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SOME REMARKS ON THE abc-CONJECTURE

J. BROWKIN AND J. BRZEZINSKI

ABSTRACT. Let r(x) be the product of all distinct primes dividing a nonzero
integer x . The abc-conjecture says thatif a, b, ¢ are nonzero relatively prime
integers such that a + b + ¢ = 0, then the biggest limit point of the numbers
logmax(|al, |5], |c])
logr(abc)

equals 1. We show that in a natural anologue of this conjecture for n > 3
integers, the largest limit point should be replaced by at least 2n — 5. We
present an algorithm leading to numerous examples of triples a, b, ¢ for which
the above quotients strongly deviate from the conjectural value 1.

1. INTRODUCTION
Let a, b, ¢ be nonzero integers such that
a+b+c=0 and ged(a,bd,c)=1,

and let r(abc) be the product of distinct prime numbers dividing abc. J.
Oesterlé posed the question whether the numbers

logmax(lal, |b|, |c|)
log r(abc)

(1) L=L(a,b,c)=

are bounded. This question was refined by D. W. Masser who conjectured that
for each ¢ > 0 there exists a positive constant C(e) such that

max(|al, ||, |c]) < C(e)r(abe)'**.

This is the abc-conjecture. It is easy to see that the abc-conjecture is equivalent
to the inequality

limsup{L} <1,
where limsup{L} denotes the largest limit point of the quotients (1). But it
is not difficult to show that there is a limit point of this set which is > 1. Thus
the abc-conjecture can be formulated as the equality

limsup{L} = 1.

The first purpose of the present note is to comment on a rather evident
generalization of the abc-conjecture to a statement involving n > 3 integers.
We show that 1 in the above equality should be replaced by at least 2n—5. This
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932 J. BROWKIN AND J. BRZEZINSKI

number is also our conjectural value in the “n-conjecture”. The second objective
of the paper is to present some numerical results concerning deviations of the
quotient (1) from the conjectural value 1 in the case of abc-conjecture. Our
results do not contradict the conjecture, but the presence of rather big prime
factors in the triples a, b, ¢ leading to quotients L strongly deviating from 1
makes it somewhat questionable.

2. THE n-CONJECTURE FOR Z

Let a;,a,...,a, € Z,where n >3, satisfy
(1) ged(ay, az, ..., ay) =1,
(i) aj+ay+---+a,=0,
(iii) no proper subsum of (ii) is equal to O.

Denote
@) My =M= max (), my=m=rla-a),
L,=L(a,...,a,) =logM,/logm,.

The n-conjecture asserts that, for given n > 3,
1. the numbers L, are bounded,
and more precisely
2. limsup{L,}=2n-75,
where L, runs over numbers (2) corresponding to all n-tuples of integers sat-
isfying (1)-(iii).
Theorem 1. For every n > 3,
limsup{L,} > 2n - 5.
First we prove a lemma.

Lemma 1. For every k > 0, there exists a polynomial fi, € Z[x] of degree k
with positive coefficients such that

x2k+1 -1 X (X _ 1)2
) =B
Proof. For aj =2mj/(2k+1), j=1,2,...,k, wehave

2k+1 k
X -1
= =[](** - 2xcosa; + 1)
j=1
=xk

k
j=

1

It is sufficient to take

fe(z) = (z+2(1 — cosaj)).

-

Il
—_

J

From (3) it follows that f; has integral coefficients, and since all its roots are
negative, all its coefficients are positive. O
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Remark 1. One can also define the polynomial f;(z) explicitly:
k

2k+1 (k+j+1\ _;
@) Zk+J+1(2j+1 )Zj’
or inductively:
f(z)=1,  fi(z)=z+3,
and, for k> 1,
(5) Ji1(2) = (2 +2) fi(2) = fr—1(2).

Using (4) or (5), one can continue the list:

fr(z) =22 +52+5,

fi(z2) =2 +722 4142 47,

fa(z) =24+ 923+ 2722 + 30z + 9,

fs(z) =20 +112* + 4423 + 7722 + 55z + 11,
)

fo(z) = 26 +132% + 6524 + 1562° + 18222 + 91z + 13.

As in Lemma 1, one can prove the existence of polynomials g, € Z[x] of
degree k with positive coefficients such that

x2k+2 -1 _ xkgk<(x _ 1)2)

x2—1 X
for k > 0. These polynomials can be defined by a formula similar to (4):
k .
k+j+1)_;
/ — J
) &(2) Ejzoi( 2 )z,

or inductively by
g(z)=1, &(z)=z+2,
and, for k> 1,
(5" 8k+1(2) = (z +2)&k(2) — 8k-1(2).
Let us note that the same arguments as in the proof of Lemma 1 give, for

n>2, )
@, (x) = x#"/2p, (M) ,
X
where ®, is the nth cyclotomic polynomial, and p, € Z[x] has positive co-
efficients and degree ¢(n)/2 (4(n) is the Euler totient function). The splitting

field of p, is the maximal real subﬁeld of the splitting field of ®, over the ra-
tional numbers. Defining p;(x) = p»(x) = 1, one can easily prove that f; and
g are the products of all polynomials p; for d dividing 2k + 1, respectively,
2k +2.

Proof of Theorem 1. Let

k
(6) fl2) =352,
j=0
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where according to Lemma 1, the s; are positive integers. If in (3) we put
k=n-3 and x = —a,/a,, then, in view of (6), we get

n-3
(7) af”‘S + a%”‘s - ZSj(dl + a2)21+‘(—a1a2)"_1_3 =0.
j=0
If we choose a; = 2/, where i > 1, and a; = —1, then we have a sum of

n summands equal to zero, with no proper subsum equal to zero, since only
the first summand is positive. The second summand is —1, hence the gcd of
all summands is 1. Therefore the conditions (i)-(iii) of the n-conjecture are
satisfied. With this choice of a; and a,, we have from (7),

M, = 2i@n=5),

Consequently, denoting ¢ = 2sps; - - - S,—3 and taking the logarithms to the base
2, we get

_i(2n-=5) > i(2n —5)

" logr((2f — 1)c) = i+logr(c)

for i — oco. Since there are infinitely many i such that the numbers 2/ — 1

are relatively prime (e.g., all prime i), it is easy to check that the quotients

L, corresponding to those i are different. Therefore, the set {L,} has an
accumulation point equal at least 2n — 5. O

—2n -5

Remark 2. Let a;, ay, a; satisfy the assumptions (i)-(iii) for the 3-conjecture
with a; = max(|ay|, |az|, |a3]|) and L3 = L(a;, a», a3). If for some n > 3,
every prime divisor of the coefficients of f,_3 divides ajaas, then (7) gives
an example for the n-conjecture with

Ly,=(2n-5)Ls,
since M, = alz"‘5 and all other terms in (7) are negative.
Thus, the example of E. Reyssat for the 3-conjecture
235-109-3°9-2=0
with L; = 1.629912 gives the example
235 -1093.3%0 -23-2.31.235.109=0
for the 4-conjecture with L, = 3L; = 4.889735.

THE n-CONJECTURE FOR K[f]

Let K be a field of characteristic zero. For a nonzero polynomial a € K[¢],
let r(a) be the sum of the degrees of all distinct irreducible factors of a in
K[t]. Let a1, az, ... , a, € K[t], where n > 3, satisfy max,<;<,deg(a;) >0
and (i)—(iii) as above. Denote

M, = M = max deg(a;), m,=m=r(a--a),
(2/) 1<j<n
L,=La,...,a,)=M,/m,.
The n-conjecture asserts that for every n > 3,

M, < (2l'l - 5)(mn - 1)-
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Theorem 2. For every n >3,
limsup{L,} > 2n - 5.
Proof. Putin (7) ay =t"+ 1, where r >0 and a, = —1. Then

n—3
(8) T+ 1) = 1= s+ 1) =0.
Jj=0

Thus, we have a sum of n summands satisfying the assumptions of the -
conjecture. Moreover, for (8), we have

M, =2n-5)r, my=1+r.
Consequently,
(2n=5)r

—s2n-95
1+7r

L,=
for r - 00. 0O

Remark 3. In the case of polynomial rings an estimation from above is known:

n-1
L= ("3
(see [1], [7] and [8]). Thus, from Theorem 2, we get
Corollary. If n =23 or 4, then for the ring K[t] we have
limsup{L,} =2n - 5.

With a suitable modification of the definition of L,, Theorem 2 and its
corollary can be extended to algebraic curves of arbitrary genus over fields of
characteristic zero (see [1], [7] and [8]).

4, EXAMPLES RELATED TO THE abc¢-CONJECTURE

The example of E. Reyssat given above can be interpreted as follows. The

equality
2

23
=2 =55

9

implies that 23/9 is a good rational approximation to v/109. Let us consider
the continued fraction

V109 =1[2,1,1, 4, 77733, ...].

The very large term 77733 implies that the convergent [2, 1, 1, 4] gives a very
good approximation to v/109. In fact, we have [2, 1, 1, 4] = 23/9.

Starting from this observation, we have made an extended computer search
for continued fraction expansions of numbers vk. Having a suitable convergent
of the continued fraction of vk, say, p/q, we put ¢ = max(kq", p"), b =
min(kq”, p"), a=c— b (divided by gcd(a, b, ¢)). We have also considered
several rational numbers p/q which can be derived from the convergents of
continued fractions, and which give good approximations to vk such that p
and ¢ have many prime power divisors.

The “obvious” idea was that if [ag, a;, ...] is the fraction, then one should
look for the convergents corresponding to large a; in order to get a good ap-
proximation. Then we looked for large ¢ in the convergents p/q (which is

235-109.95=2, e, ()5—109
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more reasonable). But it appears that these properties are not relevant in gen-
eral. For example, the best-known result L = 1.629912 can be obtained not
only from v/109 but also from /2507 =[50, 14,3,2,1,1,1,1,...] and
the convergent of length 6 equal to 233/35.

Using this method, we obtained several new interesting examples (indicated
B-B) and all previously known. All results with L > 1.4 known to us at present
(March 15, 1993) are included in the table. It contains the examples given by
B.M.M. de Weger in [6] and the examples constructed by A. Nitaj in [3]. We
express our thanks to A. Nitaj for sending us his examples, which were obtained
by a different method. We have also included one example of Xiao Gang (sent
to us by B.M.M. de Weger, see also Oesterlé [4]) and one of J. Kanapka (sent

to us by N. Elkies).
TABLE
(version of March 15, 1993)

1. 1.629912 2+39.109 = 23° E. Reyssat

2. 1.625991 112 432+56.73 = 221.23 B. M. M. de Weger
3. 1.623490 191307 +7+292+318 = 28.322.5¢% B-B

4. 1.580756 283451132 = 28.38.173 B-B, A. Nitaj

5. 1.567887 142+37 = 547 B. M. M. de Weger
6. 1.547075 72430 = 2.9 B. M. M. de Weger
7. 1.526999 13219642305 = 383.112.3] A. Nitaj

8. 1.502839 2394+58+173 = 210.374 B-B, A. Nitaj

9. 1.497621 527937+ 73 = 218.37.132 B. M. M. de Weger
10.  1.492432 22011 +32+130417+151+4423 = 5°+1396 A. Nitaj

11.  1.491590 73+213 7729412 = 3'9.103%. 127 A. Nitaj

12.  1.488865 11243913 = 2!1.53 B. M. M. de Weger
13.  1.482910 37428 = 38.5 B. M. M. de Weger
14.  1.474450 143%.7 = 231123533 B-B, A. Nitaj

15.  1.474137 72420011532 = 34.58 B-B, A. Nitaj

16.  1.471298 30199+ 118 = 23.57.73 B-B, A. Nitaj

17.  1.461924 2752470441 = 138 B. M. M. de Weger
18. 1.457066 32052 4244173314 = 7'0.257 B-B, A. Nitaj

19.  1.455673 1425352 = 7 B. M. M. de Weger
20.  1.455126 324116423 = 19%.13883 B-B

21.  1.452613 219¢13+103+ 7" = 311.53.1)2 B. M. M. de Weger
22, 1.451344 37450067 = 2% B-B, A. Nitaj
23.  1.450858 3373423233059 = 53.198 B-B

24. 1.450026 1433537723 = 213.114+13.41 A. Nitaj

25, 1.449651 1+355.472 = 218.79 G. Frey

26.  1.447977 112434 5% 724134297 = 23.3.+737 A. Nitaj
27.  1.447743 89+7+11%8 = 220.33.53 B-B, A. Nitaj
28.  1.446246 324577942213 = 117 +19? A. Nitaj

29.  1.445064 24132458 = 3.19¢ B-B, A. Nitaj

30.  1.443307 1422.5% = 35.72.43 B. M. M. de Weger
31, 1.443284 324193 4511 = 217.373 B-B, A. Nitaj

32.  1.441441 313424174415 = 3577 B-B, A. Nitaj

33, 1.440969 3402324315 = 205.53.7 B-B, A. Nitaj

34,  1.439063 1424437547 = 58.72 B. M. M. de Weger
35.  1.438360 1+19+509° = 2!9.3%.59 B-B

36. 1.436180 20135 +76.1732 = 33.472 A. Nitaj

37.  1.435006 207457 = 38.13 B. M. M. de Weger
38.  1.433464 254318 15647102232 = 11%.691+ 1433 A. Nitaj

39.  1.433043 3124+3%+5° = 25.23%.53 B-B, A. Nitaj
40.  1.432904 220 4 76417482097 = 5'2.7432 A. Nitaj
41.  1.431092 290192 4335772313 = 595.73 A. Nitaj
42, 1.430418 193 4+2+56192+11932 = 3%.138 B-B, A. Nitaj
43.  1.430176 3607241341272 4+2%861+137 = 5'1.196 B-B
44.  1.429552 390294764432 = 2%.13 A. Nitaj
45.  1.429007 3204721164199 = 2-138.17 A. Nitaj



46. 1.428908
47. 1.428323
48.  1.427566
49. 1.427488
50. 1.427115
51.  1.426753
52.  1.426565
53.  1.423381
54. 1.421828
55. 1.421575
56. 1.421008
57. 1.420437
58. 1.420036
59. 1.418919
60. 1.418233
61. 1.417633
62. 1.416793
63. 1.416438
64. 1.416051
65. 1.415561
66. 1.414503
67. 1.413698
68. 1.413279
69. 1413166
70. 1.412681
71.  1.411680
72. 1.411615
73.  1.410683
74. 1.410044
75. 1.408973
76. 1.407787
77. 1.407404
78. 1.407208
79. 1.407051
80. 1.406524
81. 1.406420
82. 1.406097
83. 1.406079
84. 1.405785
85. 1.405443
86. 1.404484
87. 1.404264
88. 1.403482
89. 1.402183
90. 1.401979
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732 421 e 1144133

11+ 731672

73 4+ 11° « 1572

61% +2%0 . 413 . 832
3104 78..23

31 +25+510.192

3+5°
5211+ 13% + 14832
24459452419
5741154132
2937389 +3%+5%.31
7819425524372
233 +3%.57.31

72 4217 . 1812

13 + 3499 + 2%
5641609 +2° - 314+ 133
32433 4+ 5135323

414 « 33941 + 312+ 197
3544599 411238

7 +583.181 =

3e54 4 7+116443
26+54137 43"

52 4374133

3641573 + 283 + 2310

5+ 3!

793 43674114138
31321049 + 2% + 292 - 107
67% + 2399 + 313« 1073
2343830113 4 13.29+436.673
7?2 +83°

2213+ 73+41%+ 181
324233 4+ 237 « 2932

241 422+ 3%« 56 . 1181
39163 +23+11%+17
77 + 32574133
21943673 + 57+ 197+ 281
21644171 431572

5+ 7%+ 132« 433

133 + 2%+ 372
224435 1 54195592
631 4+ 2%+ 54292
143%72+197
3313425114192+ 733
312456 4 79.312
23.543%.76.312.97

L | | | | (| [ | (I T T 1

L (e (| (O (T T Y T O

abc-CONJECTURE

3557417
2.314
22.3]0.75
32.5419+167
29 « 5092
375113412
27

229.32
31124178
21572417
103¢

3+177
2713017t
3% . 8092

3% 511139
15234
27+ 73 .238
223.5%.29
222.593

24e3¢11+13%2+19°

217 . 173

136

28 ¢ 1372
2%0.52.112.13
219173

218 433

19% + 1396

26 . 515

520.17
22+312.17+109
3454673
215.52413%.312
118 +134

512

216.19% - 67

132 + 2516

197

211 . 38

32 . 57

70 . 167
33.710.37
27+57+19

52 . 711
294115571
112+ 193+ 1274

B-B
B-B, A. Nitaj
B-B, A. Nitaj
A. Nitaj

A. Nitaj
B-B, A. Nitaj
B. M. M. de Weger
B-B, A. Nitaj
B-B, A. Nitaj
B-B, A. Nitaj
B-B, A. Nitaj
A. Nitaj

A. Nitaj

B-B, A. Nitaj
B-B

B-B

A. Nitaj

B-B

B-B, A. Nitaj
A. Nitaj
Xiao Gang
B-B, A. Nitaj
B-B, A. Nitaj
B-B, A. Nitaj
B. M. M. de Weger
A. Nitaj
B-B, A. Nitaj
B-B

A. Nitaj
B-B, A. Nitaj
A. Nitaj

A. Nitaj

B-B

B-B, A. Nitaj
J. Kanapka
A. Nitaj

A. Nitaj

B-B, A. Nitaj
B-B, A. Nitaj
A. Nitaj

B-B, A. Nitaj
B-B, A. Nitaj
A. Nitaj

A. Nitaj

A. Nitaj

937

Some words about the program. The examples are constructed with vk,
where 2 <k <2-10°, 2<n <15 (for kK <100, we choose 7 up to 20, but
the increase of n has not resulted in new examples). The computations were
carried out with all convergents up to length 10 (for k£ < 100 up to 20 without
new examples). In order to limit the computation time, we put the restriction
¢ < 10'5 (in some intervals for k, we took ¢ < 1030).

Of course, there is nothing which makes it impossible to continue computa-
tions of new examples by using the same method. But it is much more desirable
to understand why so many examples with large values of L can be constructed
in such a way. The first of the three remarks concluding the paper is closely
related to this question.

Remark 4. As we noted before, all examples in the table can be obtained by
using continued fractions of ¥k for suitable » and k. In order to check
this possibility, let us introduce the following notations. If x is a positive
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integer, let n(x) be the largest exponent of prime numbers dividing x , and for
s(x) > n(x), let x;(x) be the unique integer such that xxs’(x) = r(x)’™) . We
shall write x’ when s(x) is clear from the context. With these notations, we

have the following easy result:

Lemma 2. Let a, b, ¢ be positive integers such that a+b = c, and a = pb,
where 0 < p< 1. If

1 < s(@) or < s(b) or < s(e)
p = ra) 7<) 7= 2oy
then r(a) is a convergent of “Ya'c, or r(b) is a convergent of *Vb'c, or r(c)
is a convergent of *V/bc’, respectively.
Proof. Consider the third case, that is, p < %(% . Using the mean value theo-
rem, we get

@ ‘Ubc! r(c)a

r(c) — ‘Vbc' < ———(cc’' = bc') < (c) < =.
s(c)bc’

Thus, r(c) is a convergent of *¥/bc’ (in fact, the second one). Similar argu-

ments show that in the first case (or in the second, with a replaced by b),

‘Q/a’c —r(a) <1, so0 r(a) is the first convergent of *¥/a’c. O

Using Lemma 2, we can easily check that its assumptions are satisfied for
almost all the examples in the table with s(x) = n(x) for x € {a, b, ¢} (in
fact for all but five examples with x = b or ¢). In any case, one can choose a
sufficiently large value of, say, s(c), in order to fulfill these assumptions. Then,
according to our algorithm, we get all the examples using the roots and their
convergents given by the lemma. Of course, such a choice of n and k in Vk
is not always the optimal one.

Remark 5. There are other quotients, similar to (2), which are natural in con-
nection with the abc-conjecture. Following [4] and [5], we let

log |abc|
LI = L, ) b ) = I >
(a ) log r(abc)
for relatively prime nonzero integers a, b, ¢ such that a+b = c. It is evident
that the abc-conjecture implies the inequality

limsup{L'} < 3.

The deviations of the quotients L’ from 3 have been studied intensively by
A. Nitaj (see [3]). The biggest value L' = 4.419014 corresponds to Nitaj’s
Example 7 in the table. It is a better result than L’ = 4.107567 corresponding
to the example of Xiao Gang cited in [4] (Example 66 in the table).

Remark 6. We observe that in all the examples in the table, the exponent of at
least one of the prime numbers involved is < 2. If x is a nonzero integer, we
say that x is n-powerful if p" divides x for each prime number p dividing
x (2-powerful numbers are usually called powerful—see, e.g., [2, B16]). With
this terminology, we do not have an example of 3-powerful integers a, b, c
such that a+b =c, ged(a,b,c) =1 and L > 1.4 (or even with L > 1.2).

However,
2713 +23.35.733 = 9193
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with not impressive L. We do not know whether there are 4-powerful a, b, ¢
such that a+b = ¢ and gcd(a, b, ¢) = 1. But there are reasons to believe that
there are no n-powerful integers satisfying these conditions when #» > 5. In
fact, our computations strongly suggest that

max(lal, |b], |¢) < r(abc)’

with s < 1.65. If this is true, then for n-powerful numbers a, b, ¢, we get
r(abc) < {/|abc|. Therefore, |abc|" < |abc|> < |abc|®>, so n<5.
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