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Abstract. Lucas chains are a special type of addition chains satisfying an extra condition: for
the representation ak = aj + ai of each element ak in the chain, the difference aj − ai must also
be contained in the chain. In analogy to the relation between addition chains and exponentiation,
Lucas chains yield computation sequences for Lucas functions, a special kind of linear recurrences.

We show that the great majority of natural numbers n does not have Lucas chains shorter than
(1− ε) logφ n for any ε > 0, where φ is the golden ratio.

Peter L. Montgomery was the first to consider Lucas chains, in the early eighties. He discovered
a decomposition theorem for Lucas chains and a lower bound on their length in terms of Fibonacci
numbers. His work was not published. Therefore several of Montgomery’s original ideas are repre-
sented in this paper.
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1. Introduction. An increasing sequence 1 = a0 < a1 < · · · < ar = n of
integers is called an addition chain for n if for each index k ≥ 1 there exist i ≤ j < k
so that

ak = ai + aj .(1)

This notion is motivated by the problem of computing xn from x with few multiplica-
tions, so one is primarily interested in chains of small length r for given n. Since their
first appearance in [12], addition chains have been intensively studied. See, for exam-
ple, Schönhage’s lower bound in [13] or Bergeron, Berstel, and Brlek’s paper [1] on
advanced methods for the construction of short addition chains. We refer to Section
4.6.3 of Knuth’s classic [5] for a broader survey.

In this paper, we investigate Lucas chains, a variant of addition chains introduced
by Peter L. Montgomery [9]. Those are chains for which the indices i, j in (1) can
be chosen such that either i = j or the difference aj − ai is also part of the chain.
The term “Lucas chain” is due to the observation that such chains yield computation
sequences for Lucas functions, a special kind of linear recurrences.

Montgomery’s paper [9], written in 1983, has never been published; for several
years no further research was done on Lucas chains. This changed in 1993 when
Smith and Lennon introduced the public-key crypto system LUC [14], which is based
on Lucas functions. Yen and Laih [16] proposed Lucas chains as a means of evaluating
the one-way functions of that crypto system; they used the term “Luc chains,” though.
Then in 1996 in his Ph.D. thesis on crypto systems [2], Bleichenbacher used results
from [9] to actually compute short Lucas chains.
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Besides some elaborate techniques for the construction of short Lucas chains,
Montgomery [9] proved lower bounds on the length of Lucas chains for given integers.
We will show similar results, reusing several of his ideas. From those bounds we will
derive the more general statement that the majority of natural numbers n does not
have Lucas chains shorter than (1−ε) logφ n for any ε > 0, where φ is the golden ratio.
Two important prerequisites for this bound are a decomposition theorem stating that
any Lucas chain can be uniquely factored into a product of so-called simple chains,
and a lower bound on the length of these chains in terms of Fibonacci numbers.

The results of this paper are from the author’s diploma thesis [6], written in
ignorance of Montgomery’s work. The author is grateful for Montgomery’s kind per-
mission to represent several ideas from his original work.

2. From Lucas functions to Lucas chains. Let P and Q be elements from a
commutative ring with identity. The Lucas functions Vn(P,Q) are defined recursively
by [7]:

V0(P,Q) = 2, V1(P,Q) = P, Vn+2(P,Q) = P · Vn+1(P,Q) −Q · Vn(P,Q).

If α and β are the roots of the polynomial X2 − PX + Q, then

P = α + β, Q = αβ, and Vn(P,Q) = αn + βn.(2)

In the following we will omit the arguments P,Q and simply write Vn.
We ask for a method to compute Vn for some n ≥ 0 from a given pair P,Q.

Looking at the identities

Vm+n = (αm + βm)(αn + βn) − αnβm − αmβn

= (αm + βm)(αn + βn) − αmβm(αn−m + βn−m)

= Vm · Vn −Qm · Vn−m(3)

for 0 ≤ m ≤ n, we see that we can compute Vm+n from Vm, Vn, Vn−m, and a certain
power of Q. This gives rise to the following definition.

Definition 1. A Lucas chain for an integer n ≥ 1 is an increasing sequence

1 = a0 < a1 < a2 < · · · < ar = n

of integers such that for every k ∈ {1, . . . , r},

(L)
there exist indices i, j with 0 ≤ i ≤ j < k
such that ak = aj + ai and aj − ai ∈ {0, a0, a1, . . . , ak−1}.

We call r the length of the chain.
Example 1. The sequence (1, 2, 3, 5) is a Lucas chain for 5 whereas (1, 2, 4, 5)

is not—both are addition chains, though. In the latter sequence, 5 can only be
represented as 4 + 1 but 4 − 1 = 3 is not part of the sequence.

Example 2. (1, 2, 4, 8, . . . , 2l) is a Lucas chain of length l for 2l. For every k,
(L) is satisfied with i = j = k − 1.

Example 3. Let the Fibonacci numbers Fn be recursively defined by

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2, n ≥ 2.

For any l ≥ 0 the sequence Fl = (F2, F3, F4, F5, . . . , Fl+2) is a Lucas chain of length l
for Fl+2. To show (L), let j = k − 1 and i = k − 2; then Fj − Fi = Fk−3. We call Fl

the lth Fibonacci chain.
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A Lucas chain for n directly yields a computation of Vn. First, we successively
compute Qak for k = 1, . . . , r − 1 with r − 1 multiplications. Second, we repeatedly
use (3) to obtain Vak

for k = 1, . . . , r, which takes two multiplications in each step.
Thus we can compute Vn from P and Q with 3r − 1 multiplications altogether.

3. Applications. As stated in the introduction, Lucas chains turned out to be
useful in public-key cryptography. Instead of using powers Xn mod N with some
large integer N for the one-way function as in the RSA scheme [11], the LUC crypto
system [14] uses the Lucas function Vn mod N for encryption and decryption. In this
application, the parameter Q is always chosen to be 1 so that powers of Q need not be
computed and (3) simplifies to Vm+n = Vm · Vn − Vn−m (see also [16]). Hence in this
special case, a Lucas chain of length r for n yields a computation of Vn with exactly
r multiplications in Z/NZ.

The LUC crypto system stimulated research on Lucas chains [2, 16], but the use
of Lucas functions for public-key cryptography had been considered before: Müller
and Nöbauer [10] proposed the Dickson polynomials gn(x, a), given by

gn(x, a) =
∑

0≤j≤n/2

n

n− j

(

n− j

j

)

(−a)jxn−2j for n ≥ 1

and g0(x, a) = 2 with some a from a commutative ring with identity, as one-way
functions. Waring’s formula tells us that [8, p. 355]

gn(P,Q) = αn + βn = Vn(P,Q)

with α, β as in (2). Hence, from this point of view, the LUC system uses the Dickson
polynomials gn(x, 1) for encryption. Müller and Nöbauer argued that it might be dif-
ficult to efficiently compute Dickson polynomials for large n, but von zur Gathen [15]
used the equation gn+2 = xgn+1 − agn and a matrix representation of this recurrence
relation to show that gn can be computed in O(log n) ring operations. Lucas chains
can thus be seen as a tool to reduce the multiplicative constant in this asymptotic
expression.

Montgomery [9] already pointed out another application of Lucas chains: For
every n ∈ N, the nth Chebyshev polynomial Tn is defined as the unique polynomial
satisfying

Tn(cos z) = cos(nz).

If we let α = eiz and β = e−iz, we get cos z = (αn + βn)/2 and P = 2 cos z, Q = 1
by (2). Writing x = cos z then yields [8, p. 355]

2Tn(x) = 2 cos(nz) = gn(2x, 1) = Vn(2x, 1).

In other words, these polynomials are just a special case of the Dickson polynomials
over the complex numbers. Again we see that we can compute Tn(x) from x with
r multiplications if we have a Lucas chain of length r for n.

4. Basic structural properties. For technical reasons we extend the usual
notion of Lucas chains to what we call “prechains.” They do not alter the capabilities
of the original chains but simplify our arguments and proofs in this section.

Definition 2. A strictly monotonically increasing sequence χ = (a0, a1, . . . , ar)
of positive integers is called a Lucas prechain if property (L) holds for every k ∈
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{1, . . . , r}. We define len(χ) := r to be the length and val(χ) := ar/a0 to be the
value of the prechain. A prechain of length zero is called trivial.

Obviously, every Lucas chain for some n is a Lucas prechain with value n. Con-
versely, it is also easy to see that a prechain is nothing but a scaled Lucas chain. Let
αχ denote the sequence (αa0, . . . , αar), α ∈ Q+. Property (L) is obviously invariant
under such scalar multiplications; i.e., a sequence χ of integers is a Lucas prechain iff
cχ is, c ∈ N+. Also note that the first element of a prechain divides all others. This
follows by induction since (L) implies that a0 divides ak if it divides ai and aj . Thus
we see that values of Lucas prechains are always integers, and scalar multiplication
with 1/a0 makes any prechain into a chain without changing length or value.

Example 4. The sequence (6, 12, 18, 30, 48) is a Lucas prechain of length 4 for 8.
Multiplication with 1/6 yields the chain (1, 2, 3, 5, 8).

4.1. Multiplying chains. It is a well-known fact that two addition chains for a
and b can be combined to yield an addition chain for ab [5, Sect. 4.6.3]. As shown in
the proof of Theorem 2 of [9], the same method applies to Lucas chains. We restate
it here in terms of prechains.

Definition 3. Let χ1 = (a0, . . . , ar) and χ2 = (b0, . . . , bs) be Lucas prechains
with ar = b0. Then their composition χ1 ◦χ2 is defined as the sequence (a0, . . . , ar−1,
b0, . . . , bs).

We see that the composition of two Lucas prechains is also a Lucas prechain
because no element is removed from the original sequences. This concept is easily
adapted to chains. We simply have to scale the second chain appropriately.

Definition 4. Let χ1 and χ2 be Lucas chains. Then their product χ1 ∗ χ2 is
the Lucas chain χ1 ◦ val(χ1)χ2.

Both operations, ◦ and ∗, clearly are associative. The following equations are
immediate from the definitions:

len(χ1 ∗ χ2) = len(χ1) + len(χ2),(4)

val(χ1 ∗ χ2) = val(χ1) · val(χ2).(5)

In order to obtain a chain for a composite number n = ab, we can thus multiply
chains χ1 and χ2 for a and b, respectively. As with addition chains, we call this
technique the factor method [5, p. 463].

Example 5. The product chain (1, 2, 3) ∗ (1, 2, 3, 5, 7) ∗ (1, 2, 4) = (1, 2, 3, 6, 9, 15,
21, 42, 84) is a Lucas chain of length 2 + 4 + 2 = 8 for 3 · 7 · 4 = 84.

4.2. Decomposing chains. We shall now identify those chains that can be
written as products of smaller chains. The following proposition is essentially equiva-
lent to Theorem 5 and Corollary 6 of [9]. But because of its fundamental importance
for the understanding of the structure of Lucas chains, we shall prove it here again,
in terms of prechains. It states that for Lucas chains, decomposability is a completely
local concept.

Proposition 1. Let χ = (a0, . . . , ar) be a Lucas prechain and let 0 ≤ m < r.
Then the following two statements are equivalent:

(i) am+1 = 2am,
(ii) χ(m) := (am, am+1, . . . , ar) is a Lucas prechain.
Proof. Assume that (i) holds. We show by induction on k = m+ 1, . . . , r that am

divides ak and that any pair of indices i, j satisfying (L) fulfills

m ≤ i ≤ j and aj − ai ∈ {0, am, . . . , ak−1}.
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For k = m + 1, property (L) is satisfied with i = j = m only. So let k > m + 1
and assume that am|al for m ≤ l < k. Let i, j as in (L). We have the implications

k > m + 1 ⇒ ak > am+1 = 2am ⇒ aj > am

⇒ aj ≥ am+1 = 2am ⇒ j ≥ m + 1,

hence am|aj by induction. Let us now consider the two cases ai ≥ aj/2 and ai < aj/2.
In the first case we get

ai ≥ aj/2 ⇒ ai ≥ am ⇒ i ≥ m ⇒ am|ai.

Otherwise

ai < aj/2 ⇒ aj − ai > aj/2 ≥ am ⇒ am|(aj − ai);

combined with am|aj this yields am|ai and thus i ≥ m. In both cases am divides
(aj + ai) = ak as was to be shown.

The implication (ii) ⇒ (i) is immediate from (L).
Such a pair (am, am+1) of consecutive elements with am+1 = 2am is called a

doubling step [5, p. 467] of the prechain χ. Note that the positions of doubling steps
in a prechain are obviously invariant under scaling, i.e., (a, b) is a doubling step of χ
iff (ca, cb) is a doubling step of cχ. It is now very easy to identify those chains that
are not representable as products.

Definition 5. We call a Lucas prechain simple if it contains exactly one doubling
step—its first two elements.

The Fibonacci chains Fl from Example 3 are simple for every l ≥ 1. Note that
by definition, trivial prechains are not simple.

The term simple is due to Bleichenbacher [2, Chap. 5]. He observed that Lucas
chains that cannot be written as nontrivial products are simple. For our lower bounds
in section 6, we need to make this notion a little more precise.

Proposition 2. Let χ = (a0, . . . , ar) be a nontrivial Lucas prechain and let
(arµ , arµ+1), 1 ≤ µ ≤ d, be all its doubling steps in increasing order, i.e., 1 = ar1 <
ar2 < · · · < ard . Additionally let rd+1 := r. Then

χµ := (arµ , arµ+1, . . . , arµ+1
)

is a simple Lucas prechain for every µ ∈ {1, . . . , d}. We have χ = χ1 ◦ . . . ◦ χd and
this decomposition into simple prechains is unique.

Proof. By Proposition 1, every χµ is a Lucas prechain because they all start with
a doubling step. They are also simple because none of them contains more doubling
steps. The equation χ = χ1 ◦ · · · ◦ χd is immediate from the definition of the χµ. For
uniqueness, just observe that by Proposition 1 every prechain χ′

µ of a decomposition
into simple prechains has to start with a doubling step of χ. To be simple it must not
contain any other of χ’s doubling steps. And it is also of strictly positive length since
trivial prechains are not simple.

We can directly restate this result for chains. Defining the empty product to be
the trivial chain, we get the following theorem, which very much resembles the proof
of Theorem 7 in [9].

Theorem 1. Every Lucas chain χ has a unique decomposition χ = χ1 ∗ · · · ∗ χd

into simple chains. This induces a factorization

val(χ) =

d
∏

µ=1

val(χµ)
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of its value.
Proof. The statement about the simple chain decomposition is just a reformu-

lation of Proposition 2. The product formula for the values directly follows from
equation (5).

Consequently, the structure of a Lucas chain for some n ∈ N+ is intimately related
to the prime number factorization of n. Theorem 1 will be very important for our
lower bounds in section 6.

5. Trivial bounds. Since Lucas chains resemble computation sequences, we are
interested in shortest chains for a given value.

Definition 6. For every number n ∈ N+ we let

t(n) := min{len(χ) | χ is a Lucas chain for n},
t′(n) := min{len(χ) | χ is a simple Lucas chain for n}.

A Lucas chain χ is called optimal if len(χ) = t(val(χ)).
Note that t′(1) = ∞ because any simple chain has value ≥ 2; this will be incon-

sequential since we shall consider t′(n) for n ≥ 2 only.
We can already state some basic facts about the function t. Application of the

factor method directly yields [9, Thm. 2]

t(a · b) ≤ t(a) + t(b).(6)

Just choose optimal chains χ1 and χ2 for a and b, respectively, and compare (4)
and (5). Denoting log2 by lg as usual, we also have the trivial lower bound

t(n) ≥ �lg n�(7)

because by property (L), no element of a Lucas chain can be more than twice as big
as any of its predecessors. Therefore the chains in Example 2 are obviously optimal.

5.1. A known upper bound. Montgomery developed the following binary
method [9] for the construction of a Lucas chain for any given odd n ≥ 3.

Let d0, d1, . . . , dk be the digits in the binary representation of n, starting from
the high end. We let a0 := d0 = 1 and inductively define

ai = 2ai−1 + di for i = 1, . . . , k.

In other words, ai has the binary representation d0d1 . . . di. Then

(a0, a0 + 1, a1, a1 + 1, . . . , ak−1, ak−1 + 1, ak)

is a Lucas chain for n because the elements ai+1 and ai+1 + 1 can always be written
as 2ai, ai + (ai + 1), or 2(ai + 1) so that the respective differences are either 0 or 1.
This chain has no more than 2k + 1 elements. Thus we get the upper bound

t(n) ≤ 2�lg n�.(8)

By application of the factor method to a = n/2 and b = 2, this bound also carries
over to even n.

Example 6. For n = 37 = 1001012, the binary method yields the Lucas chain
(1, 2, 3, 4, 5, 9, 10, 18, 19, 37).
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6. Lower bounds. It turns out that the trivial bound (7) can be substantially
improved upon. Montgomery showed the following [9, Thm. 7].

Theorem 2 (Montgomery). Let n be a positive integer with s prime divisors
(including multiplicities). Then the number of doubling steps in a Lucas chain for n
cannot exceed s, and n ≤ 2s−1Ft(n)−s+3.

This gives us a lower bound on t(n) for any n ∈ N+. The aim of this section is
to derive a similar bound that depends on the exact prime number factorization of n
and not only on the number of prime factors. That result will then enable us to prove
the desired lower bound of t(n) ≥ (1 − ε) logφ n for the vast majority of integers.

6.1. A lower bound for simple chains. By definition, a simple Lucas chain
contains exactly one doubling step. Since these are the most efficient steps available,
we expect simple chains to grow notably slower than arbitrary Lucas chains can. The
following simple but important lemma, which in different form already appeared in [9],
captures this intuition.

Lemma 1. Let χ be a simple Lucas chain. Then its value is bounded by

val(χ) ≤ Flen(χ)+2.

Proof. Since every Lucas chain is also an addition chain, we may apply Theorem A
from [5, p. 467]. Letting d = 1 there immediately yields the stated inequality.

In order to rephrase Lemma 1 in terms of the function t′, we reinterpret it in the
following way: The average growth of a simple Lucas chain of length k is no more
than a factor of k

√

Fk+2 per step.
Definition 7. For any integer n ≥ 2, let k := min{l | n ≤ Fl+2} and define

Φ(n) := k
√

Fk+2.

Indeed, this is a useful notion. We obtain the following bound.
Proposition 3. For every n ≥ 2, we have

t′(n) ≥ lg n

lg Φ(n)
.

Proof. Let k be the unique integer that satisfies Fk+1 < n ≤ Fk+2. Then by
Lemma 1, any simple chain for n has length at least k. Thus

t′(n) ≥ k ≥ lg n

lgFk+2
k =

lg n

lg k
√

Fk+2

=
lg n

lg Φ(n)
.

6.2. From simple chains to arbitrary chains. Theorem 1 now tells us how
to obtain a bound for t(n) from Proposition 3. Any chain for n can be factored
into simple chains, and the values of these factors are restricted by the possible (par-
tial) factorizations of the integer n. Hence, we can apply Proposition 3 to all those
factorizations and get

t(n) ≥ min

{ d
∑

i=1

lg fi
lg Φ(fi)

∣

∣

∣

d
∏

i=1

fi = n

}

.(9)

We can already use this formula to achieve nontrivial bounds on t(n) for certain
values of n.
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Example 7. The prime factors of n = 85 are 5 and 17. Proposition 3 yields
t′(5) ≥ 3, t′(17) > 5.5, and t′(85) > 8.9. Since (1, 2, 3, 5) ∗ (1, 2, 3, 5, 7, 10, 17) is a
chain of length 9 for 85, we obtain t(85) = 9.

So this technique yields useful results, but it may become impractical due to the
combinatorial explosion in cases where n has many factors. In the following we shall
see how this drawback can be overcome. The key observation is that short simple
chains are potentially more efficient than long ones because the shorter the chain the
greater the effect of the initial doubling step on the average growth of the chain. In
fact, Proposition 3 already captures this behavior in a very satisfying way. We shall
see that it is sufficient to apply it only to the prime number factorization of n. In
order to prove this formally, we need some basic facts about the function Φ.

6.3. Properties of the function Φ. The Fibonacci numbers are closely related
to the golden ratio

φ =
1 +

√
5

2
,

and we have the well-known formula [4, p. 83]

Fk =
1√
5

(

φk − φ̂k
)

,

where φ̂ = 1 − φ = 1
2 (1 −

√
5). Since φ̂ = −φ−1, we can restate this as

Fk =
1√
5

(

φk − (−φ)−k
)

,(10)

which will better suit our needs.
Lemma 2. For all k ≥ 1 we have

k+1
√

Fk+3 <
k
√

Fk+2.

Proof. We first raise both sides of the inequality to the k(k + 1)st power and
apply (10); thus we get

[

1√
5

(

φk+3 − (−φ)−k−3
)

]k

<
[

1√
5

(

φk+2 − (−φ)−k−2
)

]k+1

⇔
√

5
[(

1 + (−1)kφ−2k−6
)

φk+3
]k
<

[(

1 + (−1)k+1φ−2k−4
)

φk+2
]k+1

⇔
√

5φ−2 <
(

1 + (−1)k+1φ−2k−4
)k+1 (

1 + (−1)kφ−2k−6
)−k

.(11)

Numerical computation of the left-hand side of (11) yields
√

5φ−2 < 0.86. If k is
odd, the right-hand side is greater than one and hence (11) follows. If k is even, the
right-hand side of (11) equals

(

1 − φ−2k−4
)k+1 (

1 + φ−2k−6
)−k

>
(

1 − φ−2k−4
)k+1 (

1 − φ−2k−6
)k

>
(

1 − φ−2k−4
)2k+1

> 1 − (2k + 1)φ−2k−4,
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where the last step is by application of the Bernoulli inequality. Now

h(x) := 1 − (2x + 1)φ−2x−4 >
√

5φ−2 for x ≥ 2

since numerical computation for x = 2 yields 1 − 5φ−8 > 0.89 >
√

5φ−2 and

h′(x) =
(

(2x + 1) lnφ2 − 2
)

φ−2x−4 > 0 for x ≥ 2.

Lemma 3. The sequence (Φ(n))n≥2 is monotonically decreasing. It converges
towards the golden ratio:

lim
n→∞

Φ(n) = φ.

Proof. The first statement is a direct consequence of Lemma 2. Equation (10)
yields

k
√

Fk+2 = k

√

1√
5

(

φk+2 − (−φ)−k−2
)

= φ · k

√

φ2

√
5

(

1 ± φ−2k−4
)

,

and so the second statement follows.

6.4. The lower bound in closed form. We are now able to prove a lower
bound for t(n) that does not suffer from the combinatorial explosion of the rule (9).

Theorem 3. Let n be any positive integer, and let n =
∏e

1 pi be its factorization
into prime numbers. Then we have

t(n) ≥
e

∑

1

lg pi
lg Φ(pi)

.

Proof. Let χ be an optimal chain for n and let χ1∗· · ·∗χd be its decomposition into
simple chains. We let nµ := val(χµ) be their corresponding values. Since n = n1 · · ·nd,
there exists a partition I1, . . . , Id of the index set {1, . . . , e} so that

nµ =
∏

i∈Iµ

pi

for every µ ∈ {1, . . . , d}. Since χ is optimal, every χµ must also be optimal. Thus, by
(4) and Proposition 3 we have

t(n) =

d
∑

µ=1

t(nµ) =

d
∑

µ=1

t′(nµ)

≥
d

∑

µ=1

lg nµ

lg Φ(nµ)
=

d
∑

µ=1

∑

i∈Iµ

lg pi
lg Φ(nµ)

≥
d

∑

µ=1

∑

i∈Iµ

lg pi
lg Φ(pi)

=

e
∑

i=1

lg pi
lg Φ(pi)

,

where the penultimate step makes use of Lemma 3.
Theorem 3 is a powerful and also practical tool for proving Lucas chains optimal.

Let us again consider the chain from Example 5. The prime number factorization is
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84 = 22 · 3 · 7. We have

t(84) ≥ 2
lg 2

lg Φ(2)
+

lg 3

lg Φ(3)
+

lg 7

lg Φ(7)

= 2
lg 2

lg 2
+

lg 3

lg
√

3
+

lg 7

lg 4
√

8
> 7.7,

and thus t(84) = 8.

6.5. Comparison of the bounds. Since we used methods similar to those of
Montgomery, the bounds from Theorem 3 are close to those from Theorem 2. For
example, the latter also yields t(84) ≥ 8, as we have computed from the former. But
there are also cases in which the former is slightly better than the latter. As an
example consider n = 177, where we get the lower bounds 11, which is the precise
value of t(177), and 10, respectively. The main advantage of Theorem 3, however, is
its dependence on the prime factors of n and its implicit relation to the golden ratio
through the function Φ. This will enable us to derive the general lower bound in the
subsequent section.

7. A general lower bound. By now we have considered only concrete lower
bounds for individual values. In this section we are going to show that the great
majority of numbers n does not have Lucas chains shorter than (1 − ε) logφ n for any
given ε > 0.

For this, observe that our bound from Theorem 3 is closer to logφ n if n contains
many large prime factors. The next definition captures this notion.

Definition 8. Let n be any positive integer with prime number factorization
n =

∏e
1 pi. Let B ∈ N+ and δ ∈ (0, 1]. We call n a (B, δ)-fat number if

∏

pi≤B

pi < nδ,

that is, it contains less than a δ-portion (logarithmically) of factors smaller than B.
We call n (B, δ)-smooth if it is not (B, δ)-fat.

The term “smooth number” is generally used for integers that contain no prime
factors larger than a certain bound B. Note that this is just the special case δ = 1 in
the above definition.

As expected, it turns out that fat numbers cannot have short Lucas chains.

Lemma 4. Let n be a (B, δ)-fat integer, B ≥ 2. Then we have

t(n) ≥ 1 − δ

lg Φ(B)
lg n.

Proof. Let
∏e

1 pi be the factorization of n into prime numbers, and let

S := {i | pi ≤ B},
L := {i | pi > B}

denote the collection of small and large factors indices, respectively. By Theorem 3
we have
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t(n) ≥
∑

i∈S∪L

lg pi
lg Φ(pi)

≥
∑

i∈L

lg pi
lg Φ(pi)

≥
∑

i∈L

lg pi
lg Φ(B)

=
1

lg Φ(B)
lg

∏

i∈L

pi

>
lg n1−δ

lg Φ(B)
=

1 − δ

lg Φ(B)
lg n,

where the last line follows from the (B, δ)-fatness of n. Note that we had to exclude
B = 1 since Φ(1) is not defined.

We want to know how many numbers are not of this kind; that is, how frequent are
(B, δ)-smooth numbers for given B and δ? While much is known about the frequency
of the “ordinary” smooth numbers with δ = 1 (see, for example, [3]), our relaxed
notion of smoothness has not yet been investigated. The following lemma gives us
satisfactory estimates on the density of (B, δ)-smooth numbers. We let [N,M ] :=
{n ∈ Z | N ≤ n ≤ M} denote the set of integers between N and M , and let π(x) as
usual count the numbers of primes less than or equal to x.

Lemma 5. For every bound B ∈ N+, every δ ∈ (0, 1), and every N ∈ N+, the
interval [N, 2N − 1] contains fewer than

(

N1−δ + 1
)

(

δ lgN + lgB + π(B)

π(B)

)

(B, δ)-smooth numbers.
Proof. Let n be any (B, δ)-smooth number from the interval [N, 2N − 1], and let

∏e
1 pi be its factorization into prime numbers. Let S := {i | pi ≤ B} be the collection

of its small factors indices. Then we have
∏

i∈S

pi ≥ nδ ≥ N δ

since n is (B, δ)-smooth. We can successively remove indices from S to obtain a subset
S′ ⊆ S that satisfies

N δ ≤ f :=
∏

i∈S′

pi < BNδ.

Hence, every (B, δ)-smooth number in the interval [N, 2N − 1] has such a divisor f .
Any such f is of the form

f = 2σ23σ35σ5 . . . pσp ,

where p is the greatest prime less than or equal to B. Since f < BNδ, all of the σ’s
are less than lg(BNδ). Thus, there are fewer than

(

lg(BN δ) + π(B) − 1

π(B) − 1

)

<

(

δ lgN + lgB + π(B)

π(B)

)

such f ’s. Every single f ≥ N δ divides no more than N/N δ + 1 numbers in the range
[N, 2N − 1], and hence the statement of the lemma follows.

Now we are prepared to prove the announced asymptotic lower bound for Lucas
chains.
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Theorem 4. For any ε > ρ > 0 and increasing N ∈ N+, there are only

O(N1−ρ) numbers n ∈ [N, 2N − 1] satisfying

t(n) ≤ (1 − ε) logφ n,

where the constants hidden in the O depend on ε and ρ.
Proof. Let δ := (ε + ρ)/2 and choose an integer B so that

lg Φ(B) ≤ lg φ

1 − ε−ρ
2

;

by Lemma 3 such a B exists. Now Lemma 4 yields

t(n) >
1 − δ

lg Φ(B)
lg n ≥ (1 − δ)

(

1 − ε− ρ

2

)

logφ n > (1 − ε) logφ n

for any (B, δ)-fat integer n. Thus, only (B, δ)-smooth numbers can have shorter
chains, but by Lemma 5 there are no more than

(

N1−δ + 1
)

(

δ lgN + lgB + π(B)

π(B)

)

∈ O
(

N1−ρ
)

of these in any interval [N, 2N − 1].

8. Final remarks. Since logφ n ≈ 1.44 lg n, Theorem 4 is a significant improve-
ment on the trivial bound (7). But we may ask how close this comes to the optimum.
Examples 5 and 7 show that there are cases in which our bounds are extremely sharp.
Yet, the majority of numbers could still need chains much longer than Theorem 4
indicates.

We strongly believe that this is not the case. Comparison of the concrete bounds
from Theorem 3 with heuristic computations of short chains for the first million
natural numbers suggests that our bound is very sharp. It turned out that for all
n ≤ 106 we have

t(n) ≤
⌈ e
∑

1

lg pi
lg Φ(pi)

⌉

+ 2,

where n =
∏e

1 pi is the prime number factorization of n.
It seems that Theorem 4 already captures the behavior of the function t in a most

fundamental way.
Conjecture 1. The length function t satisfies

lim sup
t(n)

lg n
=

1

lg φ
.

In fact, Montgomery already asked in Problem 2 of [9] whether this upper bound
holds. And in a private communication Donald E. Knuth conjectured the slightly
stronger bound of t(n) ≤ logφ n + O(1). Nevertheless, I do not expect Conjecture 1
to be shown in the near future. Though the heuristics have produced good results, it
seems to be very hard to actually prove any significantly better upper bound than (8).
By now we are not even able to show t(n) ≤ α lg n for any α < 2.
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