Draft.

PROTECTING COMMUNICATIONS AGAINST FORGERY

DANIEL J. BERNSTEIN

ABSTRACT. This paper is an introduction to cryptography. It covers secret-
key message authentication codes, unpredictable random functions, public-key
secret-sharing systems, and public-key signature systems.

1. INTRODUCTION

Cryptography protects communications against espionage: an eavesdropper who
intercepts a message will be unable to decipher it. This is useful for many types of
information: credit-card transactions, medical records, love letters.

There is another side to cryptography. Cryptography protects communications
against sabotage: a forger who fabricates or modifies a message will be unable to
fool the receiver. This is useful for all types of information. If the receiver does not
care about the authenticity of a message, why is he listening to the message in the
first place?

This paper explains how cryptography prevents forgery. Section 2 explains how
to protect n messages if the sender and receiver share 128(n+1) secret bits. Section
3 explains how the sender and receiver can generate many shared secret bits from
a short shared secret. Section 4 explains how the sender and receiver can generate
a short shared secret from a public conversation. Section 5 explains how the sender
can protect a message sent to many receivers, without sharing any secrets.

2. UNBREAKABLE SECRET-KEY AUTHENTICATORS

Here is a protocol for transmitting a message when the sender and receiver both
know certain secrets:

Secrets p, k Secrets p, k

|

Authenticated Possibly forged
—_—

—> Verification
message m, a message m’,a’

Message m —
The message is a polynomial m € F[z] with m(0) = 0 and degm < 1000000. Here
F is the field (Z/2)[y]/(y'2® + v° + 47 + 32 + 1) of size 2128. The secrets are two
independent uniform random elements p and & of F.

The sender transmits (m,a) where a = m(p) + k. The forger replaces (m,a)
with (m’,a’); if the forger is inactive then (m’,a’) = (m,a). The receiver discards
(m',a’) unless o’ = m/(p) + k.

The extra information a is called an authenticator.

Date: 20010731.
1991 Mathematics Subject Classification. Primary 94A62.

1

2 DANIEL J. BERNSTEIN

Security. I claim that the forger has chance smaller than 27198 of fooling the
receiver, i.e., of finding (m', a’) with m’ # m and @’ = m/(p) + k. The proof is easy.
Fix (m,a) and (m',a’), and count pairs (p, k):

e There are exactly 2'28 pairs (p, k) satisfying a = m(p) + k. Indeed, there is

exactly one possible k for each possible p.

e Fewer than 220 of these pairs also satisfy a’ = m/(p) + k, if m’ is different
from m. Indeed, any qualifying p would have to be a root of the nonzero
polynomial m — m' — a + o’; this polynomial has degree at most 1000000,
so it has at most 1000000 < 22° roots.

Thus the conditional probability that a’ = m’(p) + k, given that a = m(p) + &, is
smaller than 220/2128 — 2108,

In practice, the receiver will continue listening for messages after discarding a
forgery, so the forger can try again and again. By flooding the receiver with a
billion messages per second for a billion years, a persistent, wealthy, long-lived
forger would be able to try nearly 285 forgeries. His chance of success—his chance
of producing at least one (m’,a’) with a’ = m/(p) + k and with m’ not transmitted
by the sender—is below 2723,

Handling many messages. One can use a single p with many k’s to protect a
series of messages:

Secrets Secrets
p,k],k2,... p,kl,kg,...

Message m, Authenticated Possibly forged

—> Verification
number n message n,m,a message n',m’,a

The sender and receiver share secrets p, ki, ko, k3,.... The sender transmits the
nth message m as (n,m, a) where a = m(p) + k,,. The receiver discards (n’,m’,a’)
unless a’ = m/'(p) + kp'.

In this context n is called a nonce and a is again called an authenticator. The
random function (n,m) — m(p) + k, is called a message authentication code
(MAC).

The forger’s chance of success is at most 271D, where D is the number of
forgery attempts. This is true even if the forger sees all the messages transmitted
by the sender. It is true even if the forger can influence the choice of those messages,
perhaps responding dynamically to previous authenticators. In fact, is is true even
if the forger has complete control over each message, although a forger who starts
with this much power obviously does not need to modify messages in transit!

History. Gilbert, MacWilliams, and Sloane in [16, section 9] introduced the first
easy-to-compute unbreakable authenticator, using a long shared secret for a long
message. Wegman and Carter in [31, section 3] proposed the form h(m) + k,, for
an authenticator and pointed out that a short secret could handle a long message.

There is now a huge literature on unbreakable MACs. For surveys see [22] and
my paper [6]. For two state-of-the-art systems see [9] and [6].

PROTECTING COMMUNICATIONS AGAINST FORGERY 3

3. UNPREDICTABLE RANDOM FUNCTIONS
Here is a protocol that is conjectured to protect a series of messages:

Secret s ——p, k1, ko, ... Secret s ———p, k1, kg, ...

|

Message m, Authenticated Possibly forged

Verification
number n message n,m,a message n',m’,a’

The sender and receiver share a secret uniform random 256-bit string s. The sender
and receiver compute p = MD5(s,0), k1 = MD5(s,1), ko = MD5(s,2), etc. The
sender transmits the nth message m as (n, m, a) where a = m(p) + k. The receiver
discards (n',m’,a’) unless a’ = m/(p) + kn.

MDS5 is the function defined in [25], producing 128-bit output. The definition is
much too complicated to be repeated here.

An attacker, given several authenticated messages, might try to solve for s.
Presumably there is only one choice for s consistent with all the authenticators.
However, the fastest known method of solving for s is to search through all 2256
possibilities. This is far beyond the computer power that will be available in the
foreseeable future.

Is there a faster attack? Perhaps. We believe that this protocol is unbreakable,
but we have no proof. On the other hand, this protocol has the advantage of using
only 256 shared secret bits to handle any number of messages.

Unpredictability. Let u be a uniform random function from {0,1,2,...} to F.
Consider oracle algorithms A that print 0 or 1. What is the difference between

e the probability that A prints 1 using n — MD5(s,n) as an oracle and
e the probability that A prints 1 using u as an oracle?

It is conjectured that the difference is smaller than 2740 for every A that finishes in
at most 280 steps. In short, n — MD5(s,n) is conjectured to be unpredictable.

If n — MD5(s,n) is, in fact, unpredictable, then this authentication protocol is
unbreakable: a fast algorithm that makes D forgery attempts cannot succeed with
probability larger than 27105 D 2740,

History. Turing introduced the concept of unpredictability in [29]: “Suppose we
could be sure of finding [laws of behaviour] if they existed. Then given a discrete-
state machine it should certainly be possible to discover by observation sufficient
about it to predict its future behaviour, and this within a reasonable time, say
a thousand years. But this does not seem to be the case. I have set up on the
Manchester computer a small programme using only 1000 units of storage, whereby
the machine supplied with one sixteen figure number replies with another within
two seconds. I would defy anyone to learn from these replies sufficient about the
programme to be able to predict any replies to untried values.”

The literature is full of very quickly computable short random functions that
seem difficult to predict. Here short means that the random function is determined
by a short uniform random string. Unfortunately, most of these random functions
are “block ciphers” burdened by the unnecessary constraint of invertibility. See the
books [27] and [19] for descriptions of many “block ciphers” and “random-access
stream ciphers.”

4 DANIEL J. BERNSTEIN

Blum, Blum, and Shub in [12] constructed a fast short random function with a
small input, and proved that any fast algorithm to predict that function could be
turned into a surprisingly fast algorithm to factor integers. Naor and Reingold in
[21] constructed fast random functions with large inputs and with similar guarantees
of unpredictability. These functions are never used in practice, because they are not
nearly as fast as MDb5; but they show that unpredictability is not a silly concept.

Unpredictability has an interesting application to complexity theory: one can use
it to turn fast probabilistic algorithms into reasonably fast deterministic algorithms.
This was pointed out by Yao in [33]. It is now widely believed that the complexity
classes BPP and P are identical. See [17].

Beware that the name “unpredictable” has several aliases in the literature. See
section 2 of my paper [4] for further discussion.

4. PUBLIC-KEY SECRET SHARING

Here is a protocol for the sender and receiver to generate a 256-bit shared secret
from a public conversation:

Sender’s Receiver’s
secret b secret ¢
Sender’s Receiver’s
public key public key
4b mod ¢ >< 4¢mod ¢
Shared secret s = Shared secret s =
SHA(1,16% mod ¢) SHA(1,16% mod ¢)

The sender starts from a secret uniform random integer b with 0 < b < 2256,
The sender computes and announces a public key 4° mod £. Here £ is the prime
number |2'%347| + 444896; note that (¢ — 1)/2 is also prime.

Similarly, the receiver starts from a secret uniform random integer ¢ with 0 <
¢ < 2256 The receiver computes and announces a public key 4¢ mod /.

The sender now computes 16°¢ mod £ as the 2bth power of the receiver’s public
key 4° mod ¢. The receiver computes 16°° mod £ as the 2cth power of the sender’s
public key 4° mod £.

Finally, the sender and receiver compute s = SHA(1,16% mod £). SHA is the
function defined in [3], producing 256-bit output. The definition of SHA, like the
definition of MD5, is much too complicated to be repeated here.

It appears to be very difficult for an attacker to distinguish the shared secret s
from a uniform random 256-bit string. The attacker is given 4®* mod £ and 4°¢ mod 2,
but neither b nor c. The fastest known method of figuring anything out about s is
to use the number field sieve to compute b from 4 mod ¢. This computation is not
feasible today.

PROTECTING COMMUNICATIONS AGAINST FORGERY 5

The sender and receiver can use this shared secret s to protect the authenticity
of a series of messages:

Sender’s Receiver’s
secret b secret ¢
Sender S Receiver’s
ubhc key public key
4b mod ¢ >< 4° mod ¢
Shared secret s = Shared secret s =
SHA(1,16% mod) SHA(1,16% mod ¢)
D, k1, ko, ... D, k1, ko, ...
Message m, Authenticated Possibly forged) l)
number n message n,m, a message n',m’,a Verification

There is no fast method known for a forger to take advantage of the public keys
4° mod ¢ and 4° mod £.

History. Diffie and Hellman in [13] introduced the general idea of sharing a secret
through a public channel, and the specific approach shown above.

There are several popular variants of the Diffie-Hellman system, using groups
other than (Z/£)*. One interesting variant uses the group of points on an elliptic
curve over Z/{ for £ around 22°¢. This allows much shorter public keys, only 256
bits instead of 1536 bits, and is still conjectured to be safe. See the book [10] for
more information on elliptic-curve cryptography.

See [23] for an introduction to modern discrete-logarithm methods. See [30] for
a recent example of what can be done with the number field sieve. See my papers
[7] and [8] for asymptotic improvements; [7] includes a comprehensive bibliography.

5. PUBLIC-KEY SIGNATURES

Here is a protocol for the sender to protect a message sent to many receivers:

Sender’ Sender’s
s:Iclreir bs public key
4% mod ¢

Signed message Possibly forged

Message m — ;o
m,r,u message m',r’, u

;, —> Verification

The sender starts from a secret uniform random integer b with 0 < b < 22°¢, Asin
the previous section, the sender computes and announces a public key 4° mod .

6 DANIEL J. BERNSTEIN

Given a message m, the sender selects a secret uniform random integer e with
0 < e < 2%5%; computes r = 4° mod ¢; and finds an integer v with 0 < u < (£—1)/2
such that e = u(SHA(2,m) + SHA(3,7)b) (mod(¢ — 1)/2). If no such integer u
exists, the sender tries a new e. The sender then transmits (m,r,u).

The receiver discards (m/,r’,u’) unless 1/ = 45SHA@m)u pSHAG)u" 164 ¢ and
0 < u' < (£—1)/2, where n = 4° mod /.

The pair (7, u) is a signature of m. Signatures are different from authenticators:
a signature can be verified by anyone, while an authenticator can be verified only by
people who could have created the authenticator. The receiver can convince third
parties that the sender signed a message; the receiver cannot convince third parties
that the sender authenticated a message. Signatures are appropriate for public
communications; authenticators are appropriate for private communications.

It seems that forging signatures is very difficult. As in the previous section, the
fastest known attack is to use the number field sieve to compute b from 4° mod ¢.
This computation is not feasible today.

History. Diffie and Hellman in [13] introduced the idea of public-key signatures,
but did not have any useful examples. Rivest, Shamir, and Adleman in [26] are often
credited with the first example; but the original RSA system is obviously breakable.
Rabin in [24] presented a variant of RSA that appears to be unbreakable. See my
paper [5] for a state-of-the-art RSA-type system.

ElGamal in [15] introduced the type of signature system shown above. Signature
verification in the ElGamal system is much slower than signature verification in the
Rabin system; however, elliptic-curve variants of the ElGamal system offer much
smaller signatures than the Rabin system does.

REFERENCES

[1] —, 28rd annual symposium on foundations of computer science, IEEE Computer Society,
New York, 1982. MR 85k:68007.

[2] —, 38th annual symposium on foundations of computer science, IEEE Computer Society,
Los Alamitos, 1997. ISBN 0-8186-8197-7.

[8] —, Descriptions of SHA-256, SHA-384, and SHA-512, National Institute of Standards
and Technology, Washington, 2000; available from http://csrc.nist.gov/encryption/shs/
sha256-384-512.pdf.

[4] Daniel J. Bernstein, How to stretch random functions: the security of protected counter
sums, Journal of Cryptology 12 (1999), 185-192; available from http://cr.yp.to/papers
.html#stretch. MR 2000b:94015.

[5] Daniel J. Bernstein, A secure public-key signature system with extremely fast verification, to
appear, Journal of Cryptology; available from http://cr.yp.to/papers.html#sigs.

[6] Daniel J. Bernstein, Floating-point arithmetic and message authentication, submitted for
publication; available from http://cr.yp.to/papers.html#hash127.

[7] Daniel J. Bernstein, How to find small factors of integers, submitted for publication; available
from http://cr.yp.to/papers.html#sf.

[8] Daniel J. Bernstein, The cost of integer factorization, draft.

[9] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, Phillip Rogaway, UMAC: fast and se-
cure message authentication, in [32] (1999), 216-233; available from http://www.cs.ucdavis.
edu/~rogaway/papers/umac.html. MR 1 729 300.

[10] Tan F. Blake, Gadiel Seroussi, Nigel P. Smart, Elliptic curves in cryptography, Cambridge
University Press, Cambridge, 2000. ISBN 0-521-65374-6. MR 1 771 549.

[11] G. R. Blakley, David Chaum (editors), Advances in cryptology: CRYPTO ’84, Lecture Notes

in Computer Science 196, Springer-Verlag, Berlin, 1985. ISBN 3-540-15658-5. MR 86j:94003.

Lenore Blum, Manuel Blum, Michael Shub, A simple unpredictable pseudorandom number

generator, SIAM Journal on Computing 15 (1986), 364-383. MR 87k:65007.

[12

(13
14
[15
[16
[17
[18

[19

[20

25
26
27
28
29
30
31
32

(33

PROTECTING COMMUNICATIONS AGAINST FORGERY 7

| Whitfield Diffie, Martin Hellman, New directions in cryptography, IEEE Transactions on
Information Theory 22 (1976), 644—-654. MR 55 #10141.

| Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete loga-
rithms, in [11] (1985), 10-18. MR 87b:94037.

| Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete loga-
rithms 31 (1985), 469-472; draft in [14]. MR 86j:94045.

| Edgar N. Gilbert, F. Jessie MacWilliams, Neil J. A. Sloane, Codes which detect deception,
Bell System Technical Journal 53 (1974), 405-424. MR 55 #5306.

1 Oded Goldreich, Modern cryptography, probabilistic proofs and pseudorandomness, Springer-
Verlag, Berlin, 1999. ISBN 3-540-64766-X. MR 20001{:94029.

| Hugo Krawczyk (editor), Advances in cryptology: CRYPTO ’98, Lecture Notes in Computer
Science 1462, Springer-Verlag, Berlin, 1998. ISBN 3-540-64892-5. MR 99i:94059.

| Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Handbook of applied cryptog-
raphy, CRC Press, Boca Raton, Florida, 1996; available from http://cacr.math.uwaterloo.
ca/hac/index.html. ISBN 0-8493-8523-7. MR 99g:94015.

| Gary L. Mullen, Peter Jau-Shyong Shiue (editors), Finite fields: theory, applications, and
algorithms, American Mathematical Society, Providence, 1994. ISBN 0-8218-5183-7. MR
95¢:11002.

] Moni Naor, Omer Reingold, Number-theoretic constructions of efficient pseudo-random func-
tions, in [2] (1997), 458—-467.

] Wim Nevelsteen, Bart Preneel, Software performance of universal hash functions, in [28]
(1999), 24-41.

| Andrew M. Odlyzko, Discrete logarithms and smooth polynomials, in [20] (1994), 269-278.
MR 95£:11107.

] Michael O. Rabin, Digitalized signatures and public-key functions as intractable as factor-

ization, Technical Report 212, MIT Laboratory for Computer Science, 1979; available from

http://hdl.handle.net/ncstrl.mit lcs/MIT/LCS/TR-212.

Ronald L. Rivest, The MD5 message-digest algorithm, Request For Comments 1321 (1992);

available from http://theory.lcs.mit.edu/ "rivest/rfc1321.txt.

| Ronald L. Rivest, Adi Shamir, Leonard M. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Communications of the ACM 21 (1978), 120-126.

] Bruce Schneier, Applied cryptography: protocols, algorithms, and source code in C, 2nd
edition, Wiley, New York, 1996. ISBN 0-471-12845-7.

| Jacques Stern (editor), Advances in cryptology—EUROCRYPT ’99, Lecture Notes in Com-
puter Science 1592, Springer-Verlag, Berlin, 1999. ISBN 3-540-65889—-0. MR. 2000i:94001.

| Alan M. Turing, Computing machinery and intelligence, MIND 59 (1950), 433-460. MR
12,208c.

| Damian Weber, Thomas Denny, The solution of McCurley’s discrete log challenge, in [18]
(1998), 458—-471. MR 99i:94057.

] Mark N. Wegman, J. Lawrence Carter, New hash functions and their use in authentication
and set equality, Journal of Computer and System Sciences 22 (1981), 265-279. MR 82i:68017.

] Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, Lecture Notes in Computer
Science 1666, Springer-Verlag, Berlin, 1999. ISBN 3-540-66347-9. MR 2000h:94003.

| Andrew C. Yao, Theory and applications of trapdoor functions, in [1] (1982), 80-91.

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249), THE UNI-

VERSITY OF ILLINOIS AT CHICAGO, CHICAGO, IL 60607-7045

E-mail address: djb@cr.yp.to

