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1. Imtroduction.

In this lecture we shall discuss a problem that has fascinated many mathematicians
throughout history, such as Eratosthenes (~ —284-~ —202), Fibonacci (~1180-~1250),
Fermat (1601-1665), Euler (1707-1783), Legendre (1752-1833) and Gauss (1777-1855).
This is the problem how to find the prime factor decomposition of a given large integer.

Surveys of methods that are used for this purpose can be found in Riesel’s recent
book [27] and in the contributions to [21]. The present lecture is devoted to a develop-
ment that took place since the appearance of Riesel’s book, namely the introduction of
elliptic curves.

Two stages can be distinguished in most methods to find the prime factorization of
a given number. In the first stage (primality testing) one decides whether the number is
prime or composite. In the second stage (factorizanon) one finds a non-trivial divisor of
the number, if it is composite. It is clear that the complete prime factor decomposition
can be obtained by applying a primality testing algorithm and a factorization algorithm
recursively. Elliptic curves can be applied both to primality testing and to factorization,
and they give rise to algorithms with an excellent performance, both in theory and in prac-
tice.

Primality testing is considered to be easier than factorization. Suppose, for exam-
ple, that two 100-digit numbers p and ¢ have been proved prime; this is easily within reach
of the current primality testing methods. Suppose moreover that the numbers p and ¢ are
thrown away by mistake, but that the product pg is saved. How to recover p and ¢? It
must be felt as a defeat for mathematics that, in these circumstances, the most promising
approaches are searching the waste paper basket and applying mnemo-hypnotic tech-
niques.

Until recently, the subject of primality testing and factorization was not taken seri-
ously by most mathematicians. Nowadays, a change in this attitude is noticeable. Partly,
this change is due to the introduction of more sophisticated mathematical techniques than
were used before. Indeed, the use of elliptic curves, which is the main topic of this lecture,
has been referred to as the first application of 20-th century mathematics to the problem of
prime factor decomposition.

Another reason for the increased interest mn this area is the possibility to apply
number theory to the outside world. The existence and uniqueness of the prime factor
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decomposition constitute the fundamental theorem of arithmetic, and this theorem plays
indeed a basic role. For example, a number theoretical question about a positive integer n
- can n be written as the sum of two squares? what is the order of the multiplicative group
(Z/nZ)*? - is considered as settled if it is answered in terms of the prime factorization of
n. Given the basic role of the prime factor decomposition in number theory, it seems rea-
sonable to suppose that algorithms to achieve this prime factor decomposition play an
important role in possible applications of number theory. To date, the most striking illus-
tration is the cryptographic scheme devised by Rivest, Shamir and Adleman [28]. For the
use of this scheme it i1s essential that primality testing is easy, and the security of the sys-
tem depends on the fact that factorization is hard. It should be remarked that, to a certain
extent, this is a negative application: if a better factoring method is discovered then the
application may cease to exist. This remark should serve as a stimulus for those mathema-
ticians to whom the possibility of applying number theory to the outside world does not
appeal and who wish to restore the purity of their science.

To test a given integer n>1 for primality, one usually subjects it to a series of pseu-
doprime tests. Most of these tests are based on a variant of Fermat’s theorem. This
theorem asserts that if »n is prime then a"=a modn for all integers a. These pseudoprime
tests have the property that any prime number passes them, but that a composite number
is very unlikely to pass them. Hence a single test that n fails to pass suffices to prove that
n is composite, although it does not readily yield a factor of n. If, on the other hand, n
passes many pseudoprime tests. then it is very likely that n is a prime number. The prob-
lem then becomes how to prove that » is a prime number. It may be said that the real
difficulty of primality testing algorithms is not to obtain the answer. “prime” or “compo-
site”, but to prove the correciness of the answer, in the case it is “prime”. For this reason
one sometimes speaks about primality proving algorithms.

If a primality test decides that a number is nor prime then, as we just noted, it usu-
ally does not exhibit a factor of the number. To obtain a factor one applies a factorization
algorithm. In contrast to primality testing, the difliculty of factorization is to obtain the
answer, Le. a non-trivial divisor of the number; checking the correctness of the answer,
once it is obtained, is completely trivial. The total freedom one has in the choice of the
method by which to obtain a non-trivial divisor seems to be one of the reasons that there
is much more variety in factorization algorithms than in primality tests. Indeed, it is not a
priori clear why methods that depend on a mathematical theory would be better than non-
mathematical methods, and why factorization should be beyond the abilities of competent
clairvoyants or religious officers.

The elliptic curve methods that form the subject of this lecture are best understood
as analogues of certain older algorithms, which are discussed in section 2. These older
algorithms depend on properties of the mulnplicative group, in particular on the fact that
for a prime number p the order of the multiplicative group (Z/pZ)* equals p—1. We
remark that the algorithms discussed in section 2 are by no means the best algorithms that
were used before elliptic curves were introduced: we only discuss them because they arc
helpful in motivating and understanding the new methods.

Section 3 contains the basic properties of elliptic curves that we need. The best
reference is Silverman’s recent textbook [35]. As most of the literature on the subject, this
book restricts itself to elliptic curves that are defined over fields. For our purposes it is
more natural, both from a conceptual and from an expository point of view, to work with
elliptic curves that are defined over rings. The general theory of elliptic curves over com-
mutative rings with 1 can be found in [16. Chapter 2]. In section 3 we give the basic
definitions, but only in the case that the ring in question satisfies a certain condition: this
condition is satisfied. for example. if the ring is a field. and also if the ring is finite, which

1s the case in our applications. This condition allows us to give a very straightforward
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definition: an elliptic curve is defined by a ternary homogeneous cubic polynomial of a
certain normal form; to keep this normal form as simple as possible we assume that 6 is a
unit of the ring. The set of points of the curve over the ring is then defined as the set of
zeros of this polynomial in a suitably defined projective plane. It is a basic property of
elliptic curves that this set of points has the structure of an abelian group. It should be
remarked that in principle it is possible. by more or less artificial considerations, to avoid
elliptic curves over rings that are not ficlds in the description and analysis of the algo-
rithms that we shall discuss. This was. in fact, done in the original publications [30, 20,
14].

We mentioned above that a number of older primality testing and factorization
methods depend on the fact that the order of the multiplicative group (Z/pZ)* modulo a
prime number p equals p — 1. Likewise. in the elliptic curve methods an important role is
played by the order of the group E(Z/pZ) of points of an elliptic curve E over Z/pZ, for
a prime number p. By a theorem of Hasse from 1934, this order is of the form p+1—1,
where ¢ is an integer depending ca E and p for which |7 <2\/];. It may be said that the
success of the new methods is due to the fact that, for fixed p. this number ¢ varies if one
varies the elliptic curve E. In seciion 4 we discuss several methods to calculate the number
i

In section 5 it is explained how to do primality testing with the help of elliptic
curves. In particular, we discuss the algorithms of Goldwasser-Kilian [14] and Atkin [2].
Atkin’s method is of great practical value. and on most numbers on which it has been tried
it is much faster than the previcus champion, which is the Cohen-Lenstra version of the
test of Adleman, Pomerance and Rumely [1. 9, 10].

Section 6, finally, describes the elliptic curve factorization method [20]. It is, at the
moment, the undisputed champion among factoring methods for the great majority of
numbers. The quadratic sieve alzorithm of Pomerance [26], which was the previous cham-
pion, still seems to perform betier on numbers that are built up from two primes of the
same order of magnitude. The ¢liptic curve method has the very attractive property that
its speed depends on the size of the smallest prime divisor of the number » that is being
factored: smaller prime factors are easier to find. The quadratic sieve and many other fast
factoring algorithms do not havz this property' they have a running time that only
depends on the size of n and not on the size of its prime factors.

By F, we shall denote a finite field of cardinality ¢. Rings are supposed to be com-
mutative thh a unit element, and the latter is supposed to be preserved by ring homomor-
phisms. The group of units of a ring R 1s denoted by R*.

2. Multiplicative methods.

In this section we discuss two older algorithms for primality testing and factorization,
which depend on properties of thz mu]llphcallve group. In practice, these algorithms are
not feasible for all numbers, but caly if certain conditions are satisfied.

We begin with primality tesung. The following theorem is due to Pocklington [24].

Theorem 1. Let n be an integer, n>1, and s u positive integer dividing n—1. Suppose that
there is an inreger a satisfying
“l=1modn,
gud(a‘"" D/§—1, my=1 for each prime divisor g of s.
Then every prime divisor p of n'is 1 mods. and if s> Vi =1 then n is prime.

The proof is as follows. Let p be a prime divisor of n, and write b=(a" D" mod n).
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From a"~'=1modn 1t follows that h*=1modp, <o the order of (b modp) mn the group Fj
divides s Also, if ¢ 1s a prime divisor of s then b*/4 1s not 1 modp, since by hypothesis
a"~D/4—1 15 not divisible by p  Thercfore the order of (hmodp) 15 not a divisor of s /4.
for any prime ¢ dividing s, so this order 15 equal to s 1tself By Lagrange’s theorem 1n
group theory 1t follows that s divides #F} =p—1 This proves the first assertion of the
theorem If also s>Vn —1 then 1t follows that p> Vi, and this can only be true for all
primes p dividing n1f 1 1s prime  This proves Theorem 1

The use of Theorem 1 1n primality testing 1s as follows Let » be an integer >1
that one believes to be prime for example because 1t passes pseudoprime tests as described
in [17, p 379, 27, p 98] Denote by s the largest divisor of n —1 that one 1s able to factor
completely mto primes, and suppose that s>Vn—1 Now pick a4 random non-zero
integer a(modn), and test whether 1t satisfies the two conditions of Theorem 1 Observe
that these conditions are easy to test the prime divisors ¢ of s are known, the powers
a""'(modn) and a"~V/9(modn) can be calculated with O(logn) muluplications and
squarings modn, and the greatest common divisors can be calculated by means of the
Euclhidean algorithm If all conditions are found to be satisfied then 1t follows from the
theorem that »n 15 1ndeed prime, as required

It should be mentioned that if n 15 prime 1t should not be difficult to find an ele-
ment ¢ eZ ‘nZ satsfying the condinons of the theorem Cleaily, any non-zero a€Z/nZ
must satisfy the first condition, if 7 1s prime It 15 easy to show that, for fixed ¢ the
second condition 1s satisfied with probabilitv 1—¢ ' if 7 15 a given pnme and a=£0 15
drawn at random The probability that a satisfies the second condition for all ¢ may be
somewhat smaller, but m any case 1t 15 at least ¢¢/loglogn for some positive constant ¢,
also, 1t 1> not difficult to prove a shghtly moie general version of the theorem, 1n which a 1~
allowed to depend on ¢

The basic shortcoming of the primality test based on Theorem 1 1s that 1t can only
prove the primality of prime numbers n for which n—1 has a large divisor that one is able
to factor completely This 1s the case if »—1 has many small prime factors, which hap-
pens for example, for the Fermat numbers n=2" +1 Theorem 1 15 also useful 1if n—1 15
the product of a small number and a large prime number ¢, in the latter case one can
attempt to prove the primality of ¢ recursively

There 15 an analogue to Theorem 1 with the multiphcative group replaced by a
musted muluplicative group  For example, if p 1s prime then the group F), /F7 15 a twisted
muluplicative group, and 1t has order (p?2—1)/(p—1)=p-1 This leads to primality tests
that can be used for numbers n for which n+1 has a large completely factored divisor
This 1s the case, for example, for the Mersenne numbers n =2 —1 These tests are classi-
cally formulated 1n terms of Lucas sequences

We refer to [27 38] for the details of these and other generalizations of Theorem 1,
and for a description of the primality tests that are based on 2 combnation of the n—1-
and n+1-methods 1If »n has the property that at least onc of i1z£1 can be wntten as the
product of a completely factorcd number and a prime number g that, recursively, has the
same property, then the prmality of n can be proved by tepeated application of the two
methods  This method was developed by Selfridge and Wunderlich [32], and they found
empirically that 1t can be applied to most primes of at most 35 digits, if “completely fac-
tored” 15 taken to mean "built up {rom primes below 30030” The generahizations due to
Witliams er a/ [38] can be used for most prime numbers of at most 80 digits

The advantage of elliptic curves i this context 15 that there are so many of them
Each elliptic curve gives nise to a group and the order of this group varnes with the curve
Instead of using the numbers n=£1, onc uses essentially a random number in the neighbor-
hood of n, and one can keep changing the curve unul this number factors 1 the desired
way  We refer to section 5 for more details
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Next we consider a factorization method that also depends on the multiplicative
group. It was invented by Pollard [25], and it is known as the Pollard p — 1-method.

The Pollard p —1-method attempts to find a non-trivial divisor of a composite
integer n>1 in the following way. Pick a€Z/nZ at random, and select a positive integer
k that is divisible by many small prime powers; for example, one can take
k=lcm{1,2,...,w)} for a svitable bound w. Next one calculates a; =(a* modn). This can
be done by performing O(logk) squarings and multiplications (mod n). Finally, one calcu-
lates ged(a, —1,n) by means of Euclid’s algorithm, and one hopes that this ged is a non-
trivial divisor of n.

Pollard’s p —1-method is usually successful if » has a prime divisor p for which
p— 1 is built up from small prime factors only. Suppose, to be specific, that p —1 divides
k, and that p does not divide a. Since the order of (Z/pZ)* equals p—1 it then follows
that a*=1 mod p, so p divides ged(a, —1,n). In many cases one has p =ged(g; — 1,n), and
the method finds a non-trivial divisor of n.

Along these lines it can be proved that the Pollard p — I-method is good in discov-
ering prime divisors p of n for which p—1 has no large prime factors. It can also be
proved that if » has no such prime divisor p then the method is unlikely to work within a
reasonable amount of time.

We refer to [25] for a refinement of the method, which improves its practical perfor-
mance: to [39] for a variant that uses a twisted multiplicative group, and for which p+1
rather than p —1 should be built up from small prime factors; and to [3] for a generaliza-
tion that appears to be only of theoretical value.

The advantage of elliptic curves is the same as with primality testing. If one uses
an elliptic curve rather than the multiplicative group. then p=1 is replaced by a number in
the neighborhood of p that varies with the curve, and one can keep changing the curve
until the algorithm is successful; one may hope that a fair proportion of the numbers in
the neighborhood of p is built up from small primes only, so that not too many curves
need be tried. More details can be found in section 6.

3. Elliptic curves over rings.

Let R be a ring. A finite collection (q,),.; of elements of R will be called primitive if it
generates R as an R-ideal, ie. if there exist b, €R, for i€/, such that 2: .1 b,a,=1. This
terminology will in particular be applied to vecrors and to matrices that have coefficients in
R. Notice that if R is a field, a collection (a,),.; is primitive if and only if not all 4, are

Zero.
In the sequel we assume that R satisfies the following two conditions:

(iy 6&R*,

(ii) for all positive integers n, m and every primitive 7 ><m-n_mtrix (@)1= <n1<y=m OVer R
with the property that all 2X2-subdeterminants vanish (a;ay ~ aya, =0 for all
ik, with 1<i<<k <n, 1<j</<<m) therc exists an R-linear combination of the rows
that is primitive as an element of R™.

If R is a field the first condition means that charR=%2, 3. Wc impose this condition only
to simplify the exposition; for 6¢R* one must work with more general normal forms for
elliptic curves, as in [35, Chapter 3].

The second condition. however, is essential for the definition of elliptic curves and
their addition law that we shall give. Condition (ii) means that every projective R-module
of rank one is free, or equivalently that the Picard group PicR of R vanishes [4]. Obvi-
ously, the condition is satisfied for fields, and below we shall sce that it is also satisfied for
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finite rings. More generally, it holds for rings that have only finitely many maximal ideals.
If R is a Dedckind ring, for example the ring of integers in a number field, then (ii) is true
if and only if the class group of R is trivial.

It is easy to prove that the primitive element of R™ whose existence is postulated
by (i1) is in fact uniquely determined up to multiplications by units.

Let R be a ring satisfying (i) and (ii). The unit group R* acts on the set of primi-
tive triples (x y,u)€R3 by wu(x,py,z)=(ux.uv.uz). The set of orbits under this action is
denoted by P2(R), and caHed the projective plane over R. The orbit of (x,y,z) is denoted
by (x:v:z).

An elliptic curve over R is a pair of elements a,p€R for which 4a®+27b%cR*,
These elements are to be thought of as the coefficients in the homogeneous Weierstrass
equation

)‘22 =x3+axzt+bz3,

We denote the elliptic curve (a,b) by E . cr simply by E. If we multiply the above equa-
tion by u, for some ueR*. and replace u-x. u’y by x, y, respectively, then we obtain the
equation for E, -, where a "=u*q and b'=:%h. Two such curves are said to be isomorphic
over R.

Let E=E,, be an elliptic curve over R. The ser of points E(R) of E over R 1s

defined by

E(R)y={(x :_),'::)E[F’Z(R): y:: =3 +axz?+02° ).
The point (0:1:0)e E(R) is called the zero pour of the curve, and denoted by O. Notice
that if R is a field this is the only element of E(R) whose z-coordinate is zero.

It is a basic fact that £(R) has in z natural way the structure of an abelian group
with O as the neutral element. The group law. which is written additively, is such that
—(x::z)=(x:—y:z) for all (x:p:z)eE(R). To define the group law we first consider the
case that R is a field. In this case the adéition formulae, and the proof that E(R) 1s a
group, can be found in [35, Chapter 3]. We briefly summarize what we need.

Let R be a field, and let P,,P,€E(R). To add P; and P,, consider the straight
line passing through P; and P (the tangent line to the curve if P;=P;). The line and
the curve have three intersection points, if we count them with suitable multiplicities, and
two of them are Py and P,. If Q is the third one, then P;+P,=—Q. To turn this
geometric description into algebraic formulze. we may suppose that P; and P, are non-
zero and that Py —P,. Then we can write P,=(x,1y,:1) for i=1, 2, where (x,.,) lic on

the affine curve y?=x’+ax +b. The straight line is given by y =Ax +», where
— 2 4 L2
Y271 X3 TXoX; TXY A
A==~——— or A= :
X2 X YaTw

and r=y; —Ax;. Notice that P 5=— P, implies that at least onc of the values for A is
well-defined, and that they are equal if thes are both well-defined. The sum P3 =P+ 72
is now given by P;=(x3:)3:1). where

X3 :>\2 — X1 T Xy,

Y3 ”“()\.X?,'W"l').
This gives the addition formulae if R is a fizld, but for the sequel it is desirable to bring
them into homogencous form. To do this. one replaces x, and y, by x,/z and y,/z,
respectively, and one clears the denominaters. Then one finds that the sum of two points
Py=(xyiyy:zy), Pr=(x2y2:22) on E(R) is given by onc of two formulae (gr:r1:8y)-
(g2:ry:s,). depending on which formula for X is used. Here ¢, .... s, are certain polyno-
mial expressions in X . )y, 21, X2, )'2. Z2. ¢ with integer coefficients, It turns out that for
every pair (P.P)eE(R)X E(R) except (P,P2)=(0,0) at least one of these two
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formulae is meaningful in the sense that it does not give (0:0:0), and that any of the two
that is meaningful actually gives the sum of Py and P, in the group E(R). For the
remaining pair (0,0) we know of course that O+ 0 =0 =(0:1:0), but this formula is not
satisfactory because it does not have the property of correctly giving the sum P+ P, for
all pairs of points P;,P, for which it is meaningful. To remedy this situation one has to
develop an addition law that is valid “in a neighborhood of (0,0)”, and that can be done
as in [35, Chapter IV, section 1]. The result is that one finds nine polynomial expressions
gi» 1, s, (1=1, 2, 3) in xy, ¥y, 21, X2, Y2, 23, a, b with integer coefficients, with the pro-
perty that the sum of any two points Py =(x):y:21), Py =(x3:p,:25) on E(R) is given by
one of the three formulae (¢,:r,:5,). i=1, 2, 3, and that in fact any of the three formulae
that is meaningful is correct. The latter statement is equivalent to nine formal identities
gira—¢qar1 =0, ..., ras3—r3s»=0 in the ring Zla,b,xy,y\,z1,x2,y2,23)/1, where a, ..., z,
are considered as polynomial variables and I denotes the ideal generated by the two poly-
nomials )~,2:,—~x,3——ax,z,2-—l)z,3, i=1, 2. Likewise, the fact that P+ P, lies again on the
curve, and that the addition defined in this way satisfies the group axioms, with the zero
element and the negatives of points as indicated above, is expressed by a series of formal
identities in the same ring. Nine explicit polynomials g1. ..., 53 with all these properties
can be found in [19].

We now drop the condition that R be a field. To add two points Py =(x;11:z)
Py=(x3:v2:z5) on E(R) one proceeds as follows. One uses the same nine polynomial
expressions that appeared above to obtain a 3 X 3-matrix

gi i 51]
4z ra S2
4z I3 S3J

with entries from R. This is a primitive matrix, since otherwise there would be a maximal
ideal m CR containing all nine entries: but this would contradict the fact that at least onc
of the rows can be used to add the two points Py mod i, P, modnt on the elliptic curve
E, modm, b modm (R /1) over the field R/m. Also, all 2X2-subdeterminants of the matrix are
zero, so by condition (ii) above there is an R-linear combination (¢¢,rg,50) of the rows
that is primitive; moreover, the orbit of (gg.79,5¢) under R* is uniquely determined. We
now define the sum of P, and P, on E(R) to be (g¢:rg:sg).

The fact that E(R) is closed under this operation, and that the addition defined in
this way satisfies the group axioms, with the zero element and the negatives of points as
indicated earlier, is a consequence of the formal identities that we mentioned above. We
omit the details, which are somewhat tedious.

It is a natural question to ask for an algorithm to add two points on E(R). From
the definition of addition we see immediately that. given the formulae from [19], it suffices
to have an algorithmic version of condition (ii): one needs a method to find the primitive
linear combination that is asserted to exist. Before we describe such a method for the case
that R is finite it should be pointed out that at the moment this method has only theoreti-
cal value. Namely. for the purposes that we have in mind (see the following sections) there
is a much easier method. as follows. Pick any non-zero entry from the matrix, and deter-
mine whether it is a unit in R. Il it is, then the row containing that element is primitive.
and one is done. If it isn’t, then one knows a non-zero non-unit of R, and in each of the
cases that we shall consider this is also satisfactory. Suppose for example, that R=Z /nZ.
where 1 is an integer that one is trying to factor; then a non-zero non-unit of R leads to a
non-trivial divisor of n. which is exactly what one wants.

Assume now that R is a finite ring. We assume that the elements of R are
represented by elements of a certain finite set S: one may think of S, for example. as
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consisting of strings of zeros and ones It 1s allowed that two distinct elements s,s” of §
represent the same element of R, but we do require that given s,s’€S there 15 an efficient
algorithm to decide whether this 1s the case Here ”efficient” may be taken to mean that
the time needed by the algorithm 1s bounded b\ a polynomual function of log#S We also
require that there 1s an efficient algorithm to do addiion 1n R, that 1s, given s5,5'€S, one
should be able to find an element of S that represents the sum of the elements represented
by s and s* Likewise we require that subtractior and muluplication can be done efficently,
as well as the solution of equations of the sort ¢(x=d (given ¢ and d, find x), if they are
solvable Finally we require that an element representing 1€R 15 known

With these hypotheses there 1s an efficiert algorithm that given a primitive i X m-
matrix (4,,) as 1 condition (n) produces a hnear combination of the rows that 1s primitive,
here “efficient” means that the time needed by the algorithm 1s bounded by a polynomual
function of n, m and log%S We begin with a lemma

Lemma. Let R, S be as above, and denote by t e least positive integer for which 2Tl > %9
Then for every ¢ €R there evsts x€R with ¢! ¥V o=¢" Moreover, an element ¢ €R 1s nilpo
tent 1f and only if ' =0

Proof Consider the sequence of 1deals
RDRCDORED DR DR

I any two consecutive deals m  th~ c¢bamm arc disunct  one  obtans
=S=#R=mdex[R Re' " 1)=2""1, which 15 a wntradicuon  Hence ¢/ =c¢"" '\ for some
x€R and some integer 1 with 0<<;<¢ and the ~rst statement of the lemma follows upon
multiplication by ¢/

If u1s an integer with «>¢, then 1t follov ~ that ¢“x =c* Therefore, 1f ¢ 15 rulpo-
tent the smallest mnteger u with ¢“=0 cannot be larger than ¢+ This implies the last state-
ment of the lemma

It follows from the lemma that there 15 a1 eflicient algorithm to decide wheiher an
element of the ring 1s mipotent

We now describe an efficient algorithm th.t given an n X m-matrix 4 =(a,;) as i (1)
finds a primitive combinauon of 1ts rows  The & gonithm proceeds by recursion on the car-
dmality of R If R 15 the zero ring (which can be decided by testing whether 1=0, where
0=1—1) then any row of the matnx 1s primy. e Now suppose that R 15 not the zero
nng Since the matrix 18 primitive, not all of 11~ entries are nilpotent  Let ¢ be an entr,
that 1s not nilpotent Using the lemma, solve ¢ Tly=¢!' Then ¥x'=c', so if we put
e=c'x’ then e 15 an idempotent e?=¢ Also, from ¢'e =c'540 one sees that e£0  1f now
¢=1 then ¢ 15 a unit, so the row of the matrix contaming ¢ 1s primitive, and one 15 done
Suppose therefore that es%1 Then R; =Re and R, =R(1—e) are non-zero commutative
rings with unmit elements e and 1 —e, respectivelh  Moreover, the map R—R{ X R, sending
reR to (re 1(1—e)) 15 an 1somorphism of rings  The matrix A4 gives rise 10 4 matrix A4
over R; and a matrix 4, over R, Now notice .hat, for each 1=1, 2, the map S—>R—R,
shows that the set § can agamn be used to repre~znt the elements of R,, and that the same
conditions as for R are satisfied Hence recursi ely, we can find an R, -hinear combination
of the rows of A, that 1s primitive as an eleme-t of R, for each 1=1, 2 Adding these
two rows in R one finds the desired primitive linear combination of the rows of A This
finishes the description of the algornithm

We remark that, 1n the above algorithm the element ¢ €R 15 mapped to an element
(c1,¢2)ER ) X Ry for which ¢ 15 a umt and ¢; 1~ milpotent  Hence the row of A contain-
mng ¢y 1> alieady pnmitive, and the recursion 1~ only needed for the ring R+ Since the
number of mlipotent entries in A4, 15 at least one more than i the matrx A, this shows
that the depth of the recursion 1s bounded by 17 In the case that 1s of interest to us one

1



has nm =9,

4. The number of points on an elliptic curve.

Let R be a finite ring with 6€R*, and E=E, }, an elliptic curve over R. In this section we
discuss the order of the finite group E(R).

If :R—R’ is any ring homomorphism from R to a ring R’ that also satisfies the
two conditions (i), (i) from section 3, then Epy) 14 is an elliptic curve over R'. We denote
this elliptic curve again by E.

If R contains an element ¢ that 1s neither a unit nor nilpotent then, as we saw in the
previous section, R can be written as the product of two non-zero rings. By induction on
# R it follows that R is isomorphic to the product of finitely many rings R;, where each R,
1s such that every element of R, is either nilpotent or a unit. Then each R, is a local ring,
which means that the set m, of non-units of R, forms an ideal of R,; this ideal must be
maximal, so that R,/ny, is a field. It is now easy to see that £(R) is isomorphic to the pro-
duct of the groups E(R,), so that #E(R):HI #FE(R)). Furthermore, from Hensel’s

lemma one can deduce that for each / the natural group homomorphism E(R;)—E(R,/n,)
is  surjective and that its kernel has the same cardinality as 1w, so that
#E(R)=%E(R,/m,) #m,. Summarizing, we have
ZER) _ FER/m)
#R 11 #R/m

where m ranges over the set of maximal ideals of R. If these maximal ideals are known,
then this formula reduces the computation of #E(R) to the case that R is a field. If
R=Z/nZ for some positive integer n. then the above formula reads

#EZ/nZ) _ 11 =E(F,)
n » P
where p ranges over the set of primes dividing n. Notice that the same formula holds with
the order of the elliptic curve replaced by the Euler ¢-function, which is the order of the
multiplicative group.

Assume, for the rest of this section, that R is a finite field, of characteristic different
from 2 and 3. Denote the cardinality of R by ¢, so that we may write R =F,. We assume
that an explicit representation for the elements of R is available, as in the previous section,
and that each arithmetic operation in R can be performed in time O((logg)*).

According to a theorem of Hasse (1934) we have #EF,)=q+1~1 where 7 is an
integer satisfying |7] SZ\/(;. Four methods have been proposed to calculate the number
= E(F,) or, equivalently, the number 1.

The first method, which was employed by Lang and Trotter [18], depends on the

formula

M

HEF,)) = 1+ 3 (1+x(x)).
xef,

where x(x) denotes the element of {0.1, —1} that maps to (.x3+ax+b)(4—1)/2 under the
natural map Z—F,. Toqprovc this formula one simply notes that. for fixed x el,, the
number of yefF, with yr=x+ax+b is given by 1+ x(x). Applying this formula in a
straightforward way leads to an algorithm to calculate -#E((F,]) that takes time O(qwe)_
for any ¢>0.

The second method, which is significantly faster, is probabilistic in the sense that it
depends on random choices. 1t is analogous to an algorithm of Shanks [33] for the calcu-
Jation of class numbers of imaginary quadratic fields. We give a brief description.
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First, one picks a random point PeE(F,). This is done by selecting random ele-
ments xE[Fq until an element is found for which x> +ax+b is a square in qu; this can be
tested by checking whether y(x )5 —1, with x as above. If such an x has been found, one
can find an element yeF, with y?=x%+ax-+b by applying another probabilistic algo-
rithm of Shanks {34] or by applying a general zero-finding routine for polynomials over
finite fields {17, section 4.6.2]. The point P =(x:y:1) is now on the curve.

Next one determines all integers m for which both |m—(g+1)] <2\/; and
m-P=0. Clearly such integers exist, since m = # E(F,) has these properties. By means of
the “baby step-giant step” strategy, for the details of which we refer to [33}, all these
integers m can be found in time O(¢''/9* ), for any ¢>0.

If m is unique, then m=#E(F,), and one is done. If m is not unique, then the
difference between any two consecutive n’s equals the order of P, and it is easy to see that
P cannot generate the group E(F,), if g=37. In the latter case one selects another ran-
dom point P’€E(F,), and in a similar way one determines the order of the point P’
modulo the subgroup generated by 2. In this way one continues until the order k of the
subgroup that has been found satisfies |k —(q+1)] <2Vy. Then #E(F,)=k, if 4=37.

This algorithm has expected running time O(g''/¥*¢), for any €>0, and it deter-
mines not only the order of E(F,) but also its group structure. It is of practical value if ¢
has not more than approximately 20 decimal digits.

The third method that we discuss is due to Schoof [30]. It is completely determinis-
tic. The method depends on properties of the Frobenius endomorphism ¢ of the curve,
which is defined as follows. Denote by K an algebraic closure of F. Then ¢ is the auto-
morphism of the abelian group £(K) defined by

dxyiz)y=(x9y9:29).
Notice that E({Fq) may be considered as a subgroup of E(K), and that
E(F,)=({PcE(K):¢(P)=P}. Itis a basic theorem that ¢ satisfies the quadratic equation
¢* —1¢+¢=0 in the endomorphism ring of E(K). where ¢ is the integer for which
FEF)=g+1~-1

To determine ¢ one now observes that it suffices to determine r mod/ for all odd
primes /écl\lygq that are different from charF,; here ¢} is a positive constant, chosen sgch
that T]/>4Vq for all 4. Namely, if one knows all these 1 mod/ then one can determine
tmod [/ by means of the Chinese remainder theorem, and since |7/ <2\/; this suffices
to find r and hence =E(F,).

Let now / be an odd prime number, /#charﬂfq. To determine ¢ mod |/, one first cal-
culates the polynomial ; defined by

W =TI x).
with x ranging over the set of those elements of K for which there exists y EoK for which
(x:y:1) is an element of E(K) of order /. It is known that y;, has degrec (/.””1,)/2 and
belongs to F,[X]. The polynomial ¥, can be calculated by means of recursion formulae

that can be found, for example, in [35, Chapter 111, Exercise 3.7].
Definc the ring T by

T = F X Y1/, Y= X3—aX-b).
Every element of T has a unique representation
QL
> auXy with ¢, €F,.
=0 ;=0
where X, Y denote the images of X, Y in 7. It follows that 7 is a finite ring in which the
ring operations can be performed efliciently. in the sense of section 3.
Let Q=(X:Y:1)eE(T), and define the endomorphism o:E(T)—£(T) by the same
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formula as ¢ above: o(x:y:z)=(x7:v?%:29). As we shall see in a moment, the points @ and
o(Q) have order /, and o satisfies the equation o® —~to+4 =0 in the endomorphism ring of
E(T). Therefore r mod/ is characterized by the equality

o?(Q)+¢-Q = t0(Q).
Thus, to determine 1 mod/ one can simply calculate the left hand side of this equality, and
compare it with 0-6(Q), 1-6(Q), 2:0(Q). ... . Here the calculations in E(T) can be done as
in section 3.

To establish the properties of Q and o that we used we consider the set V of points
PeE(K) of order /. For each such P=(xpiyp:1) there is a unique F,-linear ring
homomorphism T—K sending X. Y to xp, yp. respectively. It is straightforward to check
that the combined ring homomorphism 7‘—>HPGVK is injective, so that £(T) may be con-

sidered as a subgroup of [, [ E(K). Since Q corresponds to (P)pey, it has order /.
Also, o is the restriction to £(7) of the automorphism of I1,_,£(K) that on each coordi-

nate is given by ¢: hence the equality 02~to+q:O is a consequence of the equality
q’>2—~t¢+q =0. Clearly, o is injective, so 6(Q) has order /. This concludes our sketch of
Schoof’s algorithm.

The algorithm is completely deterministic, and it can be shown to run in time
O((logg)®). (This is slightly better than Schoof [30]. who has O((logg)’).) However, it
seems that the algorithm is not suited for practical computations.

We remark that Schoof’s algorithm does not calculate the structure of the abelian
group E(F,). It is known that E(F )=Z/d\Z XZ /d,Z for certain positive integers dy, d>
for which 4, divides d5, and that 4| divides ged(F E(F g —1). V. Miller has shown that
if the prime factorization of the latter ged is known. one can find dy and d5 by means of a
probabilistic algorithm that has expected running time O((logg)*) for some ¢, >0. For an
account of this algorithm. which depends on the Weil pairing, we refer to [22].

The fourth method to calculate # E(F,) applies only to curves E that are obtained
m a special way. For the sake of simplicity we restrict the discussion to the case that ¢ is
a prime number.

The complex multiplication_field of the elliptic curve E over the prime field F, is
defined to be the field L=Q((+>—4¢)'/?). where 1€Z is such that #FEF)=g+1—1
This is an imaginary quadratic field, and its ring of integers 4 contains a zero « of the
polynomial X?—1X+q. We have n+7=1, 77=¢ and FEF )=(z—1)=—1). This gives
an easy way to calculate #E(L‘:q) provided that L is known, which is the case for certain
special curves. We illustrate this by means of two examples that were basically known to
Gauss. For proofs, see [15, Chapter 18] and also [12, section 7; 5].

Let it first be assumed the}t_LEl mod 3 and that the curve E=E_, has ¢ =0. Then
one can prove that L=Q(V—3). The ring of integers 4 of L is given by
A=Z[(1+V —3)/2]. To find the element 7€A4 with =EF)=(r—1)7—~1) and TR=q
one starts by finding an ideal a with Ag=aqa, as follows.

One first determines an integer d with d*=-—3mod¢g. This can be done in one of
three ways. The first is to apply general zero-finding routines for polynomials over finite
fields, see [17, section 4.6.2]. The second is to apply a square root extraction algorithm as
in [34]. The third is to draw elements uely until one finds one for which u(q_“/37é1 and
to put d=2u"¢~"/? +1modg. Each of these three methods is probabilistic and practical.

Suppose now that d has been determined. Adding ¢ to d, if necessary, we may
assume that d is odd. Then a=2Zg+Z(d+V —3)/2 1s a prime ideal of A4 dividing ¢, and
aa=Ag.

Next onc determines an element weqg for which g=A%. This can be done by
scarching for the shortest non-zero vector of uy, for which there exist standard reduction
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algorithms.  Alternatively, one can calculate ged(g.(d+ V —3)/2) by means of the
Euclidean algorithm, which is valid in 4. Notice that «# is only uniquely determined by q
up to units of 4, of which there are six.

Let now { be the unique sixth root of unity in 4 for which b~ 1/ =¢mod q; here
b is such that E=Eg,. Multiplying 7 by a suitable sixth root of unity we can achieve that
7={mod 2V —3. Then one has #E(F,)=(7—1)}(7—1)=g+1—2Re(m).

It can be proved that E£(F,) is isomorphic to 4 /(w—1)4 as an abelian group, so
that this method gives the group structure as well.

In the second example that we give we assume that the prime ¢ satisfies g=1mod 4
and that the curve E=E,, has b=0. Then one can prove that L=Q() with i*=—1. It
has ring of integers 4 =Z[i]. As before, one can find a prime ideal q of 4 such that
aa=Ag and an element weq such that g=A=#. Denote by { the unique fourth root of
unity in 4 for which (—a)(‘fj_l)/a'EKmod 9. Multiplying 7 by a suitable fourth root of
unity we may assume that #={mod 2(1 +i), and then one has #E(F )= (7—1}(7—1).

We briefly sketch how these results can be generalized to any imaginary quadratic
field L. Let 4 be the ring of integers of L, and denote by j; the j-invariant of the elliptic
curve C/A4 over C (cf. [35, Chapter VI]). It is known that j; is a zero of an irreducible
polynomial F; €Z[X] with leading coefficient 1 and degree equal to the class number of L.
Methods to calculate F; can be found in [37]; see also the last section of [30]. The cases
Jj=0 and j=1728 correspond to the fields LZQ(\/CS) and Q(i) that we just considered;
let these now be excluded.

Let g be a prime number that does not divide the discriminant of L, and suppose
that ¢=>3. Then there are methods, analogous to those discussed above, to decide whether
there exists meA with w7 =g, and to find such an element « if it does exist; it is unique up
to conjugation and sign. Suppose that indeed = exists. Then it can be shown that the
polynomial (£, mod g)eF [X] splits into distinct linear factors. Denote by j any zero of
this polynomial in F,. One can prove that j50. 1728. Writing k= /(1728 — j)eF§ we
now consider the two elliptic curves

E=Ezr. E'=E3: e
over F,, where ceF, is any non-square. Then L is the complex multiplication field of
each of the two curves £, £', and the two numbers = E(F,), #E'(F,) are the same as the
two numbers (m— 1)}z —1), (—7—1)(—7—1). Presumably there is an easy rule to tell
which curve belongs to which number, but I do not know what it is. In practice one can
decide between the two cases by picking a point PeE(F,) at random and using that P is
annihilated by # E(F,).

This concludes our discussion of the methods to calculate the number of points on
an elliptic curve over a finite field.

It is a natural question to ask how the numbers = E(F,) are distributed if ¢ is held
fixed and E ranges over all elliptic curves over F,. up to isomorphism. In particular, one
may ask how often a given number occurs as = E(F,). The answer to the latter question,
in terms of class numbers of imaginary quadratic orders. is basically due to Deuring [13]:
see also [36, 31]. If ¢ is a prime number then Deuring’s result implies that every integer of
the form ¢+ 1—r with |¢| <2\/;1. oceurs as #E(F,) for some elliptic curve E over [F,.
Moreover, it can be deduced that if E is uniformly distributed over all elliptic curves over
Fy. then #E(Hﬂl) 1s approximately uniformly distributed over the pumbers near g-+1.
More accurately, one has the following proposition, which is useful for the analysis of
some of the algorithms to be presented in sections 5 and 6.

Proposition. There are positive effectively computable constants ¢4 and ¢4 such that for any
prime number >3 and any set S of integers s for which |s—(g+1)| < \/q one has
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#S—-2 -1 N #S 2
— e t—ea(logg) T € = < —————¢c4(logg)-(loglogg)*,
2[\/(;]_{_1 3U0gq 612 2[\/(;]+1 4(logg)-(loglogg)

where N denotes the number of pairs (a,b)eng that define an elliptic curve E=E,;, over F g
with #E(F,)eS.

Note that N /¢? is the probability that a random pair (a,b) has the stated property. The
proposition asserts that, apart from a logarithmic factor, this probability is essentially
equal to the probability that a random number near ¢ is in S.

For the proof of the proposition we refer to [20, Proposition (1.16)].

5. Primality testing.

It was first pointed out in [5] and [8] that elliptic curves can be used for primality testing.
Goldwasser and Kilian [14] proved. modulo a reasonable assumption, that this leads to a
probabilistic primality testing algorithm of which the expected running time is bounded by
a constant power of logn, where n is the number to be tested. The algorithm of
Goldwasser and Kilian depends on Schoof’s method to count the number of points on an
elliptic curve (see section 4), and for this reason it is currently not of practical value.
Atkin [2] developed a variant of this algorithm, in which he employs only the special ellip-
tic curves to which the fourth counting method of section 4 applies. His algorithm per-
forms very well in practice. and for the numbers to which it has been applied it beats the
method of Adleman er al. [1] as implemented by Cohen and A.K. Lenstra [10]; thesec
numbers have approximately 200 digits. It seems very hard to give an exact running time
estimate of Atkin’s algorithm; but a rough heuristic analysis indicates that its expected
running time is again bounded by a constant power of logn.

All these methods depend on a result similar to the following theorem, which is the
analogue of Theorem 1.

Theorem 2. Ler n be an integer, n>1. with gcd(n,6)=1. Ler E be an elliptic curve over
Z/nZ, and m, s positive integers with s dividing m. Suppose that there is a point
P eE(Z/nZ) satisfying
mP=0,
ged(z,n)=1 for each prime divisor q of s, where (m /P =(xg002,).

Then # E(Z/pZ)=0mods for every prime divisor p of n, and if s>n'/*+1)* then n is
prime.
The proof, which is analogous to the proof of Theorem 1, is as follows. Let p be a prime
divisor of n, and write Q =(m/s)Pe€E(Z/nZ). Denote by Q, the image of Q in E(Z/pZ).
From m-P =0 it follows that s*Q =0, so the order of Q, divides s. Also, if ¢ is a prime
divisor of s, then ¢-Q,=(x, modp:yq modp:z, modp). This is not the zero point of
E(Z/pZ), since by hypothesis =, 1s not divisible by p. Therefore the order of Q, is not a
divisor of s/g, for any prime ¢ dividing s, so this order is equal to s itself. By Lagrange’s
theorem it follows that #E(Z/pZ) is divisible by 5. This proves the first assertion of the
theorem. If also s>(n'/4+l)~ then Hasse’s inequality Q’l/2+1)2»>’#E(Z/pZ) implies
that p>n]/2, and this can only be true for all primes p dividing n if n is prime. This
proves Theorem 2.

The algorithms of Goldwasser-Kilian and Atkin need the above theorem only in the
case that s is prime, so that only g =s has to be considered in the second hypothesis on P
in the above theorem. The following schematic description fits both algorithms.

Let n be a large positive integer that one suspects to be a prime number (¢f. the
remarks in the introduction). To prove that n is prime one proceeds as follows.
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(a) One selects an elliptic curve £ over Z/nZ and a positive integer m such that
the following conditions are satished

(1) m<(Vn=+1)2, and if n 1s prime then #E(Z/nZ)=m,

(u) there are mtegers A>1 and ¢=>(n'/*-+1)* such that m=kq and such that ¢ 1s prob-
ably prime

Here probably prime means that ¢ passes a pseudoprime test as mn {17, p 379], cf the ntro-
duction To find one pair E, m satisfymg (1) and (u), both the algorithm of Goldwasser-
Kilian and Atkin’s algorithm generate mam pars L, m satisfying (1), we shall see below
how this 1s done It 1s then hoped that at least one of these pairs satisfies (1) as well To
chech whether a given pair E, m satisfies (1), one first subjects m to a factoring algorithm
that 1s efficient in finding small factors, such as trial division, or the Pollard p — 1-method
(see section 2), or the elliptic curve method (see section 6), next one lets A be equal to the
product of the small prime factors of m that are found and one puts ¢ =n /k, finally, one
checks whether k>1 and whether ¢ 1s probably prime in the sense explamed above
{Goldwasser-Kilian require that mn fact £ =2 i (u) this makes 1t even easier to check (1) )

(b) Now suppose that E, m, k, g as 1 (a) have been found Then one picks a ran-
dom pomt P of the form (ap)p 1) m E(Z/nZ) This 15 done as 1n the second counting
algorithm explaned in section 4 (This algonithm works f Z/nZ 1s a field, which one
believes to be the case, for the algorithm to work 1t 1s not necessary that one has a proof
that Z/nZ 15 a field') Next one calculates O =4 P One now hopes that O5£0, 1t can be
proved that this 1s the case for more than half of all choices of P, if 1115 actually prime  If
Q = O one picks another point PeL(Z/nZ), and onc keeps uying unul Q=i P50  Sup-
pose now that Q50 Then one checks that ¢ O =0, as must be the case if 1 15 prime (by
g Q=m P and (1) above) Fmally one chechs that ged(z m)=1, if Q=(x ) z), this must
also be the case if n 1s prime, since Q50

(c) The final stage of the algorithm consists of proving that ¢ 1s pime  This can be
done by a recursive apphcation of the algorithn or, if ¢ 15 below a certain bound, by a
more direct method Notice that q:172//\<(\/;+ 1)? /2, so that the depth of the recur-
ston 15 O(logn)

If (a), (b) and (c) have been pertormed successtully then n 1s mmdeed a prime
number This follows from Theorem 2, with s =¢

It remains to explain how to find many pairs F.m as m (1) In the Goldwasser-
Kilian algonthm this 1s done as follows Fust one draws a, b€Z/nZ at random until
4(73+27b3:7—’:0, this happens with probabihity (n—1)/n, 1f n 15 indeed prime Next onc
¢hecks that gcd(n,4a?+27bz):1, as should be the case if n 15 pnme Now one puts
E=FE,,, and by means of Schoof’s algorithm one calculates a number m such that (1)
holds If Schoof’s algorithm doesn’t work then n1$ not pnme  (If 7215 not prime then 1t 15
unbkely but not impossuble that Schoof’s algorithm calculates a number s, 1t 1s an
interesting question which nformation about 1 this would provide, and what the
significance of m would be )

Atkin’s method to find pairs £, m as 1n (1) 1s difierent  Consider the sequence —3,
—4, =7, —8, —11, =15, =19 —20, of discriminants of imagmnary quadratic fields, an
integer belongs to this sequence if and only 1f it 1s negative not divisible by the square of
an odd prime number, and n one of the residue classes 1 mod4, 8§ mod 16, 12mod 16 For
cach A m a suitable begimmng segment of this sequence, one deades whether the ring of
integers A =Z{(A+ \/—A_)/Z] of the imagmary quadratic field L:Q(\/Z) contans an ele-
ment 7 with # =n7, and one finds such an clement 7 1f 1t exists, the probabihistic methods
to do this that we referred to n section 4 are successful provided that n 1s prime, but, as
above, do not require a proof that n 15 pnime  The disciimunants for which = does not exist
are discarded, and the remaming discrimmants A cach give rise to six (of A= —3) or four
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(f A= —4) or two (if A<—7) pairs E. m as in (i), as explained in section 4.

For most values of A it is easier to determine the values of m than to calculate the
coefficients a, b defining E; hence, it 15 wise to test whether m satisfies (1) before calculat-
ing a, b.

This finishes the description of the primality tests of Goldwasser-Kilian and Atkin.

The running time of a suitable version of the Goldwasser-Kilian algorithm can be
analyzed with the help of the proposition stated in section 4. The result is expressed in the
following two theorems. The first ore states that if a certain standard conjecture concern-
ing the distribution of primes is true. then the algorithm runs in expected polynomial time.
The second theorem asserts that in anyv case this is true for almost all input primes .

Theorem 3. Suppose thai there are pos.tive constants ¢ and ¢¢ such that for all real numbers
x=2 the number of primes p with A <p<x -+ V2x 1s at least ¢ \/.;(logx)ﬂ”. Then on any
prime nput n, the Goldwasser-Kihan algorithm proves the primality of n n expected tume

0((logn)m“‘“ ).

For the proof we refer to [14]. (The exponent 10+¢ is 1 less than the exponent in [14].
This is due to the corresponding improvement 1n Schoof’s algorithm.)

Theorem 4. There exist positive consiunls ¢7 and cg such that for all integers h =2 the frac-
nion of the set of primes n that have k binary digits and for which the expected runmng ume of
the Goldwasser-Kilian algorithm s <c-( logi)' s ar least

1‘(82_/\|‘4

For the proof we again refer (o [14] It employs a theorem of Heath-Brown, which states

that the hypothesis made in Theorem 3 1s true in a certain average sensc.

6. Factorization.

We describe a method to factor integers that depends ou the use of elliptic curves. [t is
the analogue of Pollard’s p — 1-methoc described in section 2.

Let n be the composite integer that one wishes to factor, and assume that n>1.
ged(n,6)=1. Pick a random pair (E.P). where E 1s an elliptic curve over Z/nZ and
PeE(Z/nZ). This can be done by choosing a.x.v€Z/nZ at random. putting P=(x:y:1),
and letting E be defined by the pair (a.b). where b is chosen such that PeE(Z/nZ); so
p=y?—x’—ax. To be certain that E 1s an elliptic curve one should check that
gcd(4a3 +27b2,n)=1. As in Pollard’s p —I-method, one now selects a positive integer &
that is divisible by many small prime powers, for example A =lcm{1,2,....w} for a suitable
bound w. Next one calculates the point A-P€E(Z/nZ). This can be done by O(logk)
duplications and additions 1 the group E(Z/nZ). If k-P=(x::z), one calculates
ged(z,n). One stops if this ged 1s a nen-trivial divisor of n. If, on the other hand, this ged
equals 1 or n, then one changes the par (E,P) and starts all over again. The latter option
is not available in Pollard’s method.

As for the Pollard p — 1-methed, one can show that a given pair (E,P) is likely to
be successful in this algorithm if » has a prime divisor p for which #E(Z/pZ) is built up
from small primes only. The probability for this to happen increases with the number of
pairs (£, P) that one trics.

We refer to [20] for the runmng time analysis of a variant of the elliptic curve fac-
toring algorithm. Using the proposiuon from section 4 and properties of modular curves
one finds an upper bound for the evpected running time of the algorithm. This upper
pound is expressed 1 terms of the probability that a random number in the interval
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p+1- \/})_ p+H1+ \//j) has all 1ts prime factors below a certain bound, where p denotes
the least prime dividing n  To estimate the latter probability we need the following
unproved conjecture from analytic number theory
For a real number x >e¢, define
L) = o Viehdon

A theorem of Canfield, Erdos and Pomerance |7, Corollary to Theorem 3 1] implies the fol-
lowing Let « be a positive recal number Then the probability that a random positive
nteger m<x has all 1ts prime factors <L(x)* 1s L(x)~ /0% for x_sc0 The conjec-
ture that we need 1s that the same result 1s valid if m 15 a random integer in the interval
(x— Vx, x+ \/;)

Assumung this conjecture, one arrives at the following running time estimate for the
elipuic curve factoring algonthm Let neZ, n>>1, be the integer that one wishes to factor,
and assume that n 1s not divissble by 2 or 3 and that 1t 1s not a prime power Let further g
be any positive integer Then the varnant of the elliptic curve factoring algorithm
described 1n [20] finds with probability at least 1- ¢ ™8 a non-trivial divisor of n within
time gK(p)(log;1)2, where p denotes the smallest prime divisor of #» and K R-y—R-p 15 a
function with

o e e
K(x) = ¢ V{2~ o(Inlogrloglozy for x — ot

The algornthm may be repeated on the divisors that arc found, unul the complete
prime factorization of n 1s obtamed The conjectural running time estimate will then also
contain terms gK(p')(logn)* coriesponding to the other prime divisors p’ of n, with the
exception of the largest one 1In all cases one may expect the total factoring time to be at
most L(n)! 7MW for n—oc with L as above The worst case occurs 1f the second largest
prime divisor of n 1s not much smaller than Vn, so that n 1s the product of some small
primes and two large primes that are of the same order of magnitude

Several other factoring methods have been proposed for which, conjecturally, the
runnng tme 1s LW for n—oc, such as the class group method [29] and the qua-
dratic sieve [26], see also the discussion n [11] However, for these other methods the run-
ning time 18 basically independent of the size of the prime factors of n whereas the ellipuc
curve method 1s substantially faster if the smallest prime factor of » 1s much smaller than
Vin

The storage requirement of the ellipuc curve factoring method 1s only O(logn)
This 15 also true for the class group method [29] but all other known factoring algorithms
of conjectured speed L(n)! ") have a storage requirement that 15 a positive power of
L(n)

We refer to [23, 6] for modifications of the elliptic curve method that 1mprove 1ts
practical performance It turns out that, with these modifications, the elliptic curve
method 15 one of the fastest integer factorization methods that 15 currently used 1n practice
The quadratic sieve algorithm still seems to perform better on integers that arc built up
from two prime numbers of the same order of magnitude. such integers are of interest mn
cryptography [28]
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