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Discrete logarithms and local units

BY OLIVER SCHIROKAUER
Department of Mathematics, Oberlin College, Oberlin, Ohio 44074, U.S.A.

Let K be a number field and O its ring of integers. Let [ be a prime number and e
a positive integer. We give a method to construct /th powers in O, using smooth
algebraic integers. This method makes use of approximations of the /-adic logarithm
to identify /°th powers. One version we give is successful if the class number of K is
not divisible by [ and if the units in @, which are congruent to 1 modulo /°** are [°th
powers. A second version only depends on Leopoldt’s conjecture.

We use the technique of constructing /°th powers to find discrete logarithms in a
finite field of prime order. Our method for computing discrete logarithms is closely
modelled after Gordon’s adaptation of the number field sieve to this problem. We
conjecture that the expected running time of our algorithm is

L,[1/3;(64/9)* +0(1)] for p-— oo,
where
L, [s;c] = exp (c(logq)® (loglogq)'~*).

This is the same running time as is conjectured for the number field sieve factoring
algorithm.

1. Introduction

Smooth numbers appear in a vast assortment of number theoretic algorithms, and
generally in one of two roles. Either the algorithm depends on the smoothness of a
particular number for its success or it makes use of many smooth elements to
construct a useful multiplicative relation. The elliptic curve factoring method is an
example of the former. In this case, a factor p of an integer n is found as soon as an
elliptic curve with smooth order over F, is found. An example of the latter type is
the quadratic sieve. In this method, » is factored by finding @ and b in Z/nZ such that
a? = b% but a # +b. Constructing the relation a® = b? requires finding many smooth
elements and using the easily proved fact that any set of B-smooth integers whose
cardinality is greater than the number of primes less than or equal to B contains
elements whose product is a square.

In this paper, we contribute to the collection of algorithms of the second sort. The
problem we address is that of computing logarithms in a finite field of prime order
p. Let t and v be two elements in F}, and assume that v is in the subgroup of F}
generated by ¢. Our goal is to find the smallest integer x€{0,...,p—2} such that
t* = v. We write « = log,v and call x the discrete logarithm of v.

Let I17% be the prime factorization of p—1. To compute log,v it is sufficient
to find, for each prime /, a relation in F, of the form @' = t*w, for in this case
log,v = —x;mod {®. The technique we give to find such a relation requires solving
the following computational problem in the ring of integers O, of a number field K.
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410 0. Schirokauer

Given a prime number [, a positive integer e, and a set M < (x whose elements have
smooth norm, find integers y(m)€{0, ...,1*—1} such that the product

T my™
meM

is an /th power in 0. We give a solution to this problem which works if |M] is
sufficiently large and which relies on /-adic logarithms to detect /th powers in 0.
One version produces the desired exponents if the class number of K is prime to / and
the set of /°th powers in (), contains all the units in ¢ which are 1 modulo *'. A
second version succeeds if Leopoldt’s conjecture is true.

The method used to find the set M mentioned above and the use of [*th powers in
O to find a relation in F,, are based on ideas found in the number field sieve factoring
algorithm (Buhler et al. 1993 ; Lenstra et al. 1993) and in Gordon’s adaptation of the
number field sieve to the problem of discrete logarithms (1993). The close relationship
between the number field sieve and our algorithm is reflected in the fact that they
have the same conjectured expected running time of

L,[1/3;(64/9)*+o(1)] for p-— o0,
where L,[s;c] = exp (c(log p)* (loglog p)'~*).

Moreover, though the algorithm we give has yet to be implemented, it should be as
practical as the general number field sieve factoring algorithm.

We begin in the next section with some background information on smooth
numbers, sieving and linear algebra. We then describe in §3 the technique for
constructing (°th powers in O, using smooth algebraic integers and in §4 present an
algorithm for finding discrete logarithms. The running time analysis of the discrete
logarithm algorithm follows in §5. The paper then concludes in §6 with a solution to
a problem which arises in §3 and §4, namely that of constructing valuations in a
number field.

2. Preliminaries
(@) Smooth numbers

Let B be a positive real number. We call an integer B-smooth if all its prime factors
are at most B. We call an algebraic integer B-smooth if its norm to @ is B-smooth in
Z or equivalently if the principal ideal it generates is divisible only by prime ideals
of norm at most B. In the algorithms in this paper, we often search for smooth
elements. The following result establishes the likelihood of finding such an element.
We denote by y(x,B), the number of integers less than « which are B-smooth.

Theorem 2.1. (Canfield et al. 1983.) Let ¢ be a positive constant. Then
x/Y(x, B) = y*rom) (2.2)

uniformly in the region x = 10 and B = (log x)**¢, where u = (logx)/log B and the limit
implicit in the o(1) s for u— 0.

The conclusion of Theorem 2.1 looks particularly simple if we express the
quantities involved as numbers of the form L, [s;c]. In fact, with x = L, [s;c] and
with B = L, [s";c’], the right-hand side of (2.2) becomes

Ly[s—s';(s—5)¢/¢ +o(1)],
where the limit is for p— o0.

Phil. Trans. R. Soc. Lond. A (1993)



Discrete logarithms and local units 411

(b) Steving

A sieve can be used to detect smooth values of a polynomial. We describe briefly
how this is done for a polynomial in one variable and for a homogeneous polynomial
in two variables. Let fe Z[X] be of degree n, and assume that we are interested in
finding those integers a in the interval [ —3C, 3C] for which f(a) is B-smooth. Let N
be the number of primes less than or equal to B and label these primes ¢, ...,qy. We
initialize the sieve be setting d,(a) = f(a). Next we compute d,(a) for ¢ > 0 inductively.
To do this we find all the values of @ between —3(¢g;—1) and (¢, — 1) for which ¢, | f(a)
by solving f modulo ¢,, We then note that ¢, divides f(a) if and only if ¢, divides
fla+4q,) and so find all @ in the range [ —31C, 1C] for which f(a) is divisible by ¢, by
adding +g¢; to the roots of fmod g;. We now divide d,_,(a) by the highest power of ¢,
dividing it and call the quotient d,(a). Clearly those a for which f(a) is B-smooth are
those for which dy(a) = +1.

If we allow probabilistic algorithms, we can find the roots of f over Z/q, Z in time
bounded by (n+1logg,)°® (see Lenstra Jr 1990). Once f is solved modulo g;, the time
required to find the a for which f(a) is divisible by ¢, and to compute d;(a) for these
a is O(C/q;). Summing over the g;, we get a bound of

n(B) (n+1log B)° + 0(C'loglog B)

on the time required for the sieving process, where n(B) is the number of primes less
than or equal to B.

Assume now that feZ[X,,X,] is homogeneous of degree n and that we are
interested in smooth values of f(a,, a,) for a, and a, both ranging from —3C to 3C. We
follow the same procedure used in the one variable case. In particular, for each ¢q,, we
find those pairs (@,,a,) in the given range for which ¢,|f(a,, @,). To do this we let
fe Z[Y] be the polynomial obtained by dividing f by X,” and letting ¥ = X,/X,, and
then we find the roots of f modulo ¢,. For each b in [—1(g;—1), (¢;—1)] such that
¢;1f(b) and for each value of a,e[—1C, 1], we obtain values f(a,, a,) divisible by ¢,
by finding a, €[ —1C, 1C] such that a, = ba, mod ¢;. We see then that for each g¢;, the
time required to detect all the pairs (a,,a,) such that g¢,|f(a,, a,) is bounded by

(n+1ogq,)°V +0(C?/q,),

the first term being the time needed to solve f modulo ¢, and the second to mark off
all appropriate values of @, and a,. We conclude that the total running time for the
sieve is

n(B) (n+1log B)°® + C%loglog B.

(¢) Linear algebra

Let A be an n X » matrix and v an n-dimensional vector, both with entries in Z.
We consider the problem of solving the equation Ax = v over Z/I°Z, where [ is prime.
For ¢=1, we can use gaussian elimination, or in the case that A4 is sparse,
Wiedemann’s coordinate recurrence method (Wiedemann 1986). The first method
runs in time O(n?), the latter in time O(n?). For ¢ > 1, we let z; be a vector such that
Az, =vmod! and define =z, for 1 <i<c¢, inductively as follows. Assume

Az, —lxy—...— 1%, ) = vmod "™ so that A(x,—lx,—...— 1%, )—v =T w,_,
for some vector w,_;. Now let x, be a vector such that Ax; = w,_;mod!l. Then
A(x,—lx,—...— 1 1x;) = vmod I*. When 7 =c¢ we have constructed a solution to

Ax = v over Z/I°Z. As is evident, finding this solution requires solving ¢ equations
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412 0. Schirokauer

of the form Ax = v over Z/IZ. We conclude that the original problem can be solved
in time O(cn®) in general and in time O(cn?) if A is sparse.

3. Constructing powers in a number ring

Let K = Q(a) be a number field of degree n over & and denote by (; the ring of
integers of K. Let S be a finite set of prime ideals of (). Call an element € K an S-
unit if ord, (9) = O for all prime ideals p ¢S, and let K¢ be the set of all S-units in K.
In this section we address the following problem.

Problem 3.1. Given a positive integer e, a prime number 1, a finite set M < (O N K )
such that M| > |S|, and an S-unit my€ O, determine a map y: M—{0,...,1°—1} such
that

m, T mvyem
meM
18 an [°th power in O.

Though neither this problem nor the algorithm we present to solve it refer to
smooth numbers, usually S is taken to be the set of prime ideals of norm less than
some bound, for in this case a search through the elements of O, of norm less than
a second bound is most likely to yield S-units. In other words, in our applications of
the results given here, M will contain smooth algebraic integers.

Before addressing Problem 3.1, we give a solution to a second problem. We will see
later in the section how these two problems are related.

Problem 3.2. Given positive integers c and o, a prime number  which does not ramify
m K, a set M < (Ox N Kg) such that |M| > |S|+ on, and an S-unit m,e O, determine a
map y: M—{0,...,1°—1} such that the element

Y =m, H my(m)
. meM
satisfies:

(i) ord,y =0mod° for all peS and

(if) A(y) = 0.

Our solution to Problem 3.2 depends on a sequence of logarithmic maps A, which
we define as follows. Assume / does not ramify in K. Let I"; be the multiplicative
subset of (¢)x consisting of those elements with norm not divisible by /. For each prime
ideal ¢ lying above [ in O, let ¢, =|(Ox//)*|, and denote by € the least common
multiple of the ¢,. Then for all yeI',,

v¢ = 1modl. (3.3)
We now define A; to be the map from I} to IO /I?O) given by the equation

A(y) = (v = 1)+ 0.

For i > 1, we let I', = {yel,_,| A,_,(y) = 0} and define A,: I, I* 'O /120, to be the
map which sends vel,; to (y —1) +12 (0 Notice that l2 o K/l2 Ok is a module of rank
nover Z/1*' Z. Therefore if we hx a basis {b; P74 120,), where 1 <j < n, then A, is
given by the maps A, ;: I~ Z/ I*"'Z determined by the congruence

A7) 0,22 mod 12

M =

yol=

Jj=1

Phil. Trans. R. Soc. Lond. A (1993)
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Notice also that A;(yy) = A,(y)+A,(y), and that A, ,(yy') = A, ;(y)+A,;(y). We
conclude that the maps A; and A; ; are homomorphisms on the group of units of 0Oy.

Though the formulation of A; given above is computationally advantageous, it is
worth noting that A; can alternatively be thought of as an approximation of the [-
adic logarithm. To see this, let / again denote a prime ideal of O, lying above [, let
K, be the completion of K at the valuation induced by 7, let (), be the ring of integers

of K,, and let
O,=110,=0,®Z,
n
Notice that I'; contains precisely those elements mapped to O under the embedding
of O into @,. In this way I', can be thought of as the subset of Oy of local units at
l. Now define log, to be the map from OF to I0), given by the usual /-adic logarlthms
on each component. It is easily seen from the definitions that log, maps I'; to 12 '0),.

Since log;(y%) = elog,(y) and ¢ is not divisible by /, we conclude that log, in fact maps
all of I'; to 2 0O,. Let 6, be the map from I, to [0, /I* O, given by the sequence

T, c,(o* L OO0, ~ 170, ) 1P 0,
Then
A(y) = 0,(y°) = €0,(y).

If A, were defined with € replaced by a multiple of ¢ which is congruent to 1 modulo
2" ' , then A, would actually equal 6,.

If l ramiﬁes, then (3.3) does not hold. To overcome this difficulty, we can make use
of the fact that, whether / ramifies or not,

v¢= 1modaq,

where a is the product of the prime ideals lying above [ in ¢;. We can, therefore,
replace A, with the map u,:I'; - a/la which sends y to y*— 1+la and similarly, for
1> 1, we can define y, just as we did A; except that 2o Oy 120 is replaced by
2 a / I2""a. With p, playing the role of A;, all the results of this paper can be modified
to hold in the case that [ ramifies. We choose, however, to continue with the
maps A; and to restrict to the case that ! does not ramify for ease of exposition.

The following algorithm solves Problem 3.2. We continue with the notation
introduced in that problem.

Algorithm 3.4. Step 1. To each element meM associate a vector v,, whose entries
are the exponents in the ideal factorization

(m) =11 p%
pesS
together with the values A, ;(m), for 1 <j < n. Define v,, similarly. These vectors all
have length |S|+n.

Step 2. Let M’ be a subset of M containing |S|+ 7 many elements, and label those
elements of M/ which remain m,,m,, ...,m, . Let ¢, = on and notice that ¢, = ¢,—n
Now let 4 be the square matrix whose columns are the vectors v,, for meM’, and for
k=0,...,¢,, solve the matrix equation

Ax =—wv,,, (3.5)
over the ring Z/I°Z.

Phil. Trans. R. Soc. Lond. A (1993)



414 0. Schirokauer

It may, of course, turn out that (3.5) cannot be solved, for ¥y, Might not be in the
column space of 4. If this is the case, 4 should be replaced by another square matrix
composed of column vectors v,,. We do not address here the question of the likelihood
that 4 is suitable, but only point out that in the applications that follow [ is large,
making it unlikely that [ divides det (4) and so unlikely that 4 is singular modulo /.

Step 3. For k=0, ..., ¢y, let w;, be the solution found to (3.5), and denote by w,,(m)
the entry in w, corresponding to the column v,, in 4. Let

by =my, II m@e™,
meM’

Then

(i) ord,(by) = 0modI¢ for all peS and

(i) A,(b;) = 0.

If ¢, = 0 the algorithm now terminates. In this case we are in the situation that
o=1and M =M. Letting y(m) = wy(m) accomplishes our goal.

If ¢, > 0 we proceed inductively. Let w, ; = wy, and b, ; = b,. For r > 1, let ¢, =
¢,_y—n. We compute b, ,, where k=0, ...,¢c,, as follows. Let v, , be the vector of
length n consisting of the values A, ,(b, ,_;) forj =1,...,n. Let A, be the n x n matrix
whose ith column is v, ;. For k=0, ...,¢c,, solve

ATx = _UIC,T (36)

modulo /2", Denote by wy,, the solution to (3.6) and by w, ,(7) the ¢th entry in w, ,.
Now let

n
blc,r = blc IT bc,+iwlc,r(i)'
i-1

Then for k=0, ...,c,,
(i) ord, (b; ,) = Omod/° for all peS and

(ii) A,(b,,) = 0.

The algorithm terminates when we have computed b, ,, in which case we simply set
y(m) equal to the least positive residue modulo /¢ of the exponent to which m occurs
in the factorization of b, ,. This concludes our description of Algorithm 3.4.

If Problem 3.1 is modified so that M is required to have cardinality greater than
|S] 4+ o and if [ is assumed not to ramify in K, then Algorithm 3.4 provides a solution
to Problem 3.1 if the element m,[1m?™ which is produced is an /°th power. We
consider two choices for the constants ¢ and o in Problem 3.2 and Algorithm 3.4, and
in each case determine conditions under which myI[1m?™ is an I°th power.

Version 3.7. Let ¢ = e and let o be the least integer such that 2° > e.

Denote by U the group of units of O and by U, the subgroup of U containing those
units which are congruent to 1 modulo /.

Proposition 3.8. Let e be a positive integer and let o be such that 2° > e. Assume that
the class number of K is not divisible by | and that

Ue+1 < Ule'
Let yeI' be such that
(i) ord, (y) =0mod ! for all prime ideals p in Ox and
(i) A,(y) = 0.
Then 7y is an I°th power in Oy.

Phil. Trans. R. Soc. Lond. A (1993)
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Proof. Condition (i) implies that y generates the [°th power of an ideal in 0. Since
[ does not divide the class number of K, we conclude that y generates the [°th power
of a principal ideal. Let & be a generator of this ideal. Then

y = &u

with we U. Condition (ii) implies that y* = 1 mod /2’. Since 27 > ¢+ 1 and since (3 =
1mod*™, we conclude that u*eU,,,. By our assumption then, u¢ is an [th power
which in turn implies that w is, since € is prime to /. We conclude that y is an {*th
power and the proposition is proved.

We claim that the assumptions of Proposition 3.8 are likely to be met in a number
field K. We are not interested in this paper in proving theorems about our algorithms
and so do not make this assertion rigorous or prove it. Instead we offer heuristic
evidence. With regard to the class number, we rely on the analysis of finite R-
modules, where R is the ring of integers of a number field, given by Cohen & Lenstra
Jr (1983). Their results provide an explanation for certain experimental data about
class groups and suggest that for large I, the probability that / divides the class
number of K is at most approximately 1/l and that in the case that K is not Galois,
this probability is approximately 1/I"*, where r is the unit rank. To show that it is
likely that U,,, = U", we consider the map u:U,/U% 10, /1°10y induced by sending
u to u—1 and argue that x is likely to be injective. Observe that U,/UY ~ (Z/I°Z)",
that [0, /110y ~ (Z/1°Z)", and that the image of p is contained in (Z/1°Z)" " since
U lies in the kernel of the norm map. We now compute the probability P that u is
injective under the assumption that it is a random map from (Z/1°Z)" to (Z/I°Z)" 7,
where by random we mean that the image of a set of generators of (Z/1°Z)" is picked
at random. It is easily seen that

p_ r]:[l (1 B (le)i(le—l)n—l—i)

=0 (le)n—l

from which we get the inequality

r—1
) l(e—l)(n—l) E lz
r—1 e—1\n—1—1 r
() () i=0 Ir—1
) — JANA A S el N [ ——
S T L N D S

Even in the worst case that » = n— 1, we see that P is close to 1 —1/ for large /. This
concludes our description of Version 3.7.
We turn to our second choice for ¢ and o in Problem 3.2 and Algorithm 3.4.

Version 3.9. Let ¢ = e+d +cy, where e is the integer given in Problem 3.1, d is such
that 12 kills the torsion of E,/U,, and cy is a bound on the power of | dividing the class
number of K. Let o be the least integer such that 27 > e+d.

We show that with ¢ and o chosen as above, Algorithm 3.4 produces an /°th power
if Leopoldt’s conjecture is true. We give one formulation of the conjecture and refer
the reader to Lang (1990) and Washington (1982) for a more thorough discussion.
Recall that 0, = Ox ® Z; and let

E, ={ue0f|u=1modl}.
Phil. Trans. R. Soc. Lond. A (1993)
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E, is a topological group and a free Z-module of rank n under the action of
exponentiation. Furthermore U, sits inside of £,. We let U, denote the closure of U,
in K.

Leopoldt’s Conjecture. The Z, rank of U, is equal to the Z rank of U.

Proposition 3.10. Let ¢ and o be given as in the description of Version 3.9, and let y
be an element in I’ such that

(i) ord,y = 0mod® for all prime ideals p in Oy and

(i) A,(y) = 0.

Then if Leopoldt’s conjecture is true, v is an lth power.

Proof. Condition (i) implies that y generates the [°th power of an ideal in 0. Since
I°x kills the [ part of the class group of Oy and ¢ = e+d+cy, we conclude that y
generates the I°"th power of some principal ideal. We can therefore write

y — (Sleﬂlu

with we U. Condition (ii) implies that y* = 1mod/*". Since 27 > e+d+1 and since
(0“") = 1mod I**%*!, we conclude that w¢eU,,,.,. It remains to show that
Upigin = U
Consider the sequence o )
U, U o E—~E /B (3.11)

Because d kills the torsion of £, /U, , the kernel of the combined map from U, to E, /Ellm
is contained in U,". It is a consequence of Leopoldt’s conjecture that any u € U which
is an *th power in U, is an {*th power in U,. Given Leopoldt’s conjecture, therefore,
any unit mapping to 0 under (3.11) is an /°th power. Since any element in o
is an [°*%th power in £, and is therefore in the kernel of (3.11), we conclude that
U,,q441 < U, and the proposition is proved.

Though the success of Version 3.9 depends on fewer assumptions than Version 3.7,
we believe that Version 3.7 will succeed in practice and that it is best to begin with
this version since the choices made for ¢ and o are smallest possible and thus entail
the least work. Unfortunately, if Version 3.7 fails, it is difficult to determine where
the problem is, and it is probably best to increase ¢ and o slowly. In particular, we
cannot simply jump to Version 3.9 because, although it is possible to compute a
bound for the power of I dividing the class number of K, we know of no way to
determine in advance an explicit bound for the torsion of &, /U,.

4. Discrete logarithms

Let p be a prime number and let F,, denote the field of p elements. In this section
we give an algorithm to solve the discrete logarithm problem in F,. Our method is
fashioned closely after Gordon’s solution to this problem (1993). We formulate our
goal as follows.

Problem 4.1. Given two elements t and v in [} such that v is in the subgrowp of [

generated by t, determine the smallest integer x€{0, ..., p—2} such that t* = v.

We begin by reducing Problem 4.1 to an easier problem. We assume that F, is
given as Z/pZ, and for te F,, we let r(t) be the smallest non-negative integer such that
t =r(t)+pZ. Recall that an element in [, is called primitive if it generates [3.

Phil. Trans. R. Soc. Lond. A (1993)
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Problem 4.2. Let B and n be two positive integers. Given a primitive element te [}
such that r(t) is B-smooth, an element v e Fs such that r(v) < p*'*, and a prime divisor |
of p—1 which divides p—1 exactly e times, determine the least positive residue of log, v
modulo I°.

To reduce Problem 4.1 to Problem 4.2 requires three steps. First we factor p—1
into a product I17% of prime powers using the number field sieve factoring method.
By the Chinese Remainder Theorem, it is sufficient to be able to compute discrete
logarithms modulo /% for each prime {. Next we find an integer s€{0, ...,p—1} such
that 7(#*v) is p*"-smooth. Then we need only compute log,q, where 7(g) is a prime
dividing 7(¢*v) and is therefore less than p'/”. Finally we find a primitive element ¢’
such that »(#’) is B-smooth. To compute log, v, we compute log, v and log, ¢ and use
the identity

log, v = log, v/log, t.

The time needed to perform these reductions is estimated in §5, where we also
analyse the running time of the following solution to Problem 4.2.

Algorithm 4.3 Let B and n be two positive integers and assume we are provided
with the information given in Problem 4.2. Let o be the least integer such that 27
> e. Let m = 2"r(v) where % is chosen so that p'/* < m < 2p/". Let b, be the least
positive residue of p mod m.

Step 1. Find the least non-negative integer D such that |by—Dm| is B-smooth. As
shown in §2, this can be done using a sieve for the polynomial b, —Xm.

Step 2. Find a polynomial fe Z[X] such that
(i) fis irreducible,
(ii) fis monic,

(iii) the degree of f is less than or equal to n,

(iv) the coefficients of f have absolute value less than (D +1)m,

(v) f(m)=0modp,

(vi) the constant term of f is B-smooth,

(vii) ! does not divide the discriminant 4 of f.

~— — ~— ~— ~— ~—

To construct f(X) let c¢p be the smallest multiple of p such that ¢p = m” and write
¢p in base m. In other words find coefficients b, < m such that

Then the polynomial
n
f&X) = Z b, X'+ DX —m)

=0

satisfies (ii)—(vi). We assume that f(X) is irreducible and note that if it is not, any
irreducible factor of f(X) which has m as a root modulo p can be used in place of f(X)
in what follows. We also assume that [ does not divide 4 and therefore is unramified
in an extension of @ generated by a root of f. For comments on how to proceed if
does divide 4, we refer the reader to the discussion preceding Algorithm 3.4 in §3.

Step 3. Let o be a root of f, let K = Q(a), and let O be the ring of integers of K.
Let Sy be the set of prime numbers less than or equal to B, and let Sy be the set of
prime ideals in O with norm at most B. Search for pairs of co-prime integers a, b such
that a+ba and a+bm are both B-smooth and such that [ does not divide N(a+ ba).
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Stop when the number of pairs found is equal to [Sgl+|Sk|+on—1. Notice that
a+bm = g(a,b) where g(X,Y) = X+ Ym and that N(a+ba) = f(a,b) where f(X,Y) =
2b,X{(—Y)"". Thus we are looking for smooth values of two homogeneous
polynomials. As seen in §2, these values can be found using a sieve.

Step 4. Let L be the set of pairs (a,b) found in step 3 and let M = L U {t}. We use
a modification of Algorithm 3.4 to find a map y: M—{1,...,1°—1} such that
r(@)YOr@) ' m Il (a+bm)¥@? and all (@ +ba)¥*? are I°th powers.

We must adjust Algorithm 3.4 to account for the fact that we are interested in
finding one set of exponents that creates two [°th powers simultaneously. The
exponent vectors of step 1 must therefore contain information for both constructions.
For each (a,b)eL, we have

la+bm|= II ¢« and (a+ba)= II q%.
aeSg qeSg

We associate to each (a,b) the vector v, ,, of length |Sy|+|Sk[+7n consisting of the
exponents e,, the exponents e, and the values A, ;(@+ba), for 1 <j < n. For the
element ¢ we let v, be the vector with ord, () at all coordinates corresponding to the
rational primes and zeros elsewhere. Finally, we define v, to be the vector with the
value 4 at the coordinate corresponding to 2, with 0 at the coordinates corresponding
to the other primes in S, with ord, & at the coordinates corresponding to the prime
ideals qe Sy, and with the values A, ;(«) in the last n coordinates. We now proceed
with Algorithm 3.4, using v, in place of v,, , using {v(, 4 | (a,b) €L} U {v,} as the set of
vectors v, in step 1, and using the products

(ak+bk a) I (a-}-ba)wk(“,b)’

(a,b)eM’

where (a,, b,) is the kth element in M —M’, instead of the products m, 7, ™ in step
3. Notice that step 3 of Algorithm 3.4 yields the values y(a,b). To find y(¢) requires
finding the linear combination of the exponents w,(¢) produced in step 2 of Algorithm
3.4 so that 7(t)*@ I (a + bm)¥@? is an Ith power in Z. This concludes the description
of Algorithm 4.3.

We claim that the integer y(¢) found in step 4 above is congruent to log, v modulo
. To see this, let ¢ be the ring homomorphism from Z[a]— Z/pZ which sends « to
m—+pZ. Notice that

$(m Il (a+bm)*®?) = ¢(all (a+ba)??)
and that therefore
G(r(t)YOr@) m Il (a+bm)? @) = POy~ 1d (o [] (@ + ba)? @ D).

Since both 7(#)Y@r(v)'mIl(a+bm)?*? and all(a+ba)V®»? are I°th powers, we
conclude that v~ is an I°th power in F,. It follows that y(¢) = log,v mod *.

5. Running time analysis
In this section we give evidence in support of the following conjecture.
Conjecture 5.1. The discrete logarithm problem in [, can be solved in time
L,[1/3;(64/9)"3+0(1)] for p-—oco0.
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We first compute the running time for steps 3 and 4 of Algorithm 4.3 and then
show that steps 1 and 2 of this algorithm as well as the reduction of Problem 4.1 to
Problem 4.2 can be completed in the same running time. We continue with the
notation of §4. Algorithm 4.3 depends on two parameters B and n. We consider these
parameters now as functions of p and compute optimal asymptotic values for p — co.
More specifically, we write

B=Lp[so;co+o(1)] and pl/nsz[sl;cl+o(1)],

in which case

1 logp '™
—9 . .2
" (cl +o(1)log logp) (5.2)

All the o(1)s in these expressions are for p — c0. Our reason for considering B and p*/*
as functions of the form L, [s; ¢] is to s1mphfy our use of Theorem 2.1 in what follows.
In step 3 of Algonthm 4.3 we use a sieve to find pairs (@,b) so that f a,b) and
g(a,b) are both B-smooth. Let 3C be the bound on the absolute value of the a and b
that we consider and recall that f and g are homogeneous We conclude from the
calculation done in §2 that the running time for step 3 is bounded by

n(B) (n+1og B)°® + C%loglog B.
Substituting for B and letting ' = L, [s,;¢,+0(1)], we obtain the bound
ne Ly [sg;¢o+0(1)]+ L, [8y52¢,+0(1)].

In step 4 of Algorithm 4.3 we use a variation of Algorithm 3.4 to find the map y.
This step takes time

B+ (nlog p)°®+0(nB?) +0(n* loglog p) < (nlog p)°®- L, [sy: 26, +o(1)].

The first term on the left represents the time required to find the values of the
exponent vectors (see §6), the second term represents the time needed in step 2 of
Algorithm 3.4 to do the linear algebra using Wiedemann’s algorithm, and the third
term represents the time needed for the linear algebra in step 3 of Algorithm 3.4.

Let T be the combined running time of steps 3 and 4 and write
T =L,[sp;cpto(l)]. We minimize T' subject to the condition that the number of a
and b that we test in step 3 must be sufficiently large so that the number of pairs for
which a+ba and a+bm are both B-smooth is greater than |Sg|+|Sk|+on—1. In
other words, the inequality

L,[sy;2¢,+0(1)]" Py P > n-L,[s;¢9+0(1)] (5.3)

must hold, where P is the probability that one of the a+bm we test is smooth and
Py is the probability that one of the a+ba is smooth. We rely on the following
conjecture to find expressions for these probabilities.

Conjecture 5.4. Denote by (x,B) the number of positive integers less than x
which are B-smooth. Let f be a polynomial in k variables over Z and assume that

| f(xys ..., x)| < A whenever x; is in the interval [ — 101 for ie{1,. lc} Then the
probability that f(a,, ..., a;) s B smooth for a, chosen mndomly Sfrom [—1C, 3C] is
Y(A4,B)/A.

Under the assumption that Conjecture 5.4 is valid, we can use Theorem 2.1 to
compute Py and Py. Let Py = L, [sg;cq+0(1)] and Py = L, [sg;cx+o(1)]. Since

a+bm < L,[s;;5¢,+0(1)]L,[85; ¢+ 0(1)]
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and
N§ (a+ba) = (—b)"f(—a/b)

(n+1) DL, [sy;¢,+0(1)] L, [8y;¢y+0(1)]"
=(n+1)-D-Ly[s;;c,+0(1)] L, [sy+1—s;5¢5/c,+0(1)],

we see that sp> —(max{s;,s,}—s,) and sx = —(max{s;,s,+1—s,}—s,). Thus
condition (5.3) implies at the very least that

8y = MaX {8y, 85+ 1—38,,8,} — 3.

Subject to this inequality, max {s,, s,} is minimized when s, = s, =1 and s, = £, and
we see that s, is at least 3. We claim that these choices for s;, s; and s, actually yield
sp =% Formula (5.2) shows that n = O (logp)'/® When 8; = 2. The definition of D,
Conjecture 5.4, and Theorem 2.1 imply that if s, = £, then D L,[5; cp+o(1)] for
some constant c,. It is now an easy matter to check that When Sp =28, =1% and

s; = % condition (5.3) is met and that s, = 1. Moreover, in this case we find that
a+bm < L,[};¢,+0(1)],
Ngla+ba) < L, [5;¢,+cy/c; +o(1)],
Pg =L, [5; —(e1/3c) (1+0(1))],
Py =[5 —(1/3¢y) (¢ +cy/¢y) (1+0(1))],
and inequality (5.3) becomes
—(1/3¢p) (e1Fcy/ci+¢q) > ¢ (5.5)

Minimizing ¢, = max {2¢,, 2¢,} subject to (5.5) leads to the conclusion that the
optimal values for B and » are

L,[5: ()" +o(1)] and ((34o0(1))logp/loglogp)'2.

In this case, p/" = L, [2; (3)/*+0(1)], the bound on the absolute value of @ and b is
L,[5: $)Y2+0(1)] and the running time 7' equals

Ly 5: (64/9)2 +o(1)].

We show now that with B and n equal to the above optimal values, steps 1 and 2
of Algorithm 4.3 as well as the reduction from Problem 4.1 to Problem 4.2 can each
be accomplished in time 7". The sieve in step 1 requires time

n(B) (1 +1og B)°Y + Dloglog B,

which equals L, [§;c+o(1)] where ¢ = max {(§)"/?, ¢,}. Using Conjecture 5.4, we find
that ¢, = (1/ 72 /3 and so step 1 runs in time less than 7. Step 2 is easily dismissed
since expandlng cp in base m clearly takes very little time. The reduction to Problem
4.2 is broken into three steps. First the number p—1 is factored using the number
field sieve. This algorithm has a conjectured expected running time of
Ly [§: (64/9)Y24+0(1)], where N is the integer being factored. Thus the expected time
needed to factor p—1 is 7. Next s is found such that »(£*v) is p/"-smooth. We look
for s by picking integers at random from {0, ..., p— 1} and expect by Theorem 2.1 to
find s within L,, [§; (3)*® 4 o(1)] trials. We test for smoothness by factoring candidates
with the elhptlc curve factoring method. Each trial requires time L, [}; 2(3)*®+0o(1)]
(Lenstra Jr 1987). Thus the expected total time needed to find s is
L,[3; 3)Y*4+23)**+0(1)] and is therefore less than 7'. Finally, we find a smooth
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primitive element in F,. The following result asserts that this too can be done in
time 7.

Proposition 5.6. Assume the extended Riemann hypothesis. Then there exists a
constant ¢ such that, for all primes p, there exists a primitive element te [, such that
r(t) < ¢ (log p)°.

Proof. See Shoup (1990).

6. Constructing valuations

In Algorithm 3.4, and hence in Algorithm 4.3, it is necessary to be able to compute
the valuation of an element in a number field at a given prime. In this section, we
give a solution to this problem due to H. W. Lenstra Jr. Let K = ((«), where o is
some algebraic number of degree n over Q. The algorithm we present takes as input
an order R in the ring of integers 0 of K and a prime ideal q in R lying over some
rational prime ¢. In particular, we assume a basis for R over Z and ideal generators
for q are given, all as polynomials in a. For instance, if o were integral, our input
might be the order Z[a] and the prime (g, g(a)) where ge Z[X] is any polynomial
whose image in F [X] is irreducible and divides the image of the minimum polynomial
of @ in F,[X]. The algorithm then outputs the valuation of a given y at all primes
lying above q.

It is useful to distinguish between two sorts of prime ideals of an order B of K. We
call a prime ideal q non-singular if the localization of R at q is a discrete valuation
ring and singular otherwise.

Proposition 6.1. Let R be an order of a number field K, and let q be a prime of R. Then
there exists an element y in K—R such that yq < R. Furthermore, q is singular if and
only if yq < q.

Proof. The existence of vy is a consequence of Lemma 4.4.3 in Weiss (1969). Assume
now that yq = R. Then there exists m e q such that yz = 1. Let r be an element in R,.
We can write r = r,/r, with », € R and r,e R—q. If » is not a unit then »,eq and
therefore yr, € B. Furthermore r, = mwyr,. We conclude that every element of B, which
is not a unit is in the ideal generated by 7 and therefore that R, is a discrete valuation
ring. Conversely, assume R is a discrete valuation ring. Note that for any prime ideal
p not equal to g, we can find an element 7 in q but not in p. Since yre R, we see that
v is integral at all primes other than q. Therefore, not only is v not in R, it is not in
R,. We conclude that 1/yeqR, and write

Ly =r/r
with r, €q and r,€ R—q. But then yr, ¢ q, and Proposition 6.1 is proved.
Algorithm 6.2. Let {»;} be a Z-basis of R and {0} a set of generators of .

Step 1. Find an element y ¢ R such that yq = R as follows. Let (a, ; ;) be the three-
dimensional matrix determined by the equations

é‘j w; = Zai‘j‘kwk,
k

and let (@ ; ;) be the corresponding matrix obtained by reducing the entries modulo
q. For each j the determinant of (a;;,) is divisible by ¢, and so the linear
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transformation determined by (@; ; ) has a non-trivial kernel which we call B;. Now
choose beNB;—{0}, and let b = (b;) be a vector in Z" which maps to b. Then the
element

Zbw;/q
has the desired properties.

Step 2. Determine whether q is non-singular or singular by making use of the fact
that q is singular if and only if yq < q. If q is singular, then continue with step 3. If
q is non-singular, then for all ze R, the valuation corresponding to q is calculated by
means of the equation

ord,z = max{m|y™zeR},

and the algorithm terminates.

Step 3. Let R’ = R[y]. Note that ye Oy since it multiplies the finitely generated
group q into itself and therefore that R’ = R[y] is an order in Uy strictly containing
R. Note also that q is an ideal in R’ since R’ q = q. Let F denote the residue field of
R at q and ¥ the image of y in R’/q. Proceed by finding the minimum polynomial f’
of ¥ over F and factoring it into irreducibles over F. To each irreducible factor g’ of
f~ there corresponds a prime ideal q" in R’ of the form q+R’*¢’(y) where ¢'€ R[X]
maps to ¢’ in F[X]. Furthermore all prime ideals of R’ lying over q arise in this way.

Step 4. For each prime q’| q, apply steps 1, 2, and 3 to the pair R, q”. This concludes
the description of Algorithm 6.2.

Since |0 /R| is finite and the number of primes of O, lying above q is bounded by
n, the algorithm terminates. Moreover, if R = Z]a], then |Ox/R| < 4/|4|, where 4 is
the discriminant of the minimum polynomial of «. In this case the algorithm must
be repeated at most O(nlog|d|) times before all the valuations above q are
constructed. It is easily checked that each implementation of steps 1-3 requires no
more than time (nlog ¢)°®. We conclude that when R = Z]«], the total running time
for Algorithm 6.2 is less than (nlogqlog|4])°®.

I thank Hendrik Lenstra for the many ideas he shared concerning this work.
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