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EUCLID’S ALGORITHM FOR LARGE NUMBERS
D. H. LEHMER, Lehigh University

Euclid’s algorithm which is so fundamental to the theory of regular con-
tinued fractions and elementary theory of numbers, is also of immense practical
value in such well known problems as discovering the partial quotients in the
regular continued fraction expansion of a given real number, and the solution
of linear diophantine equations, to mention only two applications. In these prob-
lems, which occur frequently in experimental research, it is often necessary to
carry the algorithm to a great many stages, as for example when one needs the
greatest common divisor of two numbers each having, let us say, 30 digits, or
when one wishes an extremely accurate rational approximation to a given irra-
tional. In such cases, in which one would naturally use a computing machine,
the algorithm involves numerous trivial operations with extremely large num-
bers. The purpose of this note is to show how more than 909, of these operations
with large numbers may be eliminated. If one wishes historical evidence of the
difficulties or rather the tedium of Euclid’s algorithm in such cases, one may
take the problem of expanding 7 in a regular continued fraction. In 1685 Wallis*
computed the first 34 partial quotients of 7. This calculation, made nearly a
century before m was proved irrational, was verified as far as the 26th partial
quotient by Lambert in 1770. But since then no one has extended the calculation
of Lambert, and the fact that the 34th partial quotient given by Wallis should
be 99 instead of unity has remained unnoticed until today.

1. Notation and general formulas. Let xo and x: be a pair of positive real
numbers. Then Euclid’s algorithm generates from x, and x; a set {x,} of real
numbers and a set {g,} of integers by means of the equations

Xo = Jo¥1 + X2,
%1 = qi%2 + ¥s,
%z = q2%3 + X4,

(1)

e o o o o e o

Xy = ¥yt + Xvy2,

.
)

in which ¢, is the greatest integer not exceeding x,/x,41=§,. Eliminating

Xq, X3, X4, - + - from (1) we obtain the regular continued fraction for &,
X0 1 1
£0=Z=90+Z+F = [40,41,42,"']-
Similarly

* John Wallis, A Treatise of Algebra, London, 1685, pp. 46-55.
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Xy

(2) & = = [ql') Qv+1; Gvy2 * * ¢ ]
xv-{—l

The nth convergent of &, namely

[90; di, g2, * * qn])

is usually denoted by A4,/B.,, but to avoid the use of too many sub-subscripts in
what follows we shall also write 4 (n) and B(n) for the numerator and denomina-
tor of the nth convergent of &. More generally, the nth convergent of §,,

©) (@ @iy = -+ 5 Gotnl
will be denoted by A4 (n, v)/B(n, v) so that

A, = A(n) = A(n, 0) and B, = B(n) = B(n, 0).
The A’s and B's satisfy the following recursion formulas
Am, ) = A@m = 1, V)gnis + Alm = 2,9),
B(m,v) = B(m — 1, V)qm» + B(m — 2,7),
with the initial conditions

A(_ I,V) =1, A(O; V) = @,

(4)

©)

B(—1,») =0, B(0,») = 1.
If we eliminate %,42, X,43, -+, %»4n1 between the (v+1)st, (v42)nd, - - -
(v+n—1)st equations of the system (1) we obtain ‘
(6) Topn = (— 1)"{3(" = 2,v)x, — A(n — 2, V)xV+l} ’

a formula which is readily proved by induction using (1), (4), and (5), and which
lies at the root of our modification of the Euclid algorithm. The following formu-
las will also be of use and are easily established by induction from (4) and (5).

Ay = A, A(n — 1, v+ 1) + 4, B(n — 1, v + 1),

7
M Bypn = B,A(n — 1, v+ 1) + BoouB(n — 1, v + 1).

Given the two numbers xo and x; having a very large number of significant
figures, the application of Euclid’s algorithm begins with the computation of the
partial quotients ¢, (»=0, 1, 2, - - - ). We note first that since go is merely the
greatest integer in xo/x;, crude approximations to xo and x; will in general be
sufficient to determine qo. More generally, if (xo, x1) are replaced by approximate
values (yo, y1), then the first few partial quotients of xo/x; and yo/y;: will be the
same. If yo and y; have only a few significant figures, the first few partial quo-
tients are easily obtained. Of course, if the Eulcid’s algorithm for yo/y; is carried
too far, the ¢'s will begin to disagree with those for xo/x;. There are two ways to
find out how far the ¢'s may be trusted. Perhaps the safest way is to choose a
second pair (2o, z1) such that x,/x; lies between yo/y: and 2¢/z. Then the partial
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quotients of v,/y; and x/x; will agree at least as far as those of yo¢/y1 and zo/2:
agree. Since the whole calculation is based on the first few ¢’s, the fact that they
are obtained in two ways is a welcome check on the work, rather than a waste
of effort. The other method of telling how far we may trust the ¢’s will be dis-
cussed presently.

Having obtained the first few partial quotients, up to say gx,, we next com-
pute the numbers

(®) Ak, 0), B(ki, 0), A(kr—1,0), B(ki—1,0)
by the recurrence formulas (4) with »=0. The relation
A(ky, 0)B(k1 — 1,0) — A(k1 — 1, 0)B(ky1, 0) = (— 1)%?

affords an almost infallible check on the work.

Thus far the calculation has involved only small numbers. In fact we have
not used xo and x;, but merely approximations to them. By setting »=0, and
n="Fk;+1 and k;+2 in (6) we get

© et = (= DBk — 1, 0)mo — A(k1 — 1, 03,
(10) %rge = (— 1)#2{ Bk, 0)wo — A(ky, 0)a1) .
Here we encounter for the first time operations with really large numbers. To

be quite certain that we are on the right track we may apply the following well

known* theorem.
THEOREM A. Let Ai/Br, Ar_1/Br_1, be two consecutive convergents to a num-
ber . Then these fractions are consecutive convergents of £ if and only if

By, Bi(Bi + Bi-1)
Setting §o=x¢/x; and k=Fk; we obtain from (10) the condition
X1
B(k1,0) + B(k1 — 1,0)
which is necessary for the correctness of the ¢'s so far. We now replace xx 41

and x,42 by approximations vi,+1 and ¥ 42 and compute as before the first
few partial quotients of y1,41/Vr42. By (2) these partial quotients will be

Ay

(11) e <

(12) Qlat1y Grat2y * ° ° ) hitltks-

Using these ¢’s we next compute the numbers

(13)  A(ka, b1+ 1), Bks, v+ 1), A(ks—1, ki+1), B(ks— 1, b+ 1)
by (4) and check them by means of the relation

A(ka, k1 + 1)B(ks — 1, by + 1) — A(ke — 1, by + 1)B(ks, k1 + 1) = (— 1)L
Using (6) with v=*%k;+1 and n="Fky+1 and k;+2 we get the equations

* See for instance Lucas, Théorie des Nombres, p. 449.
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(14)  @kgrgre = (— DB{B(ks — 1, ks + Dz — A(ka — 1, b1+ Dkisef,
(15)  Fryprprs = (= Di{B(ka, b1 + Darpr — A(ka, by + D anga],

which involve for the second time operations with large numbers. A test of the
correctness of the set (12) of new ¢’s is this time

Xky+2 .
B(koy b1+ 1) + B(ka — 1, by + 1)

The process may now be continued using approximate values of xp,4z,4+2 and
Xr,+k,+3 and obtaining a new set of ¢'s, a new pair of 4’s and B’s, and a new pair
of x’s. In this way the partial quotients may be extended as far as desirable.

In some problems the convergents 4,/B, are of no interest. In these cases
the above process is adequate. For example if we have a given number £, ex-
pressed let us say in decimals, and we wish to examine its partial quotients to
see if they terminate, become periodic, or obey some law or other, we have only
to choose xo=£o, and x;=1 and apply the above process. As a second example
we may wish to find the greatest common divisor 8= (x,, x1) of two large in-
tegers xo and x;. From (9) and (10) we see that any divisor common to x, and x;
will divide x4 and x4, and conversely. Hence from (14) and (15) and all
further similar equations we have

(16) Xyt kg3 <

8 = (%0, @1) = (Fry1, Frp2) = (Frarhpro, Fryrhgrs) = ©° * .

Since these x's decrease rapidly (by (11), (16), etc.) we soon come to a pair
whose G.C.D. is easily found.

Of those problems in which the convergents are of importance a large ma-
jority require merely one convergent. This is the case for example when one
wishes to get a rational approximation to a real number, or in the solution of
linear diophantine equations, in which case the penultimate convergent of a ra-
tional number is needed. Sometimes one needs a sequence of convergents (or
even intermediate convergents) beginning with 4,/B,, the earlier convergents
being of no use. This happens for example when one is looking for a rational
approximation to a given real number which not only is sufficiently accurate but
whose numerator or denominator has some further property.

In all these cases one may use formulas (7) to advantage as follows. We have
already found the numbers (8), (13), etc. Substituting them in (7) with v=F;
and first # ==k, and then n==Fk,+1, we get at once

Apppry = A (ke — 1, b1+ 1) + Ap1B(ke — 1, k1 + 1),
Biyrry = Bud(ke — 1, by + 1) 4+ By1B(ks — 1, k1 + 1),
Ak1+kg+l = AklA(k2, ki + 1) + Alq—lB(kZ, ki + 1),
Burigrs = Bud (ks b1+ 1) 4 Biy 1B(ks, b1 + 1).

Thus we proceed from the numerators and denominators of one pair of con-
secutive convergents (8) to those of another isolated pair (17). Repeating the

(17)
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process as many times as is necessary one obtains a consecutive pair of conver-

gents A4,/B,, An_1/B.—1 for whatever value of # one may wish. The relation
ApnBny — Ap1Bn, = ('— 1

serves as a final check. One may also examine consecutive convergents (or inter-
mediate convergents) in the neighborhood of 4,/B, using (4) with »=0.

2. An application. To illustrate the foregoing method we consider the regu-
lar continued fraction for 7. Taking a value of w correct to 100 decimal places*
we shall first find the partial quotients

(18)  w=[3,7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,--- ],
from which

Ay = 2549491779, Bi7; = 811528438,

(19) Az = 6167950454, Bis = 1963319607

Using now our 100 figure accuracy we findt (by (6) with »=0, =19, 20)
t19 = Ay — Bum = 4.474-10-10,
Xg9 = — A1z + Bigw = 1.497-10710,

As a check (11) gives

Koo < 1/(313 + Bl7) = 3.603-10—10

(20)

which is in accord with (20).
Next we find that

£19 = 0519/9020 = [Qm, 20y © ¢ 5 G32y ]

(21)
=[2,1,84,2,1,1,153,13,1,4,2,6,6,- - - ].
Hence
22 A(12, 19) = 61245426, B(12, 19) = 20495141,
A(13, 19) = 376962143, B(13, 19) = 126146437,

Next we compute
%33 = B(12, 19)x19 — A(12, 19)we = 1.185-1018,
w3s = A(13, 19)xe9 — B(13, 19)x = 1.188-1072,
As a check (16) gives

X34 < xgo/(B(IS, 19) + B(l?, 19)) 1.021-10718,

* r=23.14159 26535 89793 23846 26433.83279 50288 41971 69399 37510 58209 74944 59230
78164 06286 20899 86280 34825 34211 70680.
t The actual values of the x’s have been suppressed to save space.
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Next we find

£33 = X33/ %34 = [433, G3dy * * * , Q50 * * ]
(23)

from which

” A(16, 33) = 6185428223, B(16, 33) = 62033398,
A(17, 33) = 7032882291, B(17, 33) = 70532479,
and
s = B(16, 33) 155 — A(16, 33) w55 = 1.249-10-28,
w52 = A(17, 33)w34 — B(16, 33)xs5 = 4.958-10-%9.
As a check
w52 < %34/ (B(17, 33) + B(16, 33)) = 8.965-10-%,
Next we find
(25) Es = wa1/%s0 = [go1, @oy -+, qrey - -+ ]
=[2,1,1,12,1,1,1,3,1,1,8,1,1,2,1,6,1,1,5,2,2,3,1,2,4,4, - - -
and
6 A(24, 51) = 2414289141, B(24, 51) = 958421828,
A4(25, 51) = 10210815077,  B(25, 51) = 4053478055,

from which

X = B(24—, 51)9651 — A(24, 51)%52 = 1.206- 10_38,

w1 = A(25, 51) @52 — B(25, 51)x51 = 7.099- 1040,
As a check

w15 < w59/ (B(25, 51) + B(24, 51)) = 9.893-10-%9,
Finally
@ Ern = wr/wis = [gm, qrs, -5 gooy -+ |

= [16, 1, 161,45, 1,22,1,2,2,1,4,1,2,24, - - - |,
o8 A(12, 77) = 482872247, B(12, 77) = 28414566,
A(13 77) = 11759887912,  B(13, 77) = 692009353;

hence

%or = A(13, TT)wss — B(13, T7)am = 7.328-10-%,
whereas

won < 15/ (B(13, 77) + B(12, 77)) = 9.854-10—4,

[99,1,2,2,6,3,51,1,6,81,7,1,2,3,7,1,- -

[April,
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Combining (18), (21), (23), (25), and (27) we have all the partial quotients of =
from g0=3 to q90=24.

If we wish the 90th convergent Ago/Bgsy we proceed as follows. Setting
v=18, =13, 14 in (7) we have from (19) and (23)

o= AA(12,19) + A4,,B(12, 19) = 430010946 591069243,
Ba = BisA(12, 19) + ByyB(12, 19) = 136876735 467187340,
Agy = A1sA(13, 19) + A1;B(13, 19) = 2646693125 139304345,
By = BisA(13, 19) + B;;B(13,19) = 842468587 426513207,

As a check

(29)

As9Bgy — As1Bzs = — 1.
Next setting =232, n=17, 18 in (7) we obtain from (29) and (24),
Ag = AnA(16, 33) + A3B(16, 33),
By = B3A(16, 33) + B3 B(16, 33),
Aso = AsA(17, 33) + AnB(17, 33),
Bso = Byd (17, 33) + BuB(17, 33).
Next we set »=50, #=25, 26 in (7) and obtain from (30) and (26),
A5 = A504(24, 51) + A4B(24, 51),
Brs = Bsod (24, 51) + BuyB(24, 51),
Azs = A54(25, 51) + A4B(25, 51),
Bqs = ByoA (25, 51) + ByB(25, 51).
Finally we set =76, n=14 in (7) and obtain from (31) and (28),
Ago = A76A(13’ 77) + A7sB(13, 77),
By = B1sA(13, 77) + B1:B(13, 77).

(30)

1)

The actual values of 449 and By are

Ago = 3062 43329 44969 82257 53216 23878 54374 05787 90366 50780,
By 974 80279 34167 85521 47430 34062 01616 85335 37806 95273.

By Theorem A, m— A 40/Bgo should be less than 1.01-10~%, By actual computa-
tion we find this difference to be less than 8-10797.



