Fast Exponentation in Cryptography

Irina. E. Bocharova and Boris. D. Kudryashov

St.-Petersburg Academy of Airspace Instrumentation,
Bolshaia Morskaia str.,67, St.-Petersburg,190000, Russia,
e-mail:liap@sovam.com

Abstract. We consider the problem of minimizing the number of mul-
tiplications in computing f(z) = z", where n is an integer and z is an
element of any ring. We present new methods which reduce the average
number of multiplications comparing with well-known methods, such as
the binary method and the g-ary method. We do not compare our ap-
proach with algorithms based on addition chains since our approach is
intended for cryptosystems with large exponent n and the complexity
of constructing the optimal addition chain for such n is too high. We
consider the binary representation for the number n and simplify expo-
nentiation by applying ideas close to ideas exploited in data compression.
Asymptotical efficiency of the new algorithms is estimated and numerical
results are given.

1 Introduction

Exponentiation is one of the main operations that is performed in public key
cryptosystems [1], [2]. For example, to encrypt message m in RSA system [2]
one should compute m* (mod N), where pair {e, N} defines a public key. The
cryptographic key distribution system by Diffie and Hellman [1] is based on
calculating y*, where y denotes a published number associated with one user
and z is the secret number of another user.

The total complexity of exponentiation x(n) may be written as follows

K(n) = S(n) + M(n),

where S(n) denotes the number of squarings and M(n) denotes the number of
multiplications. Squarings have less computational complexity than integer mul-
tiplications especially if these operations are performed over GF(2™). Moreover
all methods below have approximately the same number of squarings S(n) =
£(n),where £(n) = |logn] +1 denotes the length of the binary representation for
n, |a] is the largest integer less or equal to @, log a means log, a. So, we discuss
methods for speeding up exponentiation in terms of minimizing the number of
multiplications.

A detailed review devoted to the methods of fast exponentiation is given
in [3]. Since we are interested in computing z" for cryptosystems, we consider
rather large pseudorandom values n. Let Mma<(£) and M,,(€) be the maximal
and the average number of multiplications over all n with binary representation

147

of length £(n) = £, respectively. For the most commonly used binary method
M(n) is proportional to £(n). For more efficient methods the number of mul-
tiplications can be reduced to a value proportional to £(n)/log{(n) by keeping
some intermediate results. Let s be the maximal number of intermediate re-
sults kept. For algorithms described below the number of multiplications M(n)
depends on n and s in accordance with the following formula

n:.mﬁuov

— 1
M(n) _omu+nu+nuu+5_ 1)
where «;,i = 1,...,4 are parameters depending on the computation algorithm.

An optimal value s may be found by minimizing the right side of (1). For large
n the result takes the form

af(n)
log £(n)

M(n) = (14 o(n)), (2)

where o(n) — 0 when n — co.

So, the asymptotic performance of the algorithms may be characterized by
coefficient @ in (2). For finite lengths we will compute the average number of
multiplications as a function of £(n) = £ for the optimal memory size s.

Since reducing the number of multiplications is obtained by keeping some
intermediate results it is necessary to compare algorithms of exponentiation pro-
vided that the memory requirements are the same. It is clear from the description
of the algorithms presented below that the required number of precomputations
(memory size) does not exceed M (n)/2. Increasing s does not immediately leads
to increasing the efficiency of exponentiating, For each algorithm there exists an
optimal number of precomputations. Asymptotically both s and M(n) are of the
same order and thus we shall not calculate s separately. For finite n the required
memory size may be the important parameter of the algorithm, especially for
the hardware implementation. So, in subsection 3.4 containing some examples
we give both M(n) and s values for the known and for the new algorithms.
We shall show that the new algorithms provide better time-space tradeoff than
known ones.

2 Conventional Algorithms for Fast Exponentiation
Let n = (n1,ng, ..., Myn)) be the binary representation of n.
2.1 Binary Method

To compute z" we use the following formula
g

z" = (... ((z")%z") 2" .,)P,

148

This method requires M(n) = w(n) multiplications, where w(n) denotes the

Hamming weight of the sequence (ny,...,ny(n)). If n is a random sequence of
binary independent identically distributed variables with Pr(n; = 1) = p then
Mgy, (£) = pL.

For the binary method it is necessary to keep only z and a current intermediate
result.

2.2 g-ary Method

.hu_p d=(d,...,d1),0<dj <q, 057 <t be the g-ary representation of n,
ie. n = dog' + dig*~? + ... + di. For calculating " it is necessary to compute
z2,2%,...,2z9"! and then to use the formula

2 = (... (z%92%)Tgd)1pd) | oY),

Let ¢ = 2%, where k is a positive integer. Then the number of multiplications is
equal to

M(n) = £n)/k+ 25" — k. 3)
This method requires s = 2f — 2 memory cells for keeping z%,1 < j < gq. For
large n the right side of (3) is minimal if k = log £(n)—2log log £(n). Substituting
the optimal value of k into (3) we obtain

_ _4n)
._-..&.T.ﬂv = —Ommﬂﬂvﬁ— + DAﬂ-vu. ﬁ#v
Note that for large n values Mz (£(n)) and My (£(n)) asymptotically coincide
and both satisfy (4).

2.3 Method of Factorization

Suppose it is possible to represent n in the form n = ml, where m is the least
prime divisor of n and ! > 1 or in the form n = ml + 1 otherwise. To compute
z" we first obtain X = z™ and then compute z = X' or z = X'z.

The method of factorization uses this rule recurrently. On average the method
of factorization is better than the binary method but factorization of n has ap-
proximately the same complexity as the problem of breaking RSA cryptosystem,
using n as a public key. Hence this method cannot be recommended for large n.

2.4 Addition Chains

This method implies that n is represented in the foomn=py +p2+...+p1,
where terms p1, pa, ..., o1 are found by using a special tree (addition chain). It
is evident that z"” can be computed by the following formula

z" = gPrzP2 | . 2P,

However this method is unacceptable for cryptography since the complexity of
constructing the addition chains exponentially grows with £(n).

149

3 Exponentiation Based on Data Compression
Algorithms

First we explain the idea of this approach. It follows from the above brief review
that methods of fast exponentiation require precomputations and the storage
of some intermediate results. We can improve the space-time tradeoff of expo-
nentiating by precomputing z4, for such sequences d; which often appear in the
sequence n. Indeed, the algorithms presented below represent the different ways
for constructing a proper set D = {d}.

Some data compression algorithms exploit the same idea. They extract the
most probable subsequences from the sequence which should be compressed and
encode them by fewer bits than others.

3.1 LZ-Approach for Computing z"

The application of the Lempel-Ziv data compression algorithm [4] to exponen-
tiation has been considered in [5] and [6].
Remind LZ-algorithm of parsing string of length £(n) into different subblocks.

— A sequence n is read beginning al the left and di = (ni(e-1)+1, - c (k)
is selected as the k — th block if the block d = (Rik-1)+1) - .y Mi(k)—1) Was
already seen but (ni(k-1)+1, - ., Mi(k)) was not seen yel.

Let n = (d1, . .., dc(n)) be a parsing of n by LZ-algorithm. Then ¢(n) is called
LZ-complexity of n [4]. Let d; be numbers with the binary representations d;,

i=1,...,¢(n).
For computing z% we use the following formula
z, ifi(k)=1;
zd = Auavu_ if nie) = 0;

AHJMH_ if Ni(k) = 1 y

where d coincides with one of the previous blocks and hence z9 was already

computed.
We exponentiate by the formula

2 =(.. :Hu»vu.itamuuu.t: B .Vu.?nvhmau.

Note that the original LZ-algorithm keeps every new subsequence and puts
it into the set D even if this subsequence contains only zeros. However zero in
the binary representation of n corresponds only to squaring and does not require
multiplication.

So we consider the algorithm similar to an LZ-algorithm but having some
differences. This algorithm parses n into strings which begin with 1. Strings
containing only zeros are skipped and are not put into the dictionary.

Using the modified algorithm we find the following representation for n:

n = (d,0%,d,07,...,dg(n), 0°), (5)

150

where 0° means a sequence of z zeros, C(n) is the number of the found subse-
quences d.

The algorithm of exponentiating may be described as follows:

— Let Q:L.G.....:L be the processed part of the sequence n, and f be accu-
mulated intermediate result. If ngyy = 0 then we put f = f2,t =t +1 and
go to the nezt step. If nyyy = 1 then we form a new sequence d.

For computing z” now we use the formula

- .+:.: .+...£u .l) =
i T (Co S) S i L) (6)

It is evident that the number of multiplications is equal to
M(n) = C(n) + Ci(n)

Were Ci(n) is the number of substrings computed using multiplication (strings
with last symbol equal to 1). For keeping intermediate results s = C(n) memory
cells are required.

.han n be a random sequence of binary independent identically distributed
variables with Pr(n; = 1) = p. Using a well-known technique (see for example
[7]) the following expressions for the maximal and the average complexity for
large n may be easy derived:

2¢
log £

(14 o(m)), May(t) = LERH@E (4 iy ()

Moz (£) =
@ log ¢

where i@v = Iv.?mu — (1 —p)log(1 — p) is the binary entropy function. Note
that this method is asymptotically worse than the g-ary method, but it is better
on average for sequences with small entropy or small ZL-complexity.

3.2 Exponentiating Based on the Typical Sets

Let k, m be integers, m = £(n)/k. We split n into m subblocks of length k,
n = (ny,...,nm). Let denote D = {d} C {0,1}* some set of the binary se-
quences of length k.

For any D consider_the following algorithm of exponentiating.

1. We precompute =% for all d € D (here d means a number with the binary
representation d), and put f = 1;
2 Fori=11tomdo
begin
— ifd=n; € D then y = precomputed z¢
else we compute y = z% by the binary method.
— Put f=fy

end

T i X

151

The performance of exponentiating algorithms depends on the proper choice
of D. Suppose that n is a random sequence of independent identically distributed
binary variables with probability Pr(n; = 1) = p. Let D be the typical set [7],

i.e.
|D| = gk(H(p)+8(K)) -

M Pr(d) =1 — e(k).

dep
where e(k), 8(k) — 0 if k — oo.
For large £(n) and k we have
May(£(n)) < £(n)/k + £(n)e(k) + k|D|. 8)

Minimizing right side of (8) over k after simple transformations we get

IH(p)

(14 o(n)) (9)

Comparing (4), (7) and (9) it is easy to see that the proposed method is better
than the method based on the LZ-algorithm and better than the g-ary method
if the entropy of n is less than 1.

It is not surprising that this method is advantageous compared to the LZ
algorithm, since the LZ data compression algorithm is not optimal for sources
with known probability distribution. On the other hand, the method based on the
typical sets cannot be recommended for practical use, since the above estimates
are valid only for very large £(n).

In the next subsection we construct an algorithm with the same asymptotic
behavior having good performances for finite lengths £(n).

3.3 Exponentiation by Using Variable-to-fixed Length Coding

It is intuitively clear that the problem of minimizing the number of multiplica-
tions reduces to the problem of constructing a proper set D. In this subsection
we consider the algorithm based on parsing of n using variable-to-fixed length
codes (VF-codes) for source coding [8]. This algorithm may be regarded as the
2%_ary method with variable k, depending on the specific sequence.

Suppose that the set D contains binary sequences of different lengths and
the first symbol of any d € D is 1.

The algorithm uses the representation of n in the form (5) where d; denotes
a binary vector from D of maximal length beginning with the first 1 in the
sequence n, dy denotes a binary vector from D with maximal length beginning
from the next 1 after d;, etc.

Assume that all z%, d € D are precomputed. Then to calculate z" it is
necessary to perform the following sequence of operations:

152

1. Read the nezt symbol of n.

2. When the next symbol is equal to zero square the inlermediate result and
return to the step 1. Otherwise read sequence n symbol by symbol and square
an intermediate result while a read sequence coincides with some d; from D.
Multiply the obtained result by z% and return to step 1.

In other words, computations are performed by formula (6).

Ezample 1. Let D = {1,11,111,101} then for n = 669, (n = (1010011101))
we obtain 2% = ((z%)2*z")?"z. O

Let n be a random sequence of independent binary variables and p be the
probability of 1. Without loss of the generality we assume that p < 1/2. Let
construct for this random sequence the optimal Tunstall VF-code [8] and denote
the obtained set of codewords by A. We obtain D from A by adding one symbol
1 to the beginning of each sequence. It follows from [8] that there exists a set
A = {a} for which the following inequality holds:

log |A| +logp
Ell(a)]) 2 = .
H(p)
Therefore,
log |D| +logp
E[¢(d)] > +1 10
HE) i
The average length of all-zero series is equal to
El:] = (1-p)/p. (11)

For any parsing we have

C=1
)2 3 (s + U(dy)).

i=1

Let P(C) be the probability distribution for the random variable C. Averaging
the last inequality over all n of the fixed length £(n) we obtain

Cc-1 Cc-1
tn) 2 Y POE | Y (z +4d))|C| = Y. P(C) Y (ElxIC] + E[(d:)[C)).
C i=1 [#]

i=1
For i < C -1 values E[#|C] and E[d;|C] do not depend on i. Therefore
£(n) > (E[C] - 1)(E[2] + E[£(d)])

and

£(n)

FC < g+ BE@

+1 (12)

To evaluate the complexity of precomputations, let consider the binary Tun-
stall code. Using a tree structure of the code we can compute all z¢,d € D
spending one multiplication per subsequence.

153

The total average computational complexity is determined as follows
Mg, (n) = E[C] + |D|.

Using (11),(10) and (12) we obtain

£(n)
1 log [D|+loj
1+ ey

Minimizing right side over |D| we get the result asymptotically coinciding with
(9) when £(n) — oo.

Eneﬁmﬁu.-uv” 1+ + _U_ AHMV

3.4 Examples. Numerical Results.

To analyze the above algorithm for the finite lengths £(n) we introduce a finite
state machine. This machine describes random walks of the algorithm along a
binary tree used for parsing n into subsequences d € D.

The ordered graph of this machine contains states corresponding to the set of
distinct sequences from D, zero state and states corresponding to intermediate
nodes of the binary tree. We denote this extended set by D*.

Ezample 1 (continuation). If D = {1,11,111,101} then machine states belong
to D* = {0,1,10,11,111,101}. We have included the state 10 to provide the path
from state 1 to state 101. O

Every directed branch connecting two adjacent states is labeled by Z™, where
m € {0,1}, Z is the formal variable, m denotes the number of multiplications
corresponding to the given transition. Each symbol of the sequence n corresponds
to one transition in the state diagram. The initial state is zero state.

Let P = {pi;},i,i = 1,...,|D"| be the transition probability matrix for the
finite-state machine and p be the stationary state distribution. Introduce the
matrix G(Z) = {pi;Z™4},i,j = 1,...,|D*|, where m;; denotes the number of
multiplications corresponding to the transition from the state i to the state j.
Then the average number of multiplications per symbol of sequence n may be
calculated as

Mo = pG' (21|52,

where G’ is the matrix of derivatives for elements G(Z) and 1 denotes the vector
of |D*| ones. The total average number of multiplications is equal to

Mau(t(n)) = &m)pG'(Z)1|z21 + 1D, (14)
Ezample 1 (continuation). If D* = {0, 1,10,11,111,101} then
l-pp 0 0 0 0
0 01-pp 0 O
P=|1-p 0 0 0 p 0 |, (15)
l-pp 0 0 0 0
l1-pp 0 0 0 0

154
1-p p 0 0 0 O
0 0 lI-pp 0 0
_|l-pz0 0 0 p o0
C@=1(1-p:0 0 0 0 , (16)
(A-=p)zpz 0 0 0 0
(I-p)zpz 0 0 0 0

vnﬁ_iwu vﬁlawhualauu%
1+2p°1+2p" 14+2p'1+2p" 142 '1+2p)°

After simple transformations we obtain

Moy (£(n)) = mm,ww +3.

It follows from the obtained result that the average number of multiplications is

(1+ 2p) times less as the number of multiplications for the binary method. O
Ezample 2. In this example we propose a set D that is proper in the case of

p=1/2, but we estimate the average number of multiplications for any p. Let

D={1,3,..., 22112814 gh=143 oh_ 1},s = |D| = 2»-1,

Then
D* = E.r&_:.,m,-u|rm?frmz+w,..;u>|:.

Note that the sets D and D* from Example 1 represent the particular case of
these sets when h = 3. Matrix G(z) has the form

ﬁ 1-=p p 0 0 ... 0 0[]0 0 .. 03
0 01-pp ... 0 o0lo o .. o
00 0 o 1-pp|o 0 %
(I-p)2 0 0 0 ... 0 o0 pz 0 0
1- 0 0 .

G(z) = (.u;u. 2 0 0 0f{0 pz ... 0 .7
(1-p)z 0 0 0 ... 0 o0lo 0o .. p
(I=pzpz 0 0 ... 0 0]0 0 o
(I-p)zpz 0 0 ... 0 o0f0 o .0
(l-p)zpz 0 0 ... 0 00 o .. o)

Each band of this matrix contains 2"~2 rows.

The average number of multiplications computed by (14) is determined as
follows

M,, = min 4}

h-1
CAmisptt

1

155

Ezample 3. Here we consider the special set D that is proper for rather small
p. Let D ={1,11,101,1001,...,10°~21}. Using (14), we obtain

pé(n)

-(1-pri "

May(€(n)) = E.mu
For large s this method is approximately twice better than the binary method.
It can be proved that this set D is optimal if s and p satisfy the inequality

s < logp/log(l —p) + 1.

0

Numerical results for £(n) = 512 are given in the Table.

Note that the performance of the g-ary method does not depend on p and for
p = 1/2 it is superior (in the sense of minimizing the number of multiplications)
to the binary method that does not require additional memory for storing data.
When p tends to zero the binary method becomes better than the g-ary method.

The proposed method based on VF coding has better performances than
the g-ary method for p = 1/2 and requires less multiplications than the binary
method when p decreases. The memory requirements are significantly less than
for the g-ary method.

Table. Numerical results

Method Probability| Average number of[Memory,
P multiplications s
2%-ary 111 62
Binary 1/2 256 0
LZ-algorithm 1/2 128 40
(simulation results)
Example 2 1/2 102 16
Binary 1/4 128 0
Example 2 1/4 80 16
Example 3 1/4 77 8
Binary 1/8 64
Example 2 1/8 55 8
Example 3 1/8 48 8

3.5 Application to Cryptology

Consider the above algorithms from the point of view of exploiting them in
cryptography. For some applications, such as the decrypting procedure in RSA
system or the key generating procedure by Diffie-Hellman, n is not changed for
a long time. In RSA encrypting n is variable because it represents the public key
of a subscriber with whom it is necessary to communicate.

i

= e e e e e S e BB A S et

156

At first sight it seems very important to know whether or not n varies every
time we exponentiate.

Note that for the above algorithms the total computational expenditures
consist of the number of operations that one needs to analyze n and the number
of multiplications M(n). If n is invariable it is analyzed only once when it is
used for the first time or this analysis may be performed in advance and then
its results are taken into account in developing the corresponding software or
hardware.

However the complexity of the preliminary analysis is proportional to the
length of the sequence n. At the same time to multiply just two numbers with
binary representation of length £ = £(n) a number of calculations at least pro-
portional to £log ¥ is required.

Thus, both asymptotically and for finite lengths the computational expendi-
tures for analysis of n are negligible compared to the complexity of multiplying
and cases of constant and variable n do not differ in principle. Hence, the above
algorithms may be exploited in-all the enumerated applications.

3.6 Conclusion

We have considered the problem of computing z" in connection with cryptogra-
phy problems. Our main goal has been to minimize the average number of multi-
plications. The comparisons of the obtained results with the binary and the g-ary
methods have been made because only these methods are acceptable for large
n. The problem of exponentiating may be solved by the well-known methods
of source coding. However it have been clarified that the method of exponen-
tiation based on the LZ-algorithm presented in [5] provides poor asymptotic
performance and can be used only for the sequences with small LZ-complexity.

To improve the asymptotical efficiency of exponentiating we proposed to use
the concept of typical sets. It makes it possible to obtain average number of
multiplications H(p) times less as for the g-ary method but for extremely large
n. Asymptotically efficient constructible algorithm have been got using so-called
VF-codes [8]. Some examples of specific codes and formulae for average number
of multiplications are given. Presented numerical results show the significant
benefit of the new method compared to the g-ary method.

References

[1] W. Diffie and M.E. Hellman,New directions in cryptography. IEEE Trans. Inform.
Theory, vol. IT-22, pp.644-654, Nov.,1976.

[2] R.L. Rivest, A. Shamir and L. Adelman,A method of obtaining digital signatures
and public-key eryptosystems, Commun. ACM, vol.21,pp.120-126, Feb.,1978

[3] D.E.Knuth, Seminumerical algorithms The Art of Computer Programming, vol.2,
Addison-Wesley, Reading , Mass., 1969.

[4] J.Ziv and A.Lempel,Compression of individual sequences via variable rate coding.
IEEE Trans. Inform. Theory, V.24, No 5, Sep., 1978.

[5] Y.Yacobi, Ezponentiating faster with addition chains, Proceedings of Eurocrypt’90,

157

[6] I.Bocharova and B.Kudryashov, Fast ezponentiation based on Lempel-Ziv algo-
rithm, In Proceedings on the 6th joint Swedish-Russian International Workshop
on Information Theory, August, 1992, pp.259-263

[7] T.M.Cover and J.A.Thomas, Elements of information theory. New York: Wiley,
1991.

[8] F. Jelinek and K.S.Schneider, On variable-length-to-block coding, The structural
and distance properties of punctured convolutional codes, IEEE Trans. Inform.
Theory, V.18, No 6, Nov., 1982.

