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Abstract. Fix pairwise coprime positive integers p1, p2, . . . , ps. We propose
representing integers u modulo m, where m is any positive integer up to
roughly

√
p1p2 · · · ps, as vectors (u mod p1, u mod p2, . . . , u mod ps). We use

this representation to obtain a new result on the parallel complexity of modular
exponentiation: there is an algorithm for the Common CRCW PRAM that,
given positive integers x, e, and m in binary, of total bit length n, computes
xe mod m in time O(n/lg lg n) using nO(1) processors.

1. Introduction

In this paper we consider the problem of computing xe mod m for large integers
x, e, and m. This is the bottleneck in Rabin’s algorithm for testing primality,
the Diffie-Hellman algorithm for exchanging cryptographic keys, and many other
common algorithms. See, e.g., [19, Section 4.5.4].

The usual solution is to compute small integers that are congruent modulo m to
various powers of x. See, e.g., [19, Section 4.6.3], [9, Section 1.2], [14], [21], and [7].
For example, say e = 10. One can compute x1 = x mod m, then x2 = x2

1 mod m,
then x4 = x2

2 mod m, then x5 = x1x4 mod m, and finally x10 = x2
5 mod m. It is

often convenient to allow x1, x2, x4, x5 to be slightly larger than m.
The output xe mod m and inputs x, e, m are conventionally written in binary.

Standard practice is to also use the binary representation for x1, x2
1, x2, x2

2, etc. We
instead use the residue representation: x1 is represented as (x1 mod p1, x1 mod
p2, . . . , x1 mod ps), x2

1 is represented as (x2
1 mod p1, x

2
1 mod p2, . . . , x

2
1 mod ps), etc.

Here p1, p2, . . . , ps are small pairwise coprime positive integers, typically primes,
such that P = p1p2 · · · ps is sufficiently large. Note that, because pj is small, it is
easy to compute x2

1 mod pj from x1 mod pj .
The usual Chinese remainder theorem says that x2

1 mod P is determined by the
residue representation of x2

1. In fact, any integer u is congruent modulo P to
a particular linear combination of u mod p1, u mod p2, . . . , u mod ps. The explicit

Chinese remainder theorem says, in a computationally useful form, exactly what
multiple of P must be subtracted from the linear combination to obtain u. See
Section 2.

Once we know the binary representation of x2
1, we could reduce it modulo m to

obtain the binary representation of x2. We actually use the explicit CRT modulo
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1. See Section 3.
Once we know the binary representation of x2, we reduce it modulo each pj to

obtain the residue representation of x2. An alternative is to use the explicit CRT
modulo m modulo pj to obtain the residue representation of x2 directly from the
residue representation of x2

1. See Section 4.
If P is sufficiently large then, as discussed in Section 5, one can perform several

multiplications in the residue representation before reduction modulo m. This is
particularly beneficial for parallel computation: operations in the residue repre-
sentation are more easily parallelized than reductions modulo m. By optimizing
parameters, we obtain the following result:

Theorem 1.1. There is an algorithm for the Common CRCW PRAM that, given

the binary representations of positive integers x, e, and m, of total bit length n,

computes the binary representation of xe mod m in time O(n/lg lg n) using nO(1)

processors.

Section 6 defines the Common CRCW PRAM. Section 8 presents the algorithm.
Section 7 presents a simpler algorithm taking time O(n).

The same techniques can easily be applied to exponentiation in finite rings more
general than Z/m. For example, the deterministic polynomial-time primality test
of Agrawal, Kayal, and Saxena in [2] can be carried out in sublinear time using a
polynomial number of processors on the Common CRCW PRAM; the bottleneck
is exponentiation in a ring of the form (Z/m)[x]/(xk − 1).
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2. The explicit Chinese remainder theorem

A well-known method to multiply integers in the binary representation is to
convert them to the residue representation, multiply them in the residue repre-
sentation, and convert the product to the binary representation. This idea was
introduced in the 1950s by Svoboda, Valach, and Garner, according to [19, Section
4.3.2]. This section discusses conversion from the residue representation back to
the binary representation.

For each real number α such that α − 1/2 /∈ Z, define round α as the unique
integer r with |r − α| < 1/2.

Theorem 2.1. Let p1, p2, . . . , ps be pairwise coprime positive integers. Write P =
p1p2 · · · ps. Let q1, q2, . . . , qs be integers with qiP/pi ≡ 1 (mod pi). Let u be an

integer with |u| < P/2. Let t1, t2, . . . , ts be integers with ti ≡ uqi (mod pi). Then

u = Pα− P round α where α =
∑

i ti/pi.

Proof. Pα =
∑

i ti(P/pi) ≡ uqi(P/pi) ≡ u (mod pi) for each i, so Pα ≡ u
(mod P ). Write r = α− u/P . Then r is an integer, and |r − α| = |u/P | < 1/2, so
r = round α, i.e., u/P = α− round α. �

The usual Chinese remainder theorem says that u ≡∑

i tiP/pi (mod P ); this is
the integer version of Lagrange’s interpolation formula. This is a popular way to
compute u from the residues u mod pi: first compute ti = ((u mod pi)qi) mod pi or
simply ti = (u mod pi)qi, then compute Pα =

∑

i tiP/pi, then reduce Pα modulo
P to the right range.

The explicit Chinese remainder theorem, Theorem 2.1, suggests another way to
divide Pα by P . Use ti and pi directly to compute a low-precision approximation
to α =

∑

i ti/pi with sufficient accuracy to determine round α; see, for example,
Theorem 2.2 below. Then subtract P round α from Pα to obtain u.

As far as we know, the first use of the explicit Chinese remainder theorem was
by Montgomery and Silverman in [24, Section 4]. It has also appeared in [23], [11,
Section 2.1], [5], [31], and [1, Section 5].

Theorem 2.2. Let β1, β2, . . . , βs be real numbers. Let r and a be integers. If

|r −
∑

i βi| < 1/4 and 2a ≥ 2s then r = b3/4 + 2−a
∑

i b2aβicc.

Proof. r < 1/4 +
∑

i βi = 1/4 + 2−a
∑

i 2aβi ≤ 1/4 + 2−a(s +
∑

i b2aβic) ≤ 1/4 +
2−a(2a/2 +

∑

i b2aβic) = 3/4 + 2−a
∑

i b2aβic ≤ 3/4 +
∑

i βi < r + 1. �

In the situation of Theorem 2.1, assume further that |u| < P/4. We can then
use Theorem 2.2 to quickly compute r = round α. We choose a with 2a ≥ 2s,
then compute the fixed-point approximations 2−a b2ati/pic to ti/pi, then compute
r = b3/4 + 2−a

∑

i b2ati/picc.

3. The explicit CRT mod m

Theorem 3.1. Let p1, p2, . . . , ps be pairwise coprime positive integers. Write P =
p1p2 · · · ps. Let q1, q2, . . . , qs be integers with qiP/pi ≡ 1 (mod pi). Let u be an

integer with |u| < P/2. Write ti = uqi mod pi. Let m be a positive integer. Write

v =
∑

i ti(P/pi mod m) − (P mod m) round
∑

i ti/pi. Then u ≡ v (mod m), and

|v| ≤ m
∑

i pi.
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The hypotheses on p, P, q, u are the same as in Theorem 2.1. The hypothesis on
t is more restrictive: Theorem 2.1 allowed any integer ti ≡ uqi (mod pi), whereas
Theorem 3.1 insists that 0 ≤ ti < pi.

One can allow a slightly wider range of ti, often making ti easier to compute,
at the expense of a larger bound on |v|. In the other direction, one can reduce the
bound on |v| by taking ti between −pi/2 and pi/2, and one can reduce the bound
further by similarly adjusting P/pi mod m, P mod m.

Proof. By Theorem 2.1, u =
∑

i tiP/pi − P round
∑

i ti/pi ≡ v. Furthermore, v ≤
∑

i ti(P/pi mod m) ≤
∑

i pim since ti ≤ pi, and −v ≤ (P mod m) round
∑

i ti/pi ≤
m

∑

i pi since ti ≤ p2
i . �

Theorem 3.1 suggests the following representation of integers modulo m. Select
moduli p1, . . . , ps whose product P = p1 · · · ps exceeds 4(m

∑

i pi)
2. Use the vector

(x mod p1, . . . , x mod ps), where x is any integer between −m
∑

i pi and m
∑

i pi,
to represent x mod m. Note that each element of Z/m has many representations.

The following procedure, given two such vectors (x mod p1, . . . , x mod ps) and
(y mod p1, . . . , y mod ps), computes another such vector (v mod p1, . . . , v mod ps)
with v ≡ xy (mod m):

• Precompute qi, P/pi mod m, and P mod m.
• Compute ti = ((x mod pi)(y mod pi)qi) mod pi, so that ti = (xy)qi mod pi.
• Compute round

∑

i ti/pi by Theorem 2.2.
• Compute v =

∑

i ti(P/pi mod m) − (P mod m) round
∑

i ti/pi. Then v is
between −m

∑

i pi and m
∑

i pi, and v ≡ xy (mod m), by Theorem 3.1.
• Compute the residues (v mod p1, . . . , v mod ps).

The output can then be used in subsequent multiplications. One can carry out
more componentwise operations before applying Theorem 3.1 if P is chosen larger;
see Section 5 for further discussion.

Montgomery and Silverman in [24, Section 4] suggested computing u mod m by
first computing v. (Another way to compute u mod m, well suited for FFT-based
arithmetic, is to perform the computation of [6, Section 13] modulo m.) The idea
of using v for subsequent operations, and not bothering to compute u mod m, was
introduced in [5].

4. The explicit CRT mod m mod pj

Theorem 4.1. Under the assumptions of Theorem 3.1,

v ≡
∑

i

ti(P/pi mod m mod pj)− (P mod m mod pj) round
∑

i

ti/pi (mod pj).

Proof. Reduce the definition of v modulo pj . �

Section 3 discussed precomputing P/pi mod m, precomputing P mod m, com-
puting v, and reducing v modulo pj . Theorem 4.1 suggests a different approach:
precompute P/pi mod m mod pj ; precompute P mod m mod pj ; compute v mod pj

as (
∑

i ti(P/pi mod m mod pj)− (P mod m mod pj) round
∑

i ti/pi) mod pj . This
idea was introduced in [5].

Theorem 4.1 is particularly well suited to parallel computation, as briefly ob-
served in [5]. By using additional ideas described in the remaining sections of this
paper, one can exponentiate on a polynomial-size parallel computer in sublinear
time, as shown in [31]. This paper supersedes [5] and [31].
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5. Higher powers

We begin by reviewing the left-to-right base-2 algorithm for computing xe mod
m:

Let l denote the number of bits in e;

Write e =
∑l−1

k=0 ek2k, where ek ∈ {0, 1};
y ← 1;
For(k ← l − 1; k ≥ 0; k ← k − 1) do:

y ← y2xek mod m;
Output(y);

More generally, let b be a power of 2. The base-b algorithm is as follows:

Let l denote the number of base-b digits in e;

Write e =
∑l−1

k=0 ekbk, where 0 ≤ ek < b;
y ← 1;
For(k ← l − 1; k ≥ 0; k ← k − 1) do:

y ← ybxek mod m;
Output(y);

Sane people take every opportunity to reduce intermediate results modulo m:
for example, they compute yb mod m by squaring y, reducing modulo m, squaring
again, reducing again, etc. We call this quite reasonable practice into question. It
may be better to first compute ybxek , then reduce the result modulo m. The benefit
of performing fewer reductions may outweigh the cost of performing arithmetic on
larger numbers. (Similar comments apply to other exponentiation algorithms.)

When we use the explicit Chinese remainder theorem to perform multiplications
modulo m, the cost of handling larger numbers is in using more primes p1, p2, . . . .
In the context of parallel computation, increasing the number of primes mainly
affects the number of processors, not the run time. In fact, as explained in the next
three sections, we can save an asymptotically non-constant factor in the run time
in various models of parallel computation, at a reasonable expense in the number
of processors.

Perhaps the same idea can also save a small constant factor in the serial case.

6. Definition of the CREW PRAM and the Common CRCW PRAM

We use two models of parallel computation in this paper. This section defines
the models.

In both models, computers are “parallel random-access machines” (PRAMs) in
which many processors can access variable locations in a shared memory. The
models differ in how they handle memory conflicts: the “Common CRCW PRAM”
allows many processors to simultaneously write a common value to a single memory
location, while the “CREW PRAM” does not. Our exponentiation algorithm in
Section 8 relies on the extra power of the Common CRCW PRAM; the simplified
algorithm in Section 7 works in either model.

We caution the reader that phrases such as “CREW PRAM” are not sufficient to
pin down a model of computation in the literature. For example, [26, Sections 2.6
and 15.2] defines unrealistic PRAMs in which the processor word size is permitted
to grow linearly as a computation progresses; at the other extreme, [12] presents
computations that fit into logarithmic-size index registers and constant-size data
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registers. The complexity of a computation can depend heavily on details of the
model. See [13] for a comparison of several models.

Computers. A parallel computer is parametrized by positive integers p, s, w, r, i
such that p ≤ 2w and s ≤ 2w. The computer has p processors, numbered from
0 through p − 1, operating on s words of shared memory, labelled mem[0] through
mem[s−1]. Each word is a w-bit string, often interpreted as the binary representation
of an integer between 0 and 2w − 1. Each processor has r registers, labelled reg[0]
through reg[r − 1]; each register contains one word. The computer also has space
for i instructions; each processor has an instruction pointer.

Algorithms. A parallel algorithm is a sequence of instructions. (The algorithm
fails on a computer of size p, s, w, r, i if it has more than i instructions.) Here are
the possible instructions:

• Clear j: Set reg[j]← 0. (The algorithm fails if j ≥ r.)
• Increment j, k: Set reg[j]← (reg[k] + 1) mod 2w.
• Add j, k, `: Set reg[j]← (reg[k] + reg[`]) mod 2w.
• Subtract j, k, `: Set reg[j]← (reg[k]− reg[`]) mod 2w.
• Shift left j, k, `: Set reg[j]← (reg[k]2reg[`]) mod 2w.
• Shift right j, k, `: Set reg[j]←

⌊

reg[k]/2reg[`]
⌋

.
• Word size j: Set reg[j]← w.
• Identify j: Set reg[j]← this processor’s number.
• Read j, k: Set reg[j]← mem[reg[k]]. (The algorithm fails if reg[k] ≥ s.)
• Write j, k: Set mem[reg[k]]← reg[j].
• Jump j, k, `: If reg[k] ≥ reg[`], go to instruction j, rather than proceeding

to the next instruction as usual.

A n-bit input to the algorithm is placed into memory at time 0, with n in the first
word of memory, and the n bits packed into the next dn/we words of memory. (The
algorithm fails if 2w ≤ n, or if s < 1+dn/we.) All other words of memory, registers,
etc. are set to 0. Each processor performs one instruction at time 1; each processor
performs one instruction at time 2; and so on until all the processors have halted.
The output is then in memory, encoded in the same way as the input.

Memory conflicts. During one time step, a single memory location might be
accessed by more than one processor.

The concurrent-read exclusive-write PRAM, or CREW PRAM, allows
any number of processors to simultaneously read the same memory location, but it
does not allow two processors to simultaneously write to a single memory location.

The concurrent-read common-concurrent-write PRAM, or Common

CRCW PRAM, allows any number of processors to simultaneously read the same
memory location, and allows any number of processors to simultaneously write the
same memory location, if they all write the same value. (If two processors attempt
to write different values, the algorithm fails.)

A memory location cannot be read and written simultaneously.

Asymptotics. When we say that a parallel algorithm handles an n-bit input using
(for example) time O(n) on O(n3) processors with a word size of O(lg n) using O(n4)
memory locations, we mean that it works on any sufficiently large computer: there
are functions p(n) ∈ O(n3), s(n) ∈ O(n4), w(n) ∈ O(lg n), and t(n) ∈ O(n) such
that, for every n, every p ≥ p(n), every s ≥ s(n), every w ≥ w(n), every r larger



MODULAR EXPONENTIATION VIA THE EXPLICIT CHINESE REMAINDER THEOREM 7

than the highest register number used in the algorithm, every i larger than the
length of the algorithm, and every input string of length n, the algorithm runs
without failure on that input in time at most t(n) on a parallel computer of size
p, s, w, r, i.

When we do not mention the word size (and number of memory locations),
we always mean that the required word size is logarithmic in the time-processor
product (and, consequently, the required number of memory locations is polynomial
in the time-processor product).

7. Modular exponentiation on the CREW PRAM

In this section we present a linear-time algorithm, using a polynomial number
of processors, for modular exponentiation on the CREW PRAM.

Time O(n(lg n)2). Given the binary representations of n-bit integers x and y, one
can compute xy in time O(lg n) using nO(1) processors. One can compute x/y and
x mod y by Newton’s method in time O((lg n)2) using nO(1) processors. See [33,
Theorem 12.1].

The base-2 exponentiation algorithm shown in Section 5, using these subrou-
tines, computes xe mod m in time O(n(lg n)2) if x, e, m have n bits. There are
O(n) iterations in the algorithm, each iteration involving a constant number of
multiplications and divisions of O(n)-bit integers. The number of processors is
polynomial in n.

Time O(n lg n). A division algorithm of Beame, Cook, and Hoover takes time only
O(lg n) using nO(1) processors, after a precomputation taking time O((lg n)2). See
[3].

The main subroutine in the Beame-Cook-Hoover algorithm computes powers
xv, where x has n bits and v ∈ {0, 1, . . . , n}, in time O(lg n). The idea is to use
the CRT to recover xv from the remainders xv mod p for enough small primes p.
Beame, Cook, and Hoover precompute the primes p and the powers uv mod p for
all u ∈ {0, 1, . . . , p− 1} and all v ∈ {0, 1, . . . , n}; then they can compute xv mod p
as (x mod p)v mod p. This is one of the ideas that we use in Section 8.

Time O(n). To save another lg n factor, we choose an integer b ≥ 2 so that lg b ∈
Θ(lg n), and we use the base-b exponentiation algorithm.

The number of iterations drops to O(logb e) = O(n/lg n). Each iteration involves
computing ybxv mod m for some v ∈ {0, 1, . . . , b− 1}; we compute yb and xv in
time O(lg n) by the Beame-Cook-Hoover subroutine, then multiply, then use the
Beame-Cook-Hoover algorithm again to divide by m.

8. Modular exponentiation on the Common CRCW PRAM

Fix ε > 0. Some of the O constants below depend on ε.
In this section we present a sublinear-time algorithm, using a polynomial number

of processors, for modular exponentiation on the Common CRCW PRAM:

Theorem 8.1. There is an algorithm for the Common CRCW PRAM that, given

the binary representations of positive integers x, e, and m, of total bit length n,

computes the binary representation of xe mod m in time O(n/lg lg n) using O(n2+ε)
processors.
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The algorithm can be converted into a polynomial-size unbounded-fan-in circuit
of depth O(n/lg lg n), using the techniques explained in [32]. The algorithm of
Section 7 can be converted into a polynomial-size bounded-fan-in circuit of depth
O(n) by the same techniques.

The only previous sublinear-time algorithms were algorithms that use many more
processors or that drastically restrict m. See [14, Section 6] for a survey.

We do not know an exponentiation algorithm that takes time O(n/lg lg n) using
n2+o(1) processors. Allowing ε to vary with n would hurt the time bound: for
example, choosing ε as 1/lg lg lg lg n would produce an algorithm that takes time
O(n lg lg lg lg n/lg lg n) using O(n2+1/lg lg lg lg n) processors.

In a few applications, the exponent e is only a small part of the input, perhaps
√

n
or 3
√

n bits. The running time depends primarily on the length of e: the algorithm
takes time O((lg e)/lg lg n) + (lg n)O(1) using O(n2+ε) processors.

How we save a lg lg n factor. The algorithm in this section, like the simplified
linear-time algorithm of Section 7, performs several multiplications before each
reduction modulo m. It achieves better parallelization than the algorithm of Section
7 by

• avoiding the binary representation in the main loop—we use the explicit
Chinese remainder theorem modulo m modulo pj , as described in Section
4, to work consistently in the residue representation—and

• using the Cole-Vishkin parallel-addition algorithm to add O(n) integers,
each having O(lg n) bits, in time O((lg n)/lg lg n) using n1+o(1) processors.
See [10] and [34].

Perhaps the same lg lg n speedup can be obtained with other redundant represen-
tations of integers modulo m; we leave this exploration to the reader.

Outside the inner loop (step 6 below), the algorithm takes time only (lg n)O(1)

using O(n2+ε) processors. We take advantage of several standard FFT-based tools
here:

• Given n bits representing two integers x, y (in binary), one can use the
Schönhage-Strassen multiplication algorithm to compute the product xy in
time (lg n)O(1) using n1+o(1) processors. See [29].

• Given n bits representing two integers x, y with y 6= 0, one can compute the
quotient bx/yc in time (lg n)O(1) using n1+o(1) processors. See [33, Theorem
12.1].

• Given n bits representing s integers, one can compute the product of all the
integers in time (lg n)O(1) using n1+o(1) processors, by multiplying pairs in
parallel.

• Given n bits representing integers u, p1, p2, . . . , ps, one can use the Borodin-
Moenck remainder-tree algorithm to compute u mod p1, . . . , u mod ps in
time (lg n)O(1) using n1+o(1) processors. See [22], [8, Sections 4–6], and [6,
Section 18].

Without the FFT-based tools, step 4 below requires roughly n3 processors to be
carried out in polylogarithmic time. This is (after some serialization) adequate for
Theorem 8.1, but it becomes a bottleneck when e is much shorter than m.

Step 1: build multiplication tables. Fix a positive rational number δ ≤ ε/3.
Compute an integer a ≥ 1 within 1 of δ lg n. Note that an a-bit integer fits into
O(1) words, since a ∈ O(lg n).
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Compute xy and (for y 6= 0) bx/yc for each pair x, y of a-bit integers in paral-
lel. Store the results in a table of O(22a) words. This takes time O(a) using 22a

processors; i.e., time O(lg n) using O(n2δ) processors.
Note that, if x and y are O(lg n)-bit integers, then x and y are also O(a)-bit

integers, so one processor can compute x + y, x − y, xy, and bx/yc in time O(1)
with the help of this table.

Step 2: find primes. Define b = 23a. Note that b ∈ Θ(nδ).
Find the smallest integer k ≥ 6 such that 2k ≥ 4 + 4b(n + k). Use a parallel

sieve, as described in [30], to find the primes p1, p2, . . . , ps between 2 and 2k. This
takes time O((1 + δ) lg n) using O(n1+δ) processors; note that s ≤ ps ∈ O(n1+δ).

Define P = p1p2 · · · ps. Note that lg P ∈ O(n1+δ) by, e.g., [28, Theorem 9]. Note
also that P ≥ 4(m2

∑

pi)
b. (Indeed, 2k ≥ 41, so log P = log p1 + log p2 + · · · +

log ps ≥ 2k(1 − 1/ log 2k) by [28, Theorem 4]; also p1 + p2 + · · · + ps ≤ 22k. Thus
lg P ≥ log P ≥ 2k−1 ≥ 2 + b(2n + 2k) ≥ lg 4 + b(lg m2 + lg

∑

pi).)
Multiply p1, . . . , ps to compute P . This takes time (lg P )O(1) using (lg P )1+o(1)

processors; i.e., time (lg n)O(1) using n1+δ+o(1) processors.

Step 3: build power tables. For each i ∈ {1, 2, . . . , s} in parallel, for each
u ∈ {0, 1, . . . , pi − 1} in parallel, for each v ∈ {0, 1, . . . , b} in parallel (or serial),
compute uv mod pi. Store the results in a table. This takes time O(lg b) using
O(sps(b + 1)) processors; i.e., time O(lg n) using O(n2+2δ lg n) processors.

(An alternative approach, with smaller tables, is to find a generator gi for the
multiplicative group (Z/pi)

∗, build a table of powers of gi, and build a table of
discrete logarithms base gi. See [30].)

Step 4: compute ECRT coefficients. For each i in parallel, compute Pi =
P/pi; Pi mod pi; Pi mod m; and Pi mod m mod p1, Pi mod m mod p2, . . . , Pi mod
m mod ps. This takes time (lg P )O(1) using s(lg P )1+o(1) processors; i.e., time
(lg n)O(1) using n2+2δ+o(1) processors.

Next, for each i in parallel, compute qi = (Pi mod pi)
pi−2 mod pi, so that qi is

the inverse of Pi modulo pi. This takes time O(lg ps) using s processors; i.e., time
O(lg n) using O(n1+δ) processors.

Step 5: convert to the residue representation. Set x← x mod m. This takes
time (lg n)O(1) using n1+o(1) processors.

Set x1 ← x mod p1, x2 ← x mod p2, . . . , xs ← x mod ps. This takes time
(lg n)O(1) using n1+δ+o(1) processors. Also set y1 ← 1, y2 ← 1, . . . , ys ← 1.

Let l be the number of base-b digits in e. Write e =
∑l−1

k=0 ekbk with 0 ≤ ek < b.
Note that l ∈ O(n/lg n).

Step 6: inner loop. Repeat the following substeps for k ← l − 1, k ← l − 2,
. . . , k ← 0. Each substep will take time O((lg n)/lg lg n), so the total time here is
O(n/lg lg n).

Invariant: The integer y represented by (y1, y2, . . . , ys) is between −m
∑

i pi

and m
∑

i pi, and is congruent to xel−1bl−k−2+···+ek+2b+ek+1 modulo m. The plan
is to compute the residue representation of u = ybxek , and then change y to the
integer v identified in Theorem 3.1. Note that |u| < (m2

∑

i pi)
b ≤ P/4; hence

v ≡ u ≡ xel−1bl−k−1+···+ek+2b2+ek+1b+ek (mod m).
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For each i in parallel, compute ti ← (yb
i mod pi)(x

ek

i mod pi)qi mod pi. This
takes time O(1) using s processors, thanks to the precomputed power table.

Compute r ← round
∑

i ti/pi with the help of Theorem 2.2. The fixed-point
divisions take time O(1) using s processors. The addition takes time O((lg s)/lg lg s)
using s1+o(1) processors.

For each j in parallel, compute yj ←
∑

i ti(Pi mod m mod pj). This takes time

O((lg s)/lg lg s) using s2+o(1) processors; i.e., time O((lg n)/lg lg n) using n2+2δ+o(1)

processors.
For each j in parallel, compute yj ← (yj − r(P mod m mod pj)) mod pj . This

takes time O(1) using s processors.

Step 7: convert to the binary representation. Use Theorem 2.1 to com-
pute the binary representation of the integer y whose residue representation is
(y1, y2, . . . , ys). This takes time (lg n)O(1) using n2+2δ+o(1) processors.

Now xe = xel−1bl−1+···+e1b+e0 ≡ y (mod m). The output of the algorithm is y.
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