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Abstract. In this paper, we study unconditionally secure codes that
provide authentication without secrecy. Our point of view is the uni-
versal hashing approach pioneered by Wegman and Carter in 1981. We
first compare several recent universal-hashing based constructions for au-
thentication codes. Then we gencralize the theory of universal hashing in
order to accommodate the situation where we would like to authenticate
a sequence of messages with the same key. Unlike previous methods for
doing this, we do not require that each message in the sequence have a
“counter” attached to it.

Keywords: authentication code, universal hashing.

1 Introduction

In this paper, we study the application of universal hashing to the construction
of unconditionally secure authentication codes without secrecy. This idea is due
to Wegman and Carter [16], who gave a construction in 1981 which is extremely
useful when the number of authenticators is small compared to the number of
possible source states (plaintext messages). In 1991, Stinson [13] gave formal def-
initions of relevant classes of hash functions, and obtained some improvements
to the Wegman-Carter construction. Since 1991, several authors have given im-
proved constructions for authentication-without-secrecy that use universal hash-
ing cither implicitly or explicitly. Many of the results are in fact very similar,
but do not appear so because they are presented using different notations and
terminology. We give a brief comparison of the known constructions and their
cfficiency, as measured by the amount of secret key that has to be shared in order
to authenticate a given amount of information with a given level of security.

The other main contribution of this paper is to generalize the thcory of
universal hashing in order to accommodate the situation where we would like to
authenticate a sequence of messages with the same key. Unlike previous methods
for doing this, we do not require that each message in the sequence have a
“counter” attached to it. We provide necessary definitions and theory, and then
give a construction which acheives our goals.

The remainder of this paper is organized as follows. Section 2 is a brief review
of the necessary background of authentication codes. Section 3 gives relevant, def-
initions from universal hashing. We also compare known authentication codes in
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this section. Section 4 reviews counter-based multiple authentication. In Section
5 multiple authentication without counters is introduced. Section 6 provides
composition constructions for the relevant hash families. Finally in Section 7
we use our constructions to obtain some specific families of codes for multiple
authentication.

2 Authentication Codes

Authentication codes were invented in 1974 by Gilbert, MacWilliams and Sloane
[5], and the general theory of unconditional authentication was developed by
Simmons (see, ¢.g., [11]) In this section we will give a brief review of standard
terminology and basic results on authentication-without-secrecy.

In the usual model for authentication, there arc three participants: a trans-
mitter, a recetver, and an opponent. The transmitter wants to communicate some
information to the receiver using a public communications channel. The source
state (i.e., plaintext) is concatenated with an authenticator to obtain a message
which is sent through the channel. An euthentication rule (or key) e defines the
authenticator e(s) to be appended to the source state s. We assume the trans-
mitter has a key source from which he obtains a key. Prior to any message being
sent, this key is communicated to the receiver by means of a secure channel.

We will use the following notation. Let S be a set of k source states; let A be
a set of n authenticators; define M = & x A; and let £ be a set of authentication
rules. Each authentication rule e : S = A4.

Assume that the same key is used to authenticate up to w consecutive source
states, where w is some fixed positive integer. Suppose an opponent observes
i < w distinct messages which are sent using the same key. The opponent has
the ability to introduce new messages into the channel and/or to modify existing
messages. Assume the opponent places a message m' = (¢',a’) into the channel
by either of these methods, where m' is distinct from the i messages already sent.
That is, if e is the key being used, then the opponent is hoping that a’ = e(s’).
In [9], Massey calls this a spoofing attack of order i.

The special cases i = 0 and ¢ = 1 have received the most attention. The case
i = 0 is called impersonation, and the case i = 1 is called substitution.

The receiver and transmitter will choose a probability distribution for £,
called an authentication strategy. It is assumed that the opponent kuows the
authentication strategy being used. Then, for each ¢ > 0, it is possible to com-
pute Pd;, which is the probability that the opponent can deceive the transmit-

ter/receiver with a spoofing attack of order . The following lower bound on Pd;
is given in [9].

Theorem 1. Suppose we have an authentication code (without secrecy) with n
authenticators. Then Pd; > 1/n for all i > 0.



3 Universal Hashing

In this paper, we are interested in aunthentication codes obtained from universal
hash families. We recall some definitions from [12] of various types of relevant
hash families.

Definition:

— An (N;m,n) hash family is a set F of N functions such that f: A —» B for
each f € F, where |A] = m,|B| = n. There will be no loss in generality in
assuming m > n.

— An (N;m,n)-hash family is e-universal provided that for any two distinct
elements z;,z2 € A, there exist at most eN functions f € F such that
flz1) = flxzz). We will use the notation €U as an abbreviation for e-
universal.

— An (N;m,n) hash family is e-almost-strongly-universal provided that the
following two conditions are satisfied:

1. for any = € A and any y € B, there exist exactly N/n functions f € F
such that f(z) = y.

2. for any two distinct elements z;, 22 € A and for any two {not necessarily
distinct) elements yy,y2 € B, there exist at most ¢N/n functions f € F
such that f(z;) =y, i = 1,2

We will use the notation e-ASU as an abbreviation for e-almost-strongly-
universal.

— An (N;m,n)-hash family F of functions from A to B is strongly-universal
provided that, for any two distinct clements 1, x5 € A, and for any two (not
necessarily distinct) elements y,,y» € B, we have

HfeF:fla) =yii=12}= x

n2 )
We will use the notation SU as an abbreviation for strongly-universal.

It is not difficult to see that a hash family is SU if and only it is 2-ASU.
e-ASU hash families can be used in an obvious way for authentication, where
each function in the family corresponds to a key. If we have such a class F
of hash functions from A to B, then wc can think of the elements of A as
source states and the elements of I3 as authenticators. Each hash function gives
rise to an authentication rule, and the authentication rules are used with equal
probability. The proof of the following theorem is straightforward.

Theorem 2. [12] If there exists an e-ASU(N;m,n) hash family, F, then there
exists an authentication code without secrecy for m source states, having n au-
thenticators and N authentication rules, such that Pdy = 1/n and Pdy < e.

We see from Theorem 1 that SU families achieve the minimum possible
deception probability Pdy. The observation of Wegman and Carter [16] is that it
is possible to construct e- ASU hash families, having e a bit larger than 1/n, that
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are much smaller than SU hash families. In termns of the resulting authentication
codes, this means that if we allow a slightly larger deception probability Pd;,
then we can reduce the key length very significantly.

Many papers have used this approach, cither implicitly or explicitly, for exam-
ple Wegman and Carter [16], Stinson [12], den Boer [4] , Taylor [15], Bierbrauer,
Johansson, Kabatianskii and Smeets [3], Krawczyk {7], Stinson [13], Krawczyk
(8], Rogaway [10] and Bierbrauer [1].

In fact, the construction of ASU hash families typically is accomplished by
one of two means:

— composition of a U family and a (smaller) ASU family (this is the approach
used by Wegman and Carter [16])

— composition of a AU family [14] (also known as an AXU family [10]) with
a one-time pad (this approach was first used by Krawczyk [7]).

Further discussion and examples of these two techniques can be found in the
expository paper by Stinson [14].

3.1 Comparison of Authentication Codes

In this section, we briefly compare authenticator length and key length of for
several constructions of authentication codes. To be specific, we consider the
problem of authenticating an a-bit plaintext with a b-bit authentication tag. The
number of key bits is denoted by £. (In other words, we have an e- ASU(2¢; 29, 2%)
hash family.) In every code mentioned, Pdy = 1/2°, but various values of Pd,
are obtained, depending on the construction used.

1. Wegman-Carter ([16, §3], 1981).
Here s = b+ [log(log a)], f = 4s log a and Pd; = 1/2°71.
2. Stinson ({12, Theorem 6.2], CRYPTO ’91).
Here a = b2, £ = (i + 2)b and Pd, = (i | 1)/2°.
3. Taylor ([15, §2], EUROCRYPT '94).
This is identical to the previous construction of Stinson.
4. den Boer ([4, §2], 1993).
Here a = bi, ¢ = 2b and Pd, =1/2°
5. Bierbrauer, Johanson, Kabatianskii, and Smeets* ([3, p. 336], CRYPTO '93).
Here a = (b+ s)(2° + 1), £ = 3b + 2s and Pdy = 1/2b-1,
6. Stinson ({13, Theorem 6.3], 1994).
Here s = b+ [log(log a)], r = [log(a/s)], f = (r+ 1)s+band Pd; = 1/2°"1,
7. Krawczyk ([7, Theorem 7] Theorem 7, CRYPTO ’94).
Here ¢ ~ 2b — log b and Pd; = (a + b)/2°7 1.
8. Krawczyk ({7, Theorem 8] Theorem 8, CRYPTO ’94).
Here £ = 3b ~ log b and Pd; = a/2°7".

4 In [6] (CRYPTO ’96), Helleseth and Johansson give some constructions that achieve
identical and/or slightly better results. Their approach also has the advantage that
the parameters are a bit more flexible than this construction.
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9. Rogaway ({10, Theorem 11], CRYPTO ’'95).
Here a = wA, b = wB (where A < B*/6), { ~ 3Alog B + wB and
Pd; =~ 3348/(B® — 6B3A). (Note: Since [10, Theorem 11] produces a U
family (actually a AU family), a one-time pad is also needed to obtain the
authentication code. This accounts for the “extra” b = wB key bits.)

Remarks:

— Constructions 1-6 all use the Wegman-Carter approach. Constructions 7-9
use the idea of composing a Al7 family with a one-time pad.

— Constructions 1, 5 and 6 have Pd; = 1/2°~1, so the security level depends
only on the length of the authentication tag. In constructions 2, 3, 4, 7, 8
and 9, the security level depends on the length of the authentication tag and
on the length of the plaintext. In these situations, one would start with a
given plaintext length a and a given security level, say €, and then determine
the minimum b such that Pd; < e.

- Constructions 7-9 were designed with the goal of efficient software imple-
mentation. Constructions 7 and 8 achieve a short key length, but construc-
tion 9 is not competitive with the other constructions in terms of deception
probabilities and key length.

— Bierbrauer [1] gives some constructions using geometric codes that achieve
extremely short key lengths. However, there are some paremetric restrictions
on when they can be applied, and they would probably be more difficult to
implement than the other constructions mentioned above.

In Table 1, we tabulate b and ¢, for @ = 28,216 232 264 53nd 2128 and ¢ = 2720,
obtained using the different constructions. In Table 2, we list b and £ for the same
values of @ when € = 27%°. (We have computed b and ¢ for various combinations
of @ and ¢, and the these tables are typical of the results obtained.)

From Tables 1 and 2, we see that the construction from [3] best combines a
small key length with a short authenticator.

4 Counter-based Multiple Authentication

We will be generalizing the theory of universal hashing so that it can be applied
to authentication of a sequence of w messages using onc key. First, however, we
review the approach used by Wegman and Carter in {16], which is a method
to authenticate multiple messages using any e-ASU class of hash functions. To
apply this technique, the ith message in the sequence must be labeled with a
counter having the value ¢, 1 < i < w.

Let F be an e-ASU(N;m,n) hash family, where each function in F has
domain A and range B, and suppose we want to authenticate a sequence of at
most w source states. We will also assuine that B is an abelian group. A key e
is specified by a function f € F, together with a (w — 1)-tuple (by,...,by_1) €
B*=1. (This (w — 1)-tuple will act like a sequence of w — 1 one-time pads.)
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Construction|a| 28 216 932 261 9128
€ 2v20 2—20 2——20 2—20 2—20
1 bl 21 21 21 21 21
£]768 1600 3328 6912 14336
2 b 23 24 25 26 27
£]138 336 750 1612 3402
4 bl 24 32 47 78 141
¢l 48 64 94 156 282
5 b 21 21 21 21 21
071 8y 117 179 305
6 bl 21 21 21 21 21
L £1141 346 775 1668 35621
7 b 30 38 54 86 150
/56 71 103 166 293
8 b 29 37 53 35 149
¢] 83 106 154 249 440
9 b|1248 1312 29792 48393888 1.28 x 10'*
£]1375 34229 4 x 10 3.5 x 10" 1.34 x 10%°

Table 1. Parameters for authentication codes when ¢ = 2720

Let s; denote the ith source state in the sequence. The authenticator for
(i, s:) is defined to be

ey — 4 (si) i =1
e(i, s;) = {f(Si) + b if2<i<w.

Note that the authentication funection depends in an essential way upon the
position of each source statc within the sequence of w source states. We also
remark that this is cssentially the method suggested by Wegman and Carter in
[16], except that we have omitted a onc-time pad for the first source state since
it is not necessary. (This approach has also been used by other researchers, e.g.,
101,

The following theorem can be proved in a manner similar to {16]. The proof
is omitted from this Extended Abstract.

Theorem 3. Suppose there exists an ¢-ASU(N;m,n) hash family, and let w >
1. Then there exists an authentication code without secrecy for m source states,
which can be used to authenticate a sequence of up to w source states, having
n authenticators and Nn*~' quthentication rules, such that Pdy = 1 /n and
Pd; <e, 1 <i<w.

Observe that this counter-based scheme is much more efficient than simply
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Constructionjal 2% 916 282 964 9128
€ 2—40 2—40 2—40 2—40 2740
1 Bl 41 41 41 41 41
£[ 1408 2880 5888 12032 24576
2 bl 42 44 45 46 47
¢ 210 572 1305 2806 5875
4 bl 43 51 66 98 161
¢l 86 102 132 196 322
5 bl 41 41 41 41 41
¢ 129 145 175 239 365
6 Bl 41 41 41 11 41
¢ 217 581 1329 2861 5993
7 b| 50 58 74 106 170
£ 95 111 142 206 333
8 by 49 57 73 105 169
¢l 142 166 213 309 500
9 b|12576 12576 29856 48393888 1.28 x 10
£112783 51075 4 x 10° 3.5 x 10'? 1.34 x 10*

Table 2. Paramecters for authentication codes when e =2 *°

using w independent keys, since we need only add logn new key bits for cach
extra message to be authenticated

Although this counter-based scheme provides a nice method for multiple au-
thentication, it has some drawbacks. For example, if a message is lost in trans-
mission, then subsequent (valid) messages will not authenticate properly. (This
would also be the case if w independent keys were used.) Hence, we belicve
there is some interest in achicving multiple authentication without counters. We
pursue this theme in the remainder of the paper.

5 Multiple Authentication without Counters

In this section, we give some new definitions of hash families that we will use for
multiple authentication.

Definition:

— An (N;m,n)-hash family F of functions from A to B is e-universalw (or
e-U(N;m,n,w)) provided that, for all distinct elements z;,xs,...,2y € A,
we have

€ F: fle) # flz) 1 <i<j<wl>(1-N.
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— An (N;m,n)-hash family F of functions from A to B is e-almost-strongly-
universal-w (or e ASU(N;m, n,w)) provided that, for all distinct clements
Zy,Ty,..., Ty € A, and for all (not necessarily distinct) y1,y32,-..,¥w € B,
we have

KfeF: flz)=y,1<i<w} <ex|{fe€F:flz:)=yi,1 <i<w-1}.

— (see [17]} An (N;m,n)-hash family F of functions from A4 to B is strongly-
universal-w (or SU(N;m,n,w)) provided that, for all distinct xy, T2, ..., Ty €

A, and for all (not necessarily distinct) elements y1,¥s, .. ., ¥ € B, we have

A N
HfeF:fla) =yl si<wll=—2.

We observe that the definition of e-U(N;m,n,2) given above is the same as
the definition of «-U/{N;m, n) that we gave in Section 3. Similarly, the definition
of eSU(N;m,n,2) given above is the same as the definition of e-SU(IV;m,n)
from Section 3. As well, a hash family that is both e ASU(N;m,n,2) and (1/n)-
ASU(N;m,n, 1) (as defined above) is e-ASU(N;m,n) (as defined in Section 3).

The following lemma describes the relation between ASU and SU families.

Lemmad4. Letw be a positive integer. An (N;m,n)-hash family is SU(N;m,n,w)
if and only if it is L-ASU(N;m,n,j) for 1 < j < w.

n

Proof. Suppose F is an SU(N;m,n,w). Pick any j, where 1 < j < w. Let

Ty, T2,...,2; be distinct clements of A and let y1,y2,...,y; be not necessarily
distinct elements of B. Then we have
Hf:flz) =y, 1 <i<j}| _ N/ 1

Hf:fle) =y, 1<i<j—1} N/ni-'  n

Hence F is a %—ASU(N; m,n, j) hash family, for j =1,2,. .., w.

Conversely, suppose F is an i-ASU(N;m,n,j) for j = 1,2,...,w. Let
L1, T2, .., %y be distinct elements of A and let yi,y2,. .., ¥y, be not necessarily
distinct elements of B. Then we have

Hffl@i) = w1 <i<w)| < %l{f Cf(m) =y 1 <i < w— 1)

1
< W fla) =y 1 <i<w-—2}
T

1
S nw_f‘{f : f(.T,) = yT}l
N
< R
- nv
Since this is true for all yi,ys, ...y, € B, we have

ST HFfla) —wbi< 7_;7[ N,

‘1()
{v1,92,- - ywEB}
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and, since each hash function is used at least once, we have

Y Hf:flz) =u}| >N

{¥1.42, Yy EBY

Hence

WS flz) =gl <i<w}| = N

nv

We also have the following lemma which shows that e-U hash families are
also €/-U-w familics for some ¢ > e.

Lemma 5. Suppose F is an e-U(N;m,n) hash family. Then F is an e(})-
U(N;m,n,w) hash family for any integer w such that F(g’) < 1.

Proof. Since F is an e-U(N;m, n) family, for any two distinct elements of A, say
x1,Z2, we have

HfeF:fisnot -1 onxy,ze}| <eN.

Therefore for any w distinct element of A, say x1,2,..., Ty, we have

HfeF  fisnot I-lon 1,22, ., Tu}| < Z {feF:flaz:)= flz)}

1<i<g<w

Hence, we have

Hf:fisl-lonoy,ay,. . . ot 2 (1 (w>e)N.

e-ASU(N; m,n,w) hash families can be used for authentication of a sequence

of w—1 distinct source states, without the need for counters. The following result
is immediate.

Theorem 6. If there exists an €,-ASU{N; m,n,w) hash family, then there ex-
ists an authentication code without secrecy for m source states, having n authen-
ticators and N authentication rules, such that Pd,_, < ¢,.
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6 Composition Constructions

In this section, we present the composition constructions that we will use to
achieve multiple authentication without counters. First, we present a method
which generalizes a construction from Stinson [13] of combining hash families.

Theorem 7. Suppose Fi is an e;(j)-U{Ny;my,ni,j) hash family from A, to
By, and suppose Fy is an €3(5}-ASU(Na;ny,n2,j) hash family from By to Ba,
for all j, 1 < j < w. Then there exists an €(j)-ASU(N;my,ny,J) hash family F
of hash functions from A, to By, where

(Ul —e2)a@) . al)] +e2) . e) .
V=TG- e wl - D Jm B
e(1) < ea(1), and

N: N[.LMZ.

Proof. Let 1 < j < w. We need an upper bound on
WS fla) =9 1 <i <G
and a lower bound on
Hf:fm) =yl <i<j— 1}
We proceed as follows:

Upper bound
Let zy,xg,...,2; € Ay (all distinet) and y1,y2,...,y; € B2. Let p denote
the probability that for some ik, (1 < < k < j), &;, 2 collide under a
hash function from F,. If fi € 7, and f; is one-to-one on 1, 2, ..., , the
number of hash functions f € F such that f(x;) =y, fori=1,2,...,j is

(1 - p)N1N262(1)62(2) .. 62(])

If 4 € F; and f; is not one-to-one on ry,Zs,...,z;, then the number of
hash functions f € F such that f(z;) =y, fori =1,2,...,7 is at most

PNy Naea(1).

Therefore, the number of hash functions f € F such that f(z;) = y; for
t=1,2,...,7 1s at most

NiNa[pea(1) + (1 — plea(1)ea(2) .. e2(5)]-
Hence, we have

Hf:fle) =i 1 <0< GH € NiVoea(D)fp + (1 = plea(2)ea(3) .- e2(4)]-



Lower bound
Let zy,29,...,2;-1 € A (all distinct) and let y1,y2,...,y;-1 € B2. Let p'
denote the probability that for some ¢, k, (1 <i <k < j — 1), @1,z collide
under a hash function from F;. Since we only need a lower bound, we will
look the case where f; € F; is one-to-one on 1, T3, . .., r;—1. Hence we have

Hf : f(.l‘L> = ‘?/,‘,1 S : S j — 1}, 2 NIJVQ(I —p’)ég(l)fg(Z) . .Eg(j - 1)
We now combine the upper and lower bounds. We obtain the following:

o fa) =yl <i<i)] o0+ -poe@). . o)

Hf:flz) =y, 1<i<ji—1} 7  (1-ple(l)a(2).. . a0 —1)
calll - e@ed) . a@]+ea®) . ol)
S [1_€l(j_1)]52(2)...62(j—1) ,
since p < e1(j) and p' < e (5 —1). ;

Corollary 8. Suppose F, is an e, (j)-U(Ni;my,ny,j) hash family from Ay to
By, and suppose Fy is an SU(Na,ni,na,w) hash family from By to By, 1 < j <
w. Then there exists an e{j)-ASU(N;mqy,ng, j) hash family F from Ay te Ba,
where N = N1 N, and

a(my ! —e(j) + 1
(1—e(j—1))me

e(j) =
for3 — 1,2, .. w.

Proof. Apply Lemma 4 and Theorem 7. Note that e(1) = % by this formula.
a

7 Multiple Authentication without Counters

We now use the tools of the previous section to obtain our multiple authentica-
tion codes. We could generalize many of the constructions that were mentioned
in Section 3.1. The method we have chosen to use is inspired by the construction
from [3] (i.c., construction 5 in Section 3.1). We need two ingredients to accom-
plish this. First, Bierbrauer gave a construction for orthogonal arrays that gives
us SU-w hash families.

Lemma9. [2] Let g be a prime power and let S, T be integers such that S > T'.
Then there exists an SU(qgte=V54 7T 45 4T w) hash family, where w < ¢°.

The second ingredient is the U hash families that are obtained from Reed-
Solomon codes [3].

Lemma 10. [3/ Let ) be a prime power, and let k < Q. Then there is a Eél-
U(Q; QF, Q) hash family.
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Applying Lemma 5, the following is obtained.

Lemmall. Let Q be a prime power, let k < ), and suppose (;) 55—1 < 1. Then
there is a (%)%U(Q;Qk,c‘), §) hash family.

Now, let a,b and w be given, as usual. Let s be an integer such that
a<{((w—Db+s)(2° +1).

Then take
Q _ 2('(1/v71)b+s
and
k=2 +1

in Lemma 11, and restrict the resulting hash functions to a domain of size 2%.
In this way, we obtain a

<.;> 9- (w--1 )b_U(2(w—1)b+s; 2a’ 2(ww] )b+s’j)
hash family, for all j such that 1 < j < w.

Next, use Corollary 8 to compose this family with an

S[](‘Z(w~l)((w7l)b—}rs)Jrh; 2(1::—1)6%—»5’ 217’ w)

hash family obtained from Lemma 9 with S = {w—1)b+s and T' = b. The result
is an

E(_].)-ASU(Q(wZﬁw“ 1)b+ws; 2(1’ 2b7]-)
hash family (1 < 7 < w), where

/(] - 1)2—41(10—*1)(2“]'_1) — ]) + 2
2= (- D - 22700

€(y) <

1< <w.
Phrasing our construction in terms of authentication codes, we obtain the
following result.

Theorem 12. Let u,b, and w be integers, and let s be an integer such that
({w — 1)b+ s){(1 +2°%) > a. Then there exists an authentication code for an a-bit
source, having a b-bit authenticator and requiring { = (w? —w + 1)b+ws bits of
key, in which
J =127 D@ 1) +2

2= (=D —2)2-tle-D]2r 7

Pd; 1 <

forj=1,2,...  w.



We remark that in the casc w = 2, Theorem 12 is identical to construction 5
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in Section 3.1, due to [3].

In Theorem 12 the security level depends on the length of the authentication
tag, on the length of the plaintext and number of messages that are being sent.
Hence, one would start with a given plaintext length a and a given security
level, say ¢, and then determine the minimum b such that Pd,_; < €. Once b is
determined, we can proceed to compute s, and then apply Theorem 12.

In Tables 3, 4 and 5, we tabulate the length of authentication tag and the
length of the key for given @, w. and ¢ values of the authentication codes that

are constructéd in this way from Theorem 12.

I~

28 216 232 264 2128

2740 2v40 2—40 2—740 2740

[~ o[

08 916 932 b4 olu8
9=20 9=20 9—20 5—20 520
22 22 22 22 22

42 42 42 42 42

| 163 187 232 328 517

300 324 372 46 657

Table 3. Authentication codes for w = 3

al 9% 916 932 961 ,128| 98 916 932 964 o128
19720 9=20 920 920 9—20/9g—10 5—10 §—4D 5-40 540
bl 23 23 23 23 23|43 43 43 43 43

11307 339 403 531 783|563 595 659 787 1043

Table 4. Authentication codes for v = 4

42

=

98 gls 932 9Bl 5128
€920 9-20 5-20 920 920
26 26 26 26 26

98 glb 932 9B1 9128
9=40 940 9-40 940 5—40
46 46 46 46 46

2376 2456 2606 2926 3566

4186 4266 44426 4746 5376

Table 5. Authentication codes for w = 10
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Summary

We have generalized the theory of universal hashing to construct authentication
codes that allow the authentication of a sequence of (distinct) source states with-
out the use of counters. It can be seen that the construction we have given (The-
orem 12) requires considerably more key bits than the counter-based method
described in Section 4. More efficient constructions (without counters) would
therefore be of considerable interest.
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