and
b that satisfy aδα + bδβ ≡ 1 mod f we first determine for all p < n a polynomial bp
satisfying bpδβ ≡ 1 mod (pep , f). Application of the Chinese Remainder Theorem
yields b from which a can be computed by a = (bβ− 1 mod f)/δα. Determining bp
can be done by computing bp mod (p, f) first. If f is irreducible, this is equivalent
to finding the multiplicative inverse of δβ in Fpm (where m = deg f). If f factors
modulo p the computation can be performed modulo the irreducible factors of f
first after which the Chinese Remainder Theorem yields the desired bp mod (p, f).

A necessary and sufficient condition for the existence of bp that follows from the
derivation above, is that δβ should be invertible modulo the irreducible factors of f
modulo p for all primes p < n. Since δβ is basically the product of the differences
βi − βj this immediately translates to invertibility of βi − βj (modulo . . . ), a result
that was also derived in the proof of Lemma 6.5.



128 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

The resulting polynomials a and b both have degree at most m−1. The Chinese
Remainder Theorem implies that the coefficients of b can be chosen between 0 and
δα. The coefficients of a have roughly the same size as the coefficients of δβ after
reduction modulo f .

Example 6.13. We continue our n = 5 and t = 2 example. In the Exam-
ples 6.8, 6.12, and 6.10, we came across δα = 23·3, δβ = 2X2−3X and f = X3−X−1
(where δβ has already been reduced modulo f). We begin by determining b2. The
inverse of δβ modulo 2 and f is the inverse of X. From X3 −X − 1 ≡ 0 mod f this
inverse can be seen to be X2 + 1 modulo 2. From (X2 + 1)δβ ≡ 4X2 − 4X − 3 =
1 + 4(X2 −X − 1) mod f it follows that bp ≡ X2 + 1 mod 4 as well, but modulo 8
something more has to be done. However, (1 + 4(X2−X−1))(1−4(X2−X−1) ≡
1 mod 16, so we can take b2 = (X2+1)(1+4(X2−X−1)) ≡ 5X2+4X+1 mod (f, 8).
Determining b3 = X2 + 2X + 2 requires only one step. The Chinese Remain-
der Theorem can be applied on each of the coefficients individually, giving b =
13X2 + 20X + 17. A small computation shows that a = X.

Recapitulating, the players have reconstructed rα = δαs ∈ G and rβ = δβ •
(s, 0, . . . , 0) ∈ Gm and computed a and b in the extension ringR such that aδα+bδβ ≡
1 mod f . The secret s can be obtained by computing a • (rα, 0, . . . , 0) + b • rβ =
(s, 0, . . . , 0). Clearly there is no need to compute all the zeros that occur in the vector
(s, 0, . . . , 0). Writing (rα, 0, . . . , 0)[a] + rβ [b] for the module operations reveals that
only the first columns of [a] and [b] are of interest. In fact, of [a] only the first entry
of the first column, corresponding to the constant coefficient of the polynomial a, is
needed because the other entries will only contribute multiples of 0 ∈ G.

Example 6.14. Continuing Example 6.13, we first determine the matrices [a]
and [b] based on a = X, b = 13X2 + 20X + 17, and f = X3 − X − 1. From
Example 6.10 we already know [b] and [a] = F in this specific case.

[a] =

0 1 0
0 0 1
1 0 1

 , [b] =

17 20 13
13 17 33
33 13 50

 .

It follows that (rα, 0, . . . , 0)[a] = (0, rα, 0). Only the first coefficient is interesting,
but it is always zero! In other words, the integer sharing is not used in the recon-
struction and is redundant. The reconstruction of the secret is based on the inner
product of rβ and the first column of [b]. This can be computed in 11 ops as we
already saw.

6.5.2. Using the Resultant. The second approach mentioned to compute a and b
satisfying aδα + bδβ ≡ 1 mod f is by first determining b′ satisfying that b′δβ mod f
is an integer (or constant polynomial) after which standard Euclidean techniques
over Z can be used to determine a and b.

The polynomial b′ satisfies b′δβ + kf = m for some k ∈ Z[X] and m ∈ Z. If
δβ and f were defined over a finite field, the extended Euclidean algorithm could
be used to compute b′ and k (with m = 1, since δβ and f are relatively prime).
The Euclidean algorithm is not very well suited for polynomials over Z, since the



6.6. PICKING THE EXTENSION 129

coefficients of intermediate polynomials can (and typically will) become very big. If
the subresultant algorithm is used to compute the greatest common divisor of two
polynomials over Z, all intermediate results are relatively small (for more details we
refer to [45, 90, 199]). An extended version of the subresultant algorithm returns
polynomials b′ and k as well such that b′δβ+kf is an integral multiple of the greatest
common divisor of δβ and f (in our case this gcd equals 1 of course).

It is almost inevitable that b′δβ + kf is a multiple of the greatest common
divisor. As small illustration suppose that δβ = 2 and f = X. Their greatest
common divisor is 1 but clearly whenever b2 + kX is an integer, it will be an even
integer. For coprime δβ and f , the extended subresultant algorithm actually returns
b′ and k such that b′δβ + kf = Res(δβ , f), where Res(δβ , f) is the resultant of the
two polynomials δβ and f . Unfortunately, the resultant of δβ and f will be quite
big, which makes this method unattractive.

Example 6.15. For n = 5 and t = 2 the resultant of δβ = 2X2 − 3X and
f = X3−X − 1 is −7 and (1 + 4X + 5X2)δβ + (7− 10X)f = −7. The numbers are
still quite low, but this is atypical for this method.

The fact that the resultant is −7 means that δβ is not invertible in R, which
makes the redundancy of the integer sharing all the more surprising. However, if
the minimal δβ would have been used (we put in an extra factor X2 − X + 1 in
Example 6.12) the resultant is 1 (so the set βi is exceptional). Nevertheless this
example is significant, since it shows that full reconstruction of the secret is possible
based solely on the extension ring, even though not all Lagrangian denominators
are invertible.

6.5.3. Trade-Offs. If δα and δβ are independent of the qualified set, the dealer
could compute a and b and multiply these into the secret, so that reconstruction
immediately yields aδβs and (bδβ) • (s, 0, . . . , 0).

There is some trade-off here, since in the first case the participants need only
to reconstruct and multiply with a and b, where in the second case the dealer can
multiply with a and b, so the participants need only to reconstruct and multiply
with the cofactors of the lcm’s and the actual share product.

6.6. Picking the Extension

One of the things that is important is an estimate on the coefficients of the
polynomials f that satisfy Lemma 6.5. Presumably, the smaller the coefficients,
the less black box calls in the resulting secret sharing scheme. We stress however
that giving an indication for the ’optimal’ f and finding it are two entirely different
things.

One method always works, namely picking random irreducible polynomials mod-
ulo p for all the primes p < n and use the Chinese Remainder Theorem to get a
polynomial over the integer. The coefficients of this polynomial are all smaller than∏
p<n p, which corresponds to a bitlength linear in n (which is acceptable). It is in

fact possible to have f −Xm of reasonably low degree which is benificial as shown
in Section 6.4.1.



130 6. OPTIMIZING A BLACK BOX SECRET SHARING SCHEME

Table 6.1. Suggested polynomials

n f λf Reduction costs
3–4 X2 −X − 1 1.61 1
5 X3 −X − 1 1.32 2

6–7 X3 −X − 7 2.09 12
8 X3 + 11X − 1 3.32 15

9–16 X4 − 19X − 1 2.69 25
17 X5 − 17X2 − 2X − 1 2.62 57

18–19 X5 − 3X2 + 14X + 19 2.08 60
20–31 X5 + 3X2 + 68X − 41 2.93 69

32 X5 − 93X2 + 38X + 1 4.60 111
33–37 X6 − 90X2 − 121X − 103 3.40 159
38–41 X6 − 170X2 − 13X + 43 3.62 148
42–47 X6 − 174X2 + 289X − 229 4.02 169

To get an impression how much improvement there is possible, we assume ir-
reducible polynomials behave sufficiently random. We begin by recalling that the
probability that a randomly chosen (monic) polynomial of degree m is irreducible
modulo p is about 1/p. Hence, the probability that a random polynomial over Z is
irreducible modulo all primes p < n is about

∏
p<n

1
p . It is therefore reasonable to

assume we need to look at about
∏
p<n p polynomials before we find an irreducible

one. The number of polynomials with all coefficients smaller then B is Bm. In order
for Bm >

∏
p<n p we require that B = O(n/m). Since m ≈ lg n, we cannot hope to

find polynomials that are that much better than random CRT based polynomials.
Using Lenstra’s relaxation gives us different probabilities. For instance, for the

larger primes the condition pd ≥ n will simply mean that f has no linear factors.
This poses the natural question what the probability is that a randomly chosen
(monic) polynomial of degree m has no linear factors modulo p (or no roots). The
generalization to higher order factors (of degree at most d− 1) also presents itself.

For small numbers of participant we performed a search for what we believe
are nice polynomials. The results are summarized in Table 6.1. The runtime of
the search was not polynomial time in the number of participants, so it could be
considered as cheating. However, the polynomials only have to be picked once and
there are no security concerns if everyone uses the same polynomials. The absolute
value of the ‘largest’ eigenvalue of the polynomial and an upper bound on the length
of an addition-subtraction chain for [f ] are also given.



Bibliography

[1] Adams and Shanks. Strong primality tests that are not sufficient. Mathematics of Compu-

tation, 39(159):255–300, 1982.
[2] G. Agnew, R. Mullin, and S. Vanstone. Fast exponentiation in GF (2n). In C. G. Günther,

editor, Advances in Cryptography—Eurocrypt’88, volume 330 of Lecture Notes in Computer

Science, pages 251–255. Springer-Verlag, 1988.
[3] G. Agnew, R. Mullin, and S. Vanstone. An implementation of elliptic curve cryptosystems

over F2155 . IEEE Journal on Selected Areas in Communications, 11(5):804–813, 1993.
[4] A. Akhavi and B. Vallée. Average bit-complexity of Euclidean algorithms. In U. Montanari,

J. D. Rolim, and E. Welzl, editors, ICALP’00, volume 1853 of Lecture Notes in Computer
Science, pages 374–387. Springer-Verlag, 2000.

[5] T. Akishita. Fast simultaneous scalar multiplication on elliptic curve with Montgomery form.
In Vaudenay and Youssef [193], pages 255–268.

[6] R. M. Avanzi. On multi-exponentiation in cryptography. Technical Report 154, IACR’s ePrint
Archive, 2002.

[7] J. B. Kaliski. The Montgomery inverse and its applications. IEEE Transactions on Comput-
ers, 44(8):1064–1065, 1995.

[8] E. Bach and J. Shallit. Algorithmic Number Theory. MIT Press, 1996.
[9] D. Bailey and C. Paar. Efficient arithmetic in finite field extensions with application in elliptic

curve cryptography. Journal of Cryptology, 14(3):153–176, 2001.
[10] P. D. Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm

on a standard digital signal processor. In A. Odlyzko, editor, Advances in Cryptography—

Crypto’86, volume 263 of Lecture Notes in Computer Science, pages 311–323. Springer-
Verlag, 1987.

[11] P. Beelen, 2001. Personal communication.

[12] R. Bellman. Problems and solutions: (5125) addition chains of vectors. American Mathe-
matical Monthly, 70:765, 1963.

[13] F. Bergeron, J. Berstel, and S. Brlek. Efficient computation of addition chains. Journal de
Théorie des Nombres de Bordeaux, 6:21–38, 1994.

[14] F. Bergeron, J. Berstel, S. Brlek, and C. Duboc. Addition chains using continued fractions.

J. Algorithms, 10:403–412, 1989.
[15] D. J. Bernstein. Multidigit multiplication for mathematicians. To appear in Advances of

Applied Mathematics, 2000.
[16] D. J. Bernstein. Pippenger’s exponentiation algorithm. Draft, 2002.

[17] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge University

Press, 1999.
[18] G. R. Blakley. A computer algorithm for calculating the product AB modulo M . IEEE

Transactions on Computers, 32(5):497–500, 1983.
[19] D. Bleichenbacher. Efficiency and Security of Cryptosystems based on Number Theory. PhD

thesis, ETH Zürich, 1996.

[20] D. Bleichenbacher, W. Bosma, and A. K. Lenstra. Some remarks on Lucas-based cryp-
tosystems. In D. Coppersmith, editor, Advances in Cryptography—Crypto’95, volume 936 of

Lecture Notes in Computer Science, pages 306–316. Springer-Verlag, 1995.

131



132 BIBLIOGRAPHY

[21] D. Bleichenbacher and A. Flammenkamp. An efficient algorithm for computing shortest ad-

dition chains. year unknown.
[22] D. Bleichenbacher, M. Joye, and J.-J. Quisquater. A new and optimal chosen-message attack

on RSA-type cryptosystems. In Y. Han, T. Okamoto, and S. Qing, editors, ICICS’97, volume

1334 of Lecture Notes in Computer Science, pages 302–313. Springer-Verlag, 1997.
[23] I. E. Bocharova and B. D. Kudryashov. Fast exponentation in cryptography. In G. Cohen,

M. Giustie, and T. Mora, editors, AAECC-11, volume 948 of Lecture Notes in Computer
Science, pages 146–157. Springer-Verlag, 1995.

[24] D. Boneh. The decision Diffie-Hellman problem. In Buhler [37], pages 48–63.

[25] J. Bos and M. Coster. Addition chain heuristics. In Brassard [30], pages 400–407.
[26] J. N. E. Bos. Practical Privacy. PhD thesis, Technische Universiteit Eindhoven, 1992.

[27] W. Bosma, J. Hutton, and E. R. Verheul. Looking beyond XTR. In Y. Zheng, editor, Ad-
vances in Cryptography—Asiacrypt’02, volume 2501 of Lecture Notes in Computer Science,

pages 46–63. Springer-Verlag, 2002.
[28] A. Bosselaers, R. Govaerts, and J. Vandewalle. Comparison of three modular reduction func-

tions. In D. Stinson, editor, Advances in Cryptography—Crypto’93, volume 773 of Lecture

Notes in Computer Science, pages 175–186. Springer-Verlag, 1993.
[29] C. Boyd, editor. Advances in Cryptography—Asiacrypt’01, volume 2248 of Lecture Notes in

Computer Science. Springer-Verlag, 2001.

[30] G. Brassard, editor. Advances in Cryptography—Crypto’89, volume 435 of Lecture Notes in
Computer Science. Springer-Verlag, 1990.

[31] A. Brauer. On addition chains. Bulletin of the American Mathemetical Society, 45:736–739,
1939.

[32] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation with

precomputation (extended abstract). In R. A. Rueppel, editor, Advances in Cryptography—
Eurocrypt’92, volume 658 of Lecture Notes in Computer Science, pages 200–207. Springer-

Verlag, 1992. Newer version in [33].
[33] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponentiation with

precomputation: algorithms and lower bounds. Updated and expanded version of [32], 1995.

[34] É. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In Naccache and

Paillier [135], pages 335–345.
[35] A. Brouwer, R. Pellikaan, and E. Verheul. Doing more with fewer bits. In K. Y. Lam,

E. Okamoto, and C. Xing, editors, Advances in Cryptography—Asiacrypt’99, volume 1716

of Lecture Notes in Computer Science, pages 321–332. Springer-Verlag, 1999.
[36] M. Brown, D. Hankerson, J. López, and A. Menezes. Software implementation of the nist

elliptic curves over prime fields. In D. Naccache, editor, CT-RSA’01, volume 2020 of Lecture
Notes in Computer Science, pages 250–265. Springer-Verlag, 2001.

[37] J. P. Buhler, editor. Algorithmic Number Theory, 3rd International Symposium, ANTS-III,

volume 1423 of Lecture Notes in Computer Science. Springer-Verlag, 2000.
[38] J. Burton S. Kaliski, Ç. Koç, and C. Paar, editors. Cryptographic Hardware and Embedded

Systems 2002, volume 2523 of Lecture Notes in Computer Science. Springer-Verlag, 2003.
[39] L. Carlitz. Recurrences of the third order and related combinatorial identities. Fibonacci

Quarterly, 16(1):11–18, 1978.

[40] L. Carlitz. Some combinatorial identities of Bernstein. SIAM J. Math. Anal, 9(1):65–75,
1978.

[41] C.-Y. Chen and C.-C. Chang. A fast modular multiplication algorithm for calculating the
product ab modulo n. Information Processing Letters, 72:77–81, 1999.

[42] C.-Y. Chen and T.-C. Liu. A fast modular multiplication method based on the Lempel-Ziv

binary tree. Computer Communications, 22:871–874, 1999.
[43] C. W. Chiou and T. C. Yang. Iterative modular multiplication algorithm without magnitude

comparison. IEE Electronics Letters, 30(24):2017–2018, 1994.



BIBLIOGRAPHY 133

[44] G. Cohen, A. Lobstein, D. Naccache, and G. Zémor. How to improve an exponentiation

black-box. In K. Nyberg, editor, Advances in Cryptography—Eurocrypt’98, volume 1403 of
Lecture Notes in Computer Science, pages 211–220. Springer-Verlag, 1998.

[45] H. Cohen. A Course in Computational Number Theory, volume 138 of Graduate Texts in

Mathematics. Springer-Verlag, 1996.
[46] H. Cohen. Analysis of the flexible window powering algorithm. Submitted for publication,

available from http://www.math.u-bordeaux.fr/~cohen, 2001.
[47] H. Cohen and A. K. Lenstra. Supplement to implementation of a new primality test. Math-

ematics of Computation, 48(177): S1–S4, 1987.

[48] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed coor-
dinates. In K. Ohta and D. Pei, editors, Advances in Cryptography—Asiacrypt’98, volume

1514 of Lecture Notes in Computer Science, pages 51–65. Springer-Verlag, 1998.
[49] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE Trans-

actions on Information Theory, 30(4):587–594, 1984.
[50] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Sym-

bolic Comput., 9(3):251–280, 1990.

[51] M. Coster. The algorithm of Brun and addition chains, 2000. Manuscript.
[52] R. Cramer and S. Fehr. Optimal black-box secret sharing over arbitrary abelian groups. In

M. Yung, editor, Advances in Cryptography—Crypto’02, volume 2442 of Lecture Notes in

Computer Science, pages 272–287. Springer-Verlag, 2002.
[53] R. Cramer and S. Fehr. Optimal black-box secret sharing over arbitrary abelian groups.

Manuscript, 2003.
[54] R. Cramer, S. Fehr, Y. Ishai, and . Kushilevitz. Efficient multi-party computation over rings.

Manuscript, Feb. 2002.

[55] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In H. Krawczyk, editor, Advances in Cryptography—Crypto’98,

volume 1462 of Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998.
[56] P. J. N. de Rooij. Efficient exponentiation using precomputation and vector addition chains.

In A. D. Santis, editor, Advances in Cryptography—Eurocrypt’94, volume 950 of Lecture

Notes in Computer Science, pages 389–399. Springer-Verlag, 1994.
[57] Y. Desmedt and Y. Frankel. Threshold cryptosystem. In Brassard [30], pages 307–315.

[58] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[59] P. Downey, B. Leong, and R. Sethi. Computing sequences with addition chains. SIAM Jour-

nal on Computing, 10:638–646, 1981.
[60] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory, 31(4):469–472, 1985.
[61] R. J. Fateman. Lookup tables, recurrences and complexity. In G. H. Gonnet, editor, Pro-

ceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic

computation, pages 68–73. ACM Press, 1989.
[62] C. M. Fiduccia. On obtaining upper bounds on the complexity of matrix multiplication. In

R. E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages
31–40, 1972.

[63] C. M. Fiduccia. An efficient formula for linear recurrences. SIAM Journal on Computing,

14(1):106–112, 1985.
[64] R. Gallant, R. Lambert, and S. Vanstone. Faster point multiplication on elliptic curves with

efficient endomorphisms. In J. Kilian, editor, Advances in Cryptography—Crypto’01, volume
2139 of Lecture Notes in Computer Science, pages 190–200. Springer-Verlag, 2001.

[65] K. J. Giuliani and G. Gong. Generating large instances of the gong-harn cryptosystem.

Technical report, CACR (University of Waterloo) preprint series, 2002.
[66] S. Goldwasser and M. Bellare. Lecture notes on cryptography, 1999.

[67] D. Gollman, Y. Han, and C. Mitchell. Redundant integer representations and fast exponen-
tiation. Designs, Codes and Cryptography, 7:135–151, 1996.



134 BIBLIOGRAPHY

[68] G. Gong and L. Harn. Public-key cryptosystems based on cubic finite field extensions. IEEE

Transactions on Information Theory, 45(7):2601–2605, 1999.
[69] G. Gong, L. Harn, and H. Wu. The GH public-key cryptosystems. In Vaudenay and Youssef

[193], pages 284–300.

[70] D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete
Math., 6(1):124–138, 1993.

[71] D. M. Gordon. A survey of fast exponentiation methods. J. Algorithms, 27(1):129–146, 1998.
[72] R. L. Graham, A. C. Yao, and F. F. Yao. Addition chains with multiplicative cost. Discrete

Mathematics, 23:115–119, 1978.

[73] D. Gries and G. Levin. Computing Fibonacci numbers (and similarly defined functions) in
log time. Information Processing Letters, 11(2):68–69, 1980.

[74] D. Hankerson, J. López Hernandez, and A. Menezes. Software implementation of elliptic
curve cryptography over binary fields. In Ç. Koç and C. Paar, editors, CHES’00, volume

1965 of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag, 2000.
[75] P. Horster, H. Petersen, and M. Michels. Meta-ElGamal signature schemes. In CCS’94, pages

96–107. ACM Press, 1994.

[76] T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resistant against side channel
attacks. In Naccache and Paillier [135], pages 280–296.

[77] D. Johnson and A. Menezes. The elliptic curve digital signature algorithm (ECDSA). Tech-

nical report, CACR (University of Waterloo) preprint series, 1999. Technical Report CORR
99-31.

[78] M. Joye. Security Analysis of RSA-type Cryptosystems. PhD thesis, Université Catholique
de Louvain, 1997.

[79] M. Joye and J.-J. Quisquater. Protocol failures for RSA-like functions using lucas sequences

and elliptic curves. In M. Lomas, editor, Security Protocols, volume 1189 of Lecture Notes
in Computer Science, pages 93–100. Springer-Verlag, 1996.

[80] M. Joye and S.-M. Yen. Optimal left-to-right binary signed-digit recoding. IEEE Transactions
on Computers, 49(7):740–748, 2000.

[81] M. Joye and S.-M. Yen. The Montgomery powering ladder. In Burton S. Kaliski et al. [38],

pages 291–302.
[82] J. K. R. Sloan. Comments on “a computer algorithm for calculating the product ab modulo

m”. IEEE Transactions on Computers, 34(3):290–292, 1985.
[83] M. Kaminski. An algorithm for polynomial multiplication that does not depend on the ring

constants. J. Algorithms, 9(1):137–147, 1988.

[84] M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for matrix and
transposed matrix products. Journal of Algorithms, 9(3):354–364, 1988.

[85] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet
Physics Doklady, 7:595–596, 1963.

[86] B. King. An improved implementation of elliptic curves over GF(2n) when using projective

point arithmetic. In Vaudenay and Youssef [193], pages 134–150.
[87] B. S. King. Some Results in Linear Secret Sharing. PhD thesis, University of Wisconsin-

Milwaukee, 2000.
[88] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.

Addison Wesley, 1 edition, 1969.

[89] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Programming.
Addison Wesley, 3 edition, 1997.

[90] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison Wesley, 3 edition, 1997.

[91] D. E. Knuth, editor. Selected papers on analysis of algorithms. CSLI Publications, Stanford,

2000.
[92] D. E. Knuth and C. H. Papadimitriou. Duality in addition chains. Bulletin of the European

Association for Theoretical Computer Science, 13:2–4, 1981. Reprinted in [91, Chapter 31].
[93] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–209, 1987.



BIBLIOGRAPHY 135

[94] N. Koblitz. Hyperelliptic curve cryptosystems. Journal of Cryptology, 1:139–150, 1989.

[95] W. Koepf. Efficient computation of Chebyshev polynomials. In M. Wester, editor, Computer
Algebra Systems: A Practical Guide, pages 79–99. John Wiley, 1999.

[96] C. Krook. Optimal black-box secret sharing over arbitrary abelian groups. Available on-line,

http://www.student.tue.nl/u/c.krook, 2002.
[97] M. Kutz. Lower bounds for Lucas chains. 3rd revised edition. Available from the author,

2002.
[98] C. Laih, W. Tai, and F. Tu. On the security of LUC function. Information Processing Letters,

53:243–247, 1995.

[99] C.-S. Laih, F.-K. Tu, and W.-C. Tai. Remarks on LUC public key system. IEE Electronics
Letters, 30(2):123–124, 1994.

[100] T. Lange. Efficient Arithmetic on Hyperelliptic Curves. PhD thesis, Universität-
Gesamthochschule Essen, 2001.

[101] D. H. Lehmer. Computer technology applied to the theory of numbers. In W. J. LeVeque,
editor, Studies in Number Theory, volume 6 of MAA Studies in Mathematics, pages 117–151.
Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969.

[102] A. Lempel, G. Seroussi, and S. Winograd. On the complexity of multiplication in finite fields.
Theoretical Computer Science, 22:285–296, 1983.

[103] A. K. Lenstra. The long integer package freelip. Available from www.ecstr.com.

[104] A. K. Lenstra. Using cyclotomic polynomials to construct efficient discrete logarithm cryp-
tosystems over finite fields. In V. Varadharajan, J. Pieprzyk, and Y. Mu, editors, ACISP’97,

volume 1270 of Lecture Notes in Computer Science, pages 127–138. Springer-Verlag, 1997.
[105] A. K. Lenstra. Unbelievable security: matching AES security using public key systems. In

Boyd [29], pages 67–86.

[106] A. K. Lenstra and E. R. Verheul. Key improvements to XTR. In T. Okamoto, editor, Ad-
vances in Cryptography—Asiacrypt’00, volume 1976 of Lecture Notes in Computer Science,

pages 220–233. Springer-Verlag, 2000.
[107] A. K. Lenstra and E. R. Verheul. The XTR public key system. In M. Bellare, editor, Advances

in Cryptography—Crypto’00, volume 1880 of Lecture Notes in Computer Science, pages 1–

19. Springer-Verlag, 2000.
[108] A. K. Lenstra and E. R. Verheul. Fast irreducibility and subgroup membership testing in

XTR. In K. Kim, editor, PKC’01, volume 1992 of Lecture Notes in Computer Science, pages
73–86. Springer-Verlag, 2001.

[109] A. K. Lenstra and E. R. Verheul. An overview of the XTR public key system. In K. Alster,

J. Urbanowicz, and H. C. Williams, editors, The proceedings of the Public-Key Cryptography
and Computational Number Theory Conference, pages 151–180. Verlages Walter de Gruyter,

2001.
[110] A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,

14(4):255–293, 2001.

[111] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge
University Press, 1994.

[112] C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In Y. Desmedt,
editor, Advances in Cryptography—Crypto’94, volume 839 of Lecture Notes in Computer

Science, pages 95–107. Springer-Verlag, 1994.

[113] S. Lim, S. Kim, I. Yie, J. Kim, and H. Lee. XTR extended to GF(p6m). In Vaudenay and
Youssef [193], pages 301–312.

[114] J. López and R. Dahab. Improved arithmetic for elliptic curve arithmetic in GF(2m). In
S. Tavares and H. Meijer, editors, SAC’98, volume 1556 of Lecture Notes in Computer

Science, pages 201–212. Springer-Verlag, 1998.

[115] J. López and R. Dahab. Fast multiplication on elliptic curves over GF(2m) without precom-
putation. In Ç. K. Koç and C. Paar, editors, CHES’99, volume 1717 of Lecture Notes in

Computer Science, pages 316–327. Springer-Verlag, 1999.



136 BIBLIOGRAPHY

[116] E. Lucas. Le calcul des nombres entiers, le calcul des nombres rationnels, la divisibilité

arithmétique, volume 1 of Th/’eorie des Nombres. Gauthier-Villars et Fils, Paris, 1891.
[117] O. B. Lupanov. On rectifier and contact rectifier circuits. Dokl. Akad. Nauk SSSR (N.S.),

111:1171–1174, 1956.

[118] A. J. Martin and M. Rem. A presentation of the Fibonacci algorithm. Information Processing
Letters, 19(2):67–68, 1984.

[119] D. P. McCarthy. The optimal algorithm to evaluate xn using elementary multiplication meth-
ods. Mathematics of Computation, 31(137):251–256, 1977.

[120] K. S. McCurley. The discrete logarithm problem. In C. Pomerance, editor, Cryptology and

Computational Number Theory, volume 42 of Proceedings of Symposia in Applied Mathe-
matics, pages 49–74. American Mathematical Society, 1990.

[121] A. Menezes, P. van Oorschot, and S. Vanstone. CRC-Handbook of Applied Cryptography.
CRC Press, 1996.

[122] A. Menezes and S. Vanstone. ECSTR (XTR): Elliptic curve singular trace representation.
Rump Session of Crypto 2000, 2000.

[123] A. J. Menezes and S. A. Vanstone. Elliptic curve cryptosystems and their implementation.

Journal of Cryptology, 6(4):209–224, 1993.
[124] M. Michels. Kryptologische Aspekte digitaler Signaturen und elektronischer Wahlen. PhD

thesis, Technischen Universität Chemnitz-Zwickau, Aachen (Germany), 1996.

[125] J. Miller and D. S. Brown. An algorithm for evaluation of remote terms in a linear recurrence
sequence. The Computer Journal, 9:188–190, 1966.

[126] V. Miller. Use of elliptic curves in cryptography. In H. Williams, editor, Advances in
Cryptography—Crypto’85, volume 218 of Lecture Notes in Computer Science, pages 417–
425. Springer-Verlag, 1986.

[127] B. Möller. Algorithms for multi-exponentiation. In Vaudenay and Youssef [193], pages 165–
180.

[128] P. L. Montgomery. Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via Lucas
chains. Revised (1992) version from ftp.cwi.nl: /pub/pmontgom/Lucas.ps.gz, 1983.

[129] P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computa-

tion, 44:519–521, 1985.
[130] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Mathe-

matics of Computation, 48(170):243–264, 1987.
[131] P. L. Montgomery, Aug. 2000. Private communication: expon2.txt, Dual elliptic curve expo-

nentiation.

[132] F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using addition-
subtraction chains. RAIRO Inform. Theor. Appl., pages 531–543, 1990.

[133] W. Müller and R. Nöbauer. Some remarks on public-key cryptosystems. Studia Sci. Math.
Hungar., 16:71–76, 1981.

[134] W. B. Müller and R. Nöbauer. Cryptanalysis of the Dickson-scheme. In F. Pichler, editor,

Advances in Cryptography—Eurocrypt’85, volume 219 of Lecture Notes in Computer Science.
Springer-Verlag, 1986.

[135] D. Naccache and P. Paillier, editors. Public Key Cryptography, volume 2274 of Lecture Notes
in Computer Science. Springer-Verlag, 2002.

[136] National Institute of Standards and Technology. Digital Signature Standard, 2000. FIPS

Publication 186-2.
[137] N. Nedjah and L. de Macedo Mourelle. Minimal addition chain for efficient modular expo-

nentiation using genetic algorithms. In T. Hendtlass and M. Ali, editors, IEA/AIE 2002,
volume 2358 of LNAI, pages 88–89. Springer-Verlag, 2002.

[138] L. J. O’Connor. On string replacement exponentiation. Designs, Codes and Cryptography,

23:173–183, 2001.
[139] A. M. Odlyzko. Discrete logarithms: The past and the future. Designs, Codes and Cryptog-

raphy, 19:129–145, 2000.



BIBLIOGRAPHY 137

[140] K. Okeya, H. Kurumatani, and K. Sakurai. Elliptic curves with the Montgomery-form and

their cryptographic applications. In H. Imai and Y. Zheng, editors, PKC’00, volume 1751 of
Lecture Notes in Computer Science, pages 238–257. Springer-Verlag, 2000.

[141] K. Okeya and K. Sakurai. Fast multi-scalar multiplication methods on elliptic curves with

precomputation strategy using Montgomery trick. In Burton S. Kaliski et al. [38], pages
564–578.

[142] J. Olivos. On vectorial addition chains. Journal of Algorithms, 2:13–21, 1981.
[143] A. Ostrowski. On two problems in abstract algebra connected with Horner’s rule. In Studies

in mathematics and mechanics presented to Richard von Mises, pages 40–48. Academic Press

Inc., New York, 1954.
[144] Y.-H. Park, S. Jeong, and J. Lim. Fast exponentiation in subgroups of finite fields. IEE

Electronics Letters, 38(13):629–630, 2002.
[145] R. Perrin. Query 1484. L’Intermédiaire des Mathématiciens, 6:76, 1899.

[146] B. Pfitzmann, editor. Advances in Cryptography—Eurocrypt’01, volume 2045 of Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[147] R. Pinch. Extending the Hastad attack to LUC. IEE Electronics Letters, 31(21):1827–1828,

1995.
[148] R. Pinch. Extending the Wiener attack to RSA-type cryptosystems. IEE Electronics Letters,

31(20):1736–1738, 1995.

[149] N. Pippenger. On the evaluation of powers and related problems. In Proceedings of 17th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’76), pages 258–263.

IEEE Computer Society, 1976.
[150] N. Pippenger. The minimum number of edges in graphs with prescribed paths. Mathematical

Systems Theory, 12(4):325–346, 1979.

[151] N. Pippenger. On the evaluation of powers and monomials. SIAM Journal on Computing,
9(2):230–250, 1980.

[152] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms overGF (p)
and its cryptographic significance. IEEE Transactions on Information Theory, 24:106–110,

1978.

[153] J. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computa-
tion, 32(143):918–924, 1978.

[154] J. Pollard. Kangaroos, monopoly and discrete logarithms. Journal of Cryptology, 13(4):437–
447, 2000.

[155] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-

key cryptosystems. Comm. of the ACM, 21(2):120–126, 1978.
[156] S. Rönn. On the logarithmic evaluation of recurrence relations. Information Processing Let-

ters, 40(4):197–199, 1991.
[157] K. Rubin and A. Silverberg. Torus-based cryptography. Technical Report 39, IACR’s ePrint

Archive, 2003.

[158] A.-R. Sadeghi and M. Steiner. Assumptions related to discrete logarithms: Why subtleties
make a real difference. In Pfitzmann [146], pages 244–261. Full version online.

[159] O. Schirokauer, D. Weber, and T. F. Denny. Discrete logarithms: the effectiveness of the
index calculus method. In H. Cohen, editor, ANTS II, volume 1122 of Lecture Notes in

Computer Science, pages 337–361. Springer-Verlag, 1996.

[160] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc., 2 edition, 1996.
[161] C. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161–174,

1991.
[162] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to

electronic voting. In M. Wiener, editor, Advances in Cryptography—Crypto’99, volume 1666

of Lecture Notes in Computer Science, pages 148–164. Springer-Verlag, 1999.
[163] B. Schoenmakers, Aug. 2000. Personal communication.

[164] A. Scholz. Aufgabe 253. Jahresbericht der deutschen Mathematiker-Vereinigung, 47:41–42,
1937.



138 BIBLIOGRAPHY

[165] I. Semba. Systematic method for determining the number of multiplications required to

compute xm, where m is a positive integer. J. Information Proc., 6:31–33, 1983.
[166] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[167] D. Shanks. Class number, a theory of factorization, and genera. In 1969 Number Theory

Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y.,
1969), pages 415–440, Providence, R.I., 1971. Amer. Math. Soc.

[168] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27:379–423; 623–656, 1948. Also appears in [170].

[169] C. E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,

28:656–715, 1949. Also appears in [170]. The material originally appeared in a confidential
report ‘A Mathematical Theory of Cryptography’, dated Sept. 1, 1945.

[170] C. E. Shannon. Claude Elwood Shannon. IEEE Press, New York, 1993. Collected papers,
Edited by N. J. A. Sloane and Aaron D. Wyner.

[171] J. Shortt. An iterative program to calculate Fibonacci numbers in O(logn) arithmetic oper-
ations. Information Processing Letters, 7(6):299–303, 1978.

[172] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, edi-

tor, Advances in Cryptography—Eurocrypt’97, volume 1233 of Lecture Notes in Computer
Science, pages 256–266. Springer-Verlag, 1997.

[173] V. Shoup. Practical threshold signatures. In B. Preneel, editor, Advances in Cryptography—

Eurocrypt’00, volume 1807 of Lecture Notes in Computer Science, pages 207–220. Springer-
Verlag, 2000.

[174] F. Sica, M. Ciet, and J.-J. Quisquater. Analysis of the Gallant-Lambert-Vanstone method
based on efficient endomorphisms: Elliptic and hyperelliptic curves. In K. Nyberg and
H. Heys, editors, SAC’02, volume 2595 of Lecture Notes in Computer Science, pages 21–

36. Springer-Verlag, 2003.
[175] P. Smith and C. Skinner. A public-key cryptosystem and a digital signature system based

on the Lucas function analogue to discrete logarithms. In J. Pieprzyk and R. Safavi-Naini,
editors, Advances in Cryptography—Asiacrypt’94, volume 917 of Lecture Notes in Computer

Science, pages 357–364. Springer-Verlag, 1995.

[176] P. J. Smith and M. J. J. Lennon. LUC: A new public key system. In E. G. Douglas, editor,
Proceedings of the Ninth IFIP International Symposium on Computer Security, pages 97–

111. Elsevier Science Publications, 1993.
[177] J. A. Solinas. An improved algorithm for arithmetic on a family of elliptic curves. In

J. Burt Kaliski and S. Burton, editors, Advances in Cryptography—Crypto’97, volume 1294

of Lecture Notes in Computer Science, pages 357–371. Springer-Verlag, 1997.
[178] J. A. Solinas. Low-weight binary representations for pairs of integers. Technical report, CACR

(University of Waterloo) preprint series, 2001.
[179] M. Stam. On Montgomery-like representations for elliptic curves overGF (2k). In Y. Desmedt,

editor, PKC’03, volume 2567 of Lecture Notes in Computer Science, pages 240–253. Springer-

Verlag, 2002.
[180] M. Stam and A. K. Lenstra. Speeding up XTR. In Boyd [29], pages 125–143.

[181] M. Stam and A. K. Lenstra. Efficient subgroup exponentiation in quadratic and sixth degree
extensions. In Burton S. Kaliski et al. [38], pages 318–332.

[182] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.

[183] V. Strassen. Berechnung und programm. i. Acta Informatica, 1:320–335, 1972.
[184] V. Strassen. Some results in algebraic complexity theory. In Proceedings of the International

Congress of Mathematicians, Vancouver, 1974, pages 497–501. Canadian Mathematical Con-
gress, 1975.

[185] E. G. Straus. Problems and solutions: (5125) addition chains of vectors. American Mathe-

matical Monthly, 71:806–808, 1964.
[186] E. G. Thurber. Efficient generation of minimal length addition chains. SIAM Journal on

Computing, 28(4):1247–1263, 1999.



BIBLIOGRAPHY 139

[187] Y. Tsuruoka. Computing short Lucas chains for elliptic curve cryptosystems. IEICE Trans.

Fundamentals, E84–A(5):1227–1233, 2001.
[188] B. P. Tunstall. Synthesis of Noiseless Compression Codes. PhD thesis, Georgia Institute of

Technology, 1968.

[189] F. J. Urbanek. An O(logn) algorithm for computing the nth element of the solution of a
difference equation. Information Processing Letters, 11(2):66–67, 1980.

[190] B. Vallée. Dynamics of the binary Euclidean algorithm: functional analysis and operators.
Algorithmica, 22:660–685, 1998.

[191] J. H. van Lint. Introduction to Coding Theory, volume 86 of Graduate Texts in Mathematics.

Springer-Verlag, 3 edition, 1999.
[192] S. A. Vanstone, R. C. Mullin, A. Antipa, and R. Gallant. Accelerated finite field operations

on an elliptic curve. Technical Report WO 99/49386, Patent Cooperation Treaty, 1999.
[193] S. Vaudenay and A. Youssef, editors. Selected Areas in Cryptography 2001, volume 2259 of

Lecture Notes in Computer Science. Springer-Verlag, 2001.
[194] E. R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryptosys-

tems. In Pfitzmann [146], pages 195–210.

[195] J. von zur Gathen. Efficient and optimal exponentiation in finite fields. Comput. Complexity,
1:360–394, 1991.

[196] J. von zur Gathen and M. Nöcker. Exponentiation in finite fields: theory and practice. In

T. Mora and H. Mattson, editors, AAECC-12, volume 1255 of Lecture Notes in Computer
Science, pages 88–133. Springer-Verlag, 1997.

[197] C.-T. Wang, C.-C. Chang, and C.-H. Lin. A method for computing lucas sequences. Com-
puters and Mathematics with Applications, 38:187–196, 1999.

[198] E. D. Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature schemes

based on elliptic curves. In Buhler [37], pages 252–266.
[199] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag, 1996.

[200] Y. Yacobi. Fast exponentiation using data compression. SIAM Journal on Computing,
28(2):700–703, 1998.

[201] A. C. Yao and D. E. Knuth. Analysis of the subtractive algorithm for greatest common

divisors. Proc. Nat. Acad. Sci. U.S.A., 72(12):4720–4722, 1975.
[202] A. C.-C. Yao. On the evaluation of powers. SIAM Journal on Computing, 5(1):100–103,

1976.
[203] S. Yen and C. Laih. Fast algorithms for LUC digital signature computation. IEE Proceedings,

Computers and Digital Techniques, 142(2):165–169, 1995.

[204] S. Yen, C. Laih, and A. Lenstra. Multi-exponentiation. IEE Proceedings, Computers and
Digital Techniques, 141(6):325–326, 1994.

[205] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23(3):337–343, 1977.

[206] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE

Transactions on Information Theory, 24(5):530–536, 1978.
[207] Improved discrete logarithm systems with key-size reduction, 2000. Anonymous Submission.





Samenvatting

Cryptologie is letterlijk de leer der geheimen. Oorspronkelijk is het inderdaad zo
dat cryptografen zich voornamelijk bezig hielden met het versleutelen van geheime
informatie. Cryptanalisten probeerden die geheimen vervolgens weer te ontfutselen.
Tegenwoordig worden cryptografische systemen ook voor hele andere doeleinden
gebruikt, zoals het zetten van een digitale handtekening (een functioneel en soms ook
wettelijk equivalent van de handgeschreven variant), maar ook het veilig uitvoeren
van verkiezingen over het Internet.

Centraal in al deze moderne toepassingen zijn functies die makkelijk uit te reke-
nen zijn voor de gebruiker, maar die moeilijk te inverteren zijn voor een boosdoener.
Het is bijvoorbeeld eenvoudig twee priemgetallen met elkaar te vermenigvuldigen,
maar het is onbekend of het omgekeerde, factoriseren, ook snel kan. Een groot aan-
tal cryptografische systemen is gebaseerd op groepen waarin het discrete logaritme
probleem algemeen wordt verondersteld moeilijk te zijn. Er is onderzoek gedaan
naar het versnellen van machtsverheffen in een aantal dergelijke groepen. Hierdoor
winnen de cryptografische systemen eveneens aan snelheid.

Het versnellen van een machtsverheffing kan ruwweg op twee manieren. Ener-
zijds door sneller te vermenigvuldigen en anderzijds door minder te vermenigvuldigen.

In hoofdstuk 2 is gekeken naar de theorie en praktijk van optelketens. Deze
kunnen gebruikt worden om het aantal groepsvermenigvuldigingen laag te houden.
Een speciaal type optelketens dat gebruikt kan worden voor recurrente betrekkingen
staat centraal in 3. Een algoritme van Montgomery voor tweede orde betrekkingen
is aangepast voor derde orde betrekkingen.

In hoofdstuk 4 wordt gekeken naar ondergroepen van priemorde delende p + 1
in F∗p2 en van priemorde delende p2 − p+ 1 in F∗p6 . Voor beide gevallen worden ver-
snellingen voor de groepsaritmetiek beschreven voor zekere congruentieklassen van
p in een niet-gecomprimeerde representatie. Voor de ondergroep van F∗p6 wordt ook
een versnelling beschreven van XTR, een reeds bestaande gecomprimeerde variant.

Traditiegetrouw wordt machtsverheffen scalaire vermenigvuldiging genoemd voor
de groep gebaseerd op een elliptische kromme. In hoofdstuk 5 wordt een alternatieve
Montgomery-representatie gepresenteerd voor krommen over een lichaam van karak-
teristiek twee; traditionele projectieve methoden blijken echter sneller te zijn. Ter
vergelijking worden ook krommen over een lichaam van priemorde beschreven.

141



142 SAMENVATTING

Tot slot is in hoofdstuk 6 gekeken naar het versnellen van een zogeheten zwarte-
doos-geheimenverdeelschema. Het specifieke schema dat onder handen wordt geno-
men is van Cramer en Fehr. Het blijkt dat ook hier feitelijk sprake is van machtsver-
heffingen. Door kleine aanpassingen aan het oorspronkelijke schema is het in dit
geval mogelijk om de exponenten aanzienlijk kleiner te krijgen wat vanzelfsprekend
tot versnellingen leidt.



Dankwoord

Tijdens mijn tien jaar in Eindhoven heb ik steeds het geluk gehad steeds van de
juiste personen op de juiste momenten de juiste steun te krijgen. Dit gold ook voor
de vier jaar promotie-onderzoek. Ik kan mij nog goed een faculteitsraadsvergadering
herinneren waarin de toenmalige decaan voor het eerst gewag maakte van twee
mogelijke aanvullingen voor de Crypto-groep. Hierbij noemde hij geen namen, maar
merkte enkel op dat het ging om een bankier en een veelbelovende jonge Nederlandse
onderzoeker, winnaar van een prestigieuze prijs.

De bankier was en is Arjen Lenstra, mijn eerste promotor. Hij kwam als deel-
tijdhoogleraar naar Eindhoven als expert op het gebied van algoritmen in de cryp-
tografie1, juist op een moment dat ik me meer op de efficiëntie van cryptosystemen
begon te richten. Hoewel hij slechts zes weken per jaar in Eindhoven is (en daarbij
Eindhoven soms als synoniem voor Europa lijkt te hanteren), was hij er altijd als
ik hem nodig had. Een indrukwekkende hoeveelheid e-mails werd gebruikt voor de
communicatie, maar ook de invloed van de rendez-vous tijdens conferenties mag
niet onderschat worden. Hij zorgde ervoor dat ik tijdens belangrijke conferenties
presentaties kon geven, hielp me bij de voorbereiding daarvan, toonde me de kunst
van het schrijven van een artikel en op de momenten dat ik het even wat minder zag
zitten sprak hij me moed in. Wat kun je nog meer van een promotor verwachten?

Uiteraard zijn er meer mensen aan wie ik dank verschuldigd ben, omdat zij
direct hebben bijgedragen aan de totstandkoming van dit proefschrift.

Henk van Tilborg heeft mij aangesteld als AiO in Eindhoven. Dit begon met
een projectaanvraag bij de STW, lang voordat ik wist dat ik AiO wilde worden. Hij
heeft mij ook op vele manieren de vrijheid gegeven, bijvoorbeeld door bij de STW
te pleiten voor een ruime interpretatie van de oorspronkelijke projectaanvraag. Ik
ben Henk ook zeer dankbaar voor zijn bereidheid als tweede promotor op te treden.

Van september tot de kerst van 2002 ben ik te gast geweest als Marie Curie
Fellow bij BRICS in Århus. In Denemarken werd ik begeleid door Ronald Cramer,
ooit een veelbelovende jonge Nederlandse onderzoeker, winnaar van een prestigieuze
prijs, maar inmiddels een internationaal gerespecteerde wetenschapper. Hoofdstuk 6
zou er niet geweest zijn zonder Ronald. De gesprekken in Århus maar ook latere
telefoongesprekken hebben hopelijk hun positieve uitwerking op de rest van het
proefschrift en mijn insteek voor de toekomst niet gemist.

1Iemand omschreef hem ooit als ‘wereldkampioen factoriseren’.

143



144 DANKWOORD

Met Berry Schoenmakers heb ik in het verlengde van mijn afstuderen aanvanke-
lijk veel samengewerkt op het gebied van groepshandtekeningen. Hoewel er van dit
werk weinig is terug te vinden in dit proefschrift, beschouw ik het als een buitenge-
woon leerzame ervaring. Ook nadat ik een andere kant was opgegaan, bleef Berry
gëınteresseerd en betrokken, wat bijvoorbeeld tot uiting kwam in Algoritme 3.17 en
zijn bereidheid het gehele proefschrift door te lezen voor het naar de drukker ging.

Naast bovengenoemde personen wil ik de overige leden van de promotiecom-
missie bedanken: Jack van Lint, Eric Verheul, Bart Preneel, Arjeh Cohen, Jos
Baeten en Peter van Emde Boas. Laatstgenoemde completeerde de kerncommissie
en gaf mij na een voordracht in Utrecht enkele nuttige literatuurreferenties.

Peter Beelen wil ik bedanken voor de vruchtbare discussies over Lucas verza-
melingen en ketens, elliptische krommen en ondergroepen van eindige lichamen,
maar toch ook wel een beetje voor zijn heldhaftige optreden bij onze avonduurlijke
samenwerking.

Dit brengt mij tot de mensen die een steun zijn geweest die niet altijd direct
wetenschappelijk van aard was: de STW en de leden van de gebruikerscommissie
voor de plezierige voortgangsvergaderingen; Jeroen Doumen als projectgenoot en
voor behulpzaamheid voor velerlei dingen; Jan Draisma en Heleen Neggers voor
tien mooie jaren in Eindhoven en de ceremoniële hulp bij de afsluiting daarvan;
mijn kamergenootjes Julia, Shengli, Sacha en Giuseppe; de AiO’s van de ronde
tafel in Eindhoven; the colleagues and friends in Århus (jeg kan godt lide folk fra
datalogi), with whom I’d still like to bike to Gren̊a; de buurvrouwen Anita en Henny
voor de gezelligheid en de formulierenhulp; en zo zou ik nog even door kunnen gaan.

Nog even specifiek wil ik mijn huisgenoten en oud-huisgenoten van Woongroep
Flater, Huishoudencentrum of gewoon Stratumsedijk 53 willen bedanken. Sinds het
begin van mijn promotie heb ik er met veel plezier gewoond. In het bijzonder wil
ik huisoudste Hajo bedanken voor het op de proppen komen met de fantastische
luistervink.

Tot slot mijn ouders en mijn broertje.



Curriculum Vitae

Geboren in Tilburg op 17 februari 1975, maar grotendeels opgegroeid in Veghel,
doorliep Martijn Stam het gymnasium (Bernrode) in Heeswijk-Dinther van 1987
tot 1993. Van 1993 tot 1999 studeerde hij Technische Wiskunde aan de Technische
Universiteit Eindhoven. Deze studie werd cum laude afgesloten met het afstudeer-
project Toggling Schemes for Electronic Voting dat was uitgevoerd bij BT Labs,
Ipswich, Verenigd Koninkrijk, onder begeleiding van dr. Simon Phoenix, prof.dr.ir.
H.C.A. van Tilborg en dr.ir. L.A.M. Schoenmakers. Vrijwel direct na zijn afstuderen
ging Martijn aan de slag als AiO in de groep Coderingstheorie en Cryptologie.

145


	Contents
	Preface
	List of algorithms
	1. Introduction
	2. Addition chains
	3. Higher order addition chains
	4. Finite field extensions
	5. Montgomery-type representations
	6. Optimizing a black box secret sharing scheme
	Bibliography
	Samenvatting
	Dankwoord
	Curriculum Vitae

