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Abstract. We examine the relative e�ciency of four methods for �nite �eld
representation in the context of elliptic curve cryptography (ECC). We con-
clude that a set of �elds called the Optimized Extension Fields (OEFs) give
greater performance, even when used with a�ne coordinates, when compared
against the type of �elds recommended in the emerging ECC standards. Al-
though this performance advantage is only marginal and hence there is proba-
bly no need to change the current standards to allow OEF �elds in standards
compliant implementations.

1. Introduction

The e�cient implementation of arithmetic in �nite �elds is crucial for the high
performance of various cryptographic algorithms, such as those based on the di�-
culty of the discrete logarithm problem in �nite �elds, elliptic curves or hyperelliptic
curves. In all of these schemes the e�ciency of the underlying �nite �eld operations
is the dominant performance constraint, any e�ort spent optimizing the �eld opera-
tions is well spent. This has led a number of special choices of �eld to be used, each
with its own performance characteristics. Due to di�erent engineering constraints
such as processor type, memory requirements etc there is no correct answer to the
question: Which �eld should one use ?

In this paper we look in more detail at the choice of �nite �elds in the case of
elliptic curve based systems. It is important when comparing one parameter choice
against another that we use real world parameter choices and we look not only at
the performance of the underlying �eld arithmetic but also at the performance of
the overall cryptographic protocols. This is important since some cryptographic
algorithms do not make use of general arithmetic but only require careful optimiza-
tion of crucial parts. This is particularly true of modular exponentiation based
systems where it makes more sense to spend a lot of time optimizing the squaring
operation as opposed to the general multiplication operation. A similar situation
holds for elliptic curves where one needs to optimize the point doubling operation
more than the general point addition operation.

In this paper we will concentrate on the choice of �nite �eld and not consider
the use of special curves, such as the so-called Koblitz curves, which can provide
performance advantages. Hence our conclusions will not be e�ected by security
considerations as long as the overwhelming majority of curves over the given �elds
are considered to be secure.

It is also important to compare like for like, for example if one system uses
machine code for the main arithmetics whilst the one being compared against uses
no machine code then the comparison is not really fare. In addition one should only
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compare algorithms using a single computer. Even comparisons on almost identical
processors can lead to di�erent conclusions. For example in �elds of characteristic
two arithmetic is often implemented via lookup tables, hence algorithms will behave
di�erently on two processors which are identical bar the fact that one has a faster
access time for its cache. Also comparing two systems which are programmed by
di�erent people one could be comparing programming ability rather than actual
performance.

Often these considerations are ignored since complexity theory tells us that im-
plementation details should not matter and that it is the complexity of the algo-
rithm itself which should determine the relative merits. But complexity arguments
only hold in the limit, which may not be applicable at the problem size under
consideration. For example when multiplying two integers, complexity theory tells
us that Fourier transform techniques or Karatsuba multiplication will work faster
than school book multiplication, but when multiplying 200 bit numbers it is far
more e�cient in practice to use a school book multiplication algorithm.

Various other authors have compared implementation details for elliptic curve
systems, but we would contend that such comparisons are to be taken with a pinch
of salt. For example Bailary and Paar [5] compare their OEF based elliptic curve
implementation against other peoples implementations of characteristic two �elds of
composite degrees. This is bad practice for a number of reasons. Firstly composite
�elds of characteristic two are not recommended for use in cryptographic standards
(a view which has been reinforced by recent work in [10]). Secondly the authors
of [5] have a reason to prefer OEF �elds since they are putting them forward
as a replacement for standard implementations, although in our comparison we
give independent veri�cation of their conclusion that OEF �elds o�er signi�cant
advantages. Thirdly the comparison was performed on 64 bit archetectures, which
although these are now common in high end workstations, are not likely to be
common in the small devices which are the target for elliptic curve based systems.
Our comparison on a 32 bit RISC system is likely to be more indicative since such
processors, like the StrongArm, are likely to be used in a number of such devices
in the comming years.

In another another comparison in [9] the authors give a comparison between even
characteristic �elds and odd characteristic �elds, the later being implemented using
Barrett reduction. This is slightly 
awed since standards compliant elliptic curve
systems in odd characteristic are more likely to be implemented over �elds de�ned
by a Generalized Mersenne prime which provide di�erent performance characteris-
tics than general primes.

The main reason for our interest was to compare the new idea of OEF �elds
with the �elds de�ned by GM-primes which occur in the standards documents.
Hence all our implementations were coded from scratch and shared many core
subprocedures. A similar length of time was spent optimizing each implementation
and so the relative di�erences in performance should be indicative of completely
optimized implementations. Although the resulting comparisons are not completely
scienti�c we do hope that they are on a better foundation than previous ones. Hence
hopefully they can be used to make further commerical considerations as to which
�elds are to be preferred.

We end this introduction with a caveat that our timings where performed on a 32
bit RISC processor (namely one of the Sparc family). This is probably indicative of
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other RISC type processors but for smaller processors used in Smart cards, mobile
phones and set top boxes di�erent conclusions may possibly arise.

2. The Choices for Fields

Currently there are a number of �eld choices for elliptic curve systems that are
mentioned in the literature. These can be divided into two classes:

2.1. Prime Fields. Fields of large prime characteristic, Fp , are very popular since
they can be e�ciently implemented using techniques borrowed from other �nite
�eld based cryptographic systems such as DSA and RSA. However using standard
modular arithmetic is not very e�cient since multi-precision remaindering oper-
ations are very expensive. Hence when used in elliptic curve systems there are
various choices that are often made:
General Primes For general primes the most e�cient implementation technique
is almost always to use Montgomery Arithmetic, [15]. Although the authors of [9]
use Barrett reduction the timing di�erence between Montgomery arithmetic and
Barrett reduction is usually comparable. Montgomery arithmetic uses a special
representation to perform e�cient arithmetic, the division and remaindering essen-
tially being performed by bit shifting. We do not cover this arithmetic here since
it is covered in a number of text books e.g. [7] and [14].
Generalized Mersenne Primes Certain primes are highly suited for e�cient
reduction techniques, the most simple form of such primes being the Mersenne
primes, which are primes of the form p = 2k� 1. However the number of Mersenne
primes of the correct size for cryptography is limited. This has led a number of
authors to propose generalizations on the Mersenne primes.

Crandall [8] proposed the use of primes of the form p = 2k � c where c is a
small integer, which is usually chosen to �t into a single word. Primes of the form
p = 2k � c for a small value of c (in comparison to 2k) are often called pseudo-
Mersenne primes.

In another direction Solinas [16] introduced the concept of Generalized Mersenne
Primes (GM-primes) which are primes of the form

p = f(2k)

where f is a polynomial of small degree and weight and k is a multiple of the
computer word size.

The use of GM-primes has become popular due to the adoption of these primes in
the recommend curves in standards from such bodies as ANSI [1], NIST [2], SECG
[3], and WAP [4]. As an example we take the following example, from Solinas'
paper,

f(t) = t3 � t� 1

then we obtain the 192-bit prime

p = 2192 � 264 � 1 = f(264):

Reducing the result of a multi-precision multiplication is then a simple matter:
After performing the multi-precision multiplication of two 192-bit integers we obtain
a number of the form

N = (A5jjA4jjA3jjA2jjA1jjA0)
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where Ai is a 64-bit integer. The value of N modulo p can then be computed with
3 additions modulo p,

N � T + S1 + S2 + S3 (mod p)

where
T = (A2jjA1jjA0); S1 = (0jjA3jjA3);
S2 = (A4jjA4jj0); S3 = (A5jjA5jjA5)

2.2. Non-Prime Fields. Again there are a number of choices here for the �elds
Fq with q = pn. These are usually implemented via a polynomial basis where

Fq = Fp [x]=f(x)

where f(x) is an irreducible polynomial of degree n over Fp . Normal bases can be
used but these are usually when considering hardware implementations of �elds in
characteristic two, hence we shall not consider normal bases further here.
Characteristic Two In this case due to work described in [10] we need to choose
n to be prime. One chooses f(x) to be a trinomial or pentanomial for e�ciency. In
other words we choose either

f(x) = xn + xk + 1

or

f(x) = xn + xk + xl + xm + 1:

These have been a popular choice in standards bodies and for implementors due
to the advantages that they o�er in hardware and on some RISC processors. The
literature on these is quite extensive so we just refer the reader to [7] or [13] for
more details.
Optimized Extension Fields These �elds have been proposed by Bailey and
Paar in [5] and [6]. They appear to o�er a number of advantages which we shall
outline below. An Optimized Extension Field (OEF) is one of the form

� p = 2k � c is a pseudo-Mersenne prime with log2 c � k=2 and such that p �ts
into a computer word.

� f(x) = xn � ! is irreducible.

For e�ciency reasons it is often sensible to insist that ! = 2.
In OEF �elds addition of elements in Fq is relatively simple and can be ac-

complished without carries propagating, since elements of Fq are implemented as
polynomials modulo f(x). Multiplication is also very simple since reduction of a
polynomial modulo f(x) is particular simple. Multiplication can also be simpli�ed
via using Karatsuba multiplication, which even provides a performance advantage
for polynomial multiplication for very small degree polynomials. Finally inversion
is particularly easy since one can use a technique due to Itoh and Tsujii [12] com-
bined with an e�cient method to compute the action of the Frobenius mapping,
see [6] for more details on this.

It should be noted that the technique of Weil descent which is described in [10]
could be applied to curves de�ned over OEFs, since n is typcially small. However
the resulting curve does not seem to have the nice properties that one observes in
the even characteristic case. This is because the function �eld extensions are not
Artin-Schreier in nature. Hence to the best current knowledge there are no security
concerns with using OEFs, however this could change given the rapid progress made
in studying the EC-DLP in recent years.
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There has been no comprehensive comparison of the above choices of �nite �elds
in the literature. Since the use of Montgomery arithmetic and even characteristic
�nite �elds are quite standard [9] these are not the most interesting cases.

However the comparison of OEFs against GM-prime �elds has not to our knowl-
edge been carried out. But this is the most important comparison to make, since
GM-prime �elds are those which are being used by various standards bodies, e.g.
ANSI, NIST and SECG.

In this paper we describe an independent evaluation of the performance of the
four types of �nite �eld mentioned above. The implementations we describe had a
similar level of optimization applied to them, this is because, as mentioned previ-
ously, one cannot compare performance information across di�erent processors or
with di�erent levels of optimization performed.

The implementation described was written in portable C++, with only a few
lines of machine code. The target archetecture was assumed to have a 32-bit word
length, the actual timings being implemented on a Sparc Ultra 5 Workstation with
64MB of RAM.

3. Field Operations

The �elds we used for comparison where the following:

K1 = Fp where p = 2192�264�1. This was used for the GM-prime implementation

and the Montgomery implementation.

K2 = Fpn = Fp [z]=(z
6 � 2), where p = 231 � 19. This was used for the OEF imple-

mentation.

K3 = F2n = F2 [z]=(z
191 + z9 + 1).

Notice that roughly the same bitlength was used for all �elds, namely 192 and
186. The following table describes the timings we obtained.

Field Type Addition Multiplication Square Inversion
Montgomery 0:88�s 7:56�s 7:36ms 0:18ms
GM-prime 0:92�s 5:48�s 5:44ms 0:20ms
OEF 1:00�s 5:04�s 4:84ms 0:02ms
F2191 0:16�s 12:96�s 1:56ms 0:18ms

Notice that the even characteristic case appears to be the worst since multiplica-
tion is almost twice as slow as the next slowest �eld type, namely the Montgomery
representation. This however does not translate into a 100% increase in the required
CPU time for the �nal cryptographic operation since for �elds of even characteristic
the squaring operation comes almost for free.

The use of multiplication is also slightly faster for the OEF �eld compared to
the GM-prime �eld. But the most striking improvement is in the time required to
perform an inversion in the �eld. As we shall comment later, this leads to important
decisions on how one actually implements an elliptic curve cryptographic system.
It is important to look at the ratio, r = I=M , of the time to perform an inversion,
I , to the time to compute a multiplication, M , which in our examples comes out
to be,

rMont = 23:81; rGM�prime = 36:49; rOEF = 3:97; rF
2191

= 13:88
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4. Curve Operations

The basic elliptic curve operation required in cryptography is point multiplica-
tion. That is given P 2 E(Fq ) and k 2R [1; : : : ;#E(Fq )� 1] compute [k]P . There
are various techniques to perform this which are described in [7] and [14].

A �rst observation is that if P is a �xed point which is required to be multiplied
by a large number of values, k, then one can use a great deal of precomputation.
Such a point, P , is often the generator of the group #E(Fq ) and is hence called
a base point. However sometimes we do not know the value of P in advance and
so di�erent optimizations need to be performed, in such a situation we call P a
general point.

In standard implementations for the EC-DH protocol each party needs to per-
form one multiplication of a general point and one multiplication of the �xed base
point. In the EC-DSA protocol the signer needs to perform one multiplication of
the base point and the veri�er needs to perform a multiplication of the base point
and a multiplication of a general point.

A second observation is that in both multiplication of a general point and of the
base point can be done in either a�ne or `mixed' coordinates. `Mixed' coordinates
refers to the fact that we use a projective representation of the points, we, however,
take into account that some of the intermediate points may be in a�ne represen-
tation. Mixed coordinates are to be preferred when the ratio, r, of inversion to
multiplication is large, since one is trading o� inversions for a larger number of
multiplications. On the other hand a�ne coordinates require 33% less storage.

For our timings we used the following curves which are suitably strong for cryp-
tographic use:

E(K1). We used the curve labelled P � 192 by NIST, [2]. This is the curve
secp192r1 in SECG and prime192v1 in ANSI X9.62. This curve is given by

E1 : Y
2 = X3 � 3X + b

where

b = 2455155546008943817740293915197451784769108058161191238065:

This curve has group order

6277101735386680763835789423176059013767194773182842284081;

which is a prime. The use of a curve with a coe�cient of �3 for the X term in the
equation provides a certain performance advantage, whilst a curve of prime group
order is clearly a security advantage.

E(K2). In this case we needed to generate our own curve so we took the curve
given by

E2 : Y
2 = X3 � 3X + 131072z5:

This curve has group order

98079709408817419107904759865224139567261719261401444244;

which is four times a prime. Again notice the coe�cient of X in the curve equation
is minus three.
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E(K3). In this case we use the curve in Example 16 on page 187 of [7]. This is

given by
E3 : Y

2 +XY = X3 +X2 + b

where

b = 7BC86E2102902EC4D5890E8B6B4981FF27E0482750FEFC03:

This curve has group order

2� 1569275433846670190958947355834614995815261150867795429199:

which is two times a prime. Here we have chosen a curve with coe�cient of X2

equal to one, this gives greater performance in characteristic two. In addition for
characteristic two �elds the best type of group order we can use is one which is
twice a prime. Hence this curve is typical of ones used in real life systems, although
NIST does not have a curve in characteristic two at this level of security.

In the following table we see that for OEF �elds we not only obtain a improve-
ment when using a�ne coordinates but we also obtain a small improvement over
GM-prime �elds when using mixed coordinates. We also reduce the amount of
memory required for the tables in the window multiplication methods since we no
longer need to store the z-coordinates.

Operation Montgomery GM-prime OEF F2191

Addition : A�ne 239�s 230�s 47�s 218�s
Addition : Mixed 140�s 100�s 92�s 226�s
Doubling : A�ne 262�s 237�s 59�s 212�s
Doubling : Mixed 85�s 60�s 54�s 88�s
Base Point Mult. : A�ne 16ms 15ms 3ms 15ms
Base Point Mult. : Mixed 8ms 6ms 5ms 13ms
General Point Mult. : A�ne 60ms 54ms 13ms 50ms
General Point Mult. : Mixed 22ms 15ms 13ms 26ms

We also notice that for general point multiplications the performance of curves
over �elds of even characteristic is not as bad as one would be led to believe from
just looking at the timings for the �eld arithmetic. In some small systems, to avoid
attacks like DPA [11] one often alters the base point on every run of the protocol.
Hence one never actually uses the special optimizations for multiplying a base point
and all point multiplications become general ones.

5. Cryptographic Operations

Finally we timed three basic cryptographic operations which are popular using
ECC namely unsigned Di�e-Hellman (EC-DH), the EC variant of the digital sig-
nature algorithm (EC-DSA), and the EC variant of the MQV primitive (MQV).
The timings we give below for our four specimen �elds. The times for EC-DH and
EC-MQV are the times required by one of the parties to perform their calculations.
In the following we assumed that any base point multiplication was done using the
optimizations alluded to above.

Operation Montgomery GM-prime OEF F2191

EC-DSA Sign 9ms 7ms 4ms 20ms
EC-DSA Verify 30ms 22ms 17ms 60ms
EC-DH 30ms 21ms 16ms 63ms
MQV 42ms 30ms 24ms 84ms
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6. Conclusion

We have shown that OEF �elds appear to o�er performance advantages over
other �eld representations used in ECC. This is not only in terms of overall perfor-
mance but also in terms of storage memory requirements. The present author has
no vested interests in any of the four �elds types under consideration and hopefully
the results can be taken as completely independent of commercial bias or the use
of agressive optimization techniques applied to one of the cases only.

On the other hand it should be noted that the performance di�erence between
OEF �elds and �elds based on Generalized Mersenne numbers is probably not large
enough to warrant additions to the various standards since addition of OEF �elds
would degrade attempts to obtain interoperability between various implementa-
tions.
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