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ON THE DISTRIBUTION OF QUADRATIC RESIDUES
AND NONRESIDUES MODULO A PRIME NUMBER

RENE PERALTA

ABSTRACT. Let P be a prime number and a;, ..., a; be distinct integers
modulo P. Let x be chosen at random with uniform distribution in Zp , and
let y; = x+a; . We prove that the joint distribution of the quadratic characters
of the y;’s deviates from the distribution of independent fair coins by no
more than #(3 + v/P)/P. That is, the probability of (y;, ..., y;) matching
any particular quadratic character sequence of length ¢ is in the range (%)’ +

t(3 + V/P)/P. We establish the implications of this bound on the number of
occurrences of arbitrary patterns of quadratic residues and nonresidues modulo
P . We then explore the randomness complexity of finding these patterns in
polynomial time. We give (exponentially low) upper bounds for the probability
of failure achievable in polynomial time using, as a source of randomness, no
more than one random number modulo P.

1. INTRODUCTION

There is an extensive literature on the distribution of quadratic residues and
nonresidues modulo a prime number. Much of it is dedicated to the question
of how small is the smallest quadratic nonresidue of a prime P congruent to
+1 modulo 8. Gauss published the first nontrivial result on this problem: he
showed that if P is congruent to 1 modulo 8, then the least quadratic nonresidue
is less than 2v/P + 1 (art. 129 in [8]). The best upper bound currently known
is O(P*) for any fixed a > 1/4/e and is due to Burgess [5].

Not much is known about the number of occurrences of arbitrary patterns of
quadratic residues and nonresidues among the integers 1, 2, ..., P—1 modulo
P . Denote by RN the number of occurrences of a quadratic residue followed
by a nonresidue modulo P. We can similarly denote the number of occur-
rences of any pattern of quadratic residues and nonresidues modulo P. Exact
formulas are known for RR, RN, NR, NN [1] (as expected, these are all
approximately P/4). Upper bounds of the form P/23+ O(v/P) were obtained
by Davenport [6] for RRR and NNN. In a later work, Davenport obtained
upper bounds of the form P/2! + P% for all patterns of length ¢t (4 <t<9)
[7]. For each of these bounds, ¢; > % (the actual values are not of interest
here, since they will be improved in this work). Even less seems to be known
regarding lower bounds for these quantities. Denote by R; and N, the number
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of occurrences of ¢ consecutive quadratic residues and nonresidues, respec-
tively. Brauer, in 1928, showed that for any ¢ and large enough P, both R,
and N, are greater than O (see [4, p. 27]). More recently, Hudson showed that
RRNR >0 and RNRR > 0 for large enough P [9].

In this paper, some combinatorial implications of Weil’s bound on character
sums are explored. Among these is the following result:

Map the integers 0, 1,2,..., P —1 to a circular arrangement of R’s and
N’s according to their quadratic character modulo P (0 follows P — 1 and is
considered a residue). Then the number of occurrences of an arbitrary pattern of
length ¢ of quadratic residues and nonresidues is in the range P/2!+¢(3+VP).

We next turn to the question of the randomness complexity of finding an
arbitrary pattern of quadratic residues and nonresidues. We give (exponentially
low) upper bounds for the probability of failure achievable in polynomial time
using, as a source of randomness, no more than one random number modulo
P.

2. NOTATION AND A RESULT FROM ALGEBRAIC GEOMETRY

Following terminology in [3], we call the sequence x + 1, x+2,...,x+1¢
the “increment sequence” of length ¢ and seed x. Throughout this paper,

e O will denote a set of integers,

fe will denote the polynomial []; g(x + i),

P will denote an odd prime number, and

Xp will denote the quadratic character modulo the prime P, i.e.,
Xp(x) = xP=D/2 modulo P, considered as an integerin {—1, 0, +1}.

We will make use of the inequality

3 Xp(fo(x))| < IBIIVP.

X€Zp

We will refer to this inequality simply as the “Weil bound,” since it follows from
a more general theorem due to Weil (see Theorem 2C, p. 43, in [11]). Most of
the results in this paper will follow from the Weil bound and the combinatcrial
lemmas of the following section. For notational simplicity the expression log, P
denotes the integer part of log, P when it is clear that we are referring to an
integer value.

3. EPSILON INDEPENDENCE OF RANDOM VARIABLES

Let S ={A4;,..., Ax} be a set of random variables which can take values
0 or 1. If T is a nonempty subset of S, then XORr denotes the probability
that an odd number of 4;’sin T is 1. If the A;’s are outcomes of a fair coin,
then they are independent random variables if and only if XORr = % for all
nonempty subsets 7 of S. We are interested in deviations from this condition
by a factor of ¢. We say that S is a set of e-independent random variables
if XOR7 is within ¢ of % for all nonempty subsets 7" of S. We will show
that if S is a set of ¢-independent random variables, then the joint distribution
of the variables in S deviates from the joint distribution of independent fair
coins by no more than 2¢. In particular, the probability that all 4; in S are
1 is within 2¢ of ($)ISI.



QUADRATIC RESIDUES mod P 435

For simplicity of notation we identify the symbol A; with the event 4; = 1.
Thus, prob(4;) denotes the probability that 4, = 1. Let

Gt = prob (/\iGTA,-) .

Lemma 1. We have XORs = Eq;;éTgs(_z)"T”_lGT-

Proof. Let a be an atomic event, and let U = {ila € 4;}. The number
of times the event o is counted in the expression 3, cs(-2)IT1-1Gr is

Y1l (—2)i=1 (WUl | This is equal to (1 — (=1)IUll), which is 0 if ||U]| is
even and 1 if |U| is odd. Thus, the atomic events counted are precisely those
which appear in an odd number of A4;’s. O

Corollary 1. For all T C S we have

1\ 1711
6r=(-3)

where the inclusion U C T is proper.

XORr— Y (-2)WWI-lGy
9p#UCT

Lemma 1 and Corollary 1 imply the following lemma.

Lemma 2. We have Gs = (5)VSI[-2%,_rcs(~1)ITIXOR7].

Proof (by induction on the cardinality of S). The base case ||S|| =1 is easily
verifiable. Assume the lemma is true for all proper subsets of .S. By corollary
1 we have

1\ IsI-1
Gs = (—5) XORs— > (-2)WI-Gy|.
p#UCS

By the induction hypothesis we may substitute Gy by

.

L
(5) -2 > (-)ITIxORy

p#TCU

Substituting and simplifying, we get

1\ Ist-1
6:=(-3)

The right side of this equation expands to a linear combination of XOR7’s.
In this equation the coefficient of XORg is (—1)ISI-!, which is equal to
—2(3)ISI(—1)ISI | as predicted by the lemma. Thus we need only show that
the coefficients match for proper subsets of S. Let cr be the coefficient of

XORs— Y (-nl ! 3 (—1)"T”X0RT”.

p#UCS p#TCU
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XOR7 for an arbitrary subsét T of S..Then

Isii—1
CT=._(_%) T ()i

TCUCS

(N ISI=11T1-1 _ -
~2(-3) oy (181 170 capeam

i=0

_> (_%>llsn ”S”:l:z?—l (||S|| —, ||T||>(_1),.

= 2(_%)HSH(_(_1)”SH—”T||)
—_-_2(%)HSH(_1)HTH. o
Corollary 2. Let er = XORy — 5 ; then

IS}
GS=(%) P—z > (=) Theg |

p#TCS

Proof. Using Lemma 2, we get

G@::(l)wn -2 Y (-)TIXORy
2 | 9#TCS ]
_ (_I_)HSH _ Z (_1)||T|| (l_*_ET)}
2 | e#TCS 2
_(n™ — _ _piTi
= {3 1-2 Y (-)iTlez) . o
9#£TCS

Up to this point we have not assumed e-independence. Lemmas 1 and 2
apply to any set of binary-valued random variables. Now suppose that S is a
set of e-independent random variables.

Corollary 2 gives us a bound on the probability that all 4; € .S hold:

Corollary 3. If S is a set of ¢-independent random variables, then the probability
that all A; hold deviates from (%) by no more than 2e.

Proof. Let er be as in Corollary 2 and note that |er| < &. Then, by Corollary
Z (=) Tllgy

2,
1\ st 1\ I8
6s-(3) 1-2(3)
P#TCS

K]
52(%) > I(=D)Mler| <2e. O

p#TCS

The notion of e-independence carries to random variables which take any
two distinct values # and v (i.e., not just O or 1). In this case, we arbitrarily
label u with “1” and v with “0,” with the XOR and negation operators defined
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in the natural way. Note that if we replace any of the A;’s by their negation,
then e-independence is preserved. Therefore, the previous corollary implies the
main lemma in this section:

Lemma 3. If S is a set of e-independent random variables, then the joint distri-
bution of the A; ’s deviates from the joint distribution of independent fair coins
by no more than 2e¢.

4, QUADRATIC RESIDUES AND NONRESIDUES MODULO A PRIME NUMBER

An element y € Zp is a quadratic residue if Xp(y) =1 or 0. Otherwise, y
is a quadratic nonresidue. Let x be chosen with uniform distribution in Zp.
Statistical independence among fair coins is, in some sense, lack of structure
in the system comprising the coins. We will show that the quadratic characters
of the integers in the range x + 1,..., x + ¢t are ée-independent with ¢ =
t(3++/P)/2P . We offer this as an explanation for the observed lack of structure
in the sequence of quadratic character values modulo a prime number.

Theorem 1. Let x be a random number in Zp. Let S = {4;|0 < i <t} bea
set of random variables such that A; takes the value 1 if x + i is a quadratic
nonresidue modulo P and 0 otherwise. Then the A; ’s are e-independent with
e=t(3+VP)/2P.

Proof. Let T be any nonempty subset of S, and © = {i|4; € T}. Let X* be
the number of elements x in Zp such that Xp(fg(x)) =1, and X~ be the
number of elements such that Xp(fg(x)) = —1. By the Weil bound, and the
fact that X*+ X~ =P —||©|, we have

ielve > =|X*-X"|=|P -8 -2X"|.

> Xp(fo(x))

X€Zp

Dividing by 2P, we have
el ’l _len_x-
2VP ’

2 2P P

But X~ /P is the probability that fg(x) evaluates to a quadratic nonresidue.
Therefore this probability deviates from } by no more than |©|/2P +

I8ll/2VP. Note that if fg(x) # 0, then fg(x) is a nonresidue if and only
if an odd number of A;’s is 1. Since the probability that fg(x) =0 is ||8]||/P,
we have that XORy deviates from } by no more than

el ., 1el . lell _ liel3+vP)
P " 2P T 2P 2P

Since ||©|| < t, the 4;’s are é-independent with ¢ = ¢(3+ VP)/2P. O

Let b be a vector of R’sand N’s (e.g., b= RNRNRRR). We call such a

vector a “quadratic character sequence.” We denote the ith letter of b by b;.
If x is such that x + i is a quadratic residue if and only if b; = R, then we
say that x “induces” b in Zp. We say Zp “contains” the quadratic character
sequence b if some x € Zp induces b.




438 RENE PERALTA

Corollary 4. Fix a quadratic character sequence b of length t. Let x be random
in Zp . Then the probability that x induces b is in the range (3)'+£t(3+vP)/P.
Proof. By Theorem 1 and Lemma 3. O

Corollary 5. Fix a quadratic character sequence b of length t. The number of
occurrences of b in Zp is in the range P33+ V'P). In particular, if
P(1)' > t(3+V/P), then the sequence b must occur in Zp.

Corollary 6. Let u < % . Then for all but finitely many primes P, Zp contains
all possible quadratic character sequences of length ulog, P

Proof. By the previous corollary and the fact that P(%)“l"gz P is asymptotically

greater than (3 +v/P)log, P when u isless than 1. O

5. THE pP-COMPLEXITY OF FINDING PATTERNS
OF RESIDUES AND NONRESIDUES

There is no known deterministic polynomial-time algorithm for finding

quadratic nonresidues modulo a prime number P (unless the Extended Rie-
mann Hypothesis is assumed, see [2]). If in fact no such algorithm exists, then
there is some amount of randomness inherently necessary to effectively solve
this problem. The following definition has been proposed as one measure of the
amount of randomness needed to solve a search problem in polynomial time
[10].
Definition 1. The p-complexity of a search problem is less than or equal to
p(n) if there exists a polynomial-time algorithm which uses at most » bits
of randomness for each input of size n and solves the problem with failure
probability asymptotically bounded above by p(n).

- The next corollary implies that with access to one random number modulo
P, any constant number of nonresidues can be found, with exponentially low
probability of failure, in an interval of length |log, P]. Thus the p-complexity
of this problem is exponentially low.

Corollary 7. Suppose P is prime and k < |log, P|. Then the probability that
the increment sequence of length |log, P| and random seed contains less than
k nonresidues modulo P is bounded above by

1082 = |log, P]
%5 (")
Proof. Let A; (i = 1...|log, P)) take the value 1 if x + i is a quadratic
nonresidue modulo P, and 0 otherwise. By Lemma 3 and Theorem 1 the
joint distribution of the A;’s differs from independent fair coins by at most

(3++/'P)|log, P|/P . Thus the probability that the increment sequence of length
|log, P] contains less than k& nonresidues is at most

() () B ),

i=0
No particular significance is attached to the constant 4 in Corollary 7. The
constant can be made arbitrarily close to 1 by assuming P is large enough.
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Restricting k to 1 in the previous corollary gives us a bound of 4log, P/vP
on the p-complexity of finding one nonresidue modulo P. Our next concern
is the p-complexity of finding specified quadratic character sequences of length
k > 1 modulo P. Given a constant ¢, we will denote by ¢* a constant bigger
than ¢ and by ¢~ a constant smaller than c.

Lemma 4. Let P be prime. Let b bea quadratic character sequence of length
k > 1. The p-complexity of finding the sequence b in Zp is bounded above by
(1/P)(1/2)7 ~k/(4k=2logs(2*~1)),

Proof. The algorithm is, given random x € Zp, to search for the pattern b in

x+1,x+2,...,x+t,where ¢ is a multiple of k& to be quantified below. Let
B; , be the set of strings of R’s and N’s of length ¢ which do not contain b.

We have |B; | < (2K —1)"/k, since if we divide a stringin B; , into ¢/k pieces
of length k, then each piece must be different from b. Let p be the probability

that b does not appear in the quadratic charactersof x+1, x+2,...,x+¢.
Then by Lemma 3 and Theorem 1,

p=1B; ((%);M)
o () -33)

2% —1\"* 1+
() (%)
for P large enough.
Let ¢ = ulog, P. Then the previous inequality implies

. (2k - 1)(“/""°“2”+ (1+u(log2 P)P“)
SN VP

2k _ 1 (u/k) IOgZP 1 1 a 1 b
() mw)-()+G)
where a = (log,(2%/(2% — 1)))(log, P)(u/k) and b = (3 — u*)log, P. Now, if
k > 1 and u = k/(4k — 2log,(2k — 1)), then a = (} —u)log, P > b. Thus,
for this value of u, we have p < 2(1)? = 2(1/P)/2=*" Therefore, p is

asymptotically bounded above by (1/P)(1/2™—k/(4k=2log,(2*~1)) =
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