
Version 1.0

June 2003

UltraSPARC® IIIi Processor

User’s Manual

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California

95054, U.S.A. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Chorus, VIS, OpenBootPROM,

UltraSPARC IIIi Processor User’s Manual and SPARC are trademarks or registered

trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Use of any spare or replacement processors is limited to repair or one-for-one replacement of

processors in products exported in compliance with U.S. export laws. Use of processors as

product upgrades unless authorized by the U.S. Government is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED

CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY

IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT

THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Table of Contents

Preface xxv

Acronyms and Definitions xxxi

Section I: Processor Introduction

1. Introducing the UltraSPARC IIIi Processor ..3

1.1 Overview ..3

1.2 Features ..4

1.3 Summary ..5

2. UltraSPARC IIIi Processor in a System ...9

2.1 System Configurations ...9

2.1.1 Four-Processor System ...9

2.1.2 Two-Processor System ...11

2.1.3 One-Processor System ..12

2.2 JBUS Interface ...13

2.3 Memory System ...13

2.4 Power Management ..14
Table of Contents i

Section II: Architecture and Functions

3. UltraSPARC IIIi Processor Architecture Basics ... 17

3.1 Component Overview .. 17

3.1.1 Instruction Fetch and Buffering ... 19

3.1.2 Execution Pipelines ... 20

3.1.3 Load/Store Unit ... 20

3.1.4 Memory Management Units .. 22

3.1.5 Embedded Cache Unit (Level-2 Unified Cache) 23

3.1.6 JBUS Interface Unit ... 23

3.1.7 Memory Controller Unit .. 23

3.2 Processor Operating Modes ... 24

3.2.1 Privileged Mode ... 24

3.2.2 Non-Privileged Mode ... 24

3.2.3 Reset and RED_State ... 24

3.2.4 Error Handling ... 27

3.2.5 Debug and Diagnostics Mode .. 29

4. Instruction Execution .. 31

4.1 Introduction ... 31

4.1.1 NOP, Neutralized, and Helper Instructions .. 31

4.2 Processor Pipeline ... 32

4.2.1 Instruction Dependencies ... 35

4.2.2 Instruction-Fetch Stages .. 36

4.2.3 Instruction Issue and Queue Stages ... 37

4.2.4 Execution Pipeline ... 38

4.2.5 Trap and Done Stages .. 40

4.3 Pipeline Recirculation .. 41

4.4 Grouping Rules .. 41

4.4.1 Execution Order ... 42
ii UltraSPARC IIIi Processor User’s Manual • June 2003

4.4.2 Integer Register Dependencies to Instructions in the MS Pipeline42

4.4.3 Integer Instructions Within a Group ...43

4.4.4 Same-Group Bypass ...44

4.4.5 Floating-Point Unit Operand Dependencies ...44

4.4.6 Grouping Rules for Register-Window Management Instructions46

4.4.7 Grouping Rules for Reads and Writes of the ASRs46

4.4.8 Grouping Rules for Other Instructions ...47

4.5 Conditional Moves ...48

4.6 Instruction Latencies and Dispatching Properties ..49

4.6.1 Latency ...49

4.6.2 Blocking ...50

4.6.3 Pipeline ..50

4.6.4 Break and SIG ..50

Section III: Execution Environment

5. Data Formats ..59

5.1 Integer Data Formats ..60

5.1.1 Integer Data Value Range ...60

5.1.2 Integer Data Alignment ..61

5.1.3 Signed Integer Data Types ..61

5.1.4 Unsigned Integer Data Types ...63

5.1.5 Tagged Word ..64

5.2 Floating-Point Data Formats ..65

5.2.1 Floating-Point Data Value Range ...65

5.2.2 Floating-Point Data Alignment ..65

5.2.3 Floating-Point, Single-Precision ..66

5.2.4 Floating-Point, Double-Precision ...67

5.2.5 Floating-Point, Quad-Precision ..68
Table of Contents iii

5.3 VIS Execution Unit Data Formats ... 69

5.3.1 Pixel Data Format .. 70

5.3.2 Fixed-Point Data Formats .. 70

6. Registers ... 73

6.1 Introduction ... 73

6.1.1 Document Notes .. 74

6.2 Integer Unit General-Purpose r Registers .. 74

6.2.1 Windowed (in/local/out) r Registers .. 76

6.2.2 Global r Register Sets .. 76

6.3 Register Window Management .. 78

6.3.1 CALL and JMPL Instructions .. 80

6.3.2 Circular Windowing ... 80

6.3.3 Clean Window with RESTORE and SAVE Instructions 80

6.4 Floating-Point General-Purpose Registers ... 80

6.4.1 Floating-Point Register Number Encoding .. 82

6.4.2 Double and Quad Floating-Point Operands ... 83

6.5 Control and Status Register Summary ... 83

6.5.1 State and Ancillary State Register Summary ... 85

6.5.2 Privileged Register Summary .. 87

6.5.3 ASI and Specially Accessed Register Summary 89

6.6 State Registers ... 90

6.6.1 32-bit Multiply/Divide (YD) State Register 0 .. 90

6.6.2 Integer Unit Condition Codes State Register 2 (CCR) 90

6.6.3 Address Space Identifier (ASI) Register ASR 3 92

6.6.4 TICK Register (TICK) ASR4 .. 93

6.6.5 Program Counters State Register 5 .. 93

6.6.6 Floating-Point Registers State (FPRS) Register 6 93

6.7 Ancillary State Registers: ASRs 16-25 .. 94

6.7.1 Dispatch Control Register (DCR) ASR 18 ... 95
iv UltraSPARC IIIi Processor User’s Manual • June 2003

6.7.2 Graphics Status Register (GSR) ASR 19 ..97

6.7.3 Software Interrupt State Registers: ASRs 20, 21, and 2299

6.7.4 Timer State Registers: ASRs 4, 23, 24, 25 ...101

6.8 Privileged Registers ...104

6.8.1 Trap Stack Privileged Registers 0 through 3 ..104

6.8.2 Trap Base Address (TBA) Privileged Register 5107

6.8.3 Processor State (PSTATE) Privileged Register 6107

6.8.4 Trap Level (TL) Privileged Register 7 ..112

6.8.5 Processor Interrupt Level (PIL) Privileged Register 8113

6.8.6 Register-Window State Privileged Registers 9 through 13113

6.8.7 Window State (WSTATE) Privileged Register 14115

6.8.8 Version (VER) Privileged Register 31 ..116

6.9 Special Access Register ...117

6.9.1 Floating-Point Status Register (FSR) ...117

6.10 ASI Mapped Registers ...127

6.10.1 Data Cache Unit Control Register (DCUCR) ...127

6.10.2 Data Watchpoint Registers ...132

7. Instruction Types ...135

7.1 Introduction ..136

7.2 Memory Addressing for Load and Store Instructions ..136

7.2.1 Integer Unit Memory Alignment Requirements137

7.2.2 FP/VIS Memory Alignment Requirements ..137

7.2.3 Byte Order Addressing Conventions (Endianess)137

7.2.4 Address Space Identifiers (ASIs) ..138

7.2.5 Maintaining Data Coherency ..139

7.3 Integer Execution Environment ..139

7.3.1 IU Data Access Instructions ...139

7.3.2 IU Arithmetic Instructions ...143

7.3.3 IU Logic Instructions ...144
Table of Contents v

7.3.4 IU Compare Instructions .. 144

7.3.5 IU Miscellaneous Instructions ... 145

7.4 Floating-Point Execution Environment .. 146

7.4.1 Floating-Point Operate Instructions ... 146

7.4.2 FPU/VIS Data Access Instructions .. 147

7.4.3 Floating-Point Arithmetic Instructions .. 148

7.4.4 Floating-Point Conversion Instructions .. 149

7.4.5 Floating-Point Compare Instructions ... 149

7.4.6 Floating-Point Miscellaneous Instructions ... 149

7.5 VIS Execution Environment .. 150

7.5.1 VIS Pixel Data Instructions ... 150

7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructions 151

7.5.3 VIS Logic Instructions ... 152

7.6 Data Coherency Instructions .. 152

7.6.1 FLUSH Instruction Cache Instruction ... 153

7.6.2 MEMBAR (Memory Synchronization) Instruction 153

7.6.3 Store Barrier Instruction .. 153

7.7 Register Window Management Instructions .. 153

7.8 Program Control Transfer Instructions .. 154

7.8.1 Control Transfer Instructions (CTIs) ... 155

7.9 Prefetch Instructions .. 160

7.10 Instruction Summary Table by Category ... 160

7.10.1 Instruction Superscripts ... 161

7.10.2 Instruction Mnemonics Expansion ... 161

7.10.3 Instruction Grouping Rules .. 161

7.10.4 Table Organization ... 161

7.10.5 Integer Execution Environment Instructions .. 163

7.10.6 Floating-Point Execution Environment Instructions 166

7.10.7 VIS Execution Environment Instructions ... 168

7.10.8 Data Coherency Instructions .. 170
vi UltraSPARC IIIi Processor User’s Manual • June 2003

7.10.9 Register-window Management Instructions ...170

7.10.10 Program Control Transfer Instructions ...170

7.10.11 Data Prefetch Instructions ..171

7.11 Instruction Formats and Fields ...171

7.12 Reserved Opcodes and Instruction Fields ..176

7.12.1 Summary of Unimplemented Instructions ..176

7.13 Big/Little-Endian Addressing ..177

7.13.1 Big-Endian Addressing Convention ...177

7.13.2 Little-Endian Addressing Convention ..179

Section IV: Memory and Cache

8. Memory Models ...183

8.1 TSO Behavior ..184

8.2 Memory Location Identification ...184

8.3 Memory Accesses and Cacheability ...184

8.3.1 Coherence Domains ...185

8.3.2 Global Visibility ...186

8.3.3 Memory Ordering ...186

8.4 Memory Synchronization ...187

8.4.1 MEMBAR #Sync ...188

8.4.2 MEMBAR Rules ..188

8.4.3 FLUSH ...190

8.5 Atomic Operations ...191

8.6 Non-Faulting Load ...192

8.7 Prefetch Instructions ..193

8.8 Block Loads and Stores ..194

8.9 I/O and Accesses with Side-Effects ...194

8.9.1 Instruction Prefetch to Side-Effect Locations ...195
Table of Contents vii

8.9.2 Instruction Prefetch Exiting Red State ... 195

8.10 Internal ASIs .. 195

8.11 Store Compression ... 196

8.12 Read After Write (RAW) Bypassing .. 197

8.12.1 RAW Bypassing Algorithm ... 197

8.12.2 RAW Detection Algorithm .. 198

9. Caches and Coherency .. 199

9.1 Cache Organization ... 199

9.1.1 Virtually Indexed, Physically Tagged Caches (VIPT) 199

9.1.2 Bypassing the D-Cache .. 200

9.1.3 Physically-Indexed, Physically-Tagged Caches (PIPT) 201

9.1.4 Second Level and Write Caches (L2-Cache, W-Cache) 203

9.1.5 L2-Cache Replacement Policy ... 204

9.1.6 L2-Cache Locking ... 205

9.2 Cache Flushing .. 205

9.2.1 Address Aliasing Flushing ... 206

9.2.2 Committing Block Store Flushing ... 206

9.2.3 L2-Cache Flushing ... 207

9.3 Controlling P-Cache .. 208

9.4 Translation Lookaside Buffers (TLBs) .. 209

9.4.1 TLB Flushing ... 209

9.4.2 TTE Format ... 210

9.4.3 Synchronous Fault Status Register (SFSR) Extensions 210

9.4.4 I/D Translation Storage Buffer Register .. 210

9.4.5 TLB Data Access Register ... 210

9.4.6 TLB Diagnostic Register ... 211
viii UltraSPARC IIIi Processor User’s Manual • June 2003

Section V: Supervisor Programming

10. Interrupt Handling ..215

10.1 Interrupt Vector Dispatch ...216

10.2 Interrupt Vector Receive ...217

10.3 Interrupt Global Registers ..218

10.4 Interrupt ASI Registers ..218

10.4.1 Outgoing Interrupt Vector Data<7:0> Register ..218

10.4.2 Interrupt Vector Dispatch Register ...219

10.4.3 Interrupt Vector Dispatch Status Register ...220

10.4.4 Incoming Interrupt Vector Data<7:0> ..221

10.4.5 Interrupt Vector Receive Register ...221

10.5 Software Interrupt Register (SOFTINT) ..222

10.5.1 Setting the Software Interrupt Register ..223

10.5.2 Clearing the Software Interrupt Register ..223

Section VI: Performance Programming

11. Performance Instrumentation ...227

11.1 Performance Control Register (PCR) ...228

11.2 Performance Instrumentation Counter (PIC) Register ..230

11.2.1 PIC Counter Overflow Trap Operation ...231

11.3 Performance Instrumentation Operation ..231

11.3.1 Gathering Data for More Than Two Events ..231

11.3.2 Gathering Data in Privileged and Non-Privileged Modes231

11.3.3 Performance Instrumentation Implementations ..233

11.3.4 Performance Instrumentation Accuracy ...233

11.4 Pipeline Counters ..233

11.4.1 Instruction Execution and Processor Clock Counts233
Table of Contents ix

11.4.2 IIU Event Counts ... 234

11.4.3 IIU Dispatch Stall Counts .. 234

11.4.4 R-stage Stall Counts .. 236

11.4.5 Recirculation Stall Counts ... 236

11.5 Cache Access Counters .. 237

11.5.1 Instruction Cache Events ... 237

11.5.2 Data Cache Events ... 238

11.5.3 Write Cache Events ... 238

11.5.4 Prefetch Cache Events ... 239

11.5.5 L2-Cache Events .. 239

11.5.6 Separating D-cache Stall Cycle Counts ... 240

11.6 Memory Controller Counters ... 242

11.7 Miscellaneous Counters ... 243

11.7.1 System Interface Events and Clock Cycles .. 243

11.7.2 Software Events ... 243

11.7.3 Floating-Point Operation Events .. 244

11.8 PCR.SL and PCR.SU Encodings ... 244

Section VII: Special Topics

12. Reset and RED_state ... 249

12.1 RED_state Characteristics ... 249

12.2 Resets .. 249

12.2.1 Power-On Reset ... 250

12.2.2 System Reset .. 250

12.2.3 Externally Initiated Reset (XIR) .. 251

12.2.4 Watchdog Reset (WDR) and error_state .. 251

12.2.5 Software-Initiated Reset (SIR) ... 251

12.3 RED_state Trap Vector .. 252
x UltraSPARC IIIi Processor User’s Manual • June 2003

12.4 Initialization and Use of the Return Address Stack ..252

12.5 Machine States ...253

Section VIII: Appendix

A. Instruction Definitions ... 261

A.1 Add .. 268

A.2 Alignment Instructions (VIS I) .. 269

A.3 Three-Dimensional Array Addressing Instructions (VIS I) 271

A.4 Block Load and Block Store (VIS I) ... 274

A.5 Byte Mask and Shuffle Instructions (VIS II) ... 282

A.6 Branch on Integer Register with Prediction (BPr) .. 283

A.7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 285

A.8 Branch on Integer Condition Codes with Prediction (BPcc) 288

A.9 Call and Link ... 290

A.10 Compare and Swap .. 291

A.11 DONE and RETRY ... 294

A.12 Edge Handling Instructions (VIS I, VIS II) .. 295

A.13 Floating-Point Add and Subtract .. 298

A.14 Floating-Point Compare ... 300

A.15 Convert Floating-Point to Integer ... 302

A.16 Convert Between Floating-Point Formats .. 304

A.17 Convert Integer to Floating-Point ... 306

A.18 Floating-Point Move .. 308

A.19 Floating-Point Multiply and Divide ... 310

A.20 Floating-Point Square Root .. 312

A.21 Flush Instruction Memory .. 313

A.22 Flush Register Windows ... 315

A.23 Illegal Instruction Trap ... 316

A.24 Jump and Link .. 317
Table of Contents xi

A.25 Load Floating-Point ..318

A.26 Load Floating-Point from Alternate Space ...320

A.27 Load Integer ...322

A.28 Load Integer from Alternate Space ...324

A.29 Load Quadword, Atomic (VIS I) ..326

A.30 Load-Store Unsigned Byte ...329

A.31 Load-Store Unsigned Byte to Alternate Space ...330

A.32 Logical Operate Instructions (VIS I) ...332

A.33 Logical Operations ..335

A.34 Memory Barrier ..337

A.35 Move Floating-Point Register on Condition (FMOVcc) ...343

A.36 Move Floating-Point Register on Integer Register Condition (FMOVr)349

A.37 Move Integer Register on Condition (MOVcc) ...351

A.38 Move Integer Register on Register Condition (MOVr) ...356

A.39 Multiply and Divide (64-bit) ...357

A.40 No Operation ..358

A.41 Partial Store (VIS I) ..359

A.42 Partitioned Add/Subtract Instructions (VIS I) ...361

A.43 Partitioned Multiply Instructions (VIS I) ..363

A.43.1 FMUL8x16 Instruction ...364

A.43.2 FMUL8x16AU Instruction ...365

A.43.3 FMUL8x16AL Instruction ..365

A.43.4 FMUL8SUx16 Instruction ..366

A.43.5 FMUL8ULx16 Instruction ..367

A.43.6 FMULD8SUx16 Instruction ...367

A.43.7 FMULD8ULx16 Instruction ...368

A.44 Pixel Compare (VIS I) ..369

A.45 Pixel Component Distance (PDIST) (VIS I) ...371

A.46 Pixel Formatting (VIS I) ...372

A.46.1 FPACK16 ...373
xii UltraSPARC IIIi Processor User’s Manual • June 2003

A.46.2 FPACK32 ... 375

A.46.3 FPACKFIX ... 376

A.46.4 FEXPAND ... 377

A.46.5 FPMERGE ... 378

A.47 Population Count ... 378

A.48 Prefetch Data .. 379

A.48.1 Prefetch Instruction Variants .. 381

A.48.2 New Error Handling of PREFETCH,2 and Other Prefetches 382

A.49 Read Privileged Register .. 385

A.50 Read State Register .. 388

A.51 RETURN ... 390

A.52 SAVE and RESTORE .. 392

A.53 SAVED and RESTORED ... 394

A.54 Set Interval Arithmetic Mode (VIS II) ... 395

A.55 SETHI .. 397

A.56 Shift ... 398

A.57 Short Floating-Point Load and Store (VIS I) .. 400

A.58 SHUTDOWN (VIS I) ... 402

A.59 Software-Initiated Reset ... 403

A.60 Store Floating-Point ... 404

A.61 Store Floating-Point into Alternate Space .. 406

A.62 Store Integer ... 408

A.63 Store Integer into Alternate Space .. 409

A.64 Subtract .. 411

A.65 Tagged Add .. 412

A.66 Tagged Subtract .. 413

A.67 Trap on Integer Condition Codes (Tcc) .. 415

A.68 Write Privileged Register ... 417

A.69 Write State Register ... 420

A.70 Deprecated Instructions .. 423
Table of Contents xiii

A.70.1 Branch on Floating-Point Condition Codes (FBfcc)423

A.70.2 Branch on Integer Condition Codes (Bicc) ...425

A.70.3 Divide (64-bit / 32-bit) ...428

A.70.4 Load Floating-Point Status Register ...431

A.70.5 Load Integer Doubleword ...433

A.70.6 Load Integer Doubleword from Alternate Space434

A.70.7 Multiply (32-bit) ...436

A.70.8 Multiply Step ..438

A.70.9 Read Y Register ..440

A.70.10 Store Barrier ...441

A.70.11 Store Floating-Point Status Register Lower ..442

A.70.12 Store Integer Doubleword ...443

A.70.13 Store Integer Doubleword into Alternate Space445

A.70.14 Swap Register with Memory ..446

A.70.15 Swap Register with Alternate Space Memory ..448

A.70.16 Tagged Add and Trap on Overflow ...449

A.70.17 Tagged Subtract and Trap on Overflow ..450

A.70.18 Write Y Register ...452

Section IX: Index
xiv UltraSPARC IIIi Processor User’s Manual • June 2003

List of Figures

FIGURE 2-1 Four-Processor System with the UltraSPARC IIIi Processor .. 10

FIGURE 2-2 Two-Processor System with the UltraSPARC IIIi Processor .. 11

FIGURE 2-3 One-Processor System with the UltraSPARC IIIi Processor .. 12

FIGURE 2-4 DDR Memory System Architecture ... 14

FIGURE 3-1 UltraSPARC IIIi Processor Architecture .. 18

FIGURE 4-1 Instruction Pipeline Diagram ... 34

FIGURE 5-1 Signed Integer Byte Data Format ... 62

FIGURE 5-2 Signed Integer Halfword Data Format ... 62

FIGURE 5-3 Signed Integer Word Data Format ... 62

FIGURE 5-4 Signed Integer Double Data Format ... 62

FIGURE 5-5 Signed Extended Integer Data Format ... 63

FIGURE 5-6 Unsigned Integer Byte Data Format ... 63

FIGURE 5-7 Unsigned Integer Halfword Data Format ... 63

FIGURE 5-8 Unsigned Integer Word Data Format ... 64

FIGURE 5-9 Unsigned Integer Double Data Format ... 64

FIGURE 5-10 Unsigned Extended Integer Data Format ... 64

FIGURE 5-11 Tagged Word Data Format .. 65

FIGURE 5-12 Floating-Point Single-Precision Data Format ... 66

FIGURE 5-13 Floating-Point Double-Precision Double Word Data Format ... 67

FIGURE 5-14 Floating-Point Double-Precision Extended Word Data Format .. 67
List of Figures xv

FIGURE 5-15 Floating-Point Quad-Precision Data Format .. 68

FIGURE 5-16 Pixel Data Format with Band Sequential Ordering Shown ... 70

FIGURE 5-17 Fixed16 VIS Data Format ... 71

FIGURE 5-18 Fixed32 VIS Data Format ... 71

FIGURE 6-1 Three Overlapping Windows and the Eight Global Registers .. 77

FIGURE 6-2 Windowed r Registers for NWINDOWS = 8 ... 79

FIGURE 6-3 Integer Unit r Registers and Floating-Point Unit Working Registers .. 84

FIGURE 6-4 State and Ancillary State Registers .. 85

FIGURE 6-5 Privileged Registers .. 87

FIGURE 6-6 ASI and Specially Accessed Registers ... 89

FIGURE 6-7 Y Register ... 90

FIGURE 6-8 Condition Codes Register .. 91

FIGURE 6-9 Integer Condition Codes (CCR_icc and CCR_xcc) ... 91

FIGURE 6-10 Address Space Identifier Register .. 92

FIGURE 6-11 Floating-Point Registers State Register .. 93

FIGURE 6-12 Dispatch Control Register (ASR 0x12) .. 95

FIGURE 6-13 RDASR format ... 98

FIGURE 6-14 WRASR format ... 98

FIGURE 6-15 GSR Format (ASR 0x13) .. 98

FIGURE 6-16 SOFTINT, SET_SOFTINT, and CLR_SOFTINT Register Formats .. 100

FIGURE 6-17 Timer State Registers .. 101

FIGURE 6-18 Trap State Register Format .. 105

FIGURE 6-19 Trap Stack and Event Example .. 106

FIGURE 6-20 Trap Base Address Register .. 107

FIGURE 6-21 Trap Vector Address Format ... 107

FIGURE 6-22 PSTATE Fields .. 108

FIGURE 6-23 Trap Level Register ... 113
xvi UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 6-24 Processor Interrupt Level Register .. 113

FIGURE 6-25 WSTATE Register ... 116

FIGURE 6-26 Version Register .. 116

FIGURE 6-27 FSR Fields .. 118

FIGURE 6-28 Trap Enable Mask (TEM) Fields of FSR ... 124

FIGURE 6-29 Accrued Exception Bits (aexc) Fields of FSR .. 124

FIGURE 6-30 Current Exception Bits (cexc) Fields of FSR .. 124

FIGURE 6-31 DCU Control Register Access Data Format (ASI 4516) ... 128

FIGURE 6-32 VA Data Watchpoint Register Format ... 133

FIGURE 6-33 PA Data Watchpoint Register Format .. 133

FIGURE 7-1 Summary of Instruction Formats: Formats 1 and 2 .. 172

FIGURE 7-2 Summary of Instruction Formats: Format 3 ... 173

FIGURE 7-3 Summary of Instruction Formats: Format 4 ... 174

FIGURE 7-4 Big-Endian Addressing Convention ... 178

FIGURE 7-5 Little-Endian Addressing Conventions .. 179

FIGURE 9-1 L2-Cache Flush ASI Format .. 207

FIGURE 11-1 Performance Control Register .. 228

FIGURE 11-2 Performance Instrumentation Counter Register .. 230

FIGURE 11-3 Operational Flow Diagram for Controlling Event Counters ... 232

FIGURE 11-4 Dispatch Counters ... 235

FIGURE 11-5 D-Cache Load Miss Stall Regions ... 241

FIGURE A-1 Three-Dimensional Array Fixed-Point Address Format ... 272

FIGURE A-2 Three-Dimensional Array Blocked-Address Format (Array8) .. 272

FIGURE A-3 Three-Dimensional Array Blocked-Address Format (Array16) .. 272

FIGURE A-4 Three-Dimensional Array Blocked-Address Format (Array32) .. 273

FIGURE A-5 FMUL8x16 Operation ... 365

FIGURE A-6 FMUL8x16AU Operation ... 365
List of Figures xvii

FIGURE A-7 FMUL8x16AL Operation ... 366

FIGURE A-8 FMUL8SUx16 Operation ... 366

FIGURE A-9 FMUL8LUx16 Operation ... 367

FIGURE A-10 FMULD8SUx16 Operation .. 368

FIGURE A-11 FMULD8ULx16 Operation .. 368

FIGURE A-12 FPACK16 Operation .. 374

FIGURE A-13 FPACK32 Operation .. 375

FIGURE A-14 FPACKFIX Operation .. 376

FIGURE A-15 FEXPAND Operation .. 377

FIGURE A-16 FPMERGE Operation .. 378
xviii UltraSPARC IIIi Processor User’s Manual • June 2003

List of Tables

TABLE 4-1 Processor Pipeline Stages ..32

TABLE 4-2 Execution Pipelines ...37

TABLE 4-3 SPARC-V9 Conditional Moves ...48

TABLE 4-4 Execution Pipelines ...48

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties50

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges60

TABLE 5-2 Integer Data Alignment ...61

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment ..65

TABLE 5-4 Floating-Point Single-Precision Format Definitions ...66

TABLE 5-5 Floating-Point Double-Precision Format Definition ...67

TABLE 5-6 Floating-Point Quad-Precision Format Definitions ..68

TABLE 5-7 Pixel, Fixed16, and Fixed32 Data Alignment ...70

TABLE 6-1 Integer Unit General-Purpose Registers ...75

TABLE 6-2 32-bit Floating-Point Registers with Aliasing ..81

TABLE 6-3 64-bit Floating-Point Registers with Aliasing ..81

TABLE 6-4 128-bit Floating-Point Registers with Aliasing ..82

TABLE 6-5 Floating-Point Register Number Encoding ..82

TABLE 6-6 State and Ancillary State Registers ..85
List of Tables xix

TABLE 6-7 Privileged Registers ..88

TABLE 6-8 ASI and Specially Accessed Registers ...89

TABLE 6-9 DCR Bit Description ...95

TABLE 6-10 GSR Opcodes ...97

TABLE 6-11 GSR Bit Description ...98

TABLE 6-12 Register-window State Registers ...100

TABLE 6-13 SOFTINT Bit Descriptions ..100

TABLE 6-14 Timer State Registers ..101

TABLE 6-15 Trap Stack Register Power-on and Normal Operation ...106

TABLE 6-16 PSTATE Global Register Selection Events ...108

TABLE 6-17 MM Encodings ...111

TABLE 6-18 Register-Window State Privileged Registers ...114

TABLE 6-19 Processor Implementation Codes ...116

TABLE 6-20 UltraSPARC IIIi Processor Mask Version Codes ..117

TABLE 6-21 Floating-Point Condition Codes (fccn) Fields of FSR ..119

TABLE 6-22 Rounding Direction (RD) Field of FSR ...119

TABLE 6-23 Floating-Point Trap Type (ftt) Field of FSR) ...121

TABLE 6-24 Standard Conditions Under Which unfinished_FPop Trap Type

Can Occur ...122

TABLE 6-25 Setting of FSR.cexc bits ..125

TABLE 6-26 DCUCR Bit Field Descriptions ...128

TABLE 6-27 ASIs Affected by Watchpoint Traps ..132

TABLE 7-1 MOVr and FMOVr Test Conditions ...141

TABLE 7-3 Instruction Summary for the Integer Execution Environment ..163

TABLE 7-4 Instruction Summary for the Floating-point Execution Environment166

TABLE 7-5 Instruction Summary for the VIS Execution Environment ...168

TABLE 7-6 Instruction Summary for Data Coherency ..170
xx UltraSPARC IIIi Processor User’s Manual • June 2003

TABLE 7-7 Instruction Summary for Register-window Management ...170

TABLE 7-8 Instruction Summary for Program Control Transfer ...170

TABLE 7-9 Instruction Summary Table ...171

TABLE 7-10 Instruction Field Interpretation ..174

TABLE 7-11 Processor Actions on Unimplemented Instructions ..176

TABLE 8-1 MEMBAR Semantics ..187

TABLE 8-2 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong Ordering 189

TABLE 8-3 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong Ordering ..190

TABLE 8-4 ASIs That Support SWAP, LDSTUB, and CAS ..191

TABLE 8-5 Types of Software Prefetch Instructions ..193

TABLE 9-1 L2-Cache Flush ASI Format ..207

TABLE 9-2 Explanation of P-cache control bits ...209

TABLE 10-1 BUSY and NACK Bits of Interrupt Vector Dispatch Register ...216

TABLE 10-2 Outgoing Interrupt Vector Data Register Format ...219

TABLE 10-3 Interrupt Vector Dispatch Register Format ..219

TABLE 10-4 Interrupt Dispatch Status Register Format ...220

TABLE 10-5 Incoming Interrupt Vector Data Register Format ...221

TABLE 10-6 Interrupt Receive Register Format ...221

TABLE 10-7 SOFTINT Register Format ..222

TABLE 10-8 SOFTINT ASRs ..223

TABLE 11-1 PCR Bit Description ..229

TABLE 11-2 PIC Register Fields ..230

TABLE 11-3 PIC Counter Overflow Processor Compatibility Comparison ...231

TABLE 11-4 Instruction Execution Clock Cycles and Counts ..233

TABLE 11-5 Counters for Collecting IIU Statistics ..234

TABLE 11-6 Counters for IIU Stalls ...235

TABLE 11-7 Counters for R-stage Stalls ..236
List of Tables xxi

TABLE 11-8 Counters for Recirculation ..236

TABLE 11-9 Counters for Instruction Cache Events ...237

TABLE 11-10 Counters for Data Cache Events ..238

TABLE 11-11 Counters for Write Cache Events ..238

TABLE 11-12 Counters for Prefetch Cache Events ..239

TABLE 11-13 Counters for L2-cache Events ...239

TABLE 11-14 Re_DC_missovhd Stall Cycle Counter Processor Compatibility ..240

TABLE 11-15 Memory Controller Counters ...242

TABLE 11-16 Counters for System Interface Statistics ..243

TABLE 11-17 Counters for Software Statistics ..243

TABLE 11-18 Counters for Floating-Point Operation Statistics ..244

TABLE 11-19 PIC.SL and PIC.SU Selection Bit Field Encoding ..244

TABLE 12-1 Machine State After Reset and in RED_state ...254

TABLE A-1 Opcode Superscripts ..262

TABLE A-2 Instruction Set ...262

TABLE A-3 Three-Dimensional r[rs2] Array X/Y Dimensions ...272

TABLE A-4 Edge Mask Specification ...297

TABLE A-5 Edge Mask Specification (Little-Endian) ...297

TABLE A-6 Floating-Point to Integer unfinished_FPop Exception Conditions304

TABLE A-7 Floating-Point/Floating-Point unfinished_FPop Exception Conditions305

TABLE A-8 Integer/Floating-Point unfinished_FPop Exception Conditions307

TABLE A-9 MEMBAR mmask Encodings ..338

TABLE A-10 MEMBAR cmask Encodings ..338

TABLE A-11 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong Ordering 340

TABLE A-12 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong Ordering ..341

TABLE A-13 Types of Software Prefetch Instructions ..381

TABLE A-14 Error Handling of Prefetch Requests ...383

TABLE A-15 Shift Count Encodings ..399

TABLE A-16 UDIV / UDIVcc Overflow Detection and Value Returned ..430
xxii UltraSPARC IIIi Processor User’s Manual • June 2003

TABLE A-17 SDIV / SDIVcc Overflow Detection and Value Returned ...431

TABLE A-18 UMULcc / SMULcc Condition Code Settings ...438
List of Tables xxiii

xxiv UltraSPARC IIIi Processor User’s Manual • June 2003

Preface

Welcome to the UltraSPARC® IIIi Processor User’s Manual. This book contains information

about the architecture and programming of the UltraSPARC IIIi processor, one of Sun

Microsystems’ family of SPARC® V9-compliant processors.

Target Audience

This user’s manual is mainly targeted for programmers who write software for the

UltraSPARC IIIi processor. This user’s manual contains a depository of information that is

useful to operating system programmers, application software programmers, logic designers

and third party vendors who are trying to understand the architecture and operation of the

UltraSPARC IIIi processor. This manual is both a guide and a reference manual for low-level

programming of the processor.

A Brief History of SPARC

SPARC stands for Scalable Processor ARChitecture, which was first announced in 1987.

Unlike more traditional processor architectures, SPARC is an open standard freely available

through license from SPARC International, Inc. Any company that obtains a license can

manufacture and sell a SPARC-compliant processor.

By the early 1990s, SPARC processors were available from over a dozen different vendors,

and over 8,000 SPARC-compliant applications had been certified.

In 1994, SPARC International, Inc. published The SPARC Architecture Manual, Version 9,

which defined a powerful 64-bit enhancement to the SPARC architecture. SPARC V9

provided support for the following:

• 64-bit virtual addresses and 64-bit integer data
xxv

• Fault tolerance

• Fast trap handling and context switching

• Big- and little-endian byte orders

UltraSPARC is the first family of SPARC V9-compliant processors available from Sun

Microsystems, Inc.

Prerequisites

This user’s manual is a companion to The SPARC Architecture Manual, Version 9. The reader

of this user’s manual should be familiar with the contents of The SPARC Architecture
Manual, Version 9, which is available from many technical bookstores or directly from its

copyright holder:

SPARC International, Inc.

2242 Camden Ave, Suite #105

San Jose, CA 95124

(408) 558-8111

http://www.sparc.org

The SPARC Architecture Manual, Version 9 provides a complete description of the

SPARC V9 architecture. Since SPARC V9 is an open architecture, many of the

implementation decisions have been left to the manufacturers of SPARC-compliant

processors. These “implementation dependencies” are introduced in The SPARC Architecture
Manual, Version 9.

User’s Manual Overview

This manual is focused on the treatment of the UltraSPARC IIIi processor. However, it

sometimes refers to the UltraSPARC III family of processors to indicate generality of a

certain feature. The term “UltraSPARC III family of processors” refers to processors that are

similar to the UltraSPARC IIIi processor.

This manual is divided into multiple sections. These sections are described next.
xxvi UltraSPARC IIIi Processor User’s Manual • June 2003

Processor Introduction

The processor introduction section describes the high level features of the UltraSPARC IIIi

processor. This section also discusses how the UltraSPARC IIIi processor is used in a system.

Architecture and Functions

This section discusses the details of the UltraSPARC IIIi architecture and the functions of

various processor units. An entire chapter is devoted to a discussion on the instruction

execution pipeline.

Execution Environment

This section describes the details necessary to understand the execution environment. Various

topics such as memory models, data formats, registers, and instruction types are discussed.

Memory and Cache

This section describes the details of memories and caches. Topics such as memory models,

memory sub-system, and caches are discussed.

Supervisor Programming

Supervisor software controls the processor and the instruction execution environment for

itself and application programs. Chapters are devoted to interrupt handling and error

handling.

Performance Programming

This section explores the opportunities to exploit the high-performance architecture of the

processor, that is, performance instrumentation.

Instruction Definitions Appendix

This section describes, in detail, each instruction for the UltraSPARC IIIi processor.
Preface xxvii

SPARC V9 Architecture

The SPARC Architecture Manual, Version 9 was used to implement the processor to insure

SPARC compatibility for user and application programs. The SPARC V9 manual provides

important theoretical information for operating system programmers who write memory

management software, compiler writers who write machine-specific optimizers, and anyone

who writes code to run on all SPARC V9-compatible machines. Book copies of the The
SPARC Architecture Manual, Version 9 are readily available at bookstores or from SPARC

International, Inc.

Software that is intended to be portable across all SPARC V9 processors should adhere to

The SPARC Architecture Manual, Version 9.

In this book, the word architecture refers to the machine details that are visible to an

assembly language programmer or to the compiler code generator. It does not, necessarily,

include details of the implementation that are not visible or easily observable by software.

Where such details are provided, the intent is to enable faster and better programs.

Textual Usage

Fonts

Fonts are used as follows:

• Italic sans serif font is used for exception and trap names. “The privileged_action
exception...” is an example of how this font is used, it is also used for assembly language

terms, emphasis, book titles, and the first instance of a word that is defined.

• Courier font is used for register fields (named bits), instruction fields, and read-only

register fields. “The rs1 field contains...” is an example of how this font is used. It is also

used for literals, instruction names, register names, and software examples.

• UPPERCASE items are acronyms, instruction names, or writable register fields. Some

common acronyms are listed in Acronyms and Definitions. Note: Names of some

instructions contain both uppercase and lowercase letters.

• Underbar characters join words in register, register field, exception, and trap names. Note:
Such words can be split across lines at the underbar without an intervening hyphen. “This

is true whenever the integer_condition_code field...” is an example of how the underbar

characters are used.
xxviii UltraSPARC IIIi Processor User’s Manual • June 2003

Notational Conventions

The following notational conventions are used:

• Square brackets, [], indicate a numbered register in a register file. For example, r[0]

translates to register 0.

• Angle brackets, < >, indicate a bit number or colon-separated range of bit numbers within

a field. “Bits FSR<29:28> and FSR<12> are...” is an example of how the angle brackets

are used.

• Curly braces, {}, indicate textual substitution. For example, the string

“PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and “ASI_PRIMARY_LITTLE.”

• If the bar, |, is used with the curly braces, it represents multiple substitutions. For

example, the string “ASI_DMMU_TSB_{8KB|64KB|DIRECT}_PTR_REG” expands to

“ASI_DMMU_TSB_8KB_PTR_REG”, “ASI_DMMU_TSB_64KB_PTR_REG”, and

“ASI_DMMU_TSB_DIRECT_PTR_REG.”

• The symbol designates concatenation of bit vectors. A comma (,) on the left side of an

assignment separates quantities that are concatenated for the purpose of assignment. For

example, if X, Y, and Z are 1-bit vectors and the 2-bit vector T equals 112, then

(X, Y, Z) ← 0 T

results in X = 0, Y = 1, and Z = 1.

• “A mod B” means “A modulus B,” where the calculated value is the remainder when A is

divided by B.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated.

Numbers in other bases are followed by a numeric subscript indicating their base (for

example, 10012, FFFF 000016). In some cases, numbers may be preceded by “0x” to indicate

hexadecimal (base-16) notation (for example, 0xFFFF.0000). Long binary and hexadecimal

numbers within the text have spaces or periods inserted every four characters to improve

readability.

The notation 7h’1F indicates a hexadecimal number of 1F16 with 7 binary bits of width.

Informational Notes

This guide provides several different types of information in notes, as follows:
Preface xxix

Programming Note – Programming notes contain incidental information about

programming the UltraSPARC IIIi processor unless otherwise restricted to a particular

processor in the family.

Implementation Note – Implementation notes contain information that contains

implementation specific information of the UltraSPARC IIIi processor compared to other

UltraSPARC processors.

Compatibility Note – Compatibility notes contain information relevant to the previous

SPARC V8 architecture.

UltraSPARC Note – UltraSPARC notes highlight the differences between the

UltraSPARC I and UltraSPARC II processors and the UltraSPARC III family of processors.

This note shows architectural and functional differences that may be generalized or

applicable to one particular processor in one of the families. Check the appropriate User’s

Manual or section in this User’s Manual to determine individual processor functionality as

needed.

Note – This highlights a useful note regarding important and informative processor

architecture or functional operation. This may be used for purposes not covered in one of the

other notes.
xxx UltraSPARC IIIi Processor User’s Manual • June 2003

Acronyms and Definitions

This chapter defines concepts and terminology common to all implementations of

SPARC V9.

address space identifier See ASI

AFAR Asynchronous Fault Address Register

AFSR Asynchronous Fault Status Register

aliased Two virtual addresses that refer to the same physical address

application program A program executed with the processor in non-privileged mode. Note: Statements

made in this specification regarding application programs may not be applicable to

programs (for example, debuggers) that have access to privileged processor state (for

example, as stored in a memory-image dump).

ASI Address Space Identifier. An 8-bit value that identifies an address space. For each

instruction or data access, the integer unit appends an ASI to the address. See also
implicit ASI.

ASR Ancillary State Register

Ax Either the A0 or A1 pipeline

big-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest

address is the most significant; a byte’s significance decreases as its address increases.

BLD Block Load

BST Block Store

byte Eight consecutive bits of data

clean window A register window in which all of the registers contain zero, a valid address from the

current address space, or valid data from the current address space.

coherence A set of protocols guaranteeing that all memory accesses are globally visible to all

caches on a shared-memory bus.
xxxi

completed A memory transaction is completed when an idealized memory has executed the

transaction with respect to all processors. A load is considered completed when no

subsequent memory transaction can affect the value returned by the load. A store is

considered completed when no subsequent load can return the value that was

overwritten by the store.

consistency See coherence

context A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

copyback The process of copying back a dirty cache line in response to a cache hit while

snooping.

CPI Cycles Per Instruction. The number of clock cycles it takes to execute an instruction.

cross-call An interprocessor call in a multiprocessor system

CSR Control Status Register

current window The block of 24 r registers that is currently in use. The Current Window Pointer (CWP)

register points to the current window.

D-cache Level-1 data memory cache

DCTI Delayed Control Transfer Instruction

DCU Data Cache Unit. Includes controller and Tag and Data RAM arrays

demap To invalidate a mapping in the MMU

deprecated The term applied to an architectural feature (such as an instruction or register) for

which a SPARC V9 implementation provides support only for compatibility with

previous versions of the architecture. Use of a deprecated feature must generate correct

results but may compromise software performance. Deprecated features should not be

used in new SPARC V9 software and may not be supported in future versions of the

architecture.

DFT Designed for Test

DIMM Dual In-line Memory Module. Provides a single or double bank of SDRAM devices

72 bits or 144 bits of data width.

dispatch To send a previously fetched instruction to one or more functional units for execution.

Typically, the instruction is dispatched from a reservation station or other buffer of

instructions waiting to be executed. See also issued.

doublet Two bytes (16 bits) of data

doubleword An aligned octlet. Note: The definition of this term is architecture dependent and may

differ from that used in other processor architectures.

DQM Data input/output Mask. Q stands for either input or output.

ECU External or embedded Cache Unit controller
xxxii UltraSPARC IIIi Processor User’s Manual • June 2003

EMU External Memory Unit. A combination of the ECU and the Memory Control Unit

(MCU).

exception A condition that makes it impossible for the processor to continue executing the

current instruction stream without software intervention. See also trap.

extended word An aligned octlet, nominally containing integer data. Note: The definition of this term

is architecture dependent and may differ from that used in other processor

architectures.

f register A floating-point register. SPARC V9 includes single-, double-, and quad-precision

f registers.

fccN One of the floating-point condition code fields fcc0, fcc1, fcc2, or fcc3.

FFA or FGA or FP1 Floating-Point/Graphics ALU pipeline

FGM or FP0 Floating-Point/Graphics Multiply pipeline

FGU Floating Point and Graphics Unit (FP0 and FP1)

floating-point
exception An exception that occurs during the execution of a Floating-point operate (FPop)

instruction while the corresponding bit in FSR.TEM is set to one. The exceptions are

unfinished_FPop, unimplemented_FPop, sequence_error, hardware_error,
invalid_fp_register, or IEEE_754_exception.

floating-point IEEE-754
exception A floating-point exception, as specified by IEEE Standard 754-1985. Listed within this

specification as IEEE_754_exception.

floating-point operate
(FPop) instructions Instructions that perform floating-point calculations, as defined by the FPop1 and

FPop2 opcodes. FPop instructions do not include FBfcc instructions or loads and

stores between memory and the floating-point unit.

floating-point trap type The specific type of a floating-point exception, encoded in the FSR.ftt field.

floating-point unit A processing unit that contains the floating-point registers and performs floating-point

operations, as defined by this specification.

FPRS Floating Point Register State

FPU Floating-Point Unit

FRF Floating-Point Register File

FSR Floating-Point Status Register

halfword An aligned doublet. Note: The definition of this term is architecture dependent and

may differ from that used in other processor architectures.

HBM Hierarchical Bus Mode
Acronyms and Definitions xxxiii

hexlet Sixteen bytes (128 bits) of data

HPE Hardware Prefetch Enable

I-cache Level-2 Instruction memory cache

IEU Instruction Execution Unit

IIU Instruction Issue Unit

implementation Hardware or software that conforms to all of the specifications of an instruction set

architecture (ISA).

implementation
dependent An aspect of the architecture that can legitimately vary among implementations. In

many cases, the permitted range of variation is specified in the SPARC V9 standard.

When a range is specified, compliant implementations must not deviate from that

range.

implicit ASI The ASI that is supplied by the hardware on all instruction accesses and on data

accesses that do not contain an explicit ASI or a reference to the contents of the ASI

register.

informative appendix An appendix containing information that is useful but not required to create an

implementation that conforms to the SPARC V9 specification. See also normative
appendix.

initiated Synonym: issued

instruction field A bit field within an instruction word

instruction group One or more independent instructions that can be dispatched for simultaneous

execution.

instruction set
architecture See ISA

integer unit A processing unit that performs integer and control-flow operations and contains

general-purpose integer registers and processor state registers, as defined by this

specification.

interrupt request A request for service presented to the processor by an external device

ISA Instruction Set Architecture. A set that defines instructions, registers, instruction and

data memory, the effect of executed instructions on the registers and memory, and an

algorithm for controlling instruction execution. It does not define clock cycle times,

cycles per instruction, datapaths, etc.

issued (1) A memory transaction (load, store, or atomic load-store) is “issued” when a

processor has sent the transaction to the memory subsystem and the completion of the

request is out of the processor’s control. Synonym: initiated.

(2) An instruction (or sequence of instructions) is said to be issued when released from

the processor's in-order instruction fetch unit. Typically, instructions are issued to a
xxxiv UltraSPARC IIIi Processor User’s Manual • June 2003

reservation station or other buffer of instructions waiting to be executed. (Other

conventions for this term exist, but this document attempts to use “issue” consistently

as defined here). See also dispatched.

IU Integer Unit

L2-cache External or embedded unified, instruction/data, Level-2 memory cache

leaf procedure A procedure that is a leaf in the program’s call graph, that is, one that does not call (by

using CALL or JMPL) any other procedures.

little-endian An addressing convention. Within a multiple-byte integer, the byte with the smallest

address is the least significant; a byte’s significance increases as its address increases.

load An instruction that reads (but does not write) memory or reads (but does not write)

location(s) in an alternate address space. Load includes loads into integer or

floating-point registers, block loads, Load Quadword Atomic, and alternate address

space variants of those instructions. See also load-store and store, the definitions of

which are mutually exclusive with load.

load-store An instruction that explicitly both reads and writes memory or explicitly reads and

writes location(s) in an alternate address space. Load-store includes instructions such

as CASA, CASXA, LDSTUB, and the deprecated SWAP instruction. See also load and

store, the definitions of which are mutually exclusive with load-store.

may A keyword indicating flexibility of choice with no implied preference. Note: “May”

indicates that an action or operation is allowed; “can” indicates that it is possible.

MCU Memory Control Unit. Controls the SDRAM signals

Memory Management
Unit See MMU

MMU Memory Management Unit. The address translation hardware in the UltraSPARC IIIi

implementation that translates 64-bit virtual address into physical addresses. The

MMU is composed of the TLBs, ASRs, and ASI registers used to manage address

translation. See also context, physical address, and virtual address.

module A master or slave device that attaches to the shared-memory bus

MOESI A cache-coherence protocol. Each of the letters stands for one of the states that a cache

line can be in, as follows: M, modified, dirty data with no outstanding shared copy; O,

owned, dirty data with outstanding shared copy(s); E, exclusive, clean data with no

outstanding shared copy; S, shared, clean data with outstanding shared copy(s); I,

invalid, invalid data.

must Synonym: shall

NaN Not a Number

NCPQ Noncoherent Pending Queue

next program counter See nPC
Acronyms and Definitions xxxv

NFO Nonfault access only

non-faulting load A load operation that, in the absence of faults or in the presence of a recoverable fault,

completes correctly, and in the presence of a nonrecoverable fault returns (with the

assistance of system software) a known data value (nominally zero). See also
speculative load.

non-privileged An adjective that describes:

(1) the state of the processor when PSTATE.PRIV = 0, that is, non-privileged mode;

(2) processor state information that is accessible to software while the processor is in

either privileged mode or non-privileged mode; for example, non-privileged registers,

non-privileged ASRs, or, in general, non-privileged state;

(3) an instruction that can be executed when the processor is in either privileged mode

or non-privileged mode.

non-privileged mode The mode in which a processor is operating when PSTATE.PRIV = 0. See also
privileged.

normative appendix An appendix containing specifications that must be met by an implementation

conforming to the SPARC V9 specification. See also informative appendix.

nPC Next program counter. A register that contains the address of the next executed

instruction if a trap does not occur.

NPT Non-Privileged Trap

NWINDOWS The number of register windows present in a particular implementation

OBP OpenBootTM PROM

octlet Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been

commonly used to describe eight bits of data. In this document, the term byte, rather

than octet, is used to describe eight bits of data.

opcode A bit pattern that identifies a particular instruction

optional A feature not required for SPARC V9 compliance

ORQ Outgoing Request Queue

PA Physical Address. An address that maps real physical memory or I/O device space. See
also virtual address.

Page Table Entry See PTE

PC Program Counter. A register that contains the address of the instruction currently being

executed by the IU.

PCR Performance Control Register

physical address See PA

PIC Performance Instrumentation Counter
xxxvi UltraSPARC IIIi Processor User’s Manual • June 2003

PIO Programmed I/O

PIPT Physically Indexed, Physically Tagged

PIVT Physically Indexed, Virtually Tagged

POR Power-on Reset. The most aggressive reset.

prefetchable (1) An attribute of a memory location that indicates to an MMU that PREFETCH
operations to that location may be applied.

(2) A memory location condition for which the system designer has determined that no

undesirable effects will occur if a PREFETCH operation to that location is allowed to

succeed. Typically, normal memory is prefetchable.

Non-prefetchable locations include those that, when read, change state or cause

external events to occur. For example, some I/O devices are designed with registers

that clear on read; others have registers that initiate operations when read. See also side
effect.

privileged An adjective that describes:

(1) the state of the processor when PSTATE.PRIV = 1, that is, privileged mode;

(2) processor state that is only accessible to software while the processor is in

privileged mode; for example, privileged registers, privileged ASRs, or, in general,

privileged state;

(3) an instruction that can be executed only when the processor is in privileged mode.

privileged mode The mode in which a processor is operating when PSTATE.PRIV = 1. See also
non-privileged.

processor The combination of the integer unit and the floating-point unit

program counter See PC.

PSO Partial Store Order

PTA Pending Tag Array

PTE Page Table Entry. Describes the virtual-to-physical translation and page attributes for a

specific page. A PTE generally means an entry in the page table or in the TLB;

however, it is sometimes used as an entry in the translation storage buffer (TSB). In

general, a PTE contains fewer fields than a TTE. See also TLB and TSB.

QNaN Quiet Not a Number

quadlet Four bytes (32 bits) of data

quadword Aligned hexlet. Note: The definition of this term is architecture dependent and may be

different from that used in other processor architectures.

r register An integer register. Also called a general-purpose register or working register.

RD Rounding Direction

RDPR Read Privileged Register
Acronyms and Definitions xxxvii

RED_state Reset, Error, and Debug state. The processor state when PSTATE.RED = 1. A

restricted execution environment used to process resets and traps that occur when

TL = MAXTL – 1.

reserved Describes an instruction field, certain bit combinations within an instruction field, or a

register field that is reserved for definition by future versions of the architecture.

Reserved instruction fields shall read as zero, unless the implementation supports

extended instructions within the field. The behavior of SPARC V9 processors

when they encounter nonzero values in reserved instruction fields is undefined.

Reserved bit combinations within instruction fields are defined in Appendix A,

Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap on

these reserved combinations.

Reserved register fields should always be written by software with values of those

fields previously read from that register or with zeroes; they should read as zero in

hardware. Software intended to run on future versions of SPARC V9 should not

assume that these fields will read as zero or any other particular value. Throughout

this specification, figures and tables illustrating registers and instruction encodings

indicate reserved fields and combinations with an em dash (—).

reset trap A vectored transfer of control to privileged software through a fixed-address reset trap

table. Reset traps cause entry into RED_state.

restricted Describes an ASI that may be accessed only while the processor is operating in

privileged mode.

RMO Relaxed Memory Order

rs1, rs2, rd The integer or floating-point register operands of an instruction. The source registers

are rs1 and rs2; the destination register is rd.

RTO Read to Own

RTOR Read to Own Remote. A reissued RTO transaction.

RTS Read to Share

RTSM Read to Share Mtag. An RTS to modify MTag transaction.

SAM SPARC Architecture Manual, Version 9

scrub Writes data from the W-cache to the L2-cache

SDRAM Synchronous Dynamic Random Access Memory. May be prefaced with DDR, double

data rate SDRAM.

SFAR Synchronous Fault Address Register

SFSR Synchronous Fault Status Register

shall A keyword indicating a mandatory requirement. Designers shall implement all such

mandatory requirements to ensure interoperability with other SPARC V9-compliant

products. Synonym: must.
xxxviii UltraSPARC IIIi Processor User’s Manual • June 2003

should A keyword indicating flexibility of choice with a strongly preferred implementation.

Synonym: it is recommended

SIAM Set Interval Arithmetic Mode instruction

side effect The result of a memory location having additional actions beyond the reading or

writing of data. A side effect can occur when a memory operation on that location is

allowed to succeed. Locations with side effects include those that, when accessed,

change state or cause external events to occur. For example, some I/O devices contain

registers that clear on read; others have registers that initiate operations when read. See
also prefetchable.

SIG Single-Instruction Group. Sometimes shortened to “single-group.”

SIR Software-Initiated Reset

SNaN Signalling Not a Number

snooping The process of maintaining coherency between caches in a shared-memory bus

architecture. All cache controllers monitor (snoop) the bus to determine whether they

have a copy of the shared cache block.

SPE Software Prefetch Enable

speculative load A load operation that is issued by the processor speculatively, that is, before it is

known whether the load will be executed in the flow of the program. Speculative

accesses are used by hardware to speed program execution and are transparent to code.

An implementation, through a combination of hardware and system software, must

nullify speculative loads on memory locations that have side effects; otherwise, such

accesses produce unpredictable results. Contrast with non-faulting load, which is an

explicit load that always completes, even in the presence of recoverable faults.

store An instruction that writes (but does not explicitly read) memory or writes (but does not

explicitly read) location(s) in an alternate address space. Store includes stores from

either integer or floating-point registers, block stores, partial store, and alternate

address space variants of those instructions. See also load and load-store, the

definitions of which are mutually exclusive with store.

superscalar An implementation that allows several instructions to be issued, executed, and

committed in one clock cycle.

supervisor software Software that executes when the processor is in privileged mode

TBA Trap Base Address

TLB Translation Lookaside Buffer. A cache within an MMU that contains recent partial

translations. TLBs speed up closely following translations by often eliminating the

need to reread PTE from memory.

TLB hit The desired translation is present in the on-chip TLB

TLB miss The desired translation is not present in the on-chip TLB
Acronyms and Definitions xxxix

TPC Trap-saved PC

Translation Lookaside
Buffer See TLB

trap The action taken by the processor when it changes the instruction flow in response to

the presence of an exception, a Tcc instruction, or an interrupt. The action is a

vectored transfer of control to supervisor software through a table, the address of

which is specified by the privileged TBA register. See also exception.

TSB Translation Storage Buffer. A table of the address translations that is maintained by

software in system memory and that serves as a cache of the address translations.

TSO Total Store Order

TTE Translation Table Entry. Describes the virtual-to-physical translation and page

attributes for a specific page in the Page Table. In some cases, the term is explicitly

used for the entries in the TSB.

UE User process error

unassigned A valued (for example, an ASI number) semantics which are not architecturally

mandated and which may be determined independently by each implementation within

any given guidelines.

undefined An aspect of the architecture deliberately left unspecified. Software should have no

expectation of, nor make any assumptions about, an undefined feature or behavior. Use

of such a feature can deliver unexpected results, may or may not cause a trap, can vary

among implementations, and can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause

security holes (such as allowing user software to access privileged state), put the

processor into supervisor mode or an unrecoverable state.

unimplemented An architectural feature that is not directly executed in hardware because it is optional

or emulated in software.

unpredictable Synonym: undefined

unrestricted Describes an ASI that can be used regardless of the processor mode; that is, regardless

of the value of PSTATE.PRIV.

user application
program Synonym: application program

VA Virtual address. An address produced by a processor that maps all systemwide,

program-visible memory. Virtual addresses usually are translated by a combination of

hardware and software to physical addresses, which can be used to access physical

memory.

victimize [Error handling]

VIPT Virtually Indexed, Physically Tagged
xl UltraSPARC IIIi Processor User’s Manual • June 2003

virtual address See VA

VIS Visual Instruction Set. Performs partitioned integer arithmetic and other small integer

operations.

VIVT Virtually Indexed, Virtually Tagged (cache)

WAW Write After Write

WDR WatchDog trap-level Reset

word An aligned quadlet. Note: The definition of this term is architecture dependent and

may differ from that used in other processor architectures.

WRF Working Register File

writeback The process of writing a dirty cache line back to memory before it is refilled.

WRPR Write Privileged Register

XIR Externally Initiated Reset
Acronyms and Definitions xli

xlii UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION I

Processor Introduction
June 2003 Section I • Processor Introduction • 1

2 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 1

Introducing the UltraSPARC IIIi

Processor

1.1 Overview

The UltraSPARC IIIi processor is derived from Sun Microsystems high-end UltraSPARC III

processor, providing many of the same performance, reliability, and security features, but in

a highly integrated format that brings the power of the UltraSPARC architecture to cost-

efficient high-end desktop systems and inexpensive 1-4 way servers. It implements both the

full 64-bit, SPARC V9 architecture and version 2.0 of Sun Microsystems’ VIS™ instruction

set. The VIS instruction set provides a wide range of “Single Instruction, Multiple Data”

(SIMD) acceleration functions for working with 8-, 16-, and 32-bit data values, doing pixel

manipulation, 2D image processing, 3D graphics, data compression, and other specialized

performance-critical operations.

Major functional blocks included in the UltraSPARC IIIi processor are:

- Integer execution unit

- Floating-point execution unit

- 32 KB primary (Level 1 or L1) instruction cache

- 64 KB primary (L1) data cache

- 1 MB L2 unified cache (used for both instructions and data)

- 2 KB prefetch cache for floating-point data

- 2 KB write cache

- Synchronous DRAM (SDRAM) memory controller

- JBUS controller

In common with all other members of the UltraSPARC III family of processors, the

UltraSPARC IIIi processor is a 4-way superscalar processor, meaning it attempts to fetch 4

instructions at a time from the L1 instruction cache, and (given the appropriate instruction

mix) is capable of sustaining an execution rate of 4 instructions per clock cycle. Each

instruction is processed through a 14-stage pipeline that starts with address generation and
1-3

ends with the final retirement of any valid execution result. A 16-entry instruction queue

decouples instruction fetch from instruction issue, working to buffer any discrepancies

between these two rates. Thus, if more instructions are fetched than can be issued repeatedly,

an empty instruction queue gradually will fill. Or, if the next instruction fetch misses in the

L1 cache, a filled instruction queue can hide this break in the flow of instructions through the

pipeline, by continuing to supply the execution units with instructions for the several clock

cycles needed to retrieve the missing block of instructions from the on-chip L2 cache.

To enhance throughput, while instructions enter and exit the instruction queue in strict

program order, they can complete executing out-of-order. For example, if a short latency

instruction (like an integer add) follows a long latency instruction (like an integer divide) in

the pipeline, the fast operation does not need to wait on the slow one to finish. Instructions

fetched together will enter the queue in parallel, but, within the constraints imposed by

program order, they may exit the queue in company with instructions fetched either earlier or

later (depending on the specific instruction mix and availability of the necessary functional

units).

The UltraSPARC IIIi processor is supported by Sun’s popular Solaris™ operating system,

providing access to the more than ten thousand applications that have been developed for the

SPARC/Solaris platform over the years. Comprehensive sets of programs are available for

many fields, including engineering, manufacturing, telecommunications, financial services,

health, retail, ecommerce, and a variety of other industry segments. Additional operating

systems available for use with UltraSPARC processors include Linux and leading real-time

operating systems. A robust set of tools for developing software also can be readily acquired,

either from Sun Microsystems or independent software vendors.

1.2 Features

The UltraSPARC IIIi processor is richly featured, providing all of the following capabilities:

• Binary compatibility with the entire base of SPARC application code.

• Full 64-bit virtual address space.

• 64-bit internal operation, including 64-bit datapaths, 64-bit ALUs, and 64-bit address

arithmetic.

• 43-bit physical address space, supporting up to 8 Terabytes of memory.

• Low latency and high bandwidth for memory operations, due in part to a memory

hierarchy that incorporates separate on-chip L1 instruction and data caches, a 1 MB on-

chip unified L2 cache, a prefetch cache, a write cache, and an on-chip SDRAM controller.

• 1 to 4-way glueless multiprocessing.

• Introductory frequency above 1 GHz, scaling up over time, propelled by a 14-stage non-

stalling pipeline.

• 4-way superscalar instruction dispatch to nine separate execution units.
1-4 UltraSPARC IIIi Processor User’s Manual • June 2003

• High-performance JBUS system interface.

• Sophisticated power management.

• Extensive RAS protection, starting with error detection and correction (EDC) on the

primary and secondary caches.

Compared to the previous generation UltraSPARC IIi processor, the UltraSPARC IIIi

processor offers several useful new features, including version 2.0 of the VIS instruction set,

support for interval arithmetic, better prefetch capabilities, an extended interrupt scheme, and

4 times as much physical address space. It combines these advantages with far greater levels

of performance as well as greatly improved data reliability.

The UltraSPARC IIIi processor brings all the advantages of full 64-bit computing to both

desktop systems and entry-level servers, together with up to 4-way glueless MP operation, in

a very cost-competitive form.

1.3 Summary

Detailed information about specific functional blocks and features of the UltraSPARC IIIi

processor can be found in the following chapters of this manual. This section attempts to

summarize the more significant elements of the UltraSPARC IIIi processor, for the benefit of

readers seeking to quickly acquire a relatively comprehensive understanding of it.

Register Windows
In addition to the usual assortment of registers used for control purposes, status information,

condition codes, etc., the UltraSPARC architecture includes 160 64-bit integer registers, and

another set of 32 64-bit registers for use by the FPU and VIS instructions. The 160 integer

registers are organized into 8 overlapping register “windows” of 32-registers each. In each

register window, 8 registers are shared with the previous window, and are used to hold input

parameters from a calling routine; 8 registers are shared with the next window, and are used

to hold output parameters for use by a called routine; 8 registers are unshared, and are used

to hold local parameters; while 8 registers are global, and are used to hold values shared by

all routines. The 8 output registers for one window are the 8 input registers for the next

window. There are four sets of 8 global registers, designated for different uses, as

appropriate: normal, MMU, interrupt, and alternate. (8 x 8 in/out registers + 8 x 8 local

registers + 4 x 8 global registers = 160 integer registers.) Register windows are a distinctive

feature of the SPARC architecture, designed to provide a very fast means to handle context

switches, interrupts, and traps.

32 KB Primary Instruction Cache Memory (4-way set associative)
Holds 8K fixed-width 4-byte SPARC instructions for immediate access by the pipeline.

Instructions in this cache are protected against single bit errors by parity checking. If an error

is detected, the cache line with the erring byte is marked as invalid; as a consequence, the

next access to that line forces it to be refilled with valid instructions from the L2 cache.
Chapter 1 Introducing the UltraSPARC IIIi Processor 1-5

64 KB Primary Data Cache Memory (4-way set associative)
Holds data items for rapid loads to and stores from the register file. (In common with other

RISC architectures, all SPARC instructions operate register-to-register, accessing their

operands from the register file and return their results to it.) Uses the same parity checking/

line invalidation scheme for EDC as the instruction cache. Cache is write-through, so data in

the primary cache is always “clean.”

2 KB Prefetch Cache Memory (4-way set associative)
A special cache used to hold floating-point data that can be fetched well ahead of use. This

cache increases the effective size of the primary data cache when executing floating-point

programs, and provides specific hardware support for speculative loads, including both

software and hardware data prefetch operations.

2 KB Write Cache Memory (4-way set associative)
A special cache used to coalesce data being stored back to memory. By reducing the number

of separate store operations needed, effectively increases the memory bandwidth of the

processor.

Non-cacheable Store Compression
The UltraSPARC IIIi processor uses a 16-byte buffer to merge adjacent non-cacheable stores

into a single external data transaction, greatly increasing store bandwidth to the graphics

frame buffer. In addition, a flow control signal is available through the Graphics Status

Register that allows software to interrogate a FIFO status signal on the graphics card, without

requiring completion of a non-cacheable read to the device. This prevents stalling due to

waiting for prior non-cacheable stores to be pushed to the device, and eliminates bubbles in

the store throughput due to the pipeline depth between the processor and the graphics device.

1 MB Unified Secondary Cache (4-way set associative)
This large, on-chip L2 cache buffers the impact of L1 cache misses by providing fast, local

access to a much larger pool of instructions and data than will fit into the several L1 caches.

The effect is to substantially reduce the overall latency of memory operations. The tags for

the L2 cache are protected by parity checking, while data in the cache is protected by full

ECC, providing single-bit error correction and double-bit error detection. The L2 cache uses

a write-back policy to reduce store traffic to main memory. Any uncorrectable double-bit

errors are marked on write-back, so they will not propagate to other processors in an MP

configuration.

JBUS Interface
A Sun-proprietary system interface new to the UltraSPARC IIIi processor, developed to

provide a combination of the high performance expected of Sun systems with the low cost

demanded by the desktop and entry-level server marketplaces. A companion JI0 chip is

available from Sun Microsystems. In addition to supporting the shared address/data JBus

itself, the companion chip also provides support for up to 2 industry-standard PCI buses, as

well as for Sun’s proprietary UPA64S graphics bus (in place of the secondary PCI bus).
1-6 UltraSPARC IIIi Processor User’s Manual • June 2003

SDRAM Controller
Provides direct connectivity of the processor to main memory through a 2-channel DDR

SDRAM interface. Full ECC protection is provided on all stored memory data, and

transactions on the memory/address bus are protected by parity checking. In the interests of

simplicity, any system or DRAM-related, non-correctable errors are handled as deferred

traps.

Low Power Operating Modes
The UltraSPARC IIIi processor features low-power modes. When signalled to conserve

power, the on-chip Clock Control Unit instantaneously switches the processor’s clock rate to

lower power modes.
Chapter 1 Introducing the UltraSPARC IIIi Processor 1-7

1-8 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 2

UltraSPARC IIIi Processor in a System

The UltraSPARC IIIi processor can reside either on the system motherboard itself or in a

separate module attached to the motherboard. The UltraSPARC IIIi processor is intended to

operate with a special support bridge chip that provides I/O functions (called “JIO”). The

UltraSPARC IIIi processor and its companion I/O chip can be used to scale systems from a

minimum 1-way desktop or blade configuration up to a 4-way stand-alone server.

2.1 System Configurations

The UltraSPARC IIIi processor is designed to operate efficiently in 1-way, 2-way, or 4-way

systems.

2.1.1 Four-Processor System

FIGURE 2-1 illustrates a typical configuration for a high-performance, 4-way, entry-level

server. This system incorporates 4 UltraSPARC IIIi processors and two companion JIO chips

(configured as master-slave) to provide maximum I/O bandwidth. In the system shown, JBUS

uses a “Bell Repeater”, a bit-sliced pipeline register chip to reduce loading on JBUS. A lower

cost 4-way system with half the bandwidth can be build using a single master JIO chip.
2-9

FIGURE 2-1 Four-Processor System with the UltraSPARC IIIi Processor

Note that, in the configuration shown, four possible JBUS segments, JBUS #0, JBUS #1,

JBUS #2 and an optional JBUS #3, propagate through the Bell Repeater. The Bell Repeater

is only needed when the JBUS is required to run at maximum frequency with more than three

loads, to reduce loading on the JBUS. The Bell Repeater forwards the signals from each of

the four segments of the JBUS on to the other three segments. Propagating JBUS signals

through the Bell Repeater introduces a one cycle delay, i.e., any signals the Bell Repeater

receives in one cycle. it forwards in the next. The Bell Repeater operates entirely

automatically, i.e., it requires no control signals.

UltraSPARC IIIi
processor

JIO 1
(Master:ID=1)

JIO 0
(slave:ID=0)

Interrupt

I-chip

Gigabit

Acer 1535D+
 Southbridge

1394A
Host Controller

PCI 64-bit

PCI slots

PCI 64-bit/66 MHz

PCI Slot

64-bit PCI

SCSI Controller

Ethernet

PHY

DDR4
D

IM
M

s

64-bit PCI

UltraSPARC IIIi
processor

DDR4
D

IM
M

s

 +

PCI Slot

Bell Repeater
Chip 10x

JBUS #0

UltraSPARC IIIi
processor

DDR4
D

IM
M

s

UltraSPARC IIIi
processor

DDR4
D

IM
M

s

JBUS #1

Optional

JBUS Slot

Bell Repeater
Chip 10x
Bell Repeater
Chip

JBUS #0 128-bit JBUS #1 128-bit

JBUS #3 128-bit

JBUS #2 128-bit
2-10 UltraSPARC IIIi Processor User’s Manual • June 2003

2.1.2 Two-Processor System

FIGURE 2-2 illustrates a typical configuration for inexpensive 2-way desktops or servers based

on the UltraSPARC IIIi processor. This system incorporates 2 UltraSPARC IIIi processors

with two companion JIO chips. Since this configuration, like the 4-way system, may involve

placing 4 loads on the JBUS, it also requires addition of a Bell Repeater to achieve maximum

JBUS performance. In the 4-load configuration shown, however, no Bell Repeater is needed,

since the JBUS in this example has been designed to run lower than maximum frequency.

FIGURE 2-2 Two-Processor System with the UltraSPARC IIIi Processor

UltraSPARC IIIi
processor

JIO 1
(Master:ID=1)

JIO 0
(slave:ID=0)

JBUS 128-bit

Interrupt

I-chip

Gigabit

Acer 1535D+
 Southbridge

1394A
Host Controller

PCI 64-bit

PCI slots

PCI 64-bit

PCI Slot

64-bit PCI

SCSI Controller

Ethernet

PHY

DDR4
D

IM
M

s

64-bit PCI

UltraSPARC IIIi
processor

DDR4
D

IM
M

s

 +

PCI Slot
Chapter 2 UltraSPARC IIIi Processor in a System 2-11

2.1.3 One-Processor System

FIGURE 2-3 illustrates a typical configuration for a minimum-cost, 1-way system based on the

UltraSPARC IIIi processor. This system involves no Bell Repeater and only 1 JIO chip. To

reduce cost still further, note that the UltraSPARC IIIi processor can be configured to use a

minimum memory of only two DIMMs on the DDR interface. In this sort of cost optimized

single processor configuration, PCI slots are only provided where PCI devices can be added

to a system.

FIGURE 2-3 One-Processor System with the UltraSPARC IIIi Processor

JIO

JBUS 128-bit

Interrupt
I-chip

PCI slots

PCI 64-bit

PCI 64-bit

UltraSPARC IIIi
Processor

DDR2
D

IM
M

s

PCI Slot
2-12 UltraSPARC IIIi Processor User’s Manual • June 2003

2.2 JBUS Interface

The UltraSPARC III processor has a companion JIO chip that features a 183-pin interface to

connect to the JBUS. The JBUS is a 16-byte (128-bit), split transaction, shared address/data

bus.

2.3 Memory System

The memory system consists of the Memory Control Unit (MCU) in the processor, and two

channels of DDR Synchronous DRAM memory. Each channel supports either one or two

registered DIMMs, allowing systems to be configured with less memory (for lower cost) or

more memory (for higher performance). Each channel has an address/ control bus as well as

an 8-byte data bus (plus 1 byte for ECC check bits). Clock buffering with a PLL is provided

on the DIMMs.

Since both memory channels are controlled identically by the memory controller, DIMMs

always must be loaded in pairs. Each DIMM pair consists of two 72-bit DDR SDRAM

DIMMs. Since each DIMM could be dual sided (single/double), there are a maximum of four

data loads per memory channel.

The UltraSPARC IIIi processor modules have a total of four DIMM slots. In order, these are

termed 1A, 1B, 2A, 2B. DIMMs 1A and 2A correspond to memory channel 1. DIMMs 1B

and 2B correspond to memory channel 2. DIMM pair #1 contains DIMMs 1A and 1B.

DIMM pair #2 contains DIMMs 2A and 2B. FIGURE 2-4 summarizes the high level

architecture of the UltraSPARC IIIi memory system, including placement of the four

DIMMs.

Each cache line is split across the DIMMs in memory channel 1 and memory channel 2. In

FIGURE 2-4, DIMM 1A belongs to memory channel 1 and DIMM 1B belongs to memory

channel 2. Similarly, DIMM 2A belongs to memory channel 1 and DIMM 2B belongs to

memory channel 2.

In exactly the same way, each External Bank of memory is split across the two memory

channels. As shown in FIGURE 2-4, External Banks 0 and 1 are split across DIMM 1A and

DIMM 1B, and External Banks 2 and 3 are split across DIMM 2A and DIMM 2B.

Each External Bank contains four Internal Banks. The memory controller pipelines requests

to memory, making use of all 16 of the internal memory banks available (4 External Banks

times 4 Internal Banks each), when all DIMM slots are fully loaded.
Chapter 2 UltraSPARC IIIi Processor in a System 2-13

FIGURE 2-4 DDR Memory System Architecture

2.4 Power Management

The UltraSPARC IIIi processor features two low power modes: a 1/2 speed mode and a 1/32

speed mode for clock operation.

in
te

rn
al

 b
an

ks

DI
M

M
 2

A
Ex

te
rn

al
 B

an
k

2
Ex

te
rn

al
 B

an
k

3
DI

M
M

 2
B

 MEMORY CHANNEL1

 MEMORY CHANNEL 2

DI
M

M
 1

B
UltraSPARC IIIi

in
te

rn
al

 b
an

ks

DI
M

M
 1

A

Ex
te

rn
al

 B
an

k
0

Ex
te

rn
al

 B
an

k
1

DIMM Pair #1 DIMM Pair #2

DI
MM

 1B
Ex

te
rn

al
B

an
k

1

Ex
te

rn
al

B
an

k
0

In
te

rn
al

 B
an

ks

DI
MM

 2B
Ex

te
rn

al
B

an
k

3

Ex
te

rn
al

B
an

k
2

In
te

rn
al

 B
an

ks

DI
MM

 2A
Ex

te
rn

al
B

an
k

3

Ex
te

rn
al

B
an

k
2

In
te

rn
al

 B
an

ks

DI
MM

 1A
Ex

te
rn

al
B

an
k

1

Ex
te

rn
al

B
an

k
0

In
te

rn
al

 B
an

ks

Processor
2-14 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION II

Architecture and Functions
June 2003 Section II • Architecture and Functions • 15

16 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 3

UltraSPARC IIIi Processor Architecture

Basics

The UltraSPARC IIIi processor is a high-performance, highly-integrated, 4-way superscalar

processor. In addition to wide parallel instruction dispatch to exploit instruction-level

parallelism in code, the processor is designed to offer high clock speeds. To reduce

instruction execution latencies, the processor incorporates on-chip level-1 instruction and

data caches, a 1 MB unified level-2 cache, a memory controller, and large, flexible memory

management units (MMUs). The processor was designed specifically to work in inexpensive

desktop systems and entry-level servers, in configurations ranging from 1-4 processors.

The UltraSPARC IIIi processor also offers a number of performance enhancements over

previous UltraSPARC processors. The processor incorporates multiple data prefetching

mechanisms to enable long latency load operations to be overlapped with earlier operations.

The processor offers an enhanced data memory management unit (D-MMU) with 3 separate

TLBs providing a total of 1040 entries, and flexible support for page sizes ranging from

8 KB up to 4 MB, enabling the processor to effectively map both small and large memory

systems.

3.1 Component Overview

The processor includes a high-performance, instruction fetch engine, called the instruction
issue unit, that is decoupled from the rest of the pipeline by a 16-entry instruction buffer.

Four instructions at a time are fetched from the level-1 instruction cache and queued for issue

in the instruction buffer. Up to 4 instructions in a clock cycle can be steered from this queue

into 6 execution buffers. Up to 6 instructions in a clock cycle can be dispatched from the 6

execution buffers into the 6 parallel execution units in UltraSPARC IIIi processor: 2 integer

ALUs, 1 branch unit, 1 load/store unit (also handles certain special operations, like integer

multiplication and division), 1 floating-point add/subtract unit, and 1 floating-point multiply/

divide unit. The two floating-point units also handle the specialized SIMD VIS instructions

for accelerating graphics, media, and network functions.
3-17

In addition to a 32 KB primary instruction cache, a 64 KB primary data cache, an instruction

fetch engine, a 16-entry instruction buffer, and the 6 parallel execution units, the processor

also integrates on-chip a 1 MB L2-cache, a 2 KB prefetch cache, a 2 KB write cache, an I/O

interface (to the JBUS), and a memory controller. FIGURE 3-1 shows a simplified block

diagram of the UltraSPARC IIIi processor.

FIGURE 3-1 UltraSPARC IIIi Processor Architecture

System
Interconnect

132

 Unit (ECU & MCU)

Instruction Issue

Integer ExecutionFloating Point

Data Cache

JBUS InterfaceEmbedded Cache/Memory

Local Memory
DRAM

FpRF

Fp multiply

WARF

Load/Store/Special pipe

ALU pipes (0 & 1)

Dependency / Trap Logic
Fp Add / Sub
Fp Divide
Graphics Unit

Instruction Cache

Instruction Queue

Steering Logic

4 Instructions

Data
Cache

Prefetch
Cache

Write
Cache

Store
Queue

DRAM
Ctrlr

L2$ Tags SRAM
Ctrlr

Snoop pipe
Ctrlr

 Unit (JBU)

Unit (DCU)

 Unit (IEU)Unit (FGU)

 Unit (IIU)

+ Data
Transaction

Ctrlr

Unit (ECU & MCU)
3-18 UltraSPARC IIIi Processor User’s Manual • June 2003

3.1.1 Instruction Fetch and Buffering

The instruction issue unit in the UltraSPARC IIIi processor is responsible for fetching,

queuing, and steering instructions as appropriate to one of the six parallel execution units

included in the UltraSPARC IIIi processor design. Up to four instructions are fetched and

decoded at a time. Assuming the fetch request hits in the level-1 instruction cache (and

certain other conditions are met, e.g., the instruction queue is not full), instruction fetching is

possible in every clock cycle. If a fetch request misses in the level-1 instruction cache, a fill

request is sent to the lower memory hierarchy for the 32-byte line containing the missing

instruction block.

The instruction cache uses a 32-byte line, containing 8 fixed-width 4-byte SPARC

instructions. The unified L2 cache uses a 64-byte line. If the instruction request hits in the

first half of an L2 cache line, the second half of that line is also fetched, and placed in a

special 32-byte Instruction Prefetch Buffer (IPB), accessed in parallel with the instruction

cache. This precaution avoids a potential L1 cache miss, in those cases where instruction

fetching does move on sequentially to use the next group of 8 instructions.

The UltraSPARC IIIi processor instruction cache contains 1K lines, with a total capacity of

8,192 instructions. Cache lines are virtually indexed but physically tagged. The cache is 4-

way set-associative. It requires 2 cycles of latency to fetch an item, but access is pipelined, so

sequential requests have single cycle throughput, after the two cycle delay for the first item is

satisfied. Other cache features besides the usual data and tag arrays include a microtag,

predecode bits, a Load Prediction Bit (LPB), and a snoop tag array. The microtag uses 8 bits

of virtual address to enable fast way-selection of a potentially matching cache line, without

waiting for the physical address translation to complete. The predecode bits include

information about which pipeline each instruction will be issued to, and other information to

optimize execution. The LPB is used to dynamically learn those load instructions that

frequently see a read-after-write (RAW) hazard with preceding stores. The snoop tag is a

copy of the tags dedicated for snoops caused by either stores from the same, or different,

processors. The instruction cache in the UltraSPARC IIIi processor is kept completely

coherent so the cache never needs to be flushed.

The instruction fetch engine is also dependent upon control transfer instructions such as

branches and jumps. The UltraSPARC IIIi processor uses a 16K-entry branch predictor to

predict the fetch direction of conditional branches. For branches that are either known to be

taken or predicted taken, the branch target must be determined. For PC relative branches, the

target of the branch is computed. This adds a one-cycle penalty to the branch taken case, but

avoids any penalties from target misprediction. For predicting the target of return instructions

an 8-entry Return Address Stack (RAS) is used. For other indirect branches (branches whose

targets are determined by a register value), the software can provide a branch target

prediction with a jump target preparation instruction.

The 16-entry instruction buffer decouples the front-end instruction fetch from the back-end

instruction execution, allowing these two parts of the pipeline to operate at different rates. If

more instructions are fetched than can be issued, an empty instruction buffer gradually fills

up. If instruction fetch is interrupted by a taken branch penalty or an instruction cache miss,

a full instruction buffer gradually drains, hiding some or all of the ensuing latency.
Chapter 3 UltraSPARC IIIi Processor Architecture Basics 3-19

3.1.2 Execution Pipelines

The UltraSPARC IIIi processor has six parallel execution units. Buffered instructions can be

issued to all six units in a single cycle, and sustained issue to any 4 of these units is possible.

The six executions are:

• 2 integer Arithmetic and Logic Units (ALU)

• 1 Branch pipeline

• 1 Load/store pipeline (also handles special instructions)

• 1 Floating-point multiply pipeline (also handles SIMD instructions)

• 1 Floating-point addition pipeline (also handles SIMD instructions)

The ALUs perform integer addition and subtraction, logic operations, and shifts. These units

have single-cycle latency and throughput. The branch pipeline handles all branch instructions

and can resolve one branch each cycle. Load/store operations are discussed in the next

section. The load/store pipeline also handles Integer multiplication and division. Integer

multiplication has a latency of 6 to 9 cycles depending on the size of the operands. Division

is also iterative and requires 40 to 70 cycles.

The floating-point units each have 4-cycles of latency, but are fully pipelined (one instruction

per cycle per pipeline). These pipelines handle double and single precision floating-point

operations and a set of SIMD instructions that operate on 8 or 16-bit fields. Floating-point

division and square root operations use the floating-point multiplication pipeline and are

iterative computations. Floating-point division requires 17 cycle for single precision, 20

cycles for double precision computations. Floating-point square root requires 23 cycles for

single precision, 29 cycles for double precision computations.

3.1.3 Load/Store Unit

A load or store instruction can be issued each cycle to the load/store pipeline. The load/store

unit consists of the load/store pipeline, a store queue, a data cache and a write cache.

Integer loads of unsigned words and double words have a 2-cycle latency. All other loads

have a 3-cycle latency. There is an 8-entry store queue to buffer stores. Stores reside in the

store queue from the time they are issued until they complete an update to the write cache.

The store queue can effectively isolate the processor from the latency of completing stores. If

the store queue fills up, the processor will block on a subsequent store.

The store queue allows successive separate stores to the same cache line to collect. For non-

catchable stores (for example, stores to a graphics frame buffer), this function can greatly

reduce the amount of store traffic generated, effectively raising the bandwidth to external

devices.
3-20 UltraSPARC IIIi Processor User’s Manual • June 2003

The UltraSPARC IIIi processor supports store forwarding, the ability to pass data still in the

store queue directly to a quickly following load that attempts to access the same target

location in memory (a Read After Write or RAW hazard). Since 3 cycles of latency is

required for a load to communicate with the store queue, the LPB bit in the instruction cache

is used to force 2-cycle loads to issue as 3-cycle loads. If a 2-cycle load is not correctly

predicted to have a RAW hazard, the load must be re-issued.

The data cache holds 64 KB. Cache lines are virtually indexed but physically tagged. The

cache is 4-way set-associative. It requires 2 cycles of latency to fetch an item, but access is

pipelined, so sequential requests have single-cycle throughput. Like the instruction cache, the

data cache uses 8-bit microtags to do way-selection based on virtual addresses. The update

policy is write-through, no write-allocate. The line size is 32 bytes with no subblocking. The

data cache only needs to be flushed if an alias is created using virtual address bit 13. VA[13]

is the only virtual bit used to index the data cache.

The write cache is a write-back cache used to reduce the amount of store bandwidth required

to the L2-cache. It exploits both temporal and spatial locality in the store stream. The small

(2 KB) structure achieves a store bandwidth equivalent to a 64 KB write-back data cache

while maintaining TSO compatibility. The write cache is kept fully coherent with both the

processor pipeline and the system memory state. The write cache is 4-way set-associative

and has 64-byte lines. The write cache maintains dirty bits on a per byte basis.

3.1.3.1 Data Prefetching Support

The UltraSPARC IIIi processor makes use of advanced data prefetching mechanisms in both

software and hardware. Software prefetching allows compilers (of Java JITs) to explicitly

expose the memory-level parallelism in programs and to schedule memory operations. There

are a number of variations of software prefetches. Software prefetches can specify if the data

should be brought into the processor for reading or for both reading and writing. Software

can also specify if the data should be installed into the L2-cache, for data that will be reused

frequently, or only brought into the prefetch cache.

Hardware prefetching is an automatic facility that looks for common data sequences, and

attempts to fetch ahead based on detected patterns.

Prefetch mechanisms are used to both hide load-miss activity and overlap load misses to

increase memory-level parallelism. Robust prefetch mechanisms that avoid as many load

misses as possible are especially important for the UltraSPARC IIIi processor since load

misses block program execution, i.e., on load misses, the processor waits for the load to

complete before executing any other instructions.

Specifically to benefit data-intensive floating-point programs, the UltraSPARC IIIi processor

features a special prefetch cache. The prefetch cache is a small (2 KB) cache that is accessed

in parallel with the data cache for floating-point loads. In effect, it expands the size of the

data cache when executing floating-point programs, and can noticeably reduce load misses

with a correspondingly favorable impact on performance. Floating-point load misses,
Chapter 3 UltraSPARC IIIi Processor Architecture Basics 3-21

hardware prefetches and software prefetches bring data into the prefetch cache. The prefetch

cache is 4-way set-associative and has 64-byte lines which are broken into two 32-byte

subblocks with separate valid bits. The prefetch cache is write invalidate.

3.1.4 Memory Management Units

There are separate Memory Management Units (MMUs) for instruction and data address

translation. MMUs have two primary functions: memory protection, preventing processes

from accessing each other’s memory spaces, and address translation -- the conversion of

virtual addresses in the processor’s logical 64-bit address space into real addresses in the

system’s physical memory. The first time a virtual address is encountered, the processor traps

to software to walk a set of page tables in memory to locate the corresponding physical

address. Since the process of translating a virtual address into a physical address is slow, the

MMUs contain a set of Translation Lookaside Buffers (TLBs). These are specialized caches

used to store recently mapped pairs of virtual-physical addresses together with associated

page protection and usage information. Since TLB lookup is fast (unlike the initial

translation process itself), memory operations can proceed without interruption as long as

their virtual address “hits” in a TLB.

The instruction MMU contains two TLBs accessed in parallel. The first TLB is a 16-entry

fully-associative TLB. This small TLB is perfectly flexible, in the sense that it can hold

pages of various sizes (8K, 64K, 512 KB, or 4 MB), and pages can be either locked or

unlocked. The second TLB is a 128-entry, 2-way set-associative TLB. This large TLB is used

exclusively to hold unlocked pages of the “default” 8 KB size.

The data MMU of the UltraSPARC IIIi processor is enhanced to provide more translation

entries and to provide more support for using large pages for translation. It contains three

TLBs accessed in parallel. The first TLB is a 16-entry, fully-associative TLB, identical in

nature to the small TLB in the instruction MMU. The other two TLBs are both 512-entry, 2-

way set-associative caches. Like the large TLB in the instruction MMU, these large data

TLBs only store entries for unlocked pages. Unlike the large TLB in the instruction MMU,

the large TLBs in the data MMU can be set to any of the four page sizes, although only

pages of the same size can accessed/filled at a time (but multiple pages of that size can be

handled at once). The two TLBs can be set to either both store pages of the same size, or

each store pages of different sizes.

Having the two large TLBs is very important for general use of large pages for translation, in

systems that need to map large physical memories. One of the TLBs can be set for large

pages (such as 4 MB pages) while the other can be set to the default page size (usually 8 KB

pages). With this configuration the processor provides robust support for large pages.
3-22 UltraSPARC IIIi Processor User’s Manual • June 2003

3.1.5 Embedded Cache Unit (Level-2 Unified Cache)

The UltraSPARC IIIi processor supports an on-chip 1 MB, 4-way set-associative Level 2

cache. A separate, 4-way set-associative cache is used to store tags for the L2 cache. Tags are

protected by parity checking, date is fully protected with error correcting code (ECC) that

allows all single-bit errors to be corrected and double-bit errors to be detected and marked to

prevent use.

3.1.6 JBUS Interface Unit

The UltraSPARC IIIi processor communicates with the JIO chip through JBUS. All

transactions with the JBUS are routed through the JBUS interface unit. The outgoing control

logic arbitrates for issuing transactions and for driving data. The incoming control logic

enqueues all transactions issued on the bus and accumulates snoop results from internal

caches before driving data on the system bus. The error control logic handles error logging

and trap generation.

3.1.7 Memory Controller Unit

The Memory Control Unit (MCU) handles all data transfers between the system and the main

memory of the UltraSPARC IIIi processor. The MCU accepts read and write transactions

from the ECU and JBU. The local memory supports up to 16 GB of DDR 266 MHz

SDRAM. Data transfers between memory and the JBU are handled by the MCU. The local

memory consists of two DDR channels each of which are composed of two 72-bit DIMMs.

Nine bits of ECC are stored with each 16-bytes of data. The ECC is checked by the MCU

when data is read from memory. The MCU also handles the memory refresh and Low Power

operation of memory.

A major goal of the MCU is to aggressively reduce memory latencies. Methods to reduce

latency include the following:

• Allowing reads to bypass writes while preserving the system bus order

• Reads from the ECU are started speculatively before reaching the system bus

• Holding internal SDRAM banks open to reduce the latency due to row access

strobe (RAS)
Chapter 3 UltraSPARC IIIi Processor Architecture Basics 3-23

3.2 Processor Operating Modes

The UltraSPARC IIIi processor operates in various modes.

3.2.1 Privileged Mode

This mode is a “supervisor” mode. In this mode, the software is allowed to access both

privileged and non-privileged registers and address space identifiers (ASIs). There are certain

features of the processor that can be accessed only in privileged mode. Privileged mode

execution typically is used by the kernel and operating system.

3.2.2 Non-Privileged Mode

This mode is a “non-supervisor” operating mode, in which programs are allowed to access

only non-privileged registers and ASIs. If non-privileged software tries to access privileged

registers or ASIs, exceptions are generated and handled by the operating system. Non-

privileged mode execution is typically used by the application programmers.

3.2.3 Reset and RED_State

The UltraSPARC IIIi processor can be reset using various mechanisms. This section deals

with the reset and RED_state for the UltraSPARC IIIi processor.

3.2.3.1 RED_state Characteristics

A processor enters RED_state in one of the following two ways:

• First, by trapping when already at the maximum trap level.

• Second, by setting PSTATE.RED.

When the processor enters RED_state, it will clear the DCU Control Register, including

enable bits for I-cache, D-cache, I-MMU, D-MMU, and virtual and physical watchpoints.
3-24 UltraSPARC IIIi Processor User’s Manual • June 2003

Note – Exiting RED_state by writing zero to PSTATE.RED in the delay slot of a JMPL
is not recommended. A non-cacheable instruction prefetch can be made to the JMPL target,

which may be in a cacheable memory area. This condition could result in a bus error on

some systems and cause an instruction_access_error trap. You can mask the trap by setting

the NCEEN bit in the ESTATE_ERR_EN register to zero, but this approach will mask all

noncorrectable error checking. Exiting RED_state with DONE or RETRY avoids the

problem.

3.2.3.2 Resets

Reset priorities from highest to lowest are power-on resets (POR, hard or soft), externally

initiated reset (XIR), watchdog reset (WDR), and software-initiated reset (SIR).

Power-on Reset (Hard Reset)

A Power-on Reset (POR) occurs when the J_POR_L pin is activated and stays asserted until

the processor is within its specified operating range. When the J_POR_L pin is active, all

other resets and traps are ignored. POR has a trap type of 1 at physical address offset 0x20.

Any pending external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown after

POR. The following bits must be initialized before the caches are enabled:

• In the I-cache, valid bits must be cleared and microtag bits must be set so that each way

within a set has a unique microtag value.

• In the D-cache, valid bits must be cleared and microtag bits must be set so that each way

within a set has a unique microtag value.

• All L2-cache tags and data

The I-MMU and D-MMU TLBs must also be initialized. The P-cache valid bits must be

initialized before any floating-point loads are executed.

Caution – Executing a DONE or RETRY instruction when TSTATE is uninitialized after a

POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using wrpr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is

not at the risk of damaging the chip.
Chapter 3 UltraSPARC IIIi Processor Architecture Basics 3-25

System Reset (Soft Reset)

A system reset occurs when the J_RST_L pin is activated. When the J_RST_L pin is active,

all other resets and traps are ignored. System reset has a trap type of 1 at physical address

offset 0x20. Any pending external transactions are canceled.

Note – Memory refresh continues uninterrupted during a system reset. The system

interface, L2-cache configuration, and memory controller configuration are preserved across

a system reset.

Externally Initiated Reset (XIR)

An XIR is sent to the processor through the XIR transaction on the JBUS. It causes a

SPARC-V9 XIR, which has a trap type 316 at physical address offset 0x60. XIR has higher

priority than all other resets except Power-on Reset and System Reset.

XIR affects only one processor, rather than the entire system. Memory state, cache state, and

most Control Status Register state are unchanged. System coherency is not guaranteed to be

maintained through an XIR reset. The saved PC and nPC will only be approximate because

the trap is not precise with respect to pipeline state.

Watchdog Reset (WDR) and error_state

The processor enters error_state when a trap occurs at TL = MAXTL.

The processor automatically exits error_state using WDR. The processor signals itself

internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x4016. WDR sets the processor in a state where it is prepared for diagnosis of

failures.

WDR affects only one processor, rather than the entire system. CWP updates due to window

traps that cause watchdog traps are the same as the no watchdog trap case.

Software-Initiated Reset (SIR)

An SIR is initiated by an SIR instruction within any processor. This per-processor reset has

a trap type 4 at physical address offset 0x80. SIR affects only one processor, rather than the

entire system.
3-26 UltraSPARC IIIi Processor User’s Manual • June 2003

RED_state Trap Vector

When the UltraSPARC IIIi processor processes a reset or trap that enters RED_state, it

takes a trap at an offset relative to the RED_state trap vector base address (RSTVaddr);

the base address is at virtual address FFFF FFFF F000 000016, which passes through to

physical address 7FF F000 000016.

3.2.4 Error Handling

The UltraSPARC IIIi processor provides extensive support for detecting and correcting

errors. Note that some errors may still be uncorrectable.

3.2.4.1 Error Classes in Severity

The classes of error in order of severity are as follows:

1. Hardware-corrected errors. Hardware tries to correct the error automatically. A trap is

generated to log the error conditions when the error is corrected to enable the actions for

preventive maintenance.

2. Software-correctable errors. Hardware does not correct the error automatically. Instead,

it invokes a trap requesting the recovery software to correct the error. Corrective actions

are expected from the recovery software. If recovery is successful, the system should

continue the operation.

3. Uncorrectable errors. By its nature the error is uncorrectable, and hardware invokes a

trap to signal the occurrence of the error to appropriate recovery software. Depending on

the condition under which the error occurs, the system may be able to recover from the

error and continue operation. If not, it may be able to isolate the error to a particular

process and terminate it. Otherwise, the software should shut down the system gracefully.

4. Fatal errors. By its nature, the error indicates either loss of system consistency or a

system interconnect protocol error. It is dangerous to continue operation in this situation

because of the impending threat of a failure to maintain data integrity. Therefore, upon the

detection of the error, the processor generates an error signaling sequence to its

interconnect, expecting to be halted/reset by the system. System actions induced by the

error signaling sequence are dependent on system implementation.
Chapter 3 UltraSPARC IIIi Processor Architecture Basics 3-27

3.2.4.2 Corrective Actions

Errors are handled by invocation of one of the following actions:

• Reset-inducing error sequence. Any fatal error causes the error signaling sequence to

induce a system reset. Some errors asynchronous to instruction execution may generate

this error signaling sequence.

• Precise traps. Most errors detected in the course of an instruction execution generate a

precise trap. If the error is hardware correctable, software just logs it. If the error is

software correctable, software corrects it before continuing execution. If the error is

uncorrectable, software takes appropriate action.

• Deferred traps. Some uncorrectable errors requiring immediate attention generate a

deferred trap to request software intervention. The recovery software examines the

recorded error information to determine the extent of the damage caused by the error.

Depending on the observed effect, the system may need to be brought down, or it may

continue to run when the effect is isolated within the user program. In any event, the error

does not require immediate reset of the system.

• Disrupting traps. An error asynchronous to instruction execution generates a disrupting

trap to request logging and clearing. The error may already be corrected by hardware and

may only require logging. If the error is software correctable, software corrects it before

continuing execution. If the error is uncorrectable, software takes appropriate action.

3.2.4.3 Errors Synchronous and Asynchronous to Instruction Execution

Some errors can be detected asynchronously to instruction execution. Other errors are

detected in the course of an instruction execution, that is, synchronous to instruction

execution. Separate error recording mechanisms are used for synchronous and asynchronous

errors.

An error asynchronous to instruction execution is signaled by either a disruption or deferred

trap to the processor, or through an error signaling sequence to system hardware which

induces a system reset depending on the severity of the error. The errors signalled through a

disrupting trap do not directly correspond to an instruction. Traps may or may not be

recoverable. Errors signalled are meant to indicate either a loss of system consistency or a

protocol error on system interconnect.

An error detected in the course of an instruction execution is signalled through an error trap

to the instruction, with additional information recorded in hardware. The trap is either

precise or deferred. The program (process) affected by the error should be given a corrected

response, or if the error is uncorrectable, the process should be terminated appropriately.

Precise traps are used wherever possible.
3-28 UltraSPARC IIIi Processor User’s Manual • June 2003

3.2.5 Debug and Diagnostics Mode

The UltraSPARC IIIi processor provides interfaces for diagnostic access to most internal state

of the processor. This is important for diagnosing, and when possible recovering from failures.

There are several different diagnostic interfaces. All the diagnostic interfaces are accessible

only from software running in privileged mode or from an external system controller in a

server. All internal diagnostic and configuration registers are 8-bytes wide, and must be

accessed as 8-byte units with 8-byte aligned addresses.

There are a number of diagnostic registers that are mapped to internal ASI registers. These

registers are accessed by load and store alternate ASI instructions that specify certain

configurations of ASI numbers and virtual addresses. Diagnostic registers are provided for

recording various fault conditions as well as important information and state associated with

the fault to help diagnosis and possibly recover.

For diagnostic and error recovery in the large memories on chip, such as caches, each element

of these memory arrays can be individually read and written. Accesses are performed with load

and store alternate ASIs that use specific ASIs that point to the memory array. These accesses

can only be done by privileged software.

Special ASI numbers are used for diagnostic accesses to structures where the virtual address is

used to specify the portion of the structure to be read. Most structures can be directly read and

many structures can also be directly written or quickly cleared.

The UltraSPARC IIIi processor also provides a serial JTAG interface that can be used by a

system controller for diagnostics. A system controller can perform a shadow scan where

various configuration and diagnostic information is scanned out of the processor without

interfering with the operation of the processor. The system controller can also use the JTAG

interface to scan in information to configure or control various aspects of the processor.

The JTAG interface also can be used to perform a full scan dump. When a full scan dump is

performed, most of the flops in the processor are scanned out through a scan chain. A full scan

dump is a destructive action and the processor must be reset after completion of the dump. The

full scan provides an important tool for diagnosis of serious failures.

For controlling diagnostics mode, there is a range of configuration registers, which can enable

and disable many features of the processor. The configuration registers are only accessible in

privileged mode. Some of the configuration registers are implemented as ASRs. These registers

are accessible from the RDASR/WRASR interface. Most of the configuration registers are

mapped as internal ASI registers. These registers are accessed by load and store alternate ASI

instructions that specify certain configurations of ASI numbers and virtual addresses.
Chapter 3 UltraSPARC IIIi Processor Architecture Basics 3-29

3-30 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 4

Instruction Execution

This chapter focuses on the needs of compiler writers and others who are interested in

scheduling instructions to optimize program performance. The chapter discusses the

following topics:

• Section 4.1, “Introduction”

• Section 4.2, “Processor Pipeline”

• Section 4.3, “Pipeline Recirculation”

• Section 4.4, “Grouping Rules”

• Section 4.5, “Conditional Moves”

• Section 4.6, “Instruction Latencies and Dispatching Properties”

4.1 Introduction

The instruction at the memory location specified by the program counter (PC) is fetched and

then executed, annulled, or trapped. Instruction execution may change program-visible

processor and/or memory state. As a side effect of its execution, new values are assigned to

the PC and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it

impossible to complete normal execution. Such an exception may in turn generate a precise

trap. Other events may also cause traps: an exception caused by a previous instruction (a

deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request (a

reset trap). If a trap occurs, control is vectored into a trap table.

4.1.1 NOP, Neutralized, and Helper Instructions

The distinction between NOP and neutralized instructions is subtle.
31

4.1.1.1 NOP Instruction

The architected NOP instruction is coded as a SETHI instruction with the destination register

%g0. This instruction is groupable in the A0 or A1 pipeline.

4.1.1.2 Neutralized Instruction

Some instructions have no visible effects on the software. They have been de-implemented or

assigned to not have an effect if the processor is in a certain mode. These instructions are

often referred to as NOP instructions, but they are not the same as the NOP instruction in that

they execute in the pipeline that is assigned to them. These are versions of instructions that

have no effect because they only access the %g0 register and do not have any side effects.

Hence, these instructions are functionally neutral.

4.1.1.3 Helper Instructions

Helper instructions are generated by the hardware to help in the execution or re-execution of

an instruction. The hardware partitions a single instruction into multiple instructions that

flow through the pipeline, consecutively. They have no software visibility and are part of the

hardware function of the pipeline.

4.2 Processor Pipeline

The processor pipeline consists of fourteen stages plus an extra stage that is occasionally

used by the hardware. The pipeline stages are referred to by the following mnemonic

single-letter names and are shown in TABLE 4-1.

TABLE 4-1 Processor Pipeline Stages

Pipeline Stage Definition

A Address generation

P Preliminary Fetch

F Fetch instructions from I-cache

B Branch target computation

I Instruction group formation

J J: grouping

R Register access (dispatch/dependency checking stage)
32 UltraSPARC IIIi Processor User’s Manual • June 2003

Rather than executing the instructions in a single pipeline, several separate pipelines are each

dedicated to execution of a particular class of instructions. The execution pipelines start after

the R-stage of the pipeline. Some instructions take a cycle or two to execute, others take a

few cycles within the pipeline. As long as the execution fits within the fixed pipeline depth,

execution can in general be fully pipelined. Some instructions have extended execution times

that sometimes vary in duration depending on the state of the processor.

The following sections provide a stage-by-stage description of the pipeline. Chapter 3

“UltraSPARC IIIi Processor Architecture Basics” describes the functions of the various

execution units. This chapter explains how the pipeline operates the execution units to

process the instructions.

FIGURE 4-1 on page 34 illustrates each pipeline stage in detail and the relationship between

high level, large architectural structures.

E Execute

C Cache

M Miss detect

W Write

X eXtend

T Trap

D Done

TABLE 4-1 Processor Pipeline Stages (Continued)

Pipeline Stage Definition
Chapter 4 Instruction Execution 33

FIGURE 4-1 Instruction Pipeline Diagram

P

R

 B

E

F

C

M

W

T

X

Instruction Cache

32 KB, 4-way, 32-byte line

Working Register File 7R 3W

D

D
-c

ac
he

 T
ag

Architectural Register File

FP/VIS Register
File

VA +

W-cache

S
to

re
 Q

ue
ue

SignExtend/Align

D-cache

64 KB
4-way

P-cache

2 KB
FA S

pe
ci

al
 U

ni
t

= ?

D
-T

LB

BP

A0 A1

A

I-
T

LB

Steering
Instruction

Dependency
Check

MISS

W W W

W W

(M
S

)

Group Staging
Instruction J

Branch Target

Program Counter
Predicted Return Target
JPL Target
Trap Target
Program Interrupts

Branch
Pipeline

Branch Target

(commits)

Instruction Queue 4 X 4

(2 KB)

I-
ca

ch
e

Ta
g

I

F
P

 A
dd

/S
ub

G
ra

ph
ic

s
A

LU
 (

F
G

A
)

F
P

 M
ul

tip
ly

/D
iv

id
e

G
ra

ph
ic

s
M

ul
tip

ly
 (

F
G

M
)

Enqueue

Dequeue
34 UltraSPARC IIIi Processor User’s Manual • June 2003

4.2.1 Instruction Dependencies

Instruction dependencies exist in the grouping, dispatching, and execution of instructions.

4.2.1.1 Grouping Dependencies

Up to four instructions can be grouped together for simultaneous dispatch. The number of

instructions that can be grouped together depends on the consecutive instructions that are

present in the instruction fetch stream, the availability of execution resources (execution

units), and the state of the system. Instructions are grouped together to provide superscalar

execution of multiple instruction dispatches per clock cycle.

Some instructions are single instruction group instructions. These are dispatched by

themselves one clock at a time as a single instruction in the group.

Note – Pipeline Recirculation: During recirculation, the recirculation invoking instruction

is often re-executed as a single group instruction and often with a helper instruction inserted

into the pipeline by the hardware. Even groupable instructions are retried in a single

instruction group. See Section 4.3 “Pipeline Recirculation” on page 41 for details.

4.2.1.2 Dispatch Dependencies

Instructions can be held at the R-stage for many different reasons, including:

• Working register operand is not available

• Functional Unit is not available

• Store-load sequence is in progress (atomic operation)

When instructions are held at the dispatch stage, the upper pipeline continues to operate until

the instruction buffer is full. At that point, the upper pipeline stalls.

During recirculation, the recirculation invoking instruction is held at the dispatch stage until

its execution dependency is resolved.

4.2.1.3 Execution Dependencies

The pipeline assumes all load instructions will hit in a primary cache, allowing the pipeline

to operate at full speed. There are two occurences that will recirculate the pipeline:

• D-cache Miss

• Load requires data to be bypassed from an earlier store that has not completed and does

not meet the criteria for read-after-write data bypassing
Chapter 4 Instruction Execution 35

4.2.2 Instruction-Fetch Stages

The instruction-fetch pipeline stages A, P, F, and B are described below.

4.2.2.1 A-stage (Address Generation)

The address stage generates and selects the fetch address to be used by the Instruction Cache

(I-cache) in the next cycle. The address that can be selected in this stage for instruction

fetching comes from several sources including:

• Sequential PC

• Branch target (from B-stage)

• Trap target

• Interrupt

• Predicted return target

• Jmpl target

• Resolved branch/Jmpl target from execution pipeline

4.2.2.2 P-stage (Preliminary Fetch)

The preliminary fetch stage starts fetching four instructions from the I-cache. Since the

I-cache has a two-cycle latency, the P-stage and the F-stage are both used to complete an

I-cache access. Although the I-cache has a two-cycle latency, it is pipelined and can access a

new set of up to four instructions every cycle. The address used to start an I-cache access is

generated in the previous cycle.

The P-stage also accesses the Branch Predictor (BP), which is a small, single-cycle access

SRAM whose output is latched at the end of the P-stage. The BP predicts the direction of all

conditional branches, based on the PC of the branch and the direction history of the most

recent conditional branches.

4.2.2.3 F-stage (Fetch)

The F-stage is used for the second half of the I-cache access. At the end of this stage, up to

four instructions from an I-cache line (32-bytes) are latched for decode. An I-cache fetch

group is not permitted to cross an I-cache line (32-byte boundary).
36 UltraSPARC IIIi Processor User’s Manual • June 2003

4.2.2.4 B-stage (Branch Target Computation)

The B-stage is the final stage of the instruction-fetch pipeline, A-P-F-B. In this stage, the

four fetched instructions are first available in a register. The processor analyzes the

instructions, looking for Delayed Control Transfer Instructions (DCTI) that can alter the path

of execution. It finds the first DCTI, if any, among the four instructions and computes (if PC
relative) or predicts (if register based) its target address. If this DCTI is predicted taken, the

target address is passed to the A-stage to begin fetching from that stream; if predicted not

taken, the target is passed on to the CTI queue for use in case of mispredict. Also in the

B-stage, the computation of the hit or miss status of the instruction fetch is performed, so

that the validity of the four instructions can be reported to the instruction queue.

In the case of an I-cache miss, a request is issued to the L2-cache and all the way out to

memory if needed to get the required line. The processor includes an optimization, where

along with the line being fetched, the subsequent line (32-bytes) is also returned and placed

into the instruction prefetch buffer. A subsequent miss that can get its instructions from the

instruction prefetch buffer will behave like a fast miss.

4.2.3 Instruction Issue and Queue Stages

The I-stage and J-stage correspond to the enqueueing and dequeuing of instructions from the

instruction queue. The R-stage is where instruction dependencies are resolved.

4.2.3.1 I-stage (Instruction Group Formation)

In the I-stage, the instructions fetched from the I-cache are entered as a group into the

instruction queue. The instruction queue is four instructions wide by four instruction groups

deep. The instruction may wait in the queue for an arbitrary period of time until all earlier

instructions are removed from the queue.

The instructions are grouped to use up to four of the execution pipelines, shown in TABLE 4-2.

TABLE 4-2 Execution Pipelines

Pipeline Description

A0 Integer ALU pipeline 0

A1 Integer ALU pipeline 1

BR Branch pipeline

MS Memory/Special pipeline

FGM Floating-point/VIS multiply pipeline (with divide/square root pathway)

FGA Floating-point/VIS add ALU pipeline
Chapter 4 Instruction Execution 37

4.2.3.2 J-stage (Instruction Group Staging)

In the J-stage, a group of instructions are dequeued from the instruction queue and prepared

for being sent to the R-stage. If the R-stage is expected to be empty at the end of the current

cycle, the group is sent to the R-stage.

4.2.3.3 R-stage (Dispatch and Register Access)

The integer working register file is accessed during the R-stage for the operands of the

instructions (up to three) that have been steered to the A0, A1, and MS pipelines. At the end

of the R-stage, results from previous instructions are bypassed in place of the register file

operands, if required.

Up to two floating-point or VIS instructions are sent to the Floating-Point/VIS Unit in this

stage.

The register and pipeline dependencies between the instructions in the group and the

instructions in the execution pipelines are calculated concurrently with the register file

access. If a dependency is found, the dependent instruction and any older instruction in the

group is held in the R-stage until the dependency is resolved.

4.2.3.4 S-stage (Normally Bypassed)

The S-stage provides a 1-entry buffer per pipeline in cases when the R-stage is not able to

take a new instruction.

4.2.4 Execution Pipeline

The execution pipeline contains the E, C, M, W, and X stages.

4.2.4.1 Integer Instruction Execution: E-stage (Execute)

The E-stage is the first stage of the execution pipelines. Different actions are performed in

each pipeline.

Integer instructions in the A0 and A1 pipelines compute their results in the E-stage. The

instructions include most arithmetic, all shift, and all logical instructions. Their results are

available for bypassing to dependent instructions that are in the R-stage, resulting in

single-cycle execution for most integer instructions. The A0 and A1 pipelines are the only

two sources of bypass results in the E-stage.
38 UltraSPARC IIIi Processor User’s Manual • June 2003

Other integer instructions are steered to the MS pipeline and, if necessary, are sent with their

operands to the special execution unit in this stage. They can start their execution during the

E-stage, but will not produce any results to be bypassed until the C-stage or the M-stage.

Load instructions steered to the MS pipeline start accessing the D-cache or P-cache during

the E-stage. The D-cache features Sum Addressed Memory (SAM) decode logic that

combines the arithmetic calculation for the virtual address with the row decode of the

memory array to reduce look-up time. The virtual address is computed in the E-stage for

translation lookaside buffer (TLB) access and possible access to the P-cache.

Floating-point and VIS instructions access the floating-point register file in the E-stage to

obtain their operands. At the end of the E-stage, the results from previous completing

floating-point/VIS instructions can be bypassed to the E-stage instructions.

Conditional branch instructions in the BR pipeline resolve their directions in the E-stage.

Based on their original predicted direction, a mispredict signal is computed and sent to the

A-stage for possible refetching of the correct instruction stream.

JMPL and RETURN instructions compute their target addresses in the E-stage of the MS

pipeline. The results are sent to the A-stage to start fetching instructions from the target

stream.

4.2.4.2 C-stage (Cache)

The D-cache delivers results for doubleword (64-bit) and unsigned word (32-bit) integer

loads in the C-stage. The D-TLB access is initiated in the C-stage and proceeds in parallel

with the D-cache access. For floating-point loads, the P-cache access is initiated in the

C-stage. The results of the D-TLB access and P-cache access are available in the M-stage.

Special instruction unit results are produced at the end of this stage and can be bypassed to

waiting dependent instructions in the R-stage—minimum two-cycle latency for SIU

instructions. The integer pipelines, A0 and A1, write their results back to the working

register file in the C-stage.

The C-stage is the first stage of execution for floating-point and VIS instructions in the FGA

and FGM pipelines.

4.2.4.3 M-stage (Miss)

D-cache misses are determined in the M-stage by a comparison of the physical address from

the D-TLB to the physical address in the D-cache tags. If the load requires additional

alignment or sign extension (such as signed word, all halfword, and all byte loads), it is

carried out in this stage, resulting in a three-cycle latency for those load operations. This

stage is used for the second execution cycle of floating-point and VIS instructions. Load data

is available to the floating-point pipelines in the M-stage.
Chapter 4 Instruction Execution 39

4.2.4.4 W-stage (Write)

In the W-stage, the MS integer pipeline results are written into the working register file. The

W-stage is also used as the third execution cycle for floating-point and VIS instructions. The

results of the D-cache miss are available in this stage and the requests are sent to the

L2-cache if needed.

4.2.4.5 X-stage (Extend)

The X-stage is the last execution stage for most floating-point operations (except divide and

square root) and for all VIS instructions. Floating-point results from this stage are available

for bypass to dependent instructions that will be entering the C-stage in the next cycle.

4.2.5 Trap and Done Stages

This section describes the stages that interrupt or complete instruction execution.

The results of operations are bypassed and sent to the working register file. If no traps are

generated, then they are successfully pipelined down to the architectural register file and

committed. If a trap or recirculation occurs, then the architectural register file (contains

committed data) is copied to the working register in preparation for the instructions to be

re-executed.

4.2.5.1 T-stage (Trap)

Traps, including floating-point and integer traps, are signalled in this stage. The trapping

instruction, and all instructions younger than the trapping instruction must invalidate their

results before reaching the D-stage to prevent their results from being erroneously written

into the architectural or floating-point register files.

4.2.5.2 D-stage (Done)

Integer results are written into the architectural register file in this stage. At this point, they

are fully committed and are visible to any traps generated from younger instructions in the

pipeline.

Floating-point results are written into the floating-point register file in this stage. These

results are visible to any traps generated from younger instructions.
40 UltraSPARC IIIi Processor User’s Manual • June 2003

4.3 Pipeline Recirculation

When a dependency is encountered in or before the dispatch R-stage, then the pipeline is

stalled. Most dependencies, like register or FV dependencies are resolved in the R-stage.

When a dependency is encountered after the dispatch R-stage, then the pipeline is

recirculated. Recirculation involves resetting the PC back to the recirculation invoking

instruction. Instructions older than the dependent instruction continue to execute. The

offending instructions and all younger instructions are recirculated. The offending instruction

is retried and goes through the entire pipeline again.

Upon recirculation, the instruction responsible for the recirculation becomes a single-group

instruction that is held in the R-stage until the dependency is resolved.

Load Instruction Dependency

In the case of a load instruction miss in a primary cache, the pipeline recirculates and the

load instruction waits in the R-stage. When the data is returned in the D-cache fill buffer, the

load instruction is dispatched again and the data is provided to the load instruction from the

fill buffer. The pipeline logic inserts two helpers behind the load instruction to move the data

in the fill buffer to the D-cache. The instruction in the instruction fetch stream, after the load

instruction, follows the helpers and will re-group with younger instructions, if possible.

4.4 Grouping Rules

Grouping rules are made before going into R-stage. A group is a collection of instructions

with no resource constraints that will limit them from being executed in parallel.

Instruction grouping rules are necessary for the following reasons:

• Maintain the instruction execution order

• Each pipeline runs a subset of instructions

• Resource dependencies, data dependencies, and multicycle instructions require helpers

(NOPs) to maintain the pipelines

Before continuing, the following terms that apply to instructions are defined as:

break-before: The instruction will always be the first instruction of a group.

break-after: The instruction will always be the last instruction of a group.
Chapter 4 Instruction Execution 41

single-instruction group (SIG): The instruction will not be issued with any other

instructions in the group. (SIG is sometimes shortened herein to “single-group.”)

instruction latency: The number of processor cycles after dispatching an instruction from

the R-stage that a following data-dependent instruction can dispatch from the R-stage.

blocking, multicycle: The instruction reserves one or more of the execution pipelines for

more than one cycle. The reserved pipelines are not available for other instructions to issue

into until the blocking, multicycle instruction completes.

4.4.1 Execution Order

Rule: Within the R-stage, some of the instructions can be dispatched and others cannot.
If an instruction is younger than an instruction that is not able to dispatch, then the
younger instruction will not be dispatched.

“Younger” and “older” refer to instruction order within the program. The instruction that

comes first in the program order is the older instruction.

4.4.2 Integer Register Dependencies to Instructions in the

MS Pipeline

Rule: If a source register operand of an instruction in the R-stage matches the
destination register of an instruction in the MS pipeline’s E-stage, then the instruction
in the R-stage may not proceed.

The MS pipeline has no E-stage bypass.

If an operand of an instruction in the R-stage matches the destination register of an

instruction in the MS pipeline’s C-stage, then the instruction in the R-stage may not proceed

if the instruction in the MS pipeline’s C-stage does not generate its data until the M-stage.

For example, LDSB does not have the load data until the M-stage, but LDX has its data in the

C-stage. Thus, LDX would not cause an interlock, but LDSB would.

Most instructions in the MS pipeline have their data by the M-stage, so there is no

dependency check on the MS pipeline’s M-stage destination register. In the case of

multicycle MS instructions, the data is always available by the M-stage as the last of the

instructions passes through the pipeline.
42 UltraSPARC IIIi Processor User’s Manual • June 2003

4.4.2.1 Helpers

Sometimes an instruction, as part of its operation, requires multiple flows in the pipeline.

These extra flows after the initial instruction flow are called helper cycles. The only pipeline

that executes such instructions is the MS pipeline. If an instruction requires a helper, that

helper is generated in the R-stage. The help generation logic generates as many helpers as the

instruction requires.

Most of the time the logic determines the number of helpers by examining the opcode.

However, some recirculate cases run the recirculated instruction differently than the original

flow down the pipeline, and some instructions, like integer multiply and divide, require

variable numbers of helpers. Some helper counts are determined by I/O and memory

controllers and system devices. For example, the D-cache unit requires helpers as it

completes an atomic memory instruction.

Rule: Instructions requiring helpers are always break-after.

There can be no instruction in a group that is younger than an instruction that requires

helpers. Another way of saying this is “an instruction that requires helpers will be the

youngest in its group.” This rule preserves the in-order execution of the integer instructions.

Rule: Helpers block the pipeline.

Helpers block the pipeline from executing other instructions; thus, instructions with helpers

are blocking.

Rule: Helpers are always single-group.

A helper cycle is always alone in a group. No other instruction will ever be dispatched from

the R-stage if there is a helper cycle in the R-stage.

4.4.3 Integer Instructions Within a Group

Rule: Integer instructions within a group are not allowed to write the same destination
register.

By not writing the same destination register at the same time, the bypass logic is simplified

as well as the register file write-enable determination and potential Write After Write (WAW)

errors. The instructions are break-before second destination is written.

This rule applies only to integer instructions writing integer registers. Floating-point

instructions and floating-point loads (done in the integer A0, A1, and MS pipelines) can be

grouped so that two or more instructions in the same group can write the same floating-point

destination register. Instruction age is associated with each instruction. The write from an

older instruction is not visible, but the execution of the instruction might still cause a trap

and set condition codes.

There are no special rules concerning integer instructions that set condition codes and
integer branch instructions.
Chapter 4 Instruction Execution 43

Integer instructions that set condition codes can be grouped in any way with integer

branches. In fact, any number instructions that set condition codes are allowed in any order

relative to the branch, provided that they do not violate any other rules. No special rules

apply to this specific case. Integer instructions that set condition codes in the A1 and A0

pipelines can compute a taken/untaken result in the E-stage, which is the same stage in which

the branch is evaluating the correctness of its prediction. The control logic guarantees that

the correct condition codes are used in the evaluation.

4.4.4 Same-Group Bypass

Rule: Same-group bypass is disallowed, except store instructions.

The group bypass rule states that no instruction can bypass its result to another instruction in

the same group. The one exception to this rule is store. A store instruction can get its store

data (rd), but not its address operands (rs1, rs2), from an instruction in the same group.

4.4.5 Floating-Point Unit Operand Dependencies

4.4.5.1 Latency and Destination Register Addresses

Floating-point operations have longer latencies than most integer instructions. Moreover,

floating-point square root and divide instructions have varying latencies depending on

whether the operands are single precision or double precision. All the floating-point

instruction latencies are four clock cycles (except for floating-point divide and square root

and PDIST → PDIST).

The operands for floating-point operations can either be single precision (32-bit) or double

precision (64-bit). Sixteen of the double precision registers are each made up of two single

precision registers. An operation using one of these double precision registers as a source

operand may be dependent on an earlier single precision operation producing part of the

register value. Similarly, an operation using one of the single precision registers as a source

operands may be dependent on an earlier double precision operation, a part of which may

produce the single precision register value.
44 UltraSPARC IIIi Processor User’s Manual • June 2003

4.4.5.2 Grouping Rules for Floating-Point Instructions

Rule: Floating-point divide/square root is busy.

The floating-point divide/square root unit is a non-pipelined unit. The Integer Execution Unit

sets a busy bit for each of the two stages of the divide/square root and depends on the FGU

to clear them. Only the first part of the divide/square root is considered to have a busy unit;

therefore, once the first part is complete, a new floating-point divide/square root operation

can be started.

Rule: Floating-point divide/square root needs a write slot in the FGM pipeline.

In the stage in which a divide/square root is moved from the first part to the last part,

instructions must not be issued to the FGM pipeline. This constraint provides the write slot in

the FGM pipeline so the divide/square root can write the floating-point register file.

Rule: Floating-point store is dependent on floating-point divide/square root.

The floating-point divide/square root unit has a latency longer than the normal pipeline. As a

result, if a floating-point store depends on the result of a floating-point divide/square root,

then the floating-point store instruction may not be dispatched until the floating-point

divide/square root instruction has completed.

4.4.5.3 Grouping Rules for VIS Instructions

Rule: Graphics Status Register (GSR) Write instructions are break-after.

The SIAM, BMASK, and FALIGNADDR instructions write the GSR. The BSHUFFLE and

FALIGNDATA instructions read the GSR in their operation. Because of the GSR write

latency, a GSR reader cannot be in the same group as a GSR writer unless the GSR reader is

older than the GSR writer. The simplest solution to this dependency is to make all GSR write

instructions break-after.

Note – The WRGSR instruction is not included in this rule as a special case. The WRGSR
instruction is already break-after by virtue of being a WRASR instruction.

4.4.5.4 PDIST Special Cases

PDIST-to-dependent-PDIST is handled as a special case with one-cycle latency. PDIST
latency to any other dependent operation is a four-cycle latency. In addition, a PDIST cannot

be issued if there is ST, block store (BST), or partial store instruction in the M-stage of the

pipeline. PDIST issue is delayed if there is a store type instruction two groups ahead of it.
Chapter 4 Instruction Execution 45

4.4.6 Grouping Rules for Register-Window Management

Instructions

Rule: Window changing instructions are single-group.

The window changing instructions SAVE, RESTORE, and RETURN are all single-group

instructions. These instructions are never grouped with any other instruction. This rule

greatly simplifies the tracking of register file addresses.

Rule: Window changing instructions force bubbles after.

The window changing instructions SAVE, RESTORE, and RETURN also force a subsequent

pipeline bubble. A bubble is distinct from a helper cycle in that there is nothing valid in the

pipeline within a bubble. During the bubble, control logic transfers the new window from the

Architectural Register File (ARF) to the Working Register File (WRF).

Rule: FLUSHW is single-group.

To simplify the Integer Execution Unit’s handling of the register file window flush, the

FLUSHW instruction is single-group.

Rule: SAVED and RESTORED are single-group.

To simplify the Integer Execution Unit’s window tracking, SAVED and RESTORED are

single-group instructions.

4.4.7 Grouping Rules for Reads and Writes of the ASRs

Rule: Write ASR and Write PR instructions are single-group.

WRASR and WRPR are always the youngest instructions in a group. This case prevents

problems with an instruction being dependent on the result of the write, which occurs late in

the pipeline.

Rule: Write ASR and Write PR force seven bubbles after.

To guarantee that any instruction that starts in the R-stage is started with the most up-to-date

status registers, WRASR and WRPR force bubbles after they are dispatched. Thus, if a WRASR
or a WRPR instruction is in the pipeline anywhere from the E-stage to the T-stage, no

instructions are dispatched from the R-stage (bubbles are forced in).

Rule: Read ASR and Read PR force up to six bubbles before (break-before multicycle).

Many instructions can update the ASRs and PRs. Therefore, if an RDASR or RDPR
instruction is in the R-stage and any valid instruction is in the integer pipelines from the

E-stage to the X-stage, the UltraSPARC IIIi processor does not allow the RDASR and RDPR
instructions to be dispatched. Instead, all pipeline states must wait to write the ASRs and

privileged registers and then read them.
46 UltraSPARC IIIi Processor User’s Manual • June 2003

4.4.8 Grouping Rules for Other Instructions

Rule: Block Load (BLD) and Block Store (BST) are single-group and multicycle.

For simplicity in the Integer Execution Unit and memory system, BLD and BST are

single-group instructions with helpers.

Rule: FLUSH is single-group and seven bubbles after.

To simplify the Instruction Issue Unit and Integer Execution Unit, the FLUSH instruction is

single-group. This makes instruction cancellation and issue easier. FLUSH is held in the

R-stage until the store queue and the pipeline from E-stage through D-stage is empty.

Rule: MEMBAR (#Sync, #Lookaside, #StoreLoad, #Memissue) is single-group.

To simplify the Integer Execution Unit and memory system, MEMBAR is a single-group

instruction. MEMBAR will not dispatch until the memory system has completed necessary

transactions.

Rule: Software-initiated reset (SIR) is single-group.

For simplicity, SIR is a single-group instruction.

Rule: Load FSR (LDFSR) is single-group and forces seven bubbles after.

For simplicity, LDFSR is a single-group instruction.

Rule: DONE and RETRY are single-group.

DONE and RETRY instructions are dispatched as a single-group.

Rule: DONE and RETRY force seven bubbles after.

DONE and RETRY are typically used to return from traps or interrupts and are known as trap
exit instructions.

It takes a few cycles to properly restore the pre-trap state and the working register file from

the architectural register file, so bubbles are forced after the trap exit instructions to provide

the cycles to do it all. A new instruction is not accepted until the trap exit instruction leaves

the pipeline (also known as D + 1).
Chapter 4 Instruction Execution 47

4.5 Conditional Moves

The compiler needs to have a detailed model of the implementation of the various

conditional moves so it can optimally schedule code. TABLE 4-3 describes the implementation

of the five classes of SPARC-V9 conditional moves in the pipeline. FADD and ADD
instructions (shaded rows) are also described as a reference for comparison with the

conditional move instructions.

Where:

RD Latency — The number of processor cycles until the destination register is available for

bypassing to a dependent instruction.

Pipes Used — The pipeline that the instruction uses when it is issued. The pipelines are

shown in TABLE 4-2.

Busy Cycles — The number of cycles that the pipelines are not available for other

instructions to be issued. A value of one signifies a fully pipelined instruction.

Groupable — Whether instructions using pipelines, other than those used by the conditional

move, can be issued in the same cycle as the conditional move.

{i,f}CC Dependency — The number of cycles that a CC setting instruction must be

scheduled ahead of the conditional move in order to avoid incurring pipeline stall cycles.

TABLE 4-3 SPARC-V9 Conditional Moves

Instruction
RD
Latency Pipelines Used

Busy
Cycles Groupable Dependency

FMOVicc 3 cycles FGA and BR 1 Yes icc - 0

FMOVfcc 3 cycles FGA and BR 1 Yes fcc - 0

FMOVr 3 cycles FGA and MS 1 Yes N/A

FADD 4 cycles FGA 1 Yes N/A

ADD 1 cycle A0 or A1 1 Yes N/A

MOVcc 2 cycles MS and BR 1 Yes icc - 0

MOVR 2 cycles MS and BR 1 Yes N/A
48 UltraSPARC IIIi Processor User’s Manual • June 2003

4.6 Instruction Latencies and Dispatching

Properties

In this section, a machine description is given in the form of a table (TABLE 4-5 on page 50)

dealing with dispatching properties and latencies of operations. The static or nominal

properties are modelled in the following terms (columns in TABLE 4-5 on page 50), which are

discussed below:

• Latencies

• Blocking properties in dispatching

• Pipeline resources (A0, A1, FGA, FGM, MS, BR)

• Break rules in grouping (before, after, single-group)

The pipeline assumes the primary cache will be accessed. The dynamic properties, such as

the effect of a cache miss and other conditions, are not described here.

4.6.1 Latency

In the Latency column of TABLE 4-5 on page 50, latencies are minimum cycles at which a

dependent operation (consumer) can be dispatched, relative to the producer operation,

without causing a dependency stall or instructions to hold back in the R-stage to execute.

Operations like ADDcc produce two results, one in the destination register and another in the

condition codes. For such operations, latencies are stated as a pair x,y, where x is for the

destination register dependence and y is for the condition code.

A zero latency implies that the producer and consumer operations may be grouped together

in a single group, as in {SUBcc, BE %icc}.

Operations like UMUL have different latencies, depending on operand values. These are given

as a range, min–max, for example, 6 – 8 in UMUL. Operations like LDFSR involve waiting for

a specified condition. Such cases are described by footnotes and a notation like 32+ for

CASA (meaning at least 32 cycles).

Cycles for branch operations (like BPcc) give the dispatching cycle of the retiring target

operation relative to the branch. A pair of numbers, for example 0, 8, is given, depending on

the outcome of a branch prediction, where 0 means a correct branch prediction and 8 means

a mispredicted case.

Special cases, such as FCMP(s,d), in which latencies depend on the type of consuming

operations, are described in footnotes (bracketed, for example, [1]).
Chapter 4 Instruction Execution 49

4.6.2 Blocking

The Blocking column of TABLE 4-5 gives the number of clock cycles that the dispatch unit

waits before issuing another group of instructions. Operations like FDIVd (MS pipeline)

have limited blocking property; that is, the blocking is limited to the time before another

instruction that uses MS pipeline can be dispatched. Such cases are noted with footnotes. All

pipelines block instruction dispatch when an instruction is targeted to them, but they are not

ready for another instruction to be pipelined-in.

4.6.3 Pipeline

The Pipeline column of TABLE 4-5 specifies the resource usage. Operations like MOVcc
require more than one resource, as designated by the notation MS and BR. The operation

LDF can dispatch to either MS, A0, or A1 as indicated.

4.6.4 Break and SIG

Grouping properties are given in columns Break and SIG (single-instruction group). In the

Break column an entry can be “Before,” meaning that this operation causes a break in a

group so that the operation starts a new group. Operations like RDCCR require dispatching to

be stalled until all operations in flight are completed (reach D-stage); in such cases, details

are provided in a footnote reference in the Break column.

Operations like ALIGNADDR must be the last in an instruction group, causing a break in the

group of type “After.”

Certain operations are not groupable and therefore are issued in single-instruction groups. A

break “before” and “after” are implied for non-groupable instructions.

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties (1 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG

ADD 1 A0 or A1

ADDcc 1, 0 [1] A0 or A1

ADDC 5 4 MS Yes

ADDCcc 6, 5 [2] 5 MS Yes

ALIGNADDR 2 MS After

ALIGNADDRL 2 MS After

AND 1 A0 or A1
50 UltraSPARC IIIi Processor User’s Manual • June 2003

ANDcc 1, 0 [1] A0 or A1

ANDN 1 A0 or A1

ANDNcc 1, 0 [1] A0 or A1

ARRAY(8,16,32) 2 MS

BiccD 0, 8 [3] 0, 5 [4] BP

BMASK 2 MS After

BPcc 0, 8 [3] 0, 5 [4] BP

BPR 0, 8 [3] 0, 5 [4] BP and MS

BSHUFFLE 3 FGA Yes

CALL label 0-3 [5] BP and MS

CASA 32+ 31+ MS After

CASXA 32+ 31+ MS After

DONEP 7 Yes BP and MS Yes

EDGE(8,16,32){L} 5 4 MS Yes

EDGE(8,16,32)N 2 MS

EDGE(8,16,32)LN 2 MS

FABS(s,d) 3 FGA

FADD(s,d) 4 FGA

FALIGNDATA 3 FGA

FANDNOT1{s} 3 FGA

FANDNOT2{s} 3 FGA

FAND{s} 3 FGA

FBPfcc BP

FBfccD BP

FCMP(s,d) 1, 5 [6] FGA

FCMPE(s,d) 1, 5 [6] FGA

FCMPEQ(16,32) 4 MS and FGA

FCMPGT(16,32) 4 MS and FGA

FCMPLE(16,32) 4 MS and FGA

FCMPNE(16,32) 4 MS and FGA

FDIVd 20 (14) [6] 17 (11) [7] FGM

FDIVs 17 (14) [6] 14 (11) [7] FGM

FEXPAND 3 FGA

FiTO(s,d) 4 FGA

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties (2 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
Chapter 4 Instruction Execution 51

FLUSH 8 7 BP and MS Before [8] Yes

FLUSHW Yes MS Yes

FMOV(s,d) 3 FGA

FMOV(s,d)cc 3 FGA and BP

FMOV(s,d)r 3 FGA and MS

FMUL(s,d) 4 FGM

FMUL8(,SU,UL)x16 4 FGM

FMUL8x16(AL,AU) 4 FGM

FMULD8(SU,UL)x16 4 FGM

FNAND{s} 3 FGA

FNEG(s,d) 3 FGA

FNOR{s} 3 FGA

FNOT(1,2){s} 3 FGA

FONE{s} 3 FGA

FORNOT(1,2){s} 3 FGA

FOR{s} 3 FGA

FPACK(FIX, 16,32) 4 FGM

FPADD(16, 16s, 32, 32s) 3 FGA

FPMERGE 3 FGA

FPSUB(16, 16s, 32, 32s) 3 FGA

FsMULd 4 FGM

FSQRTd 29 (14) [6] 26 (11) [7] FGM

FSQRTs 23 (14) [6] 20 (11) [7] FGM

FSRC(1,2){s} 3 FGA

F(s,d)TO(d,s) 4 FGA

F(s,d)TOi 4 FGA

F(s,d)TOx 4 FGA

FSUB(s,d) 4 FGA

FXNOR 3 FGA

FXOR{s} 3 FGA

FxTO(s,d) 4 FGA

FZERO{s} 3 FGA

ILLTRAP MS

JMPL reg,%o7 0-4, 9-10 [9] 0-3, 8-9 MS and BP

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties (3 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
52 UltraSPARC IIIi Processor User’s Manual • June 2003

JMPL %i7+8,%g0 3-5, 10-12 [10] 2-4, 9-11 MS and BP

JMPL %o7+8, %g0 0-4, 9 [11] 0-3, 8 MS and BP

LDDD 2 Yes MS After

LDDAD 2 Yes MS After

LDDF{A} 3 MS, A0, or A1

LDF{A} 3 MS, A0, or A1

LDFSRD [22] Yes MS Yes

LDSB{A} 3 MS

LDSH{A} 3 MS

LDSTUB{A} 31+ 30+ MS After

LDSW{A} 3 MS

LDUB{A} 3 MS

LDUH{A} 3 MS

LDUW{A} 2 MS

LDX{A} 2 MS

LDXFSR [22] Yes MS Yes

MEMBAR #LoadLoad [12] MS Yes

MEMBAR #LoadStore [12] MS Yes

MEMBAR #Lookaside [13] MS Yes

MEMBAR #MemIssue [13] MS Yes

MEMBAR #StoreLoad [13] MS Yes

MEMBAR #StoreStore [12] MS Yes

MEMBAR #Sync [14] MS Yes

MOVcc 2 MS and BP

MOVfcc 2 MS and BP

MOVr 2 MS

MULScc 6, 5 [2] 5 MS Yes

MULX 6-9 5-8 MS After

NOP na MS

OR 1 A0 or A1

ORcc 1, 0 [1] A0 or A1

ORN 1 A0 or A1

ORNcc 1, 0 [1] A0 or A1

PDIST 4 FGM

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties (4 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
Chapter 4 Instruction Execution 53

POPC emulated

PREFETCH{A} MS

RDASI 4 MS Before [15]

RDASR 4 MS Before [15]

RDCCR 4 MS Before [15]

RDDCRP

RDFPRS 4 MS Before [15]

RDPC 4 MS Before [15]

RDPR 4 MS Before [15]

RDSOFTINTP

RDTICK 4 MS Before [15]

RDYD 4 MS Before [15]

RESTORE 2 1 MS Before [16] Yes

RESTOREDP MS Yes

RETRYP 2 Yes MS and BP After

RETURN 2, 9 [17] 1, 8 MS and BP Before [18] Yes

SAVE 2 1 MS Before [19] Yes

SAVEDP 2 Yes MS Yes

SDIV 39 38 MS After

SDIV{cc}D 40, 39 [2] 39 MS After

SDIVX 71 70 MS After

SETHI 1 A0 or A1

SHUTDOWN [23] NOP MS NOP

SIAM Yes MS Yes

SIR Yes BP and MS Yes

SLL{X} 1 A0 or A1

SMULD 6-7 5-6 MS After

SMULccD 7-8, -6-7 [2] 6-8 MS After

SRA{X} 1 A0 or A1

SRL{X} 1 A0 or A1

STB{A} MS

STBARD [20] MS Yes

STD{A}D 2 MS Yes

STDF{A} MS

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties (5 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
54 UltraSPARC IIIi Processor User’s Manual • June 2003

1. These operations produce two results: destination register and condition code (%icc, %xcc). The latency is one in the

former case and zero in the latter case. For example, SUBcc and BE %icc are grouped together (zero latency).

2. These operations produce two results: destination register and condition code (%icc, %xcc). The latency is given as a

pair of numbers —m, n — for the register and condition code, respectively. When latencies vary in a range, such as in

UMULcc, this range is indicated by pair− pair.

3. Latency is x, y for correct, incorrect branch prediction. It is measured as the difference in the dispatching cycle of the

retiring target instruction and that of the branch.

STF{A} MS

STFSRP 9 MS Before [21] Yes

ST(H,W,X){A} MS

STXFSR 9 MS Before [21] Yes

SUB 1 A0 or A1

SUBcc 1, 0 [1] A0 or A1

SUBC 5 4 MS Yes

SUBCcc 6, 5 [2] 5 MS Yes

SWAP{A} 31+ 30+ MS After

TADDcc 5 Yes MS Yes

TSUBcc 5 Yes MS Yes

Tcc BR and MS

UDIVD 40 39 MS After

UDIVccD 41, 40 [2] 40 MS After

UDIVX 71 70 MS After

UMULD 6-8 5-7 MS After

UMULccD 7-8, 6-7 [2] 6-8 MS After

WRASI 16 BR and MS Yes

WRASR 7 BR and MS Yes

WRCCR 7 BR and MS Yes

WRFPRS 7 BR and MS Yes

WRPRP 7 BR and MS Yes

WRYD 7 BR and MS Yes

XNOR 1 A0 or A1

XNORcc 1, 0 [1] A0 or A1

XOR 1 A0 or A1

XORcc 1, 0 [1] A0 or A1

TABLE 4-5 UltraSPARC IIIi Processor Instruction Latencies and Dispatching Properties (6 of 6)

Instruction Latency

Dispatch
Blocking
After Pipeline Break SIG
Chapter 4 Instruction Execution 55

4. Blocking cycles are x,y for correct, incorrect branch prediction. They are measured as the difference in the dispatching

cycle of instruction in the delay slot (or target, if annulled) that retires and that of the branch.

5. Native Call and Link with immediate target address (label).

6. Latency in parentheses applies when operands involve IEEE special values (NaN, INF), including zero and illegal

values.

7. Blocking is limited to another FD operation in succession; otherwise, it is unblocking. Blocking cycles in parentheses

apply when operands involve special holding and illegal values.

8. Dispatching stall (7+ cycles) until all stores in flight retire.

9. 0–4 if predicted true; 9–10 if mispredicted.

10. Latency is taken to be the difference in dispatching cycles from jmpl to target operation, including the effect of an

operation in the delay slot. Blocking cycles thus may include cycles due to restore in the delay slot. In a given pair x,y,

x applies when predicted correctly and y when predicted incorrectly. Each x or y may be a range of values.

11. 0–4 if predicted true; 9 if mispredicted.

12. This MEMBAR has NOP semantics, since the ordering specified is implicitly done by processor (memory model is TSO).

13. All operations in flight complete as in MEMBAR #Sync.

14. All operations in flight complete.

15. Issue stalls a minimum of 7 cycles until all operations in flight are done (get to D-stage).

16. Dispatching stalls until previous save in flight, if any, reaches D-stage.

17. 2 if predicted correctly, 9 otherwise. Similarly for blocking cycles.

18. Dispatching stalls until previous restore in flight, if any, reaches D-stage.

19. Dispatching stalls until previous restore in flight, if any, reaches D-stage.

20. Same as MEMBAR #StoreStore, which is NOP.

21. Dispatching stalls until all FP operations in flight are done.

22. Wait for completion of all FP operations in flight.

23. The Shutdown instruction is not implemented. The instruction is neutralized and appears as a NOP to software (no

visible effects.
56 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION III

Execution Environment
June 2003 Section III • Execution Environment • 57

58 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 5

Data Formats

The processor recognizes the following fundamental data types:

• Signed integer: 8, 16, 32, and 64 bits

• Unsigned integer: 8, 16, 32, and 64 bits

• VIS Instruction data formats: pixel (32 bits), fixed16 (64 bits), and fixed32 (64 bits)

• Floating-point: 32, 64, and 128 bits

The widths of the data types are as follows:

• Byte: 8 bits

• Halfword: 16 bits

• Word: 32 bits

• Tagged word: 32 bits (30-bit value plus 2-bit tag; deprecated)

• Doubleword: 64 bits (deprecated in favor of Extended word)

• Extended word: 64 bits

• Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width

commensurate with their range. In tagged words, the least significant two bits are treated as

a tag; the remaining 30 bits are treated as a signed integer.

Names are assigned to individual subwords of the multiword data formats as described in the

following sections:

• Signed Integer Double

• Unsigned Integer Double

• Floating-Point, Double-Precision

• Floating-Point, Quad-Precision
59

5.1 Integer Data Formats

The processor supports the following integer data formats:

• Signed integer

• Unsigned integer

• Tagged integer word

5.1.1 Integer Data Value Range

TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer data

formats.

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges

Data Type Width (bits)

Range

Lower Upper

Signed integer byte 8 −27 27 − 1

Signed integer halfword 16 −215 215 − 1

Signed integer word 32 −231 231 − 1

Signed integer tagged word 32 −229 229 − 1

Signed integer double word 64 −263 263 − 1

Signed extended integer 64 −263 263 − 1

Unsigned integer byte 8 0 28 − 1

Unsigned integer halfword 16 0 216 − 1

Unsigned integer word 32 0 232 − 1

Unsigned integer tagged word 32 0 230 − 1

Unsigned integer double word 64 0 264 − 1

Unsigned extended integer 64 0 264 − 1
60 UltraSPARC IIIi Processor User’s Manual • June 2003

5.1.2 Integer Data Alignment

TABLE 5-2 describes the memory and register alignment for integer data.

The data types are illustrated in the following subsections.

5.1.3 Signed Integer Data Types

Figures in this section illustrate the following signed data types:

• Signed integer byte

• Signed integer halfword

• Signed integer word

• Signed integer doubleword

• Signed extended integer

5.1.3.1 Signed Integer Byte

FIGURE 5-1 illustrates the signed integer byte data format.

TABLE 5-2 Integer Data Alignment

Subformat
Type Width Subformat Field

Required
Address
Alignment

Memory
Address
(Big-
endian)

Register
Number
Alignment

Register
Number

SB
B (byte)

signed_byte_integer<7:0>
None n Any r

UB unsigned_byte_integer<7:0>

SH
H (halfword)

signed_halfwd_integer<7:0>
0 mod 2 n Any r

UH unsigned_halfwd_integer<7:0>

SW
W (word)

signed_word_integer<7:0>
0 mod 4 n Any r

UW unsigned_word_integer<7:0>

SD-0

D (double word)

signed_dbl_integer<63:32>
0 mod 8 n 0 mod 2 r

UD-0 unsigned_dbl_integer<63:32>

SD-1 signed_dbl_integer<31:0>
4 mod 8 n + 4 1 mod 2 r + 1

UD-1 unsigned_dbl_integer<31:0>

SX
X (extended word)

signed_ext_integer<63:0>
0 mod 8 n — r

UX unsigned_ext_integer<63:0>
Chapter 5 Data Formats 61

FIGURE 5-1 Signed Integer Byte Data Format

5.1.3.2 Signed Integer Halfword

FIGURE 5-2 illustrates the signed integer halfword data format.

FIGURE 5-2 Signed Integer Halfword Data Format

5.1.3.3 Signed Integer Word

FIGURE 5-3 illustrates the signed integer word data format.

FIGURE 5-3 Signed Integer Word Data Format

5.1.3.4 Signed Integer Double

FIGURE 5-4 illustrates both components (SD-0 and SD-1) of the signed integer double data

format.

FIGURE 5-4 Signed Integer Double Data Format

7 6 0

SSB

15 14 0

SSH

31 30 0

SSW

31 30 0

S signed_dbl_integer<62:32>SD–0

SD–1
31 0

signed_dbl_integer<31:0>
62 UltraSPARC IIIi Processor User’s Manual • June 2003

5.1.3.5 Signed Extended Integer

FIGURE 5-5 illustrates the signed extended integer (SX) data format.

FIGURE 5-5 Signed Extended Integer Data Format

5.1.4 Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:

• Unsigned integer byte

• Unsigned integer halfword

• Unsigned integer word

• Unsigned integer doubleword

• Unsigned extended integer

5.1.4.1 Unsigned Integer Byte

FIGURE 5-6 illustrates the unsigned integer byte data format.

FIGURE 5-6 Unsigned Integer Byte Data Format

5.1.4.2 Unsigned Integer Halfword

FIGURE 5-7 illustrates the unsigned integer halfword data format.

FIGURE 5-7 Unsigned Integer Halfword Data Format

63 62 0

S signed_ext_integerSX

7 0
UB

15 0
UH
Chapter 5 Data Formats 63

5.1.4.3 Unsigned Integer Word

FIGURE 5-8 illustrates the unsigned integer word data format.

FIGURE 5-8 Unsigned Integer Word Data Format

5.1.4.4 Unsigned Integer Double

FIGURE 5-9 illustrates both components (UD-0 and UD-1) of the unsigned integer double data

format.

FIGURE 5-9 Unsigned Integer Double Data Format

5.1.4.5 Unsigned Extended Integer

FIGURE 5-10 illustrates the unsigned extended integer (UX) data format.

FIGURE 5-10 Unsigned Extended Integer Data Format

5.1.5 Tagged Word

The Tagged word data format is similar to the unsigned word format except for a 2-bit field

in the two LSB positions. Bit 31 is the overflow bit.

FIGURE 5-11 illustrates the tagged word data format.

31 0
UW

31 0

unsigned_dbl_integer<63:32>UD–0

UD-1
31 0

unsigned_dbl_integer<31:0>

63 0

unsigned_ext_integerUX
64 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 5-11 Tagged Word Data Format

5.2 Floating-Point Data Formats

Single-precision, double-precision, and quad-precision floating-point data types are described

below.

• Single-precision floating-point (32-bit)

• Double-precision floating-point (64-bit)

• Quad-precision floating-point (128-bit)

5.2.1 Floating-Point Data Value Range

The value range for each format is included with the format and description of each format.

5.2.2 Floating-Point Data Alignment

TABLE 5-3 describes the address and memory alignment for floating-point data.

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment

Subformat
Name Subformat Field

Required
Address
Alignment

Memory
Address
(Big-endian)*

Register
Number
Alignment

Available
Registers

FS s:exp<7:0>:fraction<22:0> 0 mod 4 † n Any f0, f1,... f31

FD-0 s:exp<10:0>:fraction<51:32> 0 mod 4 † n 0 mod 2 f0, f2,... f62

FD-1 fraction<31:0> 0 mod 4 † n + 4 1 mod 2 f1, f3,... f63

FX-0  0 mod 4 † n 0 mod 4 f0, f4,... f60

FX-1  0 mod 4 † n 0 mod 4 f2, f6,... f62

FQ-0 s:exp<14:0>:fraction<111:96> 0 mod 4 ‡ n 0 mod 4 f0, f4,... f60

FQ-1 fraction<95:64> 0 mod 4 ‡ n + 4 1 mod 4 f1, f5,... f61

31 0

tag
2 1

TW of
Chapter 5 Data Formats 65

* The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian accesses are used.

† Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be doubleword-aligned (that is, the

address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores instead of multiple single word loads/stores).

‡ Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-aligned (that is, the

address of its FQ-0 word should be 0 mod 16).

5.2.3 Floating-Point, Single-Precision

FIGURE 5-12 illustrates the floating-point single-precision data format, and TABLE 5-4

describes the formats.

FIGURE 5-12 Floating-Point Single-Precision Data Format

FQ-2 fraction<63:32> 0 mod 4 ‡ n + 8 2 mod 4 f2, f6,... f62

FQ-3 fraction<31:0> 0 mod 4 ‡ n + 12 3 mod 4

FX  0 mod 4 † n 0 mod 4 f3, f7,... f63

TABLE 5-4 Floating-Point Single-Precision Format Definitions

s = sign (1-bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255) (−1)s × 2e−127 × 1.f

Subnormal value (e = 0) (−1)s × 2−126 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment (Continued)

Subformat
Name Subformat Field

Required
Address
Alignment

Memory
Address
(Big-endian)*

Register
Number
Alignment

Available
Registers

31 30 0

S exp<7:0> fraction<22:0>
2223

FS
66 UltraSPARC IIIi Processor User’s Manual • June 2003

5.2.4 Floating-Point, Double-Precision

FIGURE 5-13 illustrates both components (FD-0 and FD-1) of the floating-point

double-precision data format when two 32-bit registers are used. FIGURE 5-14 illustrates a

double-precision data format using one 64-bit register.

TABLE 5-5 describes the data formats.

FIGURE 5-13 Floating-Point Double-Precision Double Word Data Format

FIGURE 5-14 Floating-Point Double-Precision Extended Word Data Format

TABLE 5-5 Floating-Point Double-Precision Format Definition

s = sign (1-bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047) (−1)s × 2e−1023 × 1.f

Subnormal value (e = 0) (−1)s × 2−1022 × 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s = u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s = u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

31 30 0

S exp<10:0> fraction<51:32>
1920

FD–0

FD–1
31 0

fraction<31:0>

63 0

fraction<51:0>FX
62

S exp<10:0>
5152
Chapter 5 Data Formats 67

5.2.5 Floating-Point, Quad-Precision

FIGURE 5-15 illustrates all four components (FQ-0 through FQ-3) of the floating-point

quad-precision data format, and TABLE 5-6 describes the formats.

Compatibility Note – Floating-point quad is not implemented in the processor.

Quad-precision operations are emulated in the OS kernel.

FIGURE 5-15 Floating-Point Quad-Precision Data Format

TABLE 5-6 Floating-Point Quad-Precision Format Definitions

s = sign (1-bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767) (-1)s × 2e−16383 × 1.f

Subnormal value (e = 0) (-1)s × 2−16382 × 0.f

Zero (e = 0) (-1)s × 0

Signalling NaN s = u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero.)

Quiet NaN s = u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

31 30 0

S exp<14:0> fraction<111:96>
1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

fraction<95:64>

fraction<63:32>

fraction<31:0>

31 0

31 0
68 UltraSPARC IIIi Processor User’s Manual • June 2003

5.3 VIS Execution Unit Data Formats

VIS instructions are optimized for short integer arithmetic, where the overhead of converting

to and from floating point is significant. Data components can be 8 or 16 bits; intermediate

results are 16 or 32 bits.

There are two VIS data formats:

• Pixel Data

• Fixed-point Data

Data Conversions

Conversion from pixel data to fixed data occurs through pixel multiplications. Conversion

from fixed data to pixel data is done with the pack instructions, which clip and truncate to an

8-bit unsigned value. Conversion from 32-bit fixed to 16-bit fixed is also supported with the

FPACKFIX instruction.

Rounding

Rounding can be performed by adding one to the round bit position. Complex calculations

needing more dynamic range or precision should be performed using floating-point data.

Range

The range of values that each format supports is described below.

Data Alignment

The data in memory is expected to be aligned according to TABLE 5-7. If the address does not

properly align, then an exception is generated and the load/store operation fails.
Chapter 5 Data Formats 69

5.3.1 Pixel Data Format

The Fixed 8-bit data format consists of four unsigned 8-bit integers contained in a 32-bit

word (see FIGURE 5-16).

One common use is to represent intensity values for the color components of an image. For

example, R, G, B, and α are used as color components and are positioned as shown:

FIGURE 5-16 Pixel Data Format with Band Sequential Ordering Shown

The fixed 8-bit data format can represent two types of pixel data:

• Band interleaved images, with the various color components of a point in the image

stored together

• Band sequential images, with all of the values for one color component stored together

5.3.2 Fixed-Point Data Formats

The fixed 16-bit data format consists of four 16-bit signed fixed-point values contained in a

64-bit word. The fixed 32-bit format consists of two 32-bit signed fixed-point values

contained in a 64-bit word. Fixed-point data values provide an intermediate format with

enough precision and dynamic range for filtering and simple image computations on pixel

values.

TABLE 5-7 Pixel, Fixed16, and Fixed32 Data Alignment

VIS Data
Format
Type Width VIS Data Format Name

Required
Address
Alignment

Memory
Address
(big-
endian)

Register
Number
Alignment

Register
Number

Pixel 8 32 Pixel Data Format 0 mod 4 n r r

Fixed16 64 Fixed16 Data Format 0 mod 8 n 0 mod 2 r

Fixed32 64 Fixed32 Data Format 0 mod 8 n 0 mod 2 r

31 24 023 16 15 8 7

R G B α
70 UltraSPARC IIIi Processor User’s Manual • June 2003

5.3.2.1 Fixed16 Data Format

Fixed data values provide an intermediate format with enough precision and dynamic range

for filtering and simple image computations on pixel values.

Perform rounding by adding one to the round bit position. Perform complex calculations

needing more dynamic range or precision by means of floating-point data.

The fixed 16-bit data format consists of four 16-bit, signed, fixed-point values contained in a

64-bit word. FIGURE 5-17 illustrates the Fixed16 VIS data format.

FIGURE 5-17 Fixed16 VIS Data Format

5.3.2.2 Fixed32 Data Format

The fixed 32-bit format consists of two 32-bit, signed, fixed-point values contained in a

64-bit word. FIGURE 5-18 illustrates the Fixed32 VIS data format.

FIGURE 5-18 Fixed32 VIS Data Format

63 48 0

integer fraction integer fraction integer fraction integer fraction
47 32 31 16 15

63 032 31

integer fraction integer fraction
Chapter 5 Data Formats 71

72 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 6

Registers

The topics covered in this chapter are discussed in the following sections:

Section 6.1, “Introduction””

Section 6.2, “Integer Unit General-Purpose r Registers””

Section 6.3, “Register Window Management””

Section 6.4, “Floating-Point General-Purpose Registers””

Section 6.5, “Control and Status Register Summary””

Section 6.6, “State Registers””

Section 6.7, “Ancillary State Registers: ASRs 16-25””

Section 6.8, “Privileged Registers””

Section 6.9, “Special Access Register””

Section 6.10, “ASI Mapped Registers””

6.1 Introduction

The processor consists of many types of registers that serve various purposes and accessed in

many different ways.

There are separate working registers for the integer and floating-point units (FPUs). Both of

the these register sets have been expanded over the evolution of the SPARC processor. The

integer unit registers are shadowed using windowing and selection methods. The registers in

the floating-point register set (also used for VIS and block load store instructions) are

combined in specific ways to support data sizes up to 128 bits. All integer registers and the

upper floating-point registers are 64 bits wide.
73

The processor also has a vast array of control, status, state, and diagnostic registers that are

used to setup, control, and operate the processor. The two main operating modes of the

processor, privileged and non-privileged mode, have a profound effect on which of the

control and status registers are available to the software.

The majority of the control and status registers are 64 bits wide and are accessed using the

privileged register access instructions, state register access instructions, and load/store with

ASI access instructions. For convenience, some registers in this chapter are illustrated as

fewer than 64 bits wide. Any bits not shown are reserved for future extensions to the

architecture. Such reserved bits are read as zeroes and when written by software, should be

written with the values of those bits previously read from that register or with zeroes.

• Integer Unit Working Registers (includes r and global)

• Floating-point Unit Working Registers

• Privileged Registers

• State and Ancillary State Registers (includes ASRs)

• Floating-point Status Register (FSR)

• ASI Mapped Registers (CSRs)

Some of the figures and tables in this chapter are reproduced from The SPARC Architecture
Manual-Version 9 and other sources. Many diagrams and tables appear here for the first

time.

6.1.1 Document Notes

Contents of this chapter apply to non-privileged mode unless stated otherwise.

6.2 Integer Unit General-Purpose r Registers

An UltraSPARC IIIi processor contains 160 general-purpose 64-bit r registers. They are

windowed into 32 registers addressable by Integer Unit Instructions.

The r registers are partitioned into eight addressable global registers and 24 addressable

windowed registers. There are four global register sets: normal, MMU, Interrupt, and

Alternate. The windowed registers point to eight working register sets that are windowed into

r[8] to r[31], as one full register set (eight locals and eight ins) and a half register set

(eight outs) belonging to the next higher state.

In summary, the r registers consist of eight in registers, eight local registers, eight out
registers, and the selected eight global registers.
74 UltraSPARC IIIi Processor User’s Manual • June 2003

The current window pointer (CWP) register selects the in/local/out windowed registers.

SAVE and RESTORE instructions modify the CWP register.

The PSTATE.AG, PSTATE.IG, and PSTATE.MG fields select the global register set.

Processor exceptions modify the PSTATE register fields to select the global register set.

PSTATE and CWP registers are accessible using privileged instructions.

At any moment, general-purpose registers appear in non-privileged mode as shown in

TABLE 6-1.

TABLE 6-1 Integer Unit General-Purpose Registers

Windowed
Register Name

r Register
Address Source

in[7] r[31] Current Register Set
in[6] r[30] Current Register Set
in[5] r[29] Current Register Set
in[4] r[28] Current Register Set
in[3] r[27] Current Register Set
in[2] r[26] Current Register Set
in[1] r[25] Current Register Set
in[0] r[24] Current Register Set
local[7] r[23] Current Register Set
local[6] r[22] Current Register Set
local[5] r[21] Current Register Set
local[4] r[20] Current Register Set
local[3] r[19] Current Register Set
local[2] r[18] Current Register Set
local[1] r[17] Current Register Set
local[0] r[16] Current Register Set
out[7] r[15] Next higher level Register Set (see footnote 1)

1. The CALL instruction writes its own address into the r[15] register (out[7]).

out[6] r[14] Next higher level Register Set
out[5] r[13] Next higher level Register Set
out[4] r[12] Next higher level Register Set
out[3] r[11] Next higher level Register Set
out[2] r[10] Next higher level Register Set
out[1] r[9] Next higher level Register Set
out[0] r[8] Next higher level Register Set
global[7] r[7] Global[7]
global[6] r[6] Global[6]
global[5] r[5] Global[5]
global[4] r[4] Global[4]
global[3] r[3] Global[3]
global[2] r[2] Global[2]
global[1] r[1] Global[1]
global[0] r[0] Global[0] (value(r[0]) always 0)
Chapter 6 Registers 75

6.2.1 Windowed (in/local/out) r Registers

At any time, an integer unit instruction can access a 24-register window into the register sets.

A register window comprises of the eight in and eight local registers (a complete register

set) together with the eight in registers (upper half of the next higher register set).

6.2.1.1 Predefined r Register Usages

Two of the r registers have a specific usage:

• The value of r[0] is always zero; writes to it have no program-visible effect.

• The CALL instruction writes its own address into register r[15] (out register 7).

6.2.1.2 128-bit Operand Considerations

LDD, LDDA, STD, and STDA instructions access 128-bit data associated with adjacent

r registers and require even-odd register alignment. An attempt to execute a LDD, LDDA,

STD, or STDA instruction that refers to a misaligned (odd) destination register number causes

an illegal_instruction trap.

6.2.2 Global r Register Sets

Registers r[0]–r[7] refer to a set of eight global registers (g0–g7). At any time, one of

four sets of eight global register sets is selected and can be accessed as the current global

register set. The currently enabled set of global registers is selected by the Alternate Global

(AG), Interrupt Global (IG), and MMU Global (MG) fields in the PSTATE register. See

Section 6.8.3 “Processor State (PSTATE) Privileged Register 6” on page 6-107 for a

description of the AG, IG, and MG fields.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

FIGURE 6-1 illustrates the current IU registers.
76 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 6-1 Three Overlapping Windows and the Eight Global Registers

Compatibility Note – Since the PSTATE register is writable only by privileged software,
existing non-privileged SPARC-V8 software operates correctly on a processor if Supervisor
Software ensures that User Software sees a consistent set of global registers.

Window (CWP - 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP + 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

r[7]

r[1]

globals
.
.

r[0] 0

63 0

Current

Registers:

RESTORE

SAVE

r[7]

r[1]

globals
.
.

r[0] 0

63 0

r[7]

r[1]

globals
.
.

r[0] 0

63 0

Current

Register Set

Next

Register Set

Previous

Register Set

Integer Unit
General-Purpose
Chapter 6 Registers 77

In summary, the processor has eight windows or register sets (NWINDOWS = 8). The total

number of r registers in the processor is 160: eight normal global registers, eight alternate

global registers, eight interrupt global registers, eight MMU global registers, plus the number

of register sets (eight) times 16 registers/set.

6.2.2.1 Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The outs of

the CWP – 1 (modulo NWINDOWS) window are addressable as the ins of the current window,

and the outs in the current window are the ins of the CWP + 1 (modulo NWINDOWS) window.

The locals are unique to each window.

An outs register with address o, where 8 ≤ o ≤ 15, refers to exactly the same register as

(o + 16) does after the CWP is incremented by one (modulo NWINDOWS). Likewise, an in
register with address i, where 24 ≤ i ≤ 31, refers to exactly the same register as address

(i − 16) does after the CWP is decremented by one (modulo NWINDOWS). See FIGURE 6-1 and

FIGURE 6-2 for additional information.

Since CWP arithmetic is performed modulo NWINDOWS, the highest-numbered implemented

window (window 7) overlaps with window 0. The outs of window NWINDOWS − 1 are the ins
of window 0. Implemented windows are numbered contiguously from 0 through

NWINDOWS − 1.

6.3 Register Window Management

The current window in the windowed portion of r registers is given by the CWP register. The

CWP is decremented by the RESTORE instruction and incremented by the SAVE instruction.

Window overflow is detected by the CANSAVE register, and window underflow is detected by

the CANRESTORE register, both of which are controlled by privileged software. A window

overflow (underflow) condition causes a window spill (fill) trap.
78 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – Because the windows overlap, the number of windows available to

software is one less than the number of implemented windows; that is, 7 (NWINDOWS − 1).

FIGURE 6-2 Windowed r Registers for NWINDOWS = 8

w5 outs

w5 outs

w6 outs

w0 outs

w7 locals

w0 ins

w1 locals

w1 ins

w6 locals w6 ins

w5 locals

OTHERWIN = 1

CANRESTORE = 1

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

The current window (window 0) and the overlap window (window

5) account for the two windows in the right side of the equation.

The “overlap window” is the window that must remain unused

because its ins and outs overlap two other valid windows.

NWINDOWS = 8, CWP = 0, CANSAVE = 4, OTHERWIN = 1, and

CANRESTORE = 1. If the procedure using window w0 executes a

RESTORE, then window w7 becomes the current window. If the

procedure using window w0 executes a SAVE, then window w1

becomes the current window.

SAVE RESTORE w5 ins

CANSAVE = 4

(Overlap)

w0 locals

w7 outs

w7 ins

CWP = 0
(Current Window Pointer)
Chapter 6 Registers 79

6.3.1 CALL and JMPL Instructions

Programming Note – Since the procedure call instructions (CALL and JMPL) do not

change the CWP, a procedure can be called without changing the window.

6.3.2 Circular Windowing

Programming Note – When the register file is full, the outs of the newest window are the

ins of the oldest window, which still contains valid data.

6.3.3 Clean Window with RESTORE and SAVE Instructions

Programming Note – The local and out registers of a register window are guaranteed

to contain either zeroes or an old value that belongs to the current context upon reentering

the window through a SAVE instruction. If a program executes a RESTORE followed by a

SAVE, then the resulting window’s locals and outs may not be valid after the SAVE, since a

trap may have occurred between the RESTORE and the SAVE.

6.4 Floating-Point General-Purpose Registers

The floating-point register file contains addressable registers for the following:

• Floating-point Instructions

• VIS instructions

• Block load and store instructions

• FSR load and store instructions

The registers have various widths and assigned addresses as follows:

• 32 32-bit (single-precision) floating-point registers, f [0], f [1], … f [31]

• 32 64-bit (double-precision) floating-point registers, f [0], f [2], … f [62]

• 16 128-bit (quad-precision) floating-point registers, f [0], f [4], … f [60]
80 UltraSPARC IIIi Processor User’s Manual • June 2003

The floating-point registers are arranged so that some of them overlap, that is, are aliased.

The layout and numbering of the floating-point registers is shown in TABLE 6-2, TABLE 6-3,

and TABLE 6-4. Unlike the windowed r registers, all of the floating-point registers are

accessible at any time. The floating-point registers can be read and written by FPop

(FPop1/FPop2 format) instructions, load/store single/double/quad floating-point

instructions, and block load and block store instructions.

TABLE 6-2 32-bit Floating-Point Registers with Aliasing

Operand Register
and Field From Register

Operand Register
and Field From Register

f31 <31:0> f31<31:0> f15 <31:0> f15<31:0>
f30 <31:0> f30<31:0> f14 <31:0> f14<31:0>
f29 <31:0> f29<31:0> f13 <31:0> f13<31:0>
f28 <31:0> f28<31:0> f12 <31:0> f12<31:0>
f27 <31:0> f27<31:0> f11 <31:0> f11<31:0>
f26 <31:0> f26<31:0> f10 <31:0> f10<31:0>
f25 <31:0> f25<31:0> f9 <31:0> f9<31:0>
f24 <31:0> f24<31:0> f8 <31:0> f8<31:0>
f23 <31:0> f23<31:0> f7 <31:0> f7<31:0>
f22 <31:0> f22<31:0> f6 <31:0> f6<31:0>
f21 <31:0> f21<31:0> f5 <31:0> f5<31:0>
f20 <31:0> f20<31:0> f4 <31:0> f4<31:0>
f19 <31:0> f19<31:0> f3 <31:0> f3<31:0>
f18 <31:0> f18<31:0> f2 <31:0> f2<31:0>
f17 <31:0> f17<31:0> f1 <31:0> f1<31:0>
f16 <31:0> f16<31:0> f0 <31:0> f0<31:0>

TABLE 6-3 64-bit Floating-Point Registers with Aliasing

Operand Register
and Field From Register

Operand Register
and Field From Register

f62 <63:0> f62<63:0> f30 <63:0> f30<31:0>:f31<31:0>
f60 <63:0> f60<63:0> f28 <63:0> f28<31:0>:f29<31:0>
f58 <63:0> f58<63:0> f26 <63:0> f26<31:0>:f27<31:0>
f56 <63:0> f56<63:0> f24 <63:0> f24<31:0>:f25<31:0>
f54 <63:0> f54<63:0> f22 <63:0> f22<31:0>:f23<31:0>
f52 <63:0> f52<63:0> f20 <63:0> f20<31:0>:f21<31:0>
f50 <63:0> f50<63:0> f18 <63:0> f18<31:0>:f19<31:0>
f48 <63:0> f48<63:0> f16 <63:0> f16<31:0>:f17<31:0>
f46 <63:0> f46<63:0> f14 <63:0> f14<31:0>:f15<31:0>
f44 <63:0> f44<63:0> f12 <63:0> f12<31:0>:f13<31:0>
f42 <63:0> f42<63:0> f10 <63:0> f10<31:0>:f11<31:0>
f40 <63:0> f40<63:0> f8 <63:0> f8<31:0>:f9<31:0>
f38 <63:0> f38<63:0> f6 <63:0> f6<31:0>:f7<31:0>
f36 <63:0> f36<63:0> f4 <63:0> f4<31:0>:f5<31:0>
f34 <63:0> f34<63:0> f2 <63:0> f2<31:0>:f3<31:0>
f32 <63:0> f32<63:0> f0 <63:0> f0<31:0>:f1<31:0>
Chapter 6 Registers 81

6.4.1 Floating-Point Register Number Encoding

The floating-point register number encoding in the instruction field depends on the width of

register being addressed. The encoding for the 5-bit instruction field (labeled b<4>–b<0>,

where b<4> is the most significant bit of the register number), is given in TABLE 6-5.

Compatibility Note – In SPARC-V8, bit 0 of 64- and 128-bit register numbers encoded in
instruction fields was required to be zero. Therefore, all SPARC-V8 floating-point instructions
can run unchanged on an UltraSPARC IIIi processor, using the encoding in TABLE 6-5.

TABLE 6-4 128-bit Floating-Point Registers with Aliasing

Operand Register
and Field From Register

f60 <127:0> f60<63:0>:f62<63:0>
f56 <127:0> f56<63:0>:f58<63:0>
f52 <127:0> f52<63:0>:f54<63:0>
f48 <127:0> f48<63:0>:f50<63:0>
f44 <127:0> f44<63:0>:f46<63:0>
f40 <127:0> f40<63:0>:f42<63:0>
f36 <127:0> f36<63:0>:f38<63:0>
f32 <127:0> f32<63:0>:f34<63:0>
f28 <127:0> f28<31:0>:f29<31:0>:f30<31:0>:f31<31:0>
f24 <127:0> f24<31:0>:f25<31:0>:f26<31:0>:f27<31:0>
f20 <127:0> f20<31:0>:f21<31:0>:f22<31:0>:f23<31:0>
f16 <127:0> f16<31:0>:f17<31:0>:f18<31:0>:f19<31:0>
f12 <127:0> f12<31:0>:f13<31:0>:f14<31:0>:f15<31:0>
f8 <127:0> f8<31:0>:f9<31:0>:f10<31:0>:f11<31:0>
f4 <127:0> f4<31:0>:f5<31:0>:f6<31:0>:f7<31:0>
f0 <127:0> f0<31:0>:f1<31:0>:f2<31:0>:f3<31:0>

TABLE 6-5 Floating-Point Register Number Encoding

Register Operand
Type 6-bit Register Number, fn

Encoding in a 5-bit Register Field in
an Instruction, rd/rs

32-bit (single) 0 b<4> b<3> b<2> b<1> b<0> b<4> b<3> b<2> b<1> b<0>

64-bit (double) b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>

128-bit (quad) b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>
82 UltraSPARC IIIi Processor User’s Manual • June 2003

6.4.2 Double and Quad Floating-Point Operands

A 32-bit f register can hold one single-precision operand; a 64-bit (double-precision)

operand requires an aligned pair of f registers, and a 128-bit (quad-precision) operand

requires an aligned quadruple of f registers. At a given time, the floating-point registers can

hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-precision values in

the lower half of the floating-point register file, plus an additional 16 double-precision or

8 quad-precision values in the upper half, or mixtures of the three sizes.

See FIGURE 6-3, TABLE 6-2, TABLE 6-3, and TABLE 6-4 for illustrative formats.

Programming Note – Data to be loaded into a floating-point double or quad register that

is not doubleword aligned in memory must be loaded into the lower 16 double registers

(8 quad registers) by means of single-precision LDF instructions. If desired, the data can then

be copied into the upper 16 double registers (8 quad registers).

An attempt to execute an instruction that refers to a misaligned floating-point register

operand (that is, a quad-precision operand in a register whose 6-bit register number is not

0 mod 4) shall cause a fp_exception_other trap, with FSR.ftt = 6 (invalid_fp_register).

Given the encoding in TABLE 6-5, it is impossible to specify a double-precision register with

a misaligned register number.

Note – The processor does not implement quad-precision operations in hardware. All
floating-point quad (including load and store) operations trap to the OS kernel and are
emulated. Since the processor does not implement quad floating-point arithmetic operations
in hardware, the fp_exception_other trap with FSR.ftt = 6 (invalid_fp_register) does not
occur in processors.

6.5 Control and Status Register Summary

This section presents a summary of control and status registers.
Chapter 6 Registers 83

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

63 0

Integer Unit

Locals

NWINDOWS

Outs

Ins

RESTORE

SAVE

r[23:16]

r[15:8]

r[31:24]

63 0

63 0

63 0

63 0

r[7:0]

MMU

Interrupt

Normal

Alternate

Register Sets

r[7:0] Selected by
PSTATE.AG, IG, MG

63 0
f52

63 0
f54

63 0
f48

63 0
f50

63 0
f36

63 0
f38

63 0
f32

63 0
f34

63 0
f60

63 0
f62

63 0
f56

63 0
f58

63 0
f44

63 0
f46

63 0
f40

63 0
f42

31 0
f31

31 0
f30

31 0
f29

31 0
f28

31 0
f27

31 0
f26

31 0
f25

31 0
f24

31 0
f23

31 0
f22

31 0
f21

31 0
f20

31 0
f19

31 0
f18

31 0
f17

31 0
f16

31 0
f15

31 0
f14

31 0
f13

31 0
f12

31 0
f11

31 0
f10

31 0
f09

31 0
f08

31 0
f07

31 0
f06

31 0
f05

31 0
f04

31 0
f03

31 0
f02

31 0
f01

31 0
f00

Example

QUADWD
Example

DOUBLEWD
Example

Floating-point Unit
General-Purpose
Registers

r Registers

QUADWORD (16): f0, f4,... f60
DOUBLEWORD(32): f0, f2,... f62
WORD (32): f0, f1,... f31

QUADWD

f40

Note: There are no odd
 numbered registers above f31.

f20

f12

General-Purpose

Floating-point Numbers
VIS Data Numbers
Block Copy Function
FSR Register Access

Circulates

Example
f06

WORD
Example

f01

DOUBLEWD
Example

f58

Register Window

Example
f48

WORDs cannot be loaded
into f32 through f62.

FIGURE 6-3 Integer Unit r Registers and Floating-Point Unit Working Registers
84 UltraSPARC IIIi Processor User’s Manual • June 2003

6.5.1 State and Ancillary State Register Summary

FIGURE 6-4 State and Ancillary State Registers

TABLE 6-6 State and Ancillary State Registers

State Register
Number

(base 10 used)
Access

Restriction R/W Abbreviation Description Reference Section Notes

0 None RW YD Register
32-bit Multiply/Divide
(deprecated)

1 Reserved

2 None RW CCR Condition Code

3 None RW ASI Address Space Identifier Section 6.6.3

4 Depends R TICK
TICK register for Processor
Timer, also accessible as a
privileged register

Section 6.7.4 1

5 None R PC Program Counter Section 6.6.5

6 None RW FPRS Floating-Point Registers State

ASR 7 - 15 Reserved
Reserved for future use, do not
reference by software.

State
Registers

31 0
YD

7 0
CCR

7 0
ASI

63 0
TICK

63 0
PC

63 0
FPRS

47 0
PCR

63 0
PIC

13 0
DCR

63 0
GSR

16 0
Set_SoftInt

16 0
Clr_SoftInt

16 0
Softnt

63 0
TICK_CMP

0

2

3

4

5

6

1610

1710

1810

1910

2010

2110

2210

2310

63 0
STICK

63 0
STICK_CMP

2410

2510

rs1R/W

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

W

W

RW

RW

RW

Value

RD
WR

(to/from
IU Working
Registers)

RW

Non-Privileged Read OK, if TICK.NPT = 0

Non-Privileged Read OK, if STICK.NPT = 0

Non-Privileged Read OK, if PCR.PRIV = 0

ASRs
Chapter 6 Registers 85

ASR 16 Privileged RW PCR Performance Instrumentation Chapter 11
“Performance
Instrumentation”

2

ASR 17 Depends RW PIC 3

ASR 18 Privileged RW DCR Dispatch Control Register Section 6.7.1

ASR 19 None RW GSR Graphics (VIS) Status Register Section 6.7.2

ASR 20 Privileged W SET_SOFTINT Software Interrupts Section 6.7.3

ASR 21 Privileged W CLR_SOFTINT

ASR 22 Privileged RW SOFTINT_REG

ASR 23 Privileged RW TICK_CMP Processor and System Timer
Registers

Section 6.7.4

ASR 24 Depends RW STICK 4

ASR 25 Privileged RW STICK_CMP

ASR 26 - 31 Reserved
Reserved for future use, do not
reference by software.

1. Writes are always privileged; reads are privileged if TICK.NPT = 1. Otherwise, reads are non-privileged.

2. If PCR.NC = 0, access is always privileged. If PCR.NC ≠ 0 and PCR.PRIV = 0, access is non-privileged; otherwise, access is privileged.

3. All accesses are privileged if PCR.PRIV = 1; otherwise, all accesses are non-privileged.

4. Writes are always privileged; reads are privileged if STICK.NPT = 1. Otherwise, reads are non-privileged.

TABLE 6-6 State and Ancillary State Registers (Continued)

State Register
Number

(base 10 used)
Access

Restriction R/W Abbreviation Description Reference Section Notes
86 UltraSPARC IIIi Processor User’s Manual • June 2003

6.5.2 Privileged Register Summary

FIGURE 6-5 Privileged Registers

rs/rd

63 0
TPC

63 0
TNPC

39 0
TSTATE

8 0
TT

63 0
TICK

63 0
TBA

11 0
PSTATE

2 0
TL

3 0
PIL

4 0
CWP

4 0
CANSAVE

4 0
CANRESTORE

4 0
CLEANWIN

4 0
OTHERWIN

5 0
WSTATE

63 0
VER

63 0
Reserved

0

1

2

3

4

5

6

7

8

9

1010

1110

1210

1310

1410

R/W

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

RW

3110

15 - 3010

R

R

Privileged
Registers

Index

RDPR
WRPR

(to/from
IU Working
Registers) TSTATE

07

TL = 4

7 0

ASI
0

PSTATE
11 4 0

CWP

TPC
TNPC
TSTATE
TTTPC

TNPC
TSTATE
TT

TL = 3

TPC
TNPC
TSTATE
TT

TL = 2

TPC
TNPC
TSTATE
TT

TL = 1

TPC
TNPC
TSTATE
TT

TL = 0

Trap States

CCR
Chapter 6 Registers 87

TABLE 6-7 Privileged Registers

Privileged
Register Number

(base 10 used)
Access

Restriction R/W Abbreviation Description
Reference
Section Notes

0 Privileged RW TPC Trap stage program counter

Section 6.8.1
1 Privileged RW TNPC Trap state next program counter

2 Privileged RW TSTATE Trap state register

3 Privileged RW TT Trap type register

4 Privileged RW
TICK Processor TICK timer register, also

accessible as a state register
Section 6.7.4

5 Privileged RW TBA Trap base address register Section 6.8.2

6 Privileged RW PSTATE Processor state register Section 6.8.3

7 Privileged RW TL Trap level register Section 6.8.4

8 Privileged RW PIL Processor Interrupt Level register Section 6.8.5

9 Privileged RW CWP Current window pointer

Section 6.8.6

10 Privileged RW CANSAVE Savable register sets

11 Privileged RW CANRESTORE Restorable register sets

12 Privileged RW CLEANWIN Clean register sets

13 Privileged RW
OTHERWIN Other register sets susceptible to

spill/fill

14 Privileged RW
WSTATE Window state register for traps due

to spills and fills
Section 6.8.7

15 - 30 Privileged Reserved

31 Privileged R VER Processor version register Section 6.8.8
88 UltraSPARC IIIi Processor User’s Manual • June 2003

6.5.3 ASI and Specially Accessed Register Summary

FIGURE 6-6 ASI and Specially Accessed Registers

TABLE 6-8 ASI and Specially Accessed Registers

Type Abbreviation Description
Reference
Section

ASI DCUCR Data Cache Unit Control
Register

Section 6.10.1

ASI 5816 PA WATCHPOINT Watchpoint for physical
addresses

Section 6.10.2
VA WATCHPOINT Watchpoint for virtual

addresses

LD/ST
floating-
point
Opcode

Load/Store FSR Access the Floating-point
Status Register

37 0
FSR

Status Registers
(ASI mapped)

50 0
DCUCR

63 0
VA Watchpoint

63 0
PA Watchpoint

4516

5816

5816

ASIR/W

RW

RW

RW

Value
0016

3816

4016

VA

STFSR, STXFSR
LDFSR, LDXFSR

Special Access Registers
Chapter 6 Registers 89

6.6 State Registers

The state registers provide control and status to the Integer Execution Unit.

The type and accessibility of the registers (privileged vs. non-privileged mode) are

summarized in FIGURE 6-4.

The SPARC-V9 architecture provides for up to 31 state registers, 24 of which are classified

as ancillary state registers (ASRs), numbered from 7 through 31. The eight State Registers,

0 through 7, are defined by SPARC-V9.

6.6.1 32-bit Multiply/Divide (YD) State Register 0

The Y register is deprecated; it is provided only for compatibility with previous versions of

the architecture. It should not be used in new SPARC-V9 software. It is recommended that

all instructions that reference the Y register (that is, SMULD, SMULccD, UMULD, UMULccD,

MULSccD, SDIVD, SDIVccD, UDIVD, UDIVccD, RDYD, and WRYD) be avoided.

The low-order 32 bits of the Y register, illustrated in FIGURE 6-7, contain the more significant

word of the 64-bit product of an integer multiplication, as a result of either a 32-bit integer

multiply (SMULD, SMULccD, UMULD, UMULccD) instruction or an integer multiply step

(MULScc) instruction. The Y register also holds the more significant word of the 64-bit

dividend for a 32-bit integer divide (SDIVD, SDIVccD, UDIVD, UDIVccD) instruction.

FIGURE 6-7 Y Register

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as zero.

The Y register is read and written with the RDYD and WRYD instructions, respectively.

6.6.2 Integer Unit Condition Codes State Register 2 (CCR)

The Condition Codes Register (CCR), shown in FIGURE 6-8, holds the integer condition

codes.

The CCR is accessible using Read and Write State Register instructions (RDCCR and WRCCR)

in non-privileged or privileged mode.

63 032 31

— product<63:32> or dividend<63:32>32
90 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 6-8 Condition Codes Register

6.6.2.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both the xcc and icc fields. The xcc
condition codes indicate the result of an operation when viewed as a 64-bit operation. The

icc condition codes indicate the result of an operation when viewed as a 32-bit operation.

For example, if an operation results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit

result is negative (icc.N is set to one) but the 64-bit result is nonnegative (xcc.N is set to

zero).

Each of the 4-bit condition code fields is composed of four 1-bit subfields, as shown in

FIGURE 6-9.

FIGURE 6-9 Integer Condition Codes (CCR_icc and CCR_xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the last

instruction that modified the integer condition codes; 1 = negative, 0 = nonnegative.

The z bits indicate whether the ALU result was zero for the last instruction that modified the

integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in)

64-bit (xcc) or 32-bit (icc) two’s-complement notation for the last instruction that modified

the integer condition codes; 1 = overflow, 0 = no overflow.

The c bits indicate whether a two’s complement carry (or borrow) occurred during the last

instruction that modified the integer condition codes. Carry is set on addition if there is a

carry out of bit 63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is a borrow into

bit 63 (xcc) or bit 31 (icc); 1 = carry, 0 = no carry.

7 4 03

xcc iccCCR

7 5 4

0

6

13 2

xcc:
icc:

cvn z

64-bit Interpretation
32-bit Interpretation
Chapter 6 Registers 91

Condition Codes

These bits are modified by the arithmetic and logical instructions, the names of which end

with the letters “cc” (for example, ANDcc) and by the WRCCR instruction. They can be

modified by a DONE or RETRY instruction, which replaces these bits with the CCR field of

the TSTATE register. The BPcc and Tcc instructions may cause a transfer of control based

on the values of these bits. The MOVcc instruction can conditionally move the contents of an

integer register based on the state of these bits. The FMOVcc instruction can conditionally

move the contents of a floating-point register according to the state of these bits.

CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes, which indicate the results of an integer

operation, with both of the operands and the result considered to be 64 bits wide.

CCR_integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer

operation, with both of the operands and the result considered to be 32 bits wide. In addition

to the BPcc and Tcc instructions, the Bicc instruction may also cause a transfer of control

based on the values of these bits.

6.6.3 Address Space Identifier (ASI) Register ASR 3

The ASI Register, shown in FIGURE 6-10, specifies the ASI to be used for load and store

alternate instructions that use the “rs1 + simm13” addressing form.

Non-privileged (user-mode) software may write any value into the ASI register; however,

values with bit 7 = 0 select restricted ASIs. When a non-privileged instruction makes an

access that uses an ASI with bit 7 = 0, a privileged_action exception is generated.

FIGURE 6-10 Address Space Identifier Register

7 0

ASI
92 UltraSPARC IIIi Processor User’s Manual • June 2003

6.6.4 TICK Register (TICK) ASR4

See Section 6.7.4 “Timer State Registers: ASRs 4, 23, 24, 25” on page 6-101 for more

details.

6.6.5 Program Counters State Register 5

The program counter (PC) contains the address of the instruction currently being executed.

The next program counter (nPC) holds the address of the next instruction to be executed if a

trap does not occur. The low-order two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer

instruction is known as the delay instruction. This delay instruction is executed (unless the

control transfer instruction annuls it) before control is transferred to the target. During

execution of the delay instruction, the nPC points to the target of the control transfer

instruction, and the PC points to the delay instruction. See Chapter 7 “Instruction Types” for

more details.

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc,

FBPfcc, JMPL, and RETURN instructions. It can be read directly by a RDPC instruction.

6.6.6 Floating-Point Registers State (FPRS) Register 6

The Floating-Point Registers State (FPRS) Register, shown in FIGURE 6-11, holds control

information for the floating-point register file. Mode and status information about the

Floating-point Unit is presented in Section 6.9.1 “Floating-Point Status Register (FSR)” on

page 6-117.

This register is readable and writable using the read and write state register instructions

RDFPRS and WRFPRS when the processor is in non-privileged or privileged mode.

FIGURE 6-11 Floating-Point Registers State Register

012

DLFEF DUFPRS
Chapter 6 Registers 93

6.6.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If this bit is set but the PSTATE.PEF bit

is not set, then executing a floating-point instruction causes a fp_disabled trap; that is, both

FPRS.FEF and PSTATE.PEF must be set to enable floating-point operations. If it is

disabled, executing a floating-point instruction causes a fp_disabled trap.

6.6.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32–f62. It

is set whenever any of the upper floating-point registers is modified. The processor may set

the bit whenever a floating-point instruction is issued, even though that instruction never

completes and no output register is modified. The dirty bit may be set by instructions that the

processor executes but does not complete due to wrong branch prediction. The DU bit is

cleared only by software.

6.6.6.3 FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f0–f31. It is set

whenever any of the lower floating-point registers is modified. The processor may set the bit

whenever a floating-point instruction is issued, even though that instruction never completes

and no output register is modified. The DL bit is cleared only by software.

6.7 Ancillary State Registers: ASRs 16-25

The SPARC-V9 architecture provides for optional ancillary state registers (ASRs) in addition

to the six state registers defined for all SPARC-V9 processors and already described.

An ASR is read and written with the RDASR and WRASR instructions, respectively. Access to

a particular ASR may be privileged or non-privileged. A RDASR or WRASR instruction is

privileged if the accessed register is privileged.

All the state and ancillary state registers are summarized in TABLE 6-6. Some of the registers

descriptions are presented below.

Note – PCR (ASR 16) and PIC (ASR 17) are discussed in detail in Chapter 11
“Performance Instrumentation.”
94 UltraSPARC IIIi Processor User’s Manual • June 2003

6.7.1 Dispatch Control Register (DCR) ASR 18

The DCR provides control over the dispatch unit and branch prediction logic. The DCR also

provides factory test equipment with access to internal logic states using the OBSDATA bus

interface.

The DCR is a read/write register. Unused bits are read as zero and should be written only

with zero or values previously read from them. The DCR is a privileged register; attempted

access by non-privileged (user) code causes a privileged_opcode trap. POR value is

xxxx.xx0x2.

The DCR is illustrated in FIGURE 6-12 and described in TABLE 6-9.

FIGURE 6-12 Dispatch Control Register (ASR 0x12)

TABLE 6-9 DCR Bit Description

Bit Field Type Description

63:13 - Reserved

12 DPE Data Cache Parity Error Enable. If cleared, no parity checking at the Data
Cache SRAM arrays (Data, Physical Tag, and Snoop Tag arrays) will be
done. It also implies no dcache_parity_error trap (TT 0x071) will ever be
generated. However, parity bits are still generated and written to the D-cache
Parity SRAM. Therefore, when DPE is set, valid D-cache lines will
automatically have correct parity bits.

13:6 OBSDATA These bits are used to select the set of signals driven on the OBSDATA<9:0>
pins of the processor for factory test purposes.

Branch and Return Control

5 BPE Branch Prediction Enable. When BPE = 1, conditional branches are
predicted through internal hardware. When BPE = 0, all branches are
predicted not taken. After Power-On Reset initialization, this bit is set to
zero. This bit is also automatically set to zero on any trap causing
RED_state entry (but not cleared when privileged code enters
RED_state by setting the RED bit in PSTATE).

63 0

MS

123456

SIRPEBPE IFPOEIPEOBS

11

DPE

12
Chapter 6 Registers 95

Interrupt Floating-Point Operation Enable (Bit 1)

The IFPOE bit enables system software to take interrupts on floating-point instructions. This
enable bit is cleared by hardware at power-on. System software must set the bit as needed.
When this bit is enabled, the UltraSPARC IIIi processor forces an fp_disabled trap when an

4 RPE Return Address Prediction Enable. When RPE = 0, the return address
prediction stack is disabled. Even when encountering a JMPL instruction,
instruction fetch will continue on a sequential path until the return address is
generated and a mispredict is signalled. When RPE = 1, the processor may
attempt to predict the target address of JMPL instructions and prefetch
subsequent instructions accordingly.
After Power-On Reset initialization, this bit is set to zero. This bit is also
automatically set to zero on any trap causing a RED_state entry (but left
unchanged when privileged code enters RED_state by setting
PSTATE.RED).

Instruction Dispatch Control

3 SI Single Issue Disable. When SI = 0, only one instruction will be outstanding
at a time. Superscalar instruction dispatch is disabled, and only one
instruction is executed at a time. When SI = 1, normal pipelining is enabled.
The processor can issue new instructions prior to the completion of
previously issued instructions.
After Power-On Reset initialization, this bit is set to zero. This bit is also
automatically set to zero on any trap causing RED_state entry (but left
unchanged when privileged code enters RED_state by setting
PSTATE.RED).

2 IPE Instruction Cache Parity Error Enable. If cleared, no parity checking at the
Instruction Cache SRAM arrays (Data, Physical Tag, and Snoop Tag arrays)
will be done. It also implies no Icache_Parity_error trap (TT 0x072) will
ever be generated. However, parity bits are still generated and written to the
I-cache Parity SRAM. Therefore, when IPE is set, valid I-cache lines will
automatically have correct parity bits.

1 IFPOE Interrupt Floating-Point Operation Enable. The IFPOE bit enables system
software to take interrupts on floating-point instructions. When set, the
processor forces a fp_disabled trap when an interrupt occurs on
floating-point code.

0 MS Multiscalar dispatch enable. When MS = 0, the processor operates in scalar
mode, issuing and executing one instruction at a time. Pipelined operation is
still controlled by the SI bit. MS = 1 enables superscalar (normal)
instruction issue.

After Power-On Reset initialization, this bit is set to zero. The bit is also
automatically set to zero on any trap causing RED_state entry (but left
unchanged when privileged code enters RED_state by setting
PSTATE.RED).

TABLE 6-9 DCR Bit Description (Continued)

Bit Field Type Description
96 UltraSPARC IIIi Processor User’s Manual • June 2003

interrupt occurs on FP-only code. The trap handler is then responsible for checking whether
the floating-pint is indeed disabled. If it is not, the trap handler then enables interrupts to take
the pending interrupt.

Note – This behavior deviates from SPARC-V9 trap priorities in that interrupts are of lower
priorities than the other two types of floating-point exceptions (fp_exception_ieee_754,
fp_exception_other).

• This mechanism is triggered for an floating-point instruction only if none of the

approximately twelve preceding instructions across the two integer, load/store, and branch

pipelines are valid, under the assumption that they are better suited to take the interrupt

(only one trap entry/exit).

• Upon entry, the handler must check both TSTATE.PEF and FPRS.FEF bits. If

TSTATE.PEF = 1 and FPRF.FEF = 1, the handler has been entered because of an

interrupt, either interrupt_vector or interrupt_level. In such a case:

- The fp_disabled handler should enable interrupts (that is, set PSTATE.IE = 1), then
issue an integer instruction (for example, add %g0,%g0,%g0). An interrupt is
triggered on this instruction.

- The processor then enters the appropriate interrupt handler (PSTATE.IE is turned off
here) for the type of interrupt.

- At the end of the handler, the interrupted instruction is a RETRY after returning from
the interrupt. The add %g0,%g0,%g0 is a RETRY.

- The fp_disabled handler then returns to the original process with a RETRY.
- The “interrupted” FPop is then retried (taking a fp_exception_ieee_754 or

fp_exception_other at this time if needed).

6.7.2 Graphics Status Register (GSR) ASR 19

The GSR is used with the VIS Instruction Set.

The GSR is accessible in non-privileged mode. It can be read and written using the RDASR
and WRASR state register instructions.

TABLE 6-10 GSR Opcodes

Opcode Op3 Reg Field Operation

RDASR 101000 rs1 == 0x13 Read GSR

WRASR 110000 rd == 0x13 Write GSR
Chapter 6 Registers 97

FIGURE 6-13 RDASR format

FIGURE 6-14 WRASR format

Accesses to this register cause an fp_disabled trap if PSTATE.PEF or FPRS.FEF are zero.

The format of the GSR is:

FIGURE 6-15 GSR Format (ASR 0x13)

Suggested Assembly Language Syntax

rd %gsr, regrd

wr regrs1, reg_or_imm, %gsr

TABLE 6-11 GSR Bit Description

Bit Field Description

63:32 MASK<31:0> This field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 Reserved

27 IM Interval Mode: When IM = 1, the values in FSR.RD and FSR.NS are
ignored; the processor operates as if FSR.NS = 0 and rounds floating-point
results according to GSR.IRND.

10 op3 —rd rs1

31 141924 18 13 02530 29

i = 0

12

10 op3 simm13rd rs1

31 141924 18 13 02530 29 12

i = 1

10 op3 —rd rs1 i = 0 rs2

 4 5

ALIGN

63 02

SCALE

378

IRNDIMMASK

2427 2632

—

25

—

28

GFX_STALL

2331
98 UltraSPARC IIIi Processor User’s Manual • June 2003

6.7.3 Software Interrupt State Registers:

ASRs 20, 21, and 22

Three registers are used to control software interrupts: SOFTINT, SET_SOFTINT, and

CLR_SOFTINT. Bits written to the SOFTINT register will cause traps to the level the trap is

enabled. The SOFTINT register can be written to directly using ASR 22, or indirectly using

the SET_SOFTINT and CLR_SOFTINT registers as described in this section.

26:25 IRND<1:0> IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR.IM
= 1), as follows:

When GSR.IM = 1, the value in GSR.IRND overrides the value in FSR.RD.

24 GFX_STALL This field is for the flow control signal from the graphics devices that
indicates the status of their input command queues, that could be read by user
software without having a load go to the bus. (read-only)

This has a big benefit in keeping a sustained pipeline of stores from the
processor to the graphics devices, since you don’t have to wait for stores to
drain, in order to get the load to complete.

This pin is inverted polarity compared to the external pin (i.e., 0 = stall, 1 =
do not stall)

23:8 Reserved

7:3 SCALE<4:0> Shift count in the range 0–31, used by the PACK instructions for formatting.

2:0 ALIGN<2:0> Least three significant bits of the address computed by the last executed
ALIGNADDRESS or ALIGNADDRESS_LITTLE instruction.

TABLE 6-11 GSR Bit Description (Continued)

Bit Field Description

IRND Round toward

0 Nearest (even if tie)

1 0

2 + ∞
3 − ∞
Chapter 6 Registers 99

All three registers are accessible only in privileged mode. The SOFTINT register is accessed

using the RD and WR state register access instructions. The SET_SOFTINT and

CLR_SOFTINT registers are written using the WR state register access instruction. See

TABLE 6-12 and FIGURE 6-16 for more details.

FIGURE 6-16 SOFTINT, SET_SOFTINT, and CLR_SOFTINT Register Formats

SOFTINT Register

The operating system uses the SOFTINT to schedule interrupts. The field definitions are

described in TABLE 6-13.

TABLE 6-12 Register-window State Registers

Soft Interrupt Register ASR # Name and Description Privileged Access Instructions

SOFTINT 22
Software Interrupt Register RDSOFTINIT

WRSOFTINT

SET_SOFTINT 20 Sets Software Interrupt register bits. WRSOFTINIT_SET

CLR_SOFTINT 21 Clears Software Interrupt register bits. WRSOFTINIT_CLR

TABLE 6-13 SOFTINT Bit Descriptions

Bit Field Description

16 SM

(STICK_INT)

When the STICK_COMPARE.INT_DIS bit is zero (system tick compare is enabled) and
its STICK_CMPR field matches the value in the STICK register, then the SM field in
SOFTINT is set to one and a Level-14 interrupt is generated. See Section 6.7.4 “Timer
State Registers: ASRs 4, 23, 24, 25” on page 6-101 for details.

15:1 INT_LEVEL When a bit is set within this field (bits 15:1), an interrupt is caused at the corresponding
interrupt level. Note that INT_LEVEL<15> is shared by Level-15 interrupt and PIC
overflow interrupt.

0 TM

(TICK_INT)

When the TICK_COMPARE.INT_DIS bit is zero (that is, tick compare is enabled) and its
TICK_CMPR field matches the value in the TICK register, then the TM field in the
SOFTINT register is set to one and a Level-14 interrupt is generated. See Section
“TICK_COMPARE Register” on page 6-102 for details.

0

—
63 11516

INT_LEVEL

17

IM ITM

0

Reads zero, writes ignored.

63 17 16

 Sets bits in SOFTINT.

0

Reads zero, writes ignored.
63 17 16

 Clears bits in SOFTINT.

SOFTINT

SET_SOFTINT

CLR_SOFTINT
100 UltraSPARC IIIi Processor User’s Manual • June 2003

SET_SOFTINT Register

The SET_SOFTINT register is written to set bits in the SOFTINT register to set a bit in that

register. When a bit in the SET_SOFTINT register is set to a one, the corresponding bit in

the SOFTINT is set.

CLR_SOFTINT Register

The CLR_SOFTINT register is written in privileged mode using the WR write state register

instruction to clear bits in the SOFTINT register. When a bit in the CLR_SOFTINT register

is set to a one, the corresponding bit in the SOFTINT register is cleared.

6.7.4 Timer State Registers: ASRs 4, 23, 24, 25

The processor has two timers. The TICK timer is driven by the processor clock. The STICK
timer is driven by the system clock. Four registers are used to implement the timer and

support the timer interrupts. Timer state registers are described in TABLE 6-14.

FIGURE 6-17 Timer State Registers

TABLE 6-14 Timer State Registers

Soft Interrupt
Register ASR # (base 10) Name and Description Access Instructions

TICK 4 TICK register Depends

TICK_COMPARE 23 TICK Compare register State Register Instructions in privileged mode

STICK 24 STICK register Depends

STICK_COMPARE 25 STICK Compare register State Register Instructions in privileged mode

063 62

TICK NPT COUNTER

063 62

INT_DIS TICK_CMPR

063 62

NPT COUNTER

063 62

INT_DIS TICK_CMPR

TICK_COMPARE

STICK

STICK_COMPARE
Chapter 6 Registers 101

TICK Register

The TICK register is a 63-bit counter that counts processor clock cycles.

In privileged mode, the TICK register is always readable using either the RDPR (privileged

read) or RDTICK (state register read) instructions. The TICK register is always write-able in

privileged mode using the WRPR (privileged write) instruction; there is no WRTICK (state

register write) instruction.

The TICK.NPT bit (bit 63) selects the non-privileged mode readability. If TICK.NPT = 0,

then the TICK register is readable in non-privileged mode using the RDTICK state register

read instruction. When TICK.NPT = 1, an attempt by software to read the TICK register in

non-privileged mode causes a privileged_action exception. Software operating in

non-privileged mode can never write to the TICK register.

The TICK.NPT is set to one by a Power-On Reset trap. The value of TICK.COUNTER is

reset after a Power-On Reset trap.

After the TICK register is written, reading the TICK register returns a value incremented (by

one or more) from the last value written, rather than from some previous value of the counter.

The number of counts between a write and a subsequent read does not accurately reflect the

number of processor cycles between the write and the read. Software may rely only on

read-to-read counts of the TICK register for accurate timing, not on write-to-read counts.

Note – The TICK register is unaffected by any reset other than a Power-On Reset.

Programming Note – TICK.NPT may be used by a secure operating system to control

access by user software to high-accuracy timing information. The operation of the timer

might be emulated by the trap handler, which could read TICK.counter and change the

value to lower its accuracy.

TICK_COMPARE Register

The TICK_COMPARE register causes the processor to generate a trap when the TICK
register reaches the value in the TICK_COMPARE register and the INT_DIS bit is zero. If

the INT_DIS bit is one, then no interrupt is generated.

When the TICK_CMPR field exactly matches the TICK.COUNTER field and INT_DIS = 0,

then a TICK_INT is posted in the SOFTINT register. This has the effect of posting a

Level-14 interrupt to the processor when the processor has PIL register value less than

fourteen and PSTATE.IE register field 1.
102 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – The Level-14 interrupt handler must check the SOFTINT<14>, TM
(TICK_INT), and SM (STICK_INT) fields of the SOFTINT register to determine the

source or sources of the Level-14 interrupt.

In privileged mode, the TICK_COMPARE register is always accessible using the state register

read and write instructions. The TICK_COMPARE register is not accessible in non-privileged

mode. Non-privileged accesses to this register causes a privileged_opcode trap.

STICK Register

The STICK register is a 63-bit counter that increments at a rate determined by the system

clock.

The STICK register is always accessible in privileged mode using the RDSTICK and

WRSTICK state register instructions.

The STICK.NPT bit (bit 63) selects the non-privileged mode readability. If

STICK.NPT = 0, then the STICK register is readable in non-privileged mode using the

RDSTICK state register read instruction. When STICK.NPT = 1, an attempt by software to

read the STICK register in non-privileged mode causes a privileged_action exception.

Software operating in non-privileged mode can never write to the STICK register.

The STICK.NPT bit is set to one by a Power-On Reset trap. The value of

STICK.COUNTER is cleared after a Power-On Reset trap.

After the STICK register is written, reading the STICK register returns a value incremented

(by one or more) from the last value written, rather than from some previous value of the

counter.

Note – The STICK register is unaffected by any reset other than a Power-On Reset.

STICK_COMPARE Register

The STICK_COMPARE register causes the processor to generate a trap when the STICK
register reaches the value in the STICK_COMPARE register and the INT_DIS bit is zero. If

the INT_DIS bit is one, then no interrupt is generated.

The STICK_COMPARE is only accessible in privileged mode. Accesses to this register in

non-privileged mode causes a privileged_opcode trap.
Chapter 6 Registers 103

When STICK_CMPR field exactly matches STICK.COUNTER field and INT_DIS = 0, then

a TICK_INT is posted in the SOFTINT register. This has the effect of posting a Level-14

interrupt to the processor when the processor has PIL register value less than fourteen and

PSTATE.IE register field 1.

Programming Note – The Level-14 interrupt handler must check SOFTINT<14>,

TICK_INT, and STICK_INT to determine the source of the Level-14 interrupt.

After a Power-On Reset trap, the INT_DIS bit is set to one (disabling system tick compare

interrupts), and the STICK_CMPR value is set to zero.

6.8 Privileged Registers

The privileged registers are described in this section. The privileged registers are visible only

to software running in privileged mode (PSTATE.PRIV = 1). Privileged registers are written

with the WRPR instruction and read with the RDPR instruction.

Refer to FIGURE 6-5 on page 6-87 for more details.

6.8.1 Trap Stack Privileged Registers 0 through 3

The four trap stack registers (TPC, TNPC, TSTATE, and TT) form a group of registers that

are shadowed for each of the five trap levels. Each instance of the registers save the state of

key integer unit parameters at each trap level. FIGURE 6-18 shows the format for this register

group. This figure is followed by a description of each register. FIGURE 6-19 shows how the

register stack responds to an event example.

The group of trap stack registers contain state information from the previous trap level. The

registers include values from the program counter (PC), the next program counter (nPC), the

trap state (TSTATE) register (a group of fields comprising the contents of the CCR, ASI,

CWP, and PSTATE registers), and the trap type (TT) register containing the value of the trap

that caused entry into the current trap level.

6.8.1.1 Common Attributes

There are MAXTL = 5 instances of the trap control registers, but only one group is accessible

at any time. The current value in the TL register determines which instance of the trap

control registers are accessible.
104 UltraSPARC IIIi Processor User’s Manual • June 2003

All trap control registers are accessible in privileged mode. An attempt to read or write any

of these registers in non-privileged mode causes a privileged_opcode exception.

An attempt to read or write any of these registers when TL = 0 causes an illegal_instruction
exception.

FIGURE 6-18 Trap State Register Format

Trap Program Counter

The Trap Program Counter (TPC) contains the PC from the previous trap level.

Trap Next Program Counter

The Trap Next Program Counter (TNPC) register is the nPC from the previous trap level.

Trap State Register

The Trap State (TSTATE) Register contains the state from the previous trap level, comprising

the contents of the CCR, ASI, CWP, and PSTATE registers from the previous trap level.

Trap Type

The Trap Type (TT) register normally contains the trap type of the trap that caused entry to

the current trap level.

63

TPC PC from trap while in trap level

63

nPC from trap while in trap level

039

CCR

08

TNPC

TSTATE

TT

2 1

0 0

0 0

ASI PSTATE CWP
32 31 24 19 8 2

Trap Type

23 20 7 3

0

2 1 0
Chapter 6 Registers 105

6.8.1.2 Trap Stack Operation

The trap stack and an event example are illustrated in FIGURE 6-19.

FIGURE 6-19 Trap Stack and Event Example

6.8.1.3 Effects of Reset and Normal Operation

The effects of reset on each register are shown in TABLE 6-15. During normal operation, the

trap stack register values defined for the trap levels above the current one are undefined.

TABLE 6-15 Trap Stack Register Power-on and Normal Operation

Trap Control

Register After Power-On Reset

During Normal Operation,
for n greater than the
current trap level (n > TL)

TPC
TPC[0] =
TPC[1] to TPC[5] are undefined

TPC[n] is undefined

TNPC
TPC[0] =
TNPC[1] to TNPC[5] are undefined

TNPC[n] is undefined

TSTATE
TPC[0] =
TSTATE[1] to TSTATE[5] are undefined

TSTATE[n] is undefined

TT
TPC[0] = Reset Trap Type
TT[1] to TT[4] are undefined
TT[5] = 00116

TT[n] is undefined

TL = 4 TPC
TNPC
TSTATE
TTTPC

TNPC
TSTATE
TT

TL = 3

TPC
TNPC
TSTATE
TT

TL = 2

TPC
TNPC
TSTATE
TT

TL = 1

TPC
TNPC
TSTATE
TT

TL = 0

Event Example

1) Processor is at TL = 1
2) Processor traps
3) Current PC, nPC, etc. written into TL = 1 group
4) TL incremented to 2
5) Processor returns from Trap
6) TL = 1 group is written to PC, nPC, etc.

Trap Stack
106 UltraSPARC IIIi Processor User’s Manual • June 2003

6.8.2 Trap Base Address (TBA) Privileged Register 5

The TBA register, shown in FIGURE 6-20, provides the upper 49 bits of the address used to

select the trap vector for a trap. The TBA register is accessible using read and write

privileged register instructions. The lower 15 bits of the TBA always read as zero, and writes

to them are ignored.

FIGURE 6-20 Trap Base Address Register

The full address for a trap vector is specified by the contents in the TBA, TL, and TT[TL]
registers at the time the trap is taken, as shown in FIGURE 6-21.

FIGURE 6-21 Trap Vector Address Format

TL>0 bit

The “TL > 0” bit is zero if TL = 0 when the trap was taken, and one if TL > 0 when the trap

was taken. This implies that there are two trap tables: one for traps from TL = 0 and one for

traps from TL > 0.

TTTL field

The TTTL field is written with the contents of the TT register representing the new trap level

that is being taken.

6.8.3 Processor State (PSTATE) Privileged Register 6

The PSTATE register, shown in FIGURE 6-22, holds the current state of the processor. There

is only one instance of the PSTATE register. The PSTATE register is copied to a 12-bit field

in the TSTATE register of the trap stack.

63 15 14 0

000 0000 0000 0000Trap Base Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000
Chapter 6 Registers 107

FIGURE 6-22 PSTATE Fields

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to

the next instruction executed. The privileged RDPR and WRPR instructions are used to read

and write all the bits in the PSTATE, respectively.

Subsections on page 108 through page 110 describe the fields contained in the PSTATE
register.

6.8.3.1 Global Register Set Selection - IG, MG, AG bits

The UltraSPARC IIIi processor provides Interrupt and MMU Global Register sets in addition

to the two global register sets (normal and alternate) specified by SPARC-V9. The currently

active set of global registers is specified by the AG, IG, and MG bits and are set and cleared

according to the events listed in TABLE 6-16.

Note – The IG, MG, and AG fields are saved on the trap stack along with the rest of the
PSTATE Register.

TABLE 6-16 PSTATE Global Register Selection Events

Event Globals selected for use

PSTATE settings

AG IG MG

DONE, RETRY [1] Global Registers encoded
in TSTATE register
(Previous Global Registers
before most recent trap)

0 0 0

fast_instruction_access_MMU_miss,
fast_data_access__MMU_miss,
fast_data_access_protection,
data_access_exception,
instruction_access_exception

MMU Global registers 0 0 1

interrupt_vector_trap Interrupt Global registers 0 1 0

Reserved [2] 0 1 1

Write to privileged register (WPR) that
modifies AG, IG, or MG bits in PSTATE
register

Any Global Register x x x

4 0

PSTATE PEF AM PRIV IE AG

3 2 16 5

MM RED

7

TLECLE

9 8

MGIG

1011
108 UltraSPARC IIIi Processor User’s Manual • June 2003

Executing a DONE or RETRY instruction restores the previous {AG, IG, MG} state before the

trap is taken. Programmers can also set or clear these three bits by writing to the PSTATE
register with a WRPR instruction.

Note – Attempting to use the “wrpr %pstate” instruction to set a reserved encoding for
IG, MG, and AG (more than one of these bits set) results in an illegal_instruction exception.
However, the processor does not check for a reserved encoding when writing directly to the
TSTATE register. Hence, executing a DONE or RETRY with an invalid AG, IG, MG bit
combination may result in an undefined behavior of the processor.

Compatibility Note – The UltraSPARC IIIi processor support two more sets (privileged
only) of eight 64-bit global registers compared to the UltraSPARC II family: interrupt
globals and MMU globals. These additional registers are called the trap globals. Two 1-bit
fields, PSTATE.IG and PSTATE.MG, were added to the PSTATE register to select which
set of global registers to use.

PSTATE_interrupt_globals (IG)

When PSTATE.IG = 1, the processor interprets integer register numbers in the range 0 – 7 as

referring to the interrupt global register set. See the Note on page 109. When an

interrupt_vector trap (trap type = 6016) is taken, the processor sets IG and clears AG and MG.

PSTATE_MMU_globals (MG)

When PSTATE.MG = 1, the processor interprets integer register numbers in the range 0 – 7

as referring to the MMU global register set.

Any trap other than those listed above Alternate Global registers 1 0 0

Reserved Reserved 1 0 1

Reserved Reserved 1 1 0

Reserved Reserved 1 1 1

1. Since PSTATE is preserved in the TSTATE register when a trap occurs, the previous value of these bits are normally
restored upon return from a trap (via DONE or RETRY instruction).

2. A WRPR to PSTATE, using a reserved combination of AG, IG, and MG bit values, causes an illegal_instruction ex-
ception.

TABLE 6-16 PSTATE Global Register Selection Events

Event Globals selected for use

PSTATE settings

AG IG MG
Chapter 6 Registers 109

The processor sets PSTATE.MG and clears PSTATE.IG and PSTATE.AG when any of the

following traps are taken:

• fast_instruction_access_MMU_miss trap (trap type = 6416–6716)

• fast_data_access_MMU_miss trap (trap type = 6816–6B16)

• fast_data_access_protection trap (trap type = 6C16–6F16)

• data_access_exception trap (trap type = 3016)

• instruction_access_exception trap (trap type = 0816)

PSTATE_alternate_globals (AG)

When PSTATE.AG = 1, the processor interprets integer register numbers in the range 0 – 7

as referring to the alternate global register set.

If an exception is taken and it does not set another global bit, then the processor defaults to

the Alternate Global register set by setting PSTATE.AG and clearing PSTATE.IG and

PSTATE.MG.

6.8.3.2 PSTATE_current_little_endian (CLE)

When PSTATE.CLE = 1, all data reads and writes using an implicit ASI are performed in

little-endian byte order with an ASI of ASI_PRIMARY_LITTLE. When PSTATE.CLE = 0,

all data reads and writes using an implicit ASI are performed in big-endian byte order with

an ASI of ASI_PRIMARY. Instruction accesses are always big-endian.

6.8.3.3 PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the

PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This behavior

allows system software to have a different implicit byte ordering than the current process.

Thus, if PSTATE.TLE is set to one, data accesses using an implicit ASI in the trap handler

are little-endian. The original state of PSTATE.CLE is restored when the original PSTATE
register is restored from the trap stack.
110 UltraSPARC IIIi Processor User’s Manual • June 2003

6.8.3.4 PSTATE_mem_model (MM)

The processor supports Total Store Order (TSO) only. The 2-bit field in the PSTATE.MM is

hardwired to 00 indicating TSO mode. See TABLE 6-17 for MM Encodings.

Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are

ordered with respect to earlier loads and stores. Thus, loads can bypass earlier stores but

cannot bypass earlier loads; stores cannot bypass earlier loads and stores. Programs that

execute correctly in either PSO or RMO will execute correctly in the TSO model.

6.8.3.5 PSTATE_RED_state (RED)

PSTATE.RED (Reset, Error, and Debug state) is set whenever the UltraSPARC IIIi

processor takes a RED state disrupting or nondisrupting trap. The IU sets PSTATE.RED
when any hardware reset occurs. It also sets PSTATE.RED when a trap is taken while

TL = (MAXTL − 1). Software can exit RED_state by executing a DONE or RETRY
instruction, which restores the stacked copy of PSTATE and clears PSTATE.RED if it was

zero in the stacked copy.

Note – Software can also exit the RED_state by writing a zero to PSTATE.RED with a
WRPR instruction. However, this method is not recommended due to potential side-effects
and unpredictable behavior.

6.8.3.6 PSTATE_enable_floating-point (PEF)

When set to one, the PSTATE.PEF bit enables the FPU, which allows privileged software to

manage the FPU. For the FPU to be usable, both PSTATE.PEF and FPRS.FEF must be set.

Otherwise, any floating-point instruction that tries to reference the FPU causes a fp_disabled
trap.

TABLE 6-17 MM Encodings

MM Value SPARC-V9

00 Total Store Order (TSO)

01 Reserved

10 Reserved

11 Reserved
Chapter 6 Registers 111

6.8.3.7 PSTATE_address_mask (AM)

When PSTATE.AM = 1, the high-order 32 bits of any virtual addresses for instruction and

data are cleared to zero in the following cases:

• Before data addresses are sent out of the processor

• Before addresses are sent to the MMU

• For instruction accesses to all caches

• Before being stored to a general-purpose register for CALL, JMPL, and RDPC instructions

• Before being stored to TPC[n] and TNPC[n] when a trap occurs

When an ASI_PHYS_* ASI is used in a load or store instruction, the setting of

PSTATE.AM is ignored and the full 64-bit address is used. (See ASI 1416,

ASI_PHYS_USE_EC, for an example).

When PSTATE.AM = 1, the processor writes the full 64-bit program counter value (upper 32
bits are forced to be zero) to the destination register of a CALL, JMPL, or RDPC instruction.

When PSTATE.AM = 1 and a trap occurs, the processor writes the full 64-bit program
counter value to TPC[TL].

When PSTATE.AM = 1 and a synchronous exception occurs, the processor writes the full

64-bit address to the Data Synchronous Fault Address Register.

When PSTATE.AM = 1 and an asynchronous exception occurs, the processor writes the full

64-bit address to the Data Asynchronous Fault Address Register.

The PSTATE.AM bit must be set when 32-bit software is executed.

6.8.3.8 PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode. This bit is controlled by

events in the processor and can be explicitly set.

6.8.3.9 PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

6.8.4 Trap Level (TL) Privileged Register 7

The trap level register, shown in FIGURE 6-23, specifies the current trap level. TL = 0 is the

normal (nontrap) level of operation. TL > 0 implies that one or more traps are being

processed. The maximum valid value that the TL register may contain is MAXTL = 5, which

is always equal to the number of supported trap levels beyond Level-0.
112 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 6-23 Trap Level Register

Programming Note – Writing to the TL register with a value greater than MAXTL (five

for the UltraSPARC IIIi processor) causes the value MAXTL to be written.

Writing the TL register with a wrpr %tl instruction does not alter any other processor state;

that is, it is not equivalent to taking or returning from a trap.

6.8.5 Processor Interrupt Level (PIL) Privileged Register 8

The processor interrupt level (PIL), illustrated in FIGURE 6-24, is the interrupt level above

which the processor will accept an interrupt. Interrupt priorities are mapped so that interrupt

Level-2 has greater priority than interrupt Level-1, and so on.

FIGURE 6-24 Processor Interrupt Level Register

Compatibility Note – On SPARC-V8 processors, the Level-15 interrupt is considered to
be nonmaskable, so it has different semantics from other interrupt levels. SPARC-V9
processors do not treat Level-15 interrupts differently from other interrupt levels.

6.8.6 Register-Window State Privileged Registers 9

through 13

The state of the register window is determined by a set of privileged registers that are read

and written by privileged mode software using the RDPR and WRPR instructions, respectively.

In addition, these privileged registers are modified by instructions related to register

windowing and are used to generate traps that allow supervisor software to spill, fill, and

clean the register window sets. TABLE 6-18 describes the register-window state privileged

registers.

2 0

TL TL

3 0

PIL PIL
Chapter 6 Registers 113

Register-window management is described in a separate chapter.

Note – The CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN registers contain
values in the range 0 to 7 or 0 to 6 as indicated in TABLE 6-18. The effect of writing a value
greater than indicated to any of these registers is undefined. The values programmed into
these registers must combine into a consistent set of numbers that will work.

Note – The most significant 61 bits of all these registers are set to zero. When any are
written, the most significant 61 bits are ignored.

TABLE 6-18 Register-Window State Privileged Registers

Register-window State Registers
Value
Range Description

Current Window Pointer

0 to 7

State Register 9: The CWP register is a counter that identifies
the current window into the set of integer registers.

Savable Window Sets

0 to 6

State Register 10: The CANSAVE register contains the
number of register sets following CWP that are not in use and
are available to be allocated by a SAVE instruction without
generating a window spill exception.

Restorable Window Sets

0 to 7

State Register 11: The CANRESTORE register contains the
number of register sets preceding CWP that are in use by the
current program and can be restored (by the RESTORE
instruction) without generating a window fill exception.

Clean Window Sets

0 to 6

State Register 12: The CLEANWIN register contains the
number of windows that can be used by the SAVE instruction
without causing a clean_window exception.

Other Window Sets

0 to 7

State Register 13: The OTHERWIN register contains the
count of register sets that will be spilled/filled by a separate
set of trap vectors based on the contents of WSTATE_OTHER.
If OTHERWIN is zero, register sets are spilled/filled by use of
trap vectors based on the contents of WSTATE_NORMAL.
The OTHERWIN register can be used to split the register sets
among different address spaces and handle spill/fill traps
efficiently by use of separate spill/fill vectors.

CWP
02

CANSAVE
02

CANRESTORE
02

CLEANWIN
02

OTHERWIN
02
114 UltraSPARC IIIi Processor User’s Manual • June 2003

Compatibility Note – The following differences between SPARC-V8 and SPARC-V9 are
visible only to privileged software; they are invisible to non-privileged software.

1. In SPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the
opposite is true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2. PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by
a trap caused by a window fill or spill exception.

Clean Windows (CLEANWIN) Register Note

The CLEANWIN register counts the number of register window sets that are “clean” with

respect to the current program, that is, register sets that contain only zeroes, valid addresses,

or valid data from that program. Registers in these windows need not be cleaned before they

can be used. The count includes the register sets that can be restored (the value in the

CANRESTORE register) and the register sets following CWP that can be used without

cleaning. When a clean window is requested (by a SAVE instruction) and none is available, a

clean_window exception occurs to cause the next window to be cleaned.

Programming Note – CLEANWIN must never be set to a value greater than six. Setting

CLEANWIN greater than six would violate the register window state definition. Notice that

the hardware does not enforce this restriction; it is up to Supervisor software to keep the

window state consistent.

6.8.7 Window State (WSTATE) Privileged Register 14

The WSTATE register, shown in FIGURE 6-25, specifies bits that are inserted into TTTL<4:2>

on traps caused by window spill and fill exceptions.

This register is read/write by using the RDPR and WRPR privileged instructions.

These bits are used to select one of eight different window spill and fill handlers. If

OTHERWIN = 0 at the time a trap is taken because of a window spill or window fill

exception, then the WSTATE.NORMAL bits are inserted into TT[TL] field of the Trap Vector

Address. Otherwise, the WSTATE.OTHER bits are inserted into TT[TL].
Chapter 6 Registers 115

FIGURE 6-25 WSTATE Register

6.8.8 Version (VER) Privileged Register 31

The version register, shown in FIGURE 6-26, specifies the fixed parameters pertaining to a

particular processor implementation and mask set.

The VER register is read-only, readable by the RDPR privileged instruction.

FIGURE 6-26 Version Register

VER.manuf field

The VER.manuf field contains Sun’s 16-bit manufacturer code, 003E16, which is Sun’s

JEDEC semiconductor manufacturer code.

VER.impl field

The VER.impl field uniquely identifies the processor implementation or class of software-

compatible implementations of the architecture. TABLE 6-19 shows the processor

implementation codes.

TABLE 6-19 Processor Implementation Codes

Processor VER.impl

UltraSPARC I 001016

UltraSPARC II 001116

UltraSPARC IIi 001216

UltraSPARC IIe 001316

UltraSPARC IIIi 001516

WSTATE

05 3 2

OTHER NORMAL

63 48 47 24 23 16 15 8 7 05 432 31

maxwin = 7000maxtl = 50000 0000maskimplmanufacturer = 003E16
116 UltraSPARC IIIi Processor User’s Manual • June 2003

VER.mask field

The VER.mask specifies the current mask set revision and is chosen by the implementor. It

generally increases numerically with successive releases of the processor but does not

necessarily increase by one for consecutive releases. TABLE 6-20 shows the UltraSPARC IIIi

Processor Mask Version.

VER.maxtl field

The VER.maxtl value, 5, is the maximum number of trap levels supported by the
processor.

VER.maxwin field

The VER.maxwin value, 7, is the maximum number of Integer Unit register windows that
access the NWINDOWS = 8 window register sets.

6.9 Special Access Register

6.9.1 Floating-Point Status Register (FSR)

The FSR register fields, illustrated in FIGURE 6-26, contain FPU mode and status information.

State information about the FPU is presented in section Section 6.6.6 “Floating-Point

Registers State (FPRS) Register 6” on page 6-93.

The FSR is accessible using special load and store opcodes. They work in privileged and

non-privileged mode. The lower 32 bits of the FSR are read and written by the STFSRD and

LDFSRD floating-point instructions; all 64 bits of the FSR are read and written by the

STXFSR and LDXFSR floating-point instructions, respectively. FIGURE 6-27 illustrates the

FSR fields.

The ver, ftt, and reserved (“—”) fields are not modified by LDFSR or LDXFSR, they

are read-only fields.

TABLE 6-20 UltraSPARC IIIi Processor Mask Version Codes

Mask Version VER.mask

TO_1.x 4’h1

TO_2.x 4’h2
Chapter 6 Registers 117

FIGURE 6-27 FSR Fields

Reserved Bits

Bits 63–38, 29–28, 21–20, and 12 are reserved. When read by a STXFSR instruction, these

bits will read as zero. Software should issue LDXFSR instructions only with zero values in

these bits, unless the values of these bits are exactly those derived from a previous STXFSR.

The subsections on pages page 118 through page 126 describe the remaining fields in the

FSR.

6.9.1.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)

The four sets of floating-point condition code fields are labeled fcc0, fcc1, fcc2, and

fcc3.

Compatibility Note – fcc0 defined in SPARC-V9 is the same as fcc defined in
SPARC-V8.

The fcc0 field consists of bits 11 and 10 of the FSR, fcc1 consists of bits 33 and 32,

fcc2 consists of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a

floating-point compare instruction (FCMP or FCMPE) updates one of the fccn fields in the

FSR, as selected by the instruction. The fccn fields can be read and written by STXFSR and

LDXFSR instructions, respectively. The fcc0 field can also be read and written by STFSR
and LDFSR, respectively. FBfcc and FBPfcc instructions base their control transfers on

these fields. The MOVcc and FMOVcc instructions can conditionally copy a register, based on

the state of these fields.

63 3235 34 3338 37

31 141923 13 12 11 5 4 091017 162730 29 28 22 21 20

36

fcc3 fcc2 fcc1—

RD — TEM NS — ver ftt 0 — fcc0 aexc cexc
118 UltraSPARC IIIi Processor User’s Manual • June 2003

In TABLE 6-21, frs1 and frs2 correspond to the single, double, or quad values in the floating-

point registers specified by a floating-point compare instruction’s rs1 and rs2 fields. The

question mark (?) indicates an unordered relation, which is true if either frs1 or frs2 is a

signalling NaN or a quiet NaN. If FCMP or FCMPE generates an fp_exception_ieee_754
exception, then fccn is unchanged. TABLE 6-21 shows the floating-point condition codes.

6.9.1.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to

IEEE Std 754-1985. TABLE 6-22 shows the rounding direction fields.

If GSR.IM = 1, then the value of FSR.RD is ignored and floating-point results are instead

rounded according to GSR.IRND.

6.9.1.3 FSR_nonstandard_fp (NS)

The NS bit allows the processor to flush a subnormal floating-point value to zero. If a

floating-point add/subtract operation results in a subnormal value and FSR.NS = 1, the value

is replaced by a floating-point zero value of the same sign. This replacement is usually

performed in hardware. However, for the following cases when a subnormal value is

generated in the course of the instruction and FSR.NS = 1, an fp_exception_other exception

with FSR.ftt = 2 (unfinished_FPop) is taken and trap handler software is expected to

replace the subnormal value with a zero value of the appropriate sign:

• fadd of numbers with opposite signs

TABLE 6-21 Floating-Point Condition Codes (fccn) Fields of FSR

Content of fccn Indicated Relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)

TABLE 6-22 Rounding Direction (RD) Field of FSR

RD Round Toward

0 Nearest (even, if tie)

1 0

2 + ∞
3 − ∞
Chapter 6 Registers 119

• fsub of numbers with the same signs

• fdtos

The effects of FSR.NS = 1 are as follows:

• If a floating-point source operand is subnormal, it is replaced by a floating-point zero

value of the same sign (instead of causing an exception).

• If a floating-point operation generates a subnormal value, the value is replaced with a

floating-point zero value of the same sign.

• This is implemented by performing the replacement in hardware, and sometimes cause a

fp_exception_other exception with FSR.ftt = 2 (unfinished_FPop) so that trap handler

software can perform the replacement.

If GSR.IM = 1, then the value of FSR.NS is ignored and the processor operates as if

FSR.NS = 0.

6.9.1.4 FSR_version (ver)

Version number 7 is reserved to indicate that no hardware floating-point controller is present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

6.9.1.5 FSR_floating-point_trap_type (ftt)

When a floating-point exception trap occurs, ftt (bits 16 through 14 of the FSR) identifies

the cause of the exception, the “floating-point trap type.” Several conditions can cause a

floating-point exception trap. After a floating-point exception occurs, the ftt field encodes

the type of the floating-point exception until a STFSR or FPop is executed.

The ftt field can be read by the LDFSR and LDXFSR instructions. The STFSR and STXFSR
instructions do not affect ftt because this field is read-only.

Privileged software that handles floating-point traps must execute a STFSR (or STXFSR) to

determine the floating-point trap type. STFSR and STXFSR clears the ftt bit after the store

completes without error. If the store generates an error and does not complete, ftt remains

unchanged.
120 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – Neither LDFSR nor LDXFSR can be used for the purpose of

clearing ftt, since both leave ftt unchanged. However, executing a non-trapping FPop

such as “fmovs %f0,%f0” prior to returning to non-privileged mode will zero ftt. The

ftt remains valid until the next FPop instruction completes execution.

The ftt field encodes the floating-point trap type according to TABLE 6-23. Note: The value

“7” is reserved for future expansion.

IEEE_754_exception, unfinished_FPop, and unimplemented_FPop will likely arise

occasionally in the normal course of computation and must be recoverable by system

software.

When a floating-point trap occurs, the following results are observed by user software:

1. The value of aexc is unchanged. See Section 6.9.1.6 for details of aexc.

2. The value of cexc is unchanged, except for an IEEE_754_exception, where a bit
corresponding to the trapping exception is set. The unfinished_FPop,
unimplemented_FPop, sequence_error, and invalid_fp_register floating-point trap types
do not affect cexc. See Section 6.9.1.6 for details of cexc.

3. The source and destination registers are unchanged.

4. The value of fccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is

signalled, either immediately from an IEEE_754_exception or after recovery from an

unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap handler

reflects the exception causing the trap.

In the cases of fp_exception_other exceptions with unfinished_FPop or unimplemented_FPop
trap types that do not subsequently generate IEEE traps, the recovery software should define

cexc, aexc, and the destination registers or fccs, as appropriate.

TABLE 6-23 Floating-Point Trap Type (ftt) Field of FSR)

ftt Trap Type Trap Vector

0 None No trap taken

1 IEEE_754_exception fp_exception_ieee_754

2 unfinished_FPop fp_exception_other

3 unimplemented_FPop fp_exception_other

4 sequence_error Reserved, Unimplemented

5 hardware_error Reserved, Unimplemented

6 nvalid_fp_register Reserved, Unimplemented

7 Reserved Reserved, Unimplemented
Chapter 6 Registers 121

ftt = IEEE_754_exception. The IEEE_754_exception floating-point trap type indicates

the occurrence of a floating-point exception conforming to IEEE Std 754-1985. The

exception type is encoded in the cexc field.

The aexc and fccs fields and the destination f register are not affected by an

IEEE_754_exception trap.

ftt = unfinished_FPop. The unfinished_FPop floating-point trap type indicates that the

processor was unable to generate correct results or that exceptions as defined by

IEEE Std 754-1985 have occurred. Where exceptions have occurred, the cexc field is

unchanged.

The conditions under which a fp_exception_other exception with floating-point trap type of

unfinished_FPop can occur are implementation dependent. The recommended set of

conditions is shown in TABLE 6-24. An implementation may cause fp_exception_other with

unfinished_FPop under a different (but specified) set of conditions.

TABLE 6-24 Standard Conditions Under Which unfinished_FPop Trap Type

Can Occur

FPU
Operation

1 subnormal (SBN)
operand
IM = 1 or NS=0

2 subnormal (SBN)
operands
IM = 1 or NS = 0

Result/Non-SBN Operand
IM = 1 or NS = 0

fadds Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)
NaN (either operand)

fsubs Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)
NaN (either operand)

faddd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)
NaN (either operand)

fsubd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS = x)
NaN (either operand)

fmuls Unfinished trap if
- result not zero

Unfinished trap if
- result not zero

-25 < Er <= 1

fdivs Unfinished trap Unfinished trap -25 < Er <= 1

fsmuld Unfinished trap Unfinished trap None

fmuld Unfinished trap if
- result not zero

Unfinished trap if
- result not zero

-54 < Er <= 1

fdivd Unfinished trap Unfinished trap -54 < Er <= 1

fsqrts Unfinished trap N/A None

fsqrtd Unfinished trap N/A None

fstoi Unfinished trap N/A - 231 <= res < 231, Infinity, NaN

fdtoi Unfinished trap N/A - 231 <= res < 231, Infinity, NaN

fstox Unfinished trap N/A |result| >= -252, Infinity, NaN

fdtox Unfinished trap N/A |result| >= -252, Infinity, NaN
122 UltraSPARC IIIi Processor User’s Manual • June 2003

ftt = unimplemented_FPop. The unimplemented_FPop floating-point trap type indicates

that the processor decoded an FPop that it does not implement. In this case, the cexc field

is unchanged.

All quad FPops variations set ftt = unimplemented_FPop.

6.9.1.6 Floating-Point Exceptions Control and Status

There are three FSR register fields used to control and status the events associated with

floating-point exceptions.

FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions

that can be indicated in the current_exception field (cexc). See FIGURE 6-28 for an

illustration. If a floating-point operate instruction generates one or more exceptions and the

TEM bit corresponding to any of the exceptions is one, then this condition causes a

fp_exception_ieee_754 trap. A TEM bit value of zero prevents the corresponding exception

type from generating a trap.

fitos N/A N/A - 222 ≤ operand < 222

fxtos N/A N/A - 222 ≤ operand < 222

fitod N/A N/A None

fxtod N/A N/A - 251 ≤ operand < 251

fstod Unfinished trap N/A NaN

fdtos Unfinished trap N/A fi fv, fu, sbn (IM = NS = x), NaN

Note:
Er ← Biased Exponent of the result before rounding

Ei ← Biased Exponent of input operand
fi ← Invalid(Infinity − Infinity, Infinity*0, 0/0, Infinity/Infinity)
fv ← OverflowEr >= 2047(DP) or 255(SP) but not exact infinity
fu ← Underflow0 < |result| < 2-1022(DP) or 2-126(SP)
sbnormal(sbn): |number| = 2-1022 * (significand x 2-52) (DP) or 2-126 * (significand x 2-23) (SP)

{-54 < Er < 1 (DP) or -25 < Er < 1 (SP)}

TABLE 6-24 Standard Conditions Under Which unfinished_FPop Trap Type

Can Occur (Continued)

FPU
Operation

1 subnormal (SBN)
operand
IM = 1 or NS=0

2 subnormal (SBN)
operands
IM = 1 or NS = 0

Result/Non-SBN Operand
IM = 1 or NS = 0
Chapter 6 Registers 123

FIGURE 6-28 Trap Enable Mask (TEM) Fields of FSR

FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE-754 floating-point exceptions as long as floating-point

exception traps are disabled through the TEM field. See FIGURE 6-29 for an illustration. After

an FPop completes with ftt = 0, the TEM and cexc fields are logically ANDed together. If

the result is nonzero, aexc is left unchanged and a fp_exception_ieee_754 trap is generated;

otherwise, the new cexc field is ORed into the aexc field and no trap is generated. Thus,

while (and only while) traps are masked, exceptions are accumulated in the aexc field.

This field is also written with the appropriate value when an LDFSR or LDXFSR instruction

is executed.

FIGURE 6-29 Accrued Exception Bits (aexc) Fields of FSR

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE-754 floating-point exceptions were

generated by the most recently executed FPop instruction. The absence of an exception

causes the corresponding bit to be cleared. See FIGURE 6-30 for an illustration.

FIGURE 6-30 Current Exception Bits (cexc) Fields of FSR

Note – If the FPop traps and software emulate or finish the instruction, the system software
in the trap handler is responsible for creating a correct FSR.cexc value before returning to
a non-privileged program.

24 2327 26 25

NVM OFM UFM DZM NXM

6 59 8 7

nva ofa ufa dza nxa

1 04 3 2

nvc ofc ufc dzc nxc
124 UltraSPARC IIIi Processor User’s Manual • June 2003

The cexc bits are set as described in Section 6.9.1.7, “Floating-Point Exception Fields”,” by

the execution of an FPop that either does not cause a trap or causes a fp_exception_ieee_754
exception with FSR.ftt = IEEE_754_exception. An IEEE_754_exception that traps shall

cause exactly one bit in FSR.cexc to be set, corresponding to the detected IEEE Std 754

exception.

Floating-point operations which cause an overflow or underflow condition may also cause an

“inexact” condition. For overflow and underflow conditions, FSR.cexc bits are set and

trapping occurs as follows:

• An IEEE 754 overflow condition (of) occurs:

- If OFM = 0 and NXM = 0, the cexc.ofc and cexc.nxc bits are both set to one, the
other three bits of cexc are set to zero, and a fp_exception_ieee_754 trap does not
occur.

- If OFM = 0 and NXM = 1,the cexc.nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee_754 trap does occur.

- If OFM = 1, the cexc.ofc bit is set to one, the other four bits of cexc are set to zero,
and a fp_exception_ieee_754 trap does occur.

• An IEEE 754 underflow condition (uf) occurs:

- If UFM = 0 and NXM = 0, the cexc.ufc and cexc.nxc bits are both set to one, the
other three bits of cexc are set to zero, and a fp_exception_ieee_754 trap does not
occur.

- If UFM = 0 and NXM = 1, the cexc.nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee_754 trap does occur.

- If UFM = 1, the cexc.ufc bit is set to one, the other four bits of cexc are set to zero,
and a fp_exception_ieee_754 trap does occur.

The behavior is summarized in TABLE 6-25 (where “x” indicates “don’t care”):

TABLE 6-25 Setting of FSR.cexc bits

Exception(s)
Detected

in f.p.
operation

Trap Enable
Mask bits

(in FSR.TEM) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx OFM UFM NXM ofc ufc nxc Notes

- - - x x x No 0 0 0

- - 1 x x 0 No 0 0 1

- 1 1 x 0 0 No 0 1 1 (1)

1 - 1 0 x 0 No 1 0 1 (2)

Notes:

(1) When the underflow trap is disabled (UFM = 0), underflow is always accompanied by
inexact.

(2) Overflow is always accompanied by inexact.
Chapter 6 Registers 125

If the execution of an FPop causes a trap other than fp_exception_ieee_754, FSR.cexc is

left unchanged.

6.9.1.7 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following

definitions of the floating-point exception conditions (per IEEE Std 754-1985):

FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, 0.0 ÷ 0.0 and ∞ – ∞
are invalid; 1 = invalid operand(s), 0 = valid operand(s).

FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magnitude

than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

- - 1 x x 1 Yes 0 0 1

- 1 1 x 0 1 Yes 0 0 1

- 1 - x 1 x Yes 0 1 0

- 1 1 x 1 x Yes 0 0 0

1 - 1 1 x x Yes 1 0 0 (2)

1 - 1 0 x 1 Yes 0 0 1 (2)

TABLE 6-25 Setting of FSR.cexc bits (Continued)

Exception(s)
Detected

in f.p.
operation

Trap Enable
Mask bits

(in FSR.TEM) fp_exception_
ieee_754

Trap Occurs?

Current
Exception

bits (in
FSR.cexc)

of uf nx OFM UFM NXM ofc ufc nxc Notes

Notes:

(1) When the underflow trap is disabled (UFM = 0), underflow is always accompanied by
inexact.

(2) Overflow is always accompanied by inexact.
126 UltraSPARC IIIi Processor User’s Manual • June 2003

FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest

normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

• If UFM = 0, underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

• If UFM = 1, underflow occurs if a nonzero result is tiny.

SPARC-V9 allows underflow to be detected either before or after rounding. The
UltraSPARC IIIi processor detects underflow before rounding.

FSR_division-by-zero (dzc, dza)

X ÷ 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Note – 0.0 ÷ 0.0 does not set the dzc or dza bits.

FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result;

1 = inexact result, 0 = exact result.

Programming Note – Software must be capable of simulating the operation of the FPU

in order to properly handle the unimplemented_FPop, unfinished_FPop, and

IEEE_754_exception floating-point trap types. Thus, a user application program always sees

a FSR that is fully compliant with IEEE Std 754-1985.

6.10 ASI Mapped Registers

In this section, the Data Cache Unit Control Register and Data Watchpoint registers (virtual

address data watchpoint and physical address data watchpoint) are described.

6.10.1 Data Cache Unit Control Register (DCUCR)

ASI 4516 (ASI_DCU_CONTROL_REGISTER), VA = 016
Chapter 6 Registers 127

The DCUCR contains fields that control several memory-related hardware functions. The

functions include instruction, prefetch, write and data caches, MMUs, and watchpoint

setting.

After a Power-On Reset (POR), all fields of DCUCR are set to zero. After a WDR, XIR, or

SIR, all fields of DCUCR defined in this section are set to zero.

The DCUCR is illustrated in FIGURE 6-31 and described in TABLE 6-26. In the table, the field

definitions and bits are grouped by function rather than by a strict bit sequence.

FIGURE 6-31 DCU Control Register Access Data Format (ASI 4516)

TABLE 6-26 DCUCR Bit Field Descriptions (1 of 4)

Bits Field Type Description Note

63:50,
20:4

Reserved RW

MMU Control

49 CP RW Cacheability of PA. CP determines the physical cacheability of memory
accesses when the I-MMU or D-MMU is disabled (IM = 0 or DM = 0).
The TTE.E (side-effect) bit is set to the complement of CP when MMUs
are enabled; 1 = cacheable, 0 = non-cacheable.

1

VM

Reserved

Reserved

2: IM (I-MMU enable)
1: DC (D-cache enable)
0: IC (I-cache enable)

63 62 61 39 3555 3334363738 324041424344454647484950515253545657585960

31 30 29 7 323 12456 089101112131415161718192021222425262728

3: DM (D-MMU enable)
23: PW (PA watch, rwrite)
22: VR (VA watch, read)
21: VW (VA watch, write)

24: PR (PA watch, read)

IM DC ICDMIM DC ICDM

31, 31:25: VM (Datawatch)

PM

47: ME (merge enable)
46: RE (RAW bypass)
45: PE (prefetch enable)

48: CV (virtually cacheable)
49: CP (physically cacheable)

43: SPE (sw prefetch)
44: HPE (hw prefetch)

42: SL (2nd load steer)
41: WE (write cache)

CV ME RECP HPE SPE SLPE WE VM
128 UltraSPARC IIIi Processor User’s Manual • June 2003

48 CV RW Cacheability of VA. CV determines the virtual cacheability of memory
accesses when the D-MMU is disabled (DM = 0);
1 = cacheable, 0 = non-cacheable.

3 DM D-MMU Enable. If DM = 0, the D-MMU is disabled (pass-through mode).
Note: When the MMU/TLB is disabled, a virtual address is passed
through as a physical address.

2 IM I-MMU Enable. If IM = 0, the I-MMU is disabled (pass-through mode).

Store Queue Control

47 ME RW Non-cacheable Store Merging Enable. If cleared, no merging of
non-cacheable, non-side-effect store data will occur. Each non-cacheable
store will generate a system bus transaction.

46 RE RAW Bypass Enable. If cleared, no bypassing of data from the store
queue to a dependent load instruction will occur. All load instructions
will have their RAW predict field cleared.

Prefetch Control 2

45 PE Prefetch Cache Enable. If prefetch is disabled by clearing the PE bit, all
references to the P-cache are handled as P-cache misses. If cleared, the
P-cache does not generate any hardware prefetch requests to the
L2-cache. Software prefetch instructions are not affected by this bit.

44 HPE Prefetch Cache Hardware Prefetch Enable. 3

43 SPE Software Prefetch Enable. Clear to disable prefetch instructions. When
disabled, software prefetch instructions do no generate a request to the
L2-cache or the system interface. They will continue to be issued to the
pipeline, where they will be treated as NOPs.

Second Load Control

42 SL Second Load Steering Enable. If cleared, all load type instructions will be
steered to the MS pipeline and no floating-point load type instructions
will be issued to the A0 or A1 pipelines.

I-cache, D-cache, and W-cache Control

41 WE Write Cache Enable. If zero, all W-cache references will be handled as
W-cache misses. Each store queue entry will perform a RMW transaction
to the L2-cache, and the W-cache will be maintained in a clean state.
Software is required to flush the W-cache (force it to a clean state) before
setting this bit to zero.

TABLE 6-26 DCUCR Bit Field Descriptions (2 of 4)

Bits Field Type Description Note
Chapter 6 Registers 129

1 DC Data Cache Enable. The DC is used to enable/disable the operation of the
data cache closest to the processor (D-cache); DC = 1 enables the
D-cache and DC = 0 disables it. When DC = 0, memory accesses (loads,
stores, atomic load-stores) are satisfied by caches lower in the cache
hierarchy.
When the D-cache is disabled, its contents are not updated. When the
D-cache is reenabled, any D-cache lines still marked as “valid” may be
inconsistent with the state of memory or other caches. In that case,
software must handle any inconsistencies by flushing the inconsistent
lines from the D-cache.

0 IC Instruction Cache Enable. The IC is used to enable/disable the operation
of the instruction cache closest to the processor (I-cache); IC = 1 enables
the I-cache and IC = 0 disables it. When IC = 0, instruction fetches are
satisfied by caches lower in the cache hierarchy.
When the I-cache is disabled, its contents are not updated. When the
I-cache is reenabled, any I-cache lines still marked as “valid” may be
inconsistent with the state of memory or other caches. In that case,
software must handle any inconsistencies by invalidating the inconsistent
lines in the I-cache.

Watchpoint Control

40:33 PM<7:0> DCU Physical Address Data Watchpoint Mask. The Physical Address
Data Watchpoint Register contains the physical address of a 64-bit word
to be watched. The 8-bit Physical Address Data Watch Point Mask
controls which byte(s) within the 64-bit word should be watched. If all
eight bits are cleared, the physical watchpoint is disabled. If the
watchpoint is enabled and a data reference overlaps any of the watched
bytes in the watchpoint mask, then a physical watchpoint trap is
generated. Watchpoint behavior for a Partial Store instruction may differ.
Please see the VM field description in the table.

4

TABLE 6-26 DCUCR Bit Field Descriptions (3 of 4)

Bits Field Type Description Note
130 UltraSPARC IIIi Processor User’s Manual • June 2003

32:25 VM<7:0> DCU Virtual Address Data Watchpoint Mask. The Virtual Address Data
Watchpoint Register contains the virtual address of a 64-bit word to be
watched. This 8-bit mask controls which byte(s) within the 64-bit word
should be watched. If all eight bits are cleared, then the virtual
watchpoint is disabled. If watchpoint is enabled and a data reference
overlaps any of the watched bytes in the watchpoint mask, then a virtual
watchpoint trap is generated.
VA/PA data watchpoint byte mask examples are shown below.

4

24, 23 PR, PW DCU Physical Address Data Watchpoint Enable. If PR (PW) is one, then
a data read (write) that matches the range of addresses in the Physical
Watchpoint Register causes a watchpoint trap. If both PR and PW are set,
a watchpoint trap will occur on either a read or write access.

22, 21 VR, VW DCU Virtual Address Data Watchpoint Enable. If VR (VW) is one, then a
data read (write) that matches the range of addresses in the Virtual
Watchpoint Register causes a watchpoint trap. If both VR and VW are set,
a watchpoint trap will occur on either a read or write access.

1. The CP and CV bits of DCUCR must be changed with care. It is recommended that a MEMBAR #Sync be executed before and after
CP or CV is changed. Also, software must manage cache states to be consistent before and after CP or CV is changed.

2. Prefetch is enabled in the UltraSPARC IIIi processor. Both hardware prefetch and software prefetch for data to the P-cache are valid only
for floating-point load instructions and are not valid for integer load instructions.

3. Both Hardware prefetch and second load unit may not be enabled at the same time. Enabling both may cause incorrect program behavior.

4. Watchpoint exceptions on Partial Store instruction occur conservatively. The DCUCR.VM masks are only checked for nonzero value
(watchpoint disabled). The byte store mask (r[rs2]) in the Partial Store instruction is ignored, and a watchpoint exception can occur even if
the mask is zero (that is, no store will take place).

TABLE 6-26 DCUCR Bit Field Descriptions (4 of 4)

Bits Field Type Description Note

Watchpoint Mask
(PM and VM)

Least Significant 3 Bits of
Address of Bytes Watched
7654 3210

0016 Watchpoint disabled
0116 0000 0001

3216 0011 0010

FF16 1111 1111
Chapter 6 Registers 131

6.10.2 Data Watchpoint Registers

The UltraSPARC IIIi processor implements “break before” watchpoint traps. When the

address of a data access matches a preset physical or virtual watchpoint address, instruction

execution is stopped immediately before the watched memory location is accessed.

TABLE 6-27 lists ASIs that are affected by the two watchpoint traps.

For 128-bit (quad) atomic load and 64-byte block load and store instructions, a watchpoint

trap is generated only if the watchpoint overlaps the lowest-address eight bytes of the access.

To avoid trapping infinitely, software should emulate the instruction that caused the trap and

return from the trap by using a DONE instruction or turn off the watchpoint before returning

from a watchpoint trap handler.

Two 64-bit data watchpoint registers provide the means to monitor data accesses during

program execution. When Virtual/Physical Data Watchpoint is enabled, the virtual/physical

addresses of all data references are compared against the content of the corresponding

watchpoint register. If a match occurs, a VA_watchpoint or PA_watchpoint trap is signalled

before the data reference instruction is completed. The virtual address watchpoint trap has

higher priority than the physical address watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Each zero bit

in the byte mask causes the comparison to ignore the corresponding byte in the address.

These watchpoint byte masks and the watchpoint enable bits reside in the DCUCR.

Virtual Address Data Watchpoint Register

ASI 5816, VA = 3816

Name: VA Data Watchpoint Register

FIGURE 6-32 illustrates the Virtual Address Watchpoint Register. DB_VA is the most

significant 61 bits of the 64-bit virtual data watchpoint address.

TABLE 6-27 ASIs Affected by Watchpoint Traps

ASI Type ASI Range
Data
MMU

Watchpoint If
Matching VA

Watchpoint If
Matching PA

Translating ASIs 0416 –1116, 1816–1916, 2416 –
2C16,
7016–7116, 7816–7916, 8016–
FF16

On
Off

Y
N

Y
Y

Bypass ASIs 1416–1516, 1C16 –1D16 — N Y

Non-translating ASIs 3016–6F16, 7216–7716, 7A16–
7F16

— N N
132 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 6-32 VA Data Watchpoint Register Format

Physical Address Data Watchpoint Register

ASI 5816, VA=4016

Name: PA Data Watchpoint Register

FIGURE 6-33 illustrates the PA Data Watchpoint Register. DB_PA is the most significant 61

bits of the physical data watchpoint address. The width of an UltraSPARC IIIi processor

physical address is 43 bits.

FIGURE 6-33 PA Data Watchpoint Register Format

Compatibility Note – The UltraSPARC IIIi processor supports a 43-bit physical address
space. Software is responsible for writing a zero-extended 64-bit address into the PA Data
Watchpoint register.

Data Watchpoint Reliability

The processor supports watchpoint comparison on the MS (memory) pipeline; any

second-issue (Ax pipeline) floating-point loads will not trigger a watchpoint. For reliable use

of the watchpoint mechanism, the second floating-point load feature must be disabled using

DCUCR.SL.

63 23 0

—DB_VA

63 23 0

—DB_PA
Chapter 6 Registers 133

134 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 7

Instruction Types

Instructions are accessed by the processor from memory and are executed, annulled, or

trapped. Instructions are discussed in seven general categories. The processor instructions are

described in the following sections:

Learning the Instructions

• Section 7.1, “Introduction”

• Section 7.2, “Memory Addressing for Load and Store Instructions”

• Section 7.3, “Integer Execution Environment”

• Section 7.4, “Floating-Point Execution Environment”

• Section 7.5, “VIS Execution Environment”

• Section 7.6, “Data Coherency Instructions”

• Section 7.7, “Register Window Management Instructions”

• Section 7.8, “Program Control Transfer Instructions”

• Section 7.9, “Prefetch Instructions”

Reference Sections

• Section 7.10, “Instruction Summary Table by Category”

• Section 7.10.5, “Integer Execution Environment Instructions”

• Section 7.10.6, “Floating-Point Execution Environment Instructions”

• Section 7.10.7, “VIS Execution Environment Instructions”

• Section 7.10.8, “Data Coherency Instructions”

• Section 7.10.9, “Register-window Management Instructions”

• Section 7.10.10, “Program Control Transfer Instructions”

• Section 7.10.11, “Data Prefetch Instructions”
135

• Section 7.11, “Instruction Formats and Fields”

• Section 7.12, “Reserved Opcodes and Instruction Fields”

• Section 7.13, “Big/Little-Endian Addressing”

7.1 Introduction

The processor’s RISC architecture is defined primarily by the SPARC-V9 architecture. The

UltraSPARC II processors were the first to extend the SPARC-V9 architecture with new

instructions and additional logic units. The UltraSPARC IIIi processor further extends this

instruction execution environment.

The UltraSPARC IIIi processor provides backward compatibility for SPARC application

programs. Upgraded system software is required. Noteworthy enhancements to the processor

include greater capability in the execution units to improve instruction scheduling, new VIS

instructions to reduce the length of code sequences, and data prefetch instructions to provide

the compiler with ways to improve cache hit rates.

Our compiler and other software development tools take advantage of the new instruction

features to increase parallel execution, reduce code size, and achieve shorter instruction

execution latencies.

7.2 Memory Addressing for Load and Store

Instructions

SPARC-V9 uses big-endian byte order by default; the address of a quadword, doubleword,

word, or halfword is the address of its most significant byte. Increasing the address means

decreasing the significance of the unit being accessed. All instruction accesses are performed

using big-endian byte order. SPARC-V9 also can support little-endian byte order for data

accesses only; the address of a quadword, doubleword, word, or halfword is the address of its

least significant byte. Increasing the address means increasing the significance of the unit

being accessed.
136 UltraSPARC IIIi Processor User’s Manual • June 2003

7.2.1 Integer Unit Memory Alignment Requirements

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include

instruction fetches) are aligned on 4-byte boundaries; extended-word and doubleword

accesses are aligned on 8-byte boundaries. An improperly aligned address in a load, store, or

load-store instruction causes a trap to occur, with possible exceptions.

Programming Note – By setting i = 1 and rs1 = 0, you can access any location in the

lowest or highest 4 KB of an address space without using a register to hold part of the

address.

7.2.2 FP/VIS Memory Alignment Requirements

Extended word and doubleword (64-bit) accesses must be aligned on 8-byte boundaries,

quadword accesses must be aligned on 16-byte boundaries, and block load (BLD) and block

store (BST) accesses must be aligned on 64-byte boundaries.

All references are 32, 64, or 128 bits. They must be naturally aligned to their data width in

memory except for double-precision floating-point (FP) values, which may be aligned on

word boundaries. However, if so aligned, doubleword loads/stores may not be used to access

them, resulting in less efficient and nonatomic accesses.

An improperly aligned address in a load, store, or load-store instruction causes a

mem_address_not_aligned exception to occur, with the following exceptions:

• An LDDF or LDDFA instruction accessing an address that is word aligned but not

doubleword aligned causes an LDDF_mem_address_not_aligned exception.

• An STDF or STDFA instruction accessing an address that is word aligned but not

doubleword aligned causes an STDF_mem_address_not_aligned exception.

7.2.3 Byte Order Addressing Conventions (Endianess)

The processor uses big-endian byte order for all instruction accesses and, by default, for data

accesses. It is possible to access data in little-endian format by using load and store alternate

instructions that support little-endian data structures. It is also possible to change the default

byte order for implicit data accesses.

See Section 7.13, “Big/Little-Endian Addressing” for details.
Chapter 7 Instruction Types 137

7.2.4 Address Space Identifiers (ASIs)

Versions of load/store instructions, the load and store alternate instructions, can specify an

8-bit address space identifier (ASI) to go along with the load/store data instruction.

The load and store alternate instructions have the following three sources of ASIs:

• Explicit immediate of instruction

• ASI Register reference

• Hardcode to the instruction

Supervisor software (privileged mode) uses ASIs to access special, protected registers, such

as MMU, cache control, and processor state registers, and other processor- or system-

dependent values.

ASIs are also used to modify the function of many instructions. This overloading of

load/store instructions provide partial store, block load/store, and atomic memory access

operations.

Implicit ASI Value

Load and store instructions provide an implicit ASI value of ASI_PRIMARY,

ASI_PRIMARY_LITTLE, ASI_NUCLEUS, or ASI_NUCLEUS_LITTLE. Load and store

alternate instructions provide an explicit ASI, specified by the imm_asi instruction field

when i = 0, or the contents of the ASI register when i = 1.

Privileged and Non-Privileged ASIs

ASIs 0016 through 7F16 are restricted; only privileged software is allowed to access them. An

attempt to access a restricted ASI by non-privileged software results in a privileged_action
exception. ASIs 8016 through FF16 are unrestricted; software is allowed to access them

whether the processor is operating in privileged or non-privileged mode.

Compatibility Note – The SPARC-V9 architecture provides the basic framework and

defines the required ASIs for the processor. Other ASIs are defined (and sometimes re-

defined) for a specific processor or family of processors as allowed by the SPARC-V9

architecture.

Implementation Note – The processor decodes all eight bits of each ASI specifier. In

addition, the processors redefine certain ASIs as appropriate for a specific processor.
138 UltraSPARC IIIi Processor User’s Manual • June 2003

7.2.5 Maintaining Data Coherency

The processor’s memory architecture requires some software intervention to provide data

coherency during program execution. These requirements are discussed in Chapter 8

“Memory Models” using the FLUSH and MEMBAR instructions described in Section 7.6,

“Data Coherency Instructions.”

The two types of data coherency instructions are needed to flush the cache for self-modifying

code and to write data buffers out to memory.

7.3 Integer Execution Environment

7.3.1 IU Data Access Instructions

Load, store, and atomic instructions are the only instructions that access memory. All the IU

data access instructions, except the compare and store (CASx) use either two r registers or

SIMM13, a signed 13-bit immediate value, to calculate a 64-bit, byte-aligned memory

address. Compare and Swap uses a single r register to specify a 64-bit memory address.

Floating-point register load and store instructions are discussed in Section 7.4.2, “FPU/VIS

Data Access Instructions.”

The processor appends an ASI to the 64-bit address used with all the data access instructions.

Note – In addition to the large physical main memory, the processor has many memory

mapped control, status, and diagnostic registers that are accessed using load and store

instructions with an appropriate ASI value.

The destination field of the data access instruction specifies an r or f (single, double/

extended, or quadword) register that supplies the data for a store or that receives the data

from a load.

7.3.1.1 Load and Store Instructions

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and

doubleword (64-bit) accesses. Some versions of integer load instructions perform sign

extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.
Chapter 7 Instruction Types 139

7.3.1.2 Move Instruction

There is no explicit integer move instruction. A move instruction can be easily synthesized

by adding, subtracting or OR-ing a zero with a register and pointing the result to another

register. The zero can come as a register input (such as %r0 that has a value zero in

SPARC-V9) or as an immediate input to the instruction.

7.3.1.3 Conditional Move Instructions

Based on Integer (icc/xcc) and Floating-Point (fcc) Condition Codes

This subsection describes two instructions that copy the contents of one register to another

register within the same register file: one instruction for moving within the integer register

file and another for moving within the floating-point register file.

• MOVcc Instruction

If a specified icc/xcc or fcc condition is satisfied, then the MOVcc instruction copies the

contents of any integer to a destination integer register.

• FMOVcc Instruction

If a specified icc/xcc or fcc condition is satisfied, then the FMOVcc instruction copies the

contents of any floating-point register to a destination floating-point register.

(A similar set of conditional move instructions are based on an integer register value. These

conditional move instructions are described in Section 7.4, “Floating-Point Execution

Environment.”)

The condition code to test is specified in the instruction and may be any of the conditions

allowed in conditional delayed control transfer instructions. This condition is tested against

1 of the 6 sets of condition codes (icc, xcc, fcc0, fcc1, fcc2, and fcc3), as specified

by the instruction.

For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point register %f20 to register %f22 if

floating-point condition code number 2 (fcc2) indicates a greater-than relation

(FSR.fcc2 = 2). If fcc2 does not indicate a greater-than relation (FSR.fcc2 ≠ 2), then

the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs.

In most situations, branches will take more clock cycles than the MOVcc or FMOVcc
instructions.

For example, the following C statement:
140 UltraSPARC IIIi Processor User’s Manual • June 2003

if (A > B) X = 1; else X = 0;

can be coded as

cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, %g0,1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

Based on Integer Register Value

There are separate versions for the IU and floating-point unit (FPU) register files:

• MOVr Instruction

If the contents of an integer register satisfy a specified condition, then the MOVr instruction

copies the contents of any integer register to a destination integer register.

• FMOVr Instruction

If the contents of an integer register satisfy a specified condition, then the FMOVr instruction

copies the contents of any floating-point register to a destination floating-point register.

The conditions to test are enumerated in TABLE 7-1.

Any of the integer registers may be tested for one of the conditions, and the result used to

control the move. For example,

movrnz %i2, %l4, %l6

moves integer register %l4 to integer register %l6 if integer register %i2 contains a nonzero

value.

MOVr and FMOVr can be used to eliminate some branches in programs or to emulate

multiple unsigned condition codes by using an integer register to hold the result of a

comparison.

TABLE 7-1 MOVr and FMOVr Test Conditions

Condition Symbol Description

NZ ≠ 0 Nonzero

Z = 0 Zero

LZ < 0 Less than zero

LEZ ≤ 0 Less than or equal to zero

GZ > 0 Greater than zero

GEZ ≥ 0 Greater than or equal to zero
Chapter 7 Instruction Types 141

7.3.1.4 Atomic Instructions

CASA/CASXA, SWAP, and LDSTUB are special atomic memory access instructions that

concurrent processes use for synchronization and memory updates.

The SWAP and LDSTUB instructions can optionally access alternate space. (The CASA
instruction always accesses alternate memory spaces.) If the ASI specified for any alternate

form of these instructions is a privileged ASI (value 8016), then the processor must be in

privileged mode to access it.

Atomic Quad Load Instruction (LDDA with ASI xx)

The atomic quad load instruction supplies an indivisible quadword (16-byte) load that is

important in system software programs.

Compare and Swap Atomic Instruction (CASA)

An r register specifies the value that is compared with the value in memory at the computed

address. CASA accesses words, and CASXA accesses doublewords.

If the values are equal (memory location and r register), then the destination field specifies

the r register that is to be exchanged atomically with the addressed memory location.

If the values are unequal, then the destination field specifies the r register that was to receive

the value at the addressed memory location; in this case, the addressed memory location

remains unchanged.

Swap Atomic Instruction (SWAPD)

The destination register identifies the r register to be exchanged atomically with the

calculated memory location. SWAP accesses words.

Load-Store Unsigned Byte (LDSTUB)

The LDSTUB instruction reads a byte from memory and writes ones to the location read.

LDSTUB accesses bytes.
142 UltraSPARC IIIi Processor User’s Manual • June 2003

7.3.2 IU Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that

compute a result of a function of two source operands. They either write the result into the

destination register r[rd] or discard it. One of the source operands is always r[rs1]. The

other source operand depends on the i bit in the instruction. If i = 0, then the operand is

r[rs2]. If i = 1, then the operand is the immediate constant simm10, simm11, or

simm13 sign-extended to 64 bits.

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and

shift operations. One exception is the SETHI instruction that can be used in combination with

another arithmetic or logical instruction to create a 32-bit constant in an r register.

Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes

(icc and xcc) as a side-effect; the other does not affect the condition codes.

7.3.2.1 Integer Add and Subtract Instructions

Sixty-four bit arithmetic is performed on two r registers to generate a 64-bit result. The icc
and xcc condition codes can be optionally set.

7.3.2.2 Tagged Integer Add and Subtract Instructions

The tagged arithmetic instructions assume that the least-significant two bits of each operand

are a data-type tag. These instructions set the integer condition code (icc) and extended

integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc) arithmetic

overflow.

The tagged instructions are described in Appendix A “Instruction Definitions.”

If either of the two operands has a nonzero tag or if 32-bit arithmetic overflow occurs, tag

overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the CCR.icc.V
bit; if 64-bit arithmetic overflow occurs, then they set the CCR.xcc.V bit.

The xcc overflow bit is not affected by the tag bits.

The trapping versions (TADDccTV, TSUBccTV) are deprecated. See Section A.70.16,

“Tagged Add and Trap on Overflow” and Section A.70.17, “Tagged Subtract and Trap on

Overflow” for details.
Chapter 7 Instruction Types 143

7.3.2.3 Integer Multiply and Divide Instructions

The integer multiply instruction performs a 64 × 64 → 64-bit operation; the integer divide

instructions perform 64 ÷ 64 → 64-bit operations. For compatibility with SPARC-V8,

32 × 32 → 64-bit multiply instructions, 64 ÷ 32 → 32-bit divide instructions, and the

multiply step instruction are provided. Division by zero causes a division_by_zero exception.

Some versions of the 32-bit multiply and divide instructions set the condition codes.

7.3.2.4 Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-bit

constant from the instruction into bits 31 through 10 of the destination register. It clears the

low-order 10 bits and high-order 32 bits, and it does not affect the condition codes. It is

primarily used to construct constants in registers.

7.3.2.5 Integer Shift Instructions

Shift logical instructions (SLL, SRL) shift an r register left or right by an immediate

constant in the instruction or by the amount pre-loaded in an r register.

7.3.3 IU Logic Instructions

7.3.3.1 ADD, ANDN, OR, ORN, XOR, XNOR Instructions

These are standard logic operations that work on all 64 bits of the register. The instructions

can optionally set the integer condition codes (icc/xcc).

7.3.4 IU Compare Instructions

A special comparison instruction for integer values is not needed since it is easily

synthesized with the “subtract and set condition codes” (SUBcc) instruction.
144 UltraSPARC IIIi Processor User’s Manual • June 2003

7.3.5 IU Miscellaneous Instructions

7.3.5.1 Interval Arithmetic Mode Instruction (SIAM) (VIS II)

The Set Interval Arithmetic Mode (SIAM) instruction sets the interval arithmetic mode fields

in the graphics status register (GSR).

7.3.5.2 Align Address Instruction

The ALIGNADDR instruction takes two r registers and adds them together. The three least

significant bits are forced to zero.

The ALIGNADDRL instruction supports little-endian data structures by taking the two

r registers, adding them together, and placing the two’s-complement of the three least

significant bits of the result and storing them in the 3-bit GSR.ALIGN field.

7.3.5.3 Population of Ones Count

A population opcode is defined but not implemented in hardware; instead, a trap is generated.

7.3.5.4 Privileged Register Access Instructions

The privileged register access instructions read and write another group of state and status

registers called privileged registers. These registers are visible only to privileged software.

The read privileged register instruction moves the privileged register contents into an

r register. The write privileged register instruction moves the contents of an r register into

the selected privileged register.

7.3.5.5 State Register Access Instructions

The state register instructions access program-visible state and status registers. The read state

register instruction moves the state register contents into an r register. The write state

register instruction moves the contents of an r register into the selected state register.

Some state registers can only be accessed in privileged mode, others in either privileged or

non-privileged mode. Some registers have access bits to restrict their availability as desired

by the privileged software.
Chapter 7 Instruction Types 145

7.4 Floating-Point Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for floating-

point and fixed-point data formats and the execution pipelines for floating-point and VIS

instructions.

This execution unit is a single unit that may be referred to any one of the following,

depending on the textual context:

• Floating-point Unit (FPU)

• Floating-point and Graphics Unit (FGU)

• VIS Execution Unit (VIS)

• FPU/VIS

Note – The instructions associated with the FPU/VIS execution unit are divided between

floating-point and VIS execution environments, but otherwise use the same hardware

pipelines.

7.4.1 Floating-Point Operate Instructions

Floating-point operate (FPop) instructions perform all floating-point calculations; they are

register-to-register instructions that operate on the floating-point registers. Like arithmetic,

logical, and shift instructions, FPops compute a result that is a function of one or two source

operands. Specific floating-point operations are selected by a subfield of the FPop1/FPop2
instruction formats.

FPops are generally triadic-register-address instructions. They compute a result that is a

function of one or two source operands and place the result in one or more destination

f registers, with two exceptions:

• Floating-point convert operations, which use one source and one destination operand

• Floating-point compare operations, which do not write to an f register but update one of

the fccn fields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes and

does not include branches based on the floating-point condition codes (FBfccD and

FBPfcc) or the load/store floating-point instructions.

If PSTATE.PEF = 0 or FPRS.FEF = 0, then any instruction, including an FPop instruction,

that attempts to access a FPU register generates a fp_disabled exception.
146 UltraSPARC IIIi Processor User’s Manual • June 2003

All FPop instructions clear the ftt field and set the cexc field unless they generate an

exception. Floating-point compare instructions also write one of the fccn fields. All FPop

instructions that can generate IEEE exceptions set the cexc and aexc fields unless they

generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and

FNEG(s,d,q) cannot generate IEEE exceptions; therefore, they clear cexc and leave aexc
unchanged.

Note – The processor may indicate that a floating-point instruction did not produce a

correct IEEE Standard 754-1985 result by generating a fp_exception_other exception with

FSR.ftt = unfinished_FPop or unimplemented FPop. In this case, privileged software must

emulate any functionality not present in the hardware.

The processor does not implement quad-precision floating-point operations in hardware.

Instead, these operations cause a fp_exception_other trap with

FSR.ftt = unimplemented_FPop, and the system software emulates quad operations.

7.4.2 FPU/VIS Data Access Instructions

Floating-point load and store instructions support word, doubleword, and quadword memory

accesses.

There are no move instructions to move data directly between the integer and floating-point

register files.

7.4.2.1 Load Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to

alternate address spaces. Data loaded into a register that is not 64 bits is filled with zeroes in

the high-order bits.

7.4.2.2 Store Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to

alternate address spaces.
Chapter 7 Instruction Types 147

7.4.2.3 Block Load and Store Instructions

Block load and store access eight consecutive doublewords. The LDDFA instruction is used

with the various ASIs to specify a type of block transaction. The LDDFA instruction is

specified with ASIs 70, 71, 78, 79, F0, F1, F8, F9, E0, and E1 to select between primary and

secondary D-MMU contexts, little- and big-endian, privileged and non-privileged, and a set

of block commit store ASIs.

7.4.2.4 Conditional Move Instructions

The FP/VIS conditional move instructions are described with the IU conditional move

instructions, Section 7.3.1.3.

7.4.3 Floating-Point Arithmetic Instructions

Single-precision and double-precision FP is executed in hardware. Quad precision (128-bit)

instructions are recognized by the processor and trapped so they can be emulated in software.

7.4.3.1 Absolute Value and Negate Instructions

These instructions modify the sign of the floating-point operand.

7.4.3.2 Add and Subtract Instructions

These instructions use standard IEEE operation.

7.4.3.3 Multiply Instructions

These instructions use standard IEEE operation with some exceptions.

7.4.3.4 Square Root and Divide Instructions

The square root and divide instructions begin their execution in the FGM pipeline and block

new instructions from entering until the result is nearly ready to leave the pipeline and be

written to the register file.
148 UltraSPARC IIIi Processor User’s Manual • June 2003

7.4.4 Floating-Point Conversion Instructions

The following FP conversions are supported. Conversions do not generate fcc condition

codes.

7.4.4.1 Floating-Point to Integer

All floating-point precision to word and double/extended word integer conversions are

supported.

7.4.4.2 Integer to Floating-Point

Word and double/extended word integer to all floating-point precision number conversions

are supported.

7.4.4.3 Floating-Point to Floating-Point

All floating-point precision to all floating-point precision number conversions are supported.

7.4.5 Floating-Point Compare Instructions

The same precision operands are compared and the fcc condition codes are set.

7.4.6 Floating-Point Miscellaneous Instructions

7.4.6.1 Load and Store FSR Register

The FSR register is accessed by load and store instructions into and out of the floating-point

register file.

7.4.6.2 Data Alignment Instruction

The data alignment instruction FALIGNDATA concatenates two registers (16 bytes) and

stores a contiguous block of eight of these bytes starting at the offset stored in the

GSR.ALIGN field.
Chapter 7 Instruction Types 149

7.5 VIS Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for floating-

point and fixed-point data formats and the execution pipelines for floating-point and VIS

instructions.

This execution unit is a single unit that may be referred to any one of the following,

depending on the textual context:

• Floating-point Unit (FPU)

• Floating-point and Graphics Unit (FGU)

• VIS Execution Unit (VIS)

• FPU/VIS

Note – The instructions associated with the FPU/VIS execution unit are divided between

floating-point and VIS execution environments, but otherwise use the same hardware

pipelines.

7.5.1 VIS Pixel Data Instructions

7.5.1.1 Array Instruction

These instructions convert three-dimensional (3D) fixed-point addresses to a blocked-byte

address.

7.5.1.2 Byte Mask and Shuffle Instructions

Byte Mask instruction adds two integer registers and stores the result in the integer register.

The least significant 32 bits of the result are stored in a special field.

Byte Shuffle concatenates the two 64-bit floating-point registers to form a 16-byte value.

Bytes in the concatenated value are numbered from most significant to least significant, with

the most significant byte being byte 0.
150 UltraSPARC IIIi Processor User’s Manual • June 2003

7.5.1.3 Edge Handling Instructions

These instructions handle the boundary conditions for parallel pixel scan line loops, where

the address of the next pixel to render and the address of the last pixel in the scan line are

provided.

7.5.1.4 Pixel Packing Instructions

These instructions convert multiple values in a source register to a lower-precision fixed or

pixel format and store the resulting values in the destination register. Input values are clipped

to the dynamic range of the output format. Packing applies a scale factor to allow flexible

positioning of the binary point.

7.5.1.5 Expand and Merge Instructions

Expand takes four 8-bit unsigned integers, converts each integer to a 16-bit fixed-point value,

and stores the four resulting 16-bit values in a 64-bit floating-point register.

Merge interleaves four corresponding 8-bit unsigned values to produce a 64-bit value in the

64-bit floating-point destination register. This instruction converts from packed to planar

representation when it is applied twice in succession.

7.5.1.6 Pixel Distance Instruction

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers. The

corresponding 8-bit values in the source registers are subtracted. The sum of the absolute

value of each difference is added to the integer in the 64-bit floating-point destination

register. The result is stored in the destination register. Typically, this instruction is used for

motion estimation in video compression algorithms.

7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructions

7.5.2.1 Partitioned Add and Subtract Instructions

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds

or subtracts between the corresponding fixed-point values contained in the source operands.

The single-precision versions of these instructions perform two 16-bit or one 32-bit

partitioned add(s) or subtract(s); only the low 32 bits of the destination register are affected.
Chapter 7 Instruction Types 151

7.5.2.2 Partitioned Multiply Instructions

These instructions multiply signed and unsigned registers of different sizes and place the

results in different types of destination registers.

7.5.2.3 Pixel Compare Instruction

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers

are compared. The 4-bit or 2-bit results are stored in the least significant bits in the integer

destination register. Signed comparisons are used.

7.5.3 VIS Logic Instructions

7.5.3.1 Fill with Ones and Zeroes Instruction

These instructions perform a zero fill or a one fill.

7.5.3.2 Source Copy

These instructions perform a source copy.

7.5.3.3 AND, OR, NAND, NOR, and XNOR Instructions

These instructions perform the logical operations.

7.6 Data Coherency Instructions

The processor implements a Total Store Ordering (TSO) that provides the majority of data

coherency support in hardware. Two instructions are used with this model to synchronize the

data for memory operations to insure the latest data is accessed for load instructions and

DMA activity.

Chapter 8 “Memory Models” discusses TSO in detail.
152 UltraSPARC IIIi Processor User’s Manual • June 2003

7.6.1 FLUSH Instruction Cache Instruction

The FLUSH instruction is used to flush the caches out to main memory. The MEMBAR
instruction is used to flush the various data buffers in the processor out to data coherent

domain.

Self-modifying code (storable in the unified L2-cache) requires the use of the FLUSH
instruction.

Note – The FLUSHW instruction flushes the Window-registers and is not related to the

FLUSH command for the I-cache.

7.6.2 MEMBAR (Memory Synchronization) Instruction

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order

and completion of memory references. Ordering MEMBAR instructions induce a partial

ordering between sets of loads and stores and future loads and stores. Sequencing MEMBAR
instructions exert explicit control over completion of loads and stores (or other instructions).

Both barrier forms are encoded in a single instruction, with subfunctions bit-encoded in an

immediate field.

7.6.3 Store Barrier Instruction

Note – STBARP is also supported, but this instruction is deprecated and should not be used

in newly developed software.

7.7 Register Window Management Instructions

Register window instructions manage the register windows. SAVE and RESTORE are non-

privileged and cause a register window to be pushed or popped. FLUSHW is non-privileged

and causes all of the windows except the current one to be flushed to memory. SAVED and

RESTORED are used by privileged software to end a window spill or fill trap handler.

The instructions that manage register windows include SAVE, RESTORE, SAVEDP,
RESTOREP, and FLUSHW.
Chapter 7 Instruction Types 153

SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window

by incrementing the CWP register.

RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP
register.

SAVEDP Instruction

The SAVED instruction is used by a spill trap handler to indicate that a window spill has

completed successfully. It increments CANSAVE.

RESTOREDP Instruction

The RESTORED instruction is used by a fill trap handler to indicate that a window has been

filled successfully. It increments CANRESTORE.

Flush Register Windows Instruction

The FLUSHW instruction cleans register windows of the data from other processes to insure a

secure execution environment.

7.8 Program Control Transfer Instructions

Control transfer instructions (CTIs) include PC-relative branches and calls, register-indirect

jumps, and conditional traps. Most of the CTIs are delayed; that is, the instruction

immediately following a CTI in logical sequence is dispatched before the control transfer to

the target address is completed. Note that the next instruction in logical sequence may not be

the instruction following the CTI in memory.

The instruction following a delayed CTI is called a delay instruction. A bit in a delayed CTI

(the annul bit) can cause the delay instruction to be annulled (that is, to have no effect) if the

branch is not taken (or in the “branch always” case if the branch is taken).
154 UltraSPARC IIIi Processor User’s Manual • June 2003

Compatibility Note – SPARC V8 specified that the delay instruction was always fetched,

even if annulled, and an annulled instruction could not cause any traps. SPARC-V9 does not

require the delay instruction to be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and

return (RETURN) instructions use a register-indirect target address. They compute their target

addresses either as the sum of two r registers or as the sum of an r register and a 13-bit

signed immediate value. The “branch on condition codes without prediction” instruction

provides a displacement of ±8 MB; the “branch on condition codes with prediction”

instruction provides a displacement of ±1 MB; the “branch on register contents” instruction

provides a displacement of ±128 KB; and the CALL instruction’s 30-bit word displacement

allows a control transfer to any address within ±2 GB (±231 bytes).

Note – The return from privileged trap instructions (DONE and RETRY) get their target

address from the appropriate TPC or TNPC register.

7.8.1 Control Transfer Instructions (CTIs)

The following are the basic CTI types:

• Conditional branch (BiccD, BPcc, BPr, FBfccD, FBPfcc)

• Unconditional branch

• Call and link (CALL)

• Jump and link (JMPL, RETURN)

• Return from trap (DONEP, RETRYP)

• Trap (Tcc, ILLTRAP)

• No Operation (NOP, SIR when in non-privileged mode)

A CTI functions by changing the value of the next program counter (nPC) or by changing

the value of both the program counter (PC) and the nPC. When only the next program

counter, nPC, is changed, the effect of the transfer of control is delayed by one instruction.

Most control transfers are of the delayed variety. The instruction following a delayed CTI is

said to be in the delay slot of the CTI. Some CTI (branches) can be optionally annul, that is,

not execute, the instruction in the delay slot, depending upon whether the transfer is taken or

not taken. Annulled instructions have no effect upon the program-visible state, nor can they

cause a trap.
Chapter 7 Instruction Types 155

Programming Note – The annul bit increases the likelihood that a compiler can find a

useful instruction to fill the delay slot after a branch, thereby reducing the number of

instructions executed by a program. For example, the annul bit can be used to move an

instruction from within a loop to fill the delay slot of the branch that closes the loop.

Likewise, the annul bit can be used to move an instruction from either the “else” or “then”

branch of an “if-then-else” program block to the delay slot of the branch that selects between

them. Since a full set of conditions is provided, a compiler can arrange the code (possibly

reversing the sense of the condition) so that an instruction from either the “else” branch or

the “then” branch can be moved to the delay slot.

Use of annulled branches provided some benefit in older, single-issue SPARC

implementations. The UltraSPARC IIIi processor is a superscalar SPARC implementation in

which the only benefit of annulled branches might be a slight reduction in code size.

Therefore, the use of annulled branch instructions is no longer encouraged.

TABLE 7-2 defines the value of the PC and the value of the nPC after execution of each

instruction. Conditional branches have two forms: branches that test a condition (including

branch-on-register), represented in the table by Bcc (same as Bicc), and branches that are

unconditional, that is, always or never taken, represented in the table by B. The effect of an

annulled branch is shown in the table through explicit transfers of control, rather than

fetching and annulling the instruction.
156 UltraSPARC IIIi Processor User’s Manual • June 2003

The effective address (EA) in TABLE 7-2 specifies the target of the control transfer instruction.

The EA is computed in different ways, depending on the particular instruction:

• PC-relative effective address — A PC-relative EA is computed by sign extending the

instruction’s immediate field to 64 bits, left-shifting the word displacement by two bits to

create a byte displacement, and adding the result to the contents of the PC.

• Register-indirect effective address — A register-indirect EA computes its target address

as either r[rs1] + r[rs2] if i = 0, or r[rs1] + sign_ext(simm13) if i = 1.

• Trap vector effective address — A trap vector EA first computes the software trap

number as the least significant 7 bits of r[rs1] + r[rs2] if

i = 0, or as the least significant 7 bits of r[rs1] + sw_trap# if i = 1. The trap level,

TL, is incremented. The hardware trap type is computed as 256 + sw_trap# and stored in

TT[TL]. The EA is generated by concatenation of the contents of the TBA register, the

“TL > 0” bit, and the contents of TT[TL].

• Trap state effective address — A trap state EA is not computed but is taken directly from

either TPC[TL] or TNPC[TL].

TABLE 7-2 Control Transfer Characteristics

Instruction Group Address Form Delayed Taken Annul Bit New PC New nPC

Non-CTIs — — — — nPC nPC + 4

Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4

Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC + 4 nPC + 8

B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC + 4

B PC-relative Yes Yes 1 EA EA + 4

B PC-relative Yes No 1 nPC + 4 nPC + 8

CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-indirect Yes — — nPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — nPC nPC + 4
Chapter 7 Instruction Types 157

Compatibility Note – SPARC-V8 specified that the delay instruction was always fetched,

even if annulled, and that an annulled instruction could not cause any traps. SPARC-V9 does

not require the delay instruction to be fetched if it is annulled.

SPARC V8 left undefined the result of executing a delayed conditional branch that had a

delayed control transfer in its delay slot. For this reason, programmers should avoid such

constructs when backward compatibility is an issue.

7.8.1.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is

zero, the instruction in the delay slot is always executed. If the annul bit is one, the

instruction in the delay slot is not executed unless the conditional branch is taken.

Note – The annul behavior of a taken conditional branch is different from that of an

unconditional branch.

7.8.1.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is

“always”; it never transfers control if its specified condition is “never.” If the annul bit is

zero, then the instruction in the delay slot is always executed. If the annul bit is one, then the

instruction in the delay slot is never executed.

Note – The annul behavior of an unconditional branch is different from that of a taken

conditional branch.

7.8.1.3 CALL/JMPL and RETURN Instructions

CALL

The CALL instruction writes the contents of the PC, which points to the CALL instruction

itself, into r[15] (out register 7) and then causes a delayed transfer of control to a PC-

relative effective address. The value written into r[15] is visible to the instruction in the

delay slot.
158 UltraSPARC IIIi Processor User’s Manual • June 2003

When PSTATE.AM = 1, the value of the high-order 32 bits is transmitted to r[15] by the

CALL instruction.

Jump and Link

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction

itself, into r[rd] and then causes a register-indirect delayed transfer of control to the

address given by “r[rs1] + r[rs2]” or “r[rs1] + a signed immediate value.” The

value written into r[rd] is visible to the instruction in the delay slot.

When PSTATE.AM = 1, the value of the high-order 32 bits transmitted to r[rd] by the

JMPL instruction is zero.

RETURN

The RETURN instruction is used to return from a trap handler executing in non-privileged

mode. RETURN combines the control-transfer characteristics of a JMPL instruction with r[0]

specified as the destination register and the register-window semantics of a RESTORE
instruction.

7.8.1.4 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.

These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to re-execute it. DONE returns

to the instruction pointed to by the value of nPC associated with the instruction that caused

the trap, that is, the next logical instruction in the program. DONE presumes that the trap

handler did whatever was requested by the program and that execution should continue.

7.8.1.5 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the

current state of the condition code register specified by its cc field; otherwise, it executes as

a NOP. If the trap is taken, it increments the TL register, computes a trap type that is stored

in TT[TL], and transfers to a computed address in the trap table pointed to by TBA.

A Tcc instruction can specify 1 of 128 software trap types. When a Tcc is taken, 256 plus

the seven least significant bits of the sum of the Tcc’s source operands is written to TT[TL].

The only visible difference between a software trap generated by a Tcc instruction and a

hardware trap is the trap number in the TT register.
Chapter 7 Instruction Types 159

Programming Note – Tcc can be used to implement breakpointing, tracing, and calls to

supervisor software. Tcc can also be used for runtime checks, such as out-of-range array

index checks or integer overflow checks.

7.8.1.6 ILLTRAP

The ILLTRAP instruction causes an illegal_instruction exception.

7.8.1.7 NOP

A NOP instruction occupies the entire (single) instruction group and performs no visible

work.

There are other instructions that also result in an operation that has no visible effect:

• SIR instruction executed in non-privileged mode

• SHUTDOWN instruction executed in privileged mode

There are other instructions that appear to be a NOP as long as they do not affect the

condition codes.

7.9 Prefetch Instructions

The prefetch instruction is used to request that data be fetched from memory and put into the

cache(s) if not already there for use in the floating-point and VIS execution environment. A

subsequent load, if properly scheduled, can expect the data to more likely be in the cache,

reducing the number of times the pipeline must recycle and thus improving performance.

The destination field of a PREFETCH instruction (fcn) is used to encode the prefetch type.

The PREFETCHA instruction supports accesses to alternate space.

PREFETCH accesses at least 64 bytes.

7.10 Instruction Summary Table by Category

A summary of instructions are categorized in TABLE 7-3.
160 UltraSPARC IIIi Processor User’s Manual • June 2003

7.10.1 Instruction Superscripts

INSTRUCTIONp - Instruction must execute in privileged mode.

INSTRUCTION - Instruction can execute in privileged or non-privileged mode.

7.10.2 Instruction Mnemonics Expansion

INSTRUCTION{_A} - means INSTRUCTION, INSTRUCTION_A

INSTRUCTION_(A,B,C) - means INSTRUCTION_A, INSTRUCTION_B, and

INSTRUCTION_C

7.10.3 Instruction Grouping Rules

Instruction grouping rules are explained in detail in Chapter 4 “Instruction Execution.”

Execution Latency

All instructions execute within the pipeline except the following:

• FSQRT (floating-point square root)

• FPDIVx (floating-point divide)

The latency of these instructions depend on the precision of the floating-point values. Some

instructions execute early in the pipeline and have special bypass abilities. The details of the

execution latencies are explained in Chapter 4 “Instruction Execution.”

7.10.4 Table Organization

The Instruction Summary Table has the following main sections:

• Integer Execution Environment (TABLE 7-3)

- Data access, Arithmetic, Logic, Compare, Miscellaneous instructions

• Floating-point Execution Environment (TABLE 7-4)

- FP/VIS data access, FP arithmetic/logic/compare/miscellaneous

• VIS Execution Environment (TABLE 7-5)

- VIS pixel and fixed-point arithmetic/logic

• Data Coherency Instructions (TABLE 7-6)

• Register-window Management Instructions (TABLE 7-7)
Chapter 7 Instruction Types 161

• Program Control Transfer Instructions (TABLE 7-8)

• Prefetch Instructions (TABLE 7-9)

Shaded areas indicate instructions that are completely deprecated (entire row) or always

privileged (cell holding instruction name). Deprecated and privilege status is identified with

a D or P superscript, respectively.
162 UltraSPARC IIIi Processor User’s Manual • June 2003

7.10.5 Integer Execution Environment Instructions

TABLE 7-3 Instruction Summary for the Integer Execution Environment (1 of 3)

Instruction Description Notes

Integer Execution Environment

IU Data Access Instructions
B= byte; H= halfword; W=word;

ASI Load
(hex)

LDDD Load integer double word No

LDDAD, PASI Load integer double word from alternate space

LDDAPASI Atomic quad load 24, 2C

LDS(B,H,W) Load signed extended byte, halfword, or word:

Memory → IU register

No

LDX Load extended (double) word No

LDXAPASI Load extended (double) word from alternate

space

LDS(B,H,W)APASI Load signed extended byte, halfword, or word

from alternate space

LDSTUB Load-store (atomic) unsigned byte:

Memory → IU register & Compare logic;

IU register → Memory (conditional)

No

LDSTUBAPASI Load-store (atomic) unsigned byte (see

LDSTUB) in alternate space

LDU(B,H,W) Load unsigned byte, halfword, word: Memory

→ IU register

LDU(B,H,W)APASI Load unsigned byte, halfword, word from

alternate space

ST(B,H,W,DD,X) Store byte, halfword, word, double, or

extended word:

IU register → Memory

ST(B,H,W,DD,X)APASI Store byte, halfword, word, double, or

extended word in alternate space

MOVcc Conditional move based on icc/fcc:

IU register → IU register

1

MOVr Conditional move based on IU register value:

IU register → IU register

2

CASAPASI, CASXAPASI Atomic Compare and Swap word/double word

in alternate space:

Memory → Compare logic

Memory ↔ (conditional) Working register

3, 4, 5

SWAPD{AD, PASI} Atomically swap optionally with alternate

space:

IU register ↔ Memory
Chapter 7 Instruction Types 163

IU Arithmetic Instructions
S= signed; U= unsigned; X= 64-bit (otherwise 32)

ADD{cc} Integer add

ADDC{cc} Integer add with carry

SUB{cc} Integer subtract, optionally setting icc/xcc

SUBC{cc} Integer subtract with carry, optionally setting

icc/xcc

MULX Signed or unsigned 64-bit multiply

(S,U)MUL{cc}D Signed/unsigned integer multiply optionally

setting icc/xcc

UDIVX Unsigned 64-bit integer divide

SDIVX Signed 64-bit integer divide

(S,U)DIV{cc}D Signed/unsigned 32-bit integer divide,

optionally setting icc/xcc

SETHI Modify highest 22 bits of low word in IU

register:

Immediate → IU register (partial)

SLL{X} Shift left logical (32/64-bit)

SRL{X} Shift right logical (32/64-bit)

SRA{X} Shift right arithmetic (32/64-bit)

TADDcc{TVD} Tagged add and modify icc, optionally trap

on overflow

TSUBcc{TVD} Tagged subtract and modify icc, optionally trap

on overflow

IU Logic Instructions

AND{cc} Logical AND, optionally setting icc/xcc

ANDN{cc} Logical AND-not, optionally setting icc/xcc

OR{cc} Logical OR, optionally setting icc/xcc

ORN{cc} Logical OR-not, optionally setting icc/xcc

XOR{cc} Logical XOR, optionally setting icc/xcc

XNOR{cc} Logical XNOR, optionally setting icc/xcc

IU Miscellaneous Instructions

SIAM

ALIGNADDRESS{_LITTLE} Calculates aligned address

POPC Defined to count the number of ones in

register, unimplemented (causes an illegal

instruction execution which traps to software

for emulation)

TABLE 7-3 Instruction Summary for the Integer Execution Environment (2 of 3)

Instruction Description Notes
164 UltraSPARC IIIi Processor User’s Manual • June 2003

RDPRP Read privileged register

WRPRP Write privileged register

RDASRPASR Read ancillary state register (ASR) - see below.

Privileged mode required for privileged ASRs.

RDYD, RDCCR, RDASI, RDPC, RDFPRS,

RDPCRP, RDPICPPCR.PRIV, RDDCRP, RDGSR,

RDSOFTINTP, RDTICKPNPT, RDSTICKPNPT,

RDTICK_CMPRP, RDSTICK_CMPRP

Read state and ancillary state registers:

- If PCR.PRIV field is one, then PIC register

access requires privileged mode.

- If {TICK|STICK}.NPT field is zero, then

TICK/STICK register reads require privileged

mode.

WRASRPASR Write ancillary state register (ASR); Privileged

mode required for privileged ASRs.

WRYD, WRCCR, WRASI, WRFPRS, WRPCRP,

WRPICPPCR.PRIV, WRDCRP, WRGSR,

WRSOFTINTP,

WRSOFTINT_CLRP, WRSOFTINT_SETP,

WRSTICKPNPT, WRTICK_CMPRP,

WRSTICK_CMPRP

Read state and ancillary state registers:

- If PCR.PRIV field is one, then PIC register

access requires privileged mode.

- If STICK.NPT field is zero, then STICK
register writes require privileged mode.

1. A simple register-to-register move is accomplished by using the OR instruction with r[0].

2. Load (LD) and store (ST) instructions are provided with many size formats (byte, word, double word, etc.) and most can be specified with an

alternate space identifier (ASI).

3. The “r” refers to value in r registers.

4. The cc refers to settings of the integer condition codes.

5. The conditional move instructions (integer and floating-point) are influenced by the condition codes of either execution unit to facilitate moves

in one type of execution unit based on the condition codes of the other or of those within the execution unit.

TABLE 7-3 Instruction Summary for the Integer Execution Environment (3 of 3)

Instruction Description Notes
Chapter 7 Instruction Types 165

7.10.6 Floating-Point Execution Environment Instructions

TABLE 7-4 Instruction Summary for the Floating-point Execution Environment

Instruction Description
Reference
Pages Notes

FP/VIS Data Access Instruction
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped)

ASI Load
(hex)

LD{D}F Load word (or double word):

Memory → FPU register

No

LD{D}FAPASI Load word (or double word) from

alternate space:

Memory → FPU register

LDDFA Block load 64 bytes:

Memory → FPU registers

LDDFA Load short:

Memory → FPU register

LDQF Load quadword:

Memory → FPU register

No

LDQFAPASI Load quadword from alternate space:

Memory → FPU register

No

ST(F,DF,QF) Store word, double, or quad word to

memory:

FPU register → Memory

No

ST(F,DF,QF)APASI Store word, double, or quad word to

memory using alternate memory space.

STDFA Block store 64 bytes: uses ASIs 70, 71, 78, 79,

F0, F1, F8, F9,

E0, E1

STDFA Short FP store: uses ASIs D(0:3)16,

D(8:B)16

STDFA Partial store FPU: uses ASIs C(0:5)16,

C(8:D)16

FMOV(s,d,q) FPU → FPU register No

FMOV(s,d,q)cc Conditional move, IU or FPU condition

codes:

FPU → FPU register

No

FMOV(s,d,q)r Conditional move, IU or FPU register

value: FPU → FPU register

No

FP Arithmetic Instructions
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped)

FABS(s,d,q) FP absolute value

FNEG(s,d,q) Change FP sign

FADD(s,d,q) FP add

FSUB(s,d,q) FP subtract
166 UltraSPARC IIIi Processor User’s Manual • June 2003

FMUL(s,d,q) FP multiply

FdMULq FP multiple doubles to quadword

FsMULd FP multiple singles to doubleword

FDIV(s,d,q) FP division

FSQRT(s,d,q) FP square root

FP Conversion Instructions
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped); i= integer word; x= double

(or extended) word

F(s,d,q)TOi Floating-point to integer word

F(s,d,q)TOx Floating-point to integer double word

F(s,d,q)TO(s,d,q) Floating-point to floating-point

FiTO(s,d,q) Integer word to floating-point

FxTO(s,d,q) Integer double (or extended) word to

floating-point

FP Compare Instructions

FCMP(s,d,q) FP compare of like precision, sets fcc

condition codes

FCMPE(s,d,q) Same as FCMP, but an exception is

generated if unordered

FP Miscellaneous Instructions

LDFSRD Load FSR into FP reg file:

FSR → FPU register (lower 32-bit)

LDXFSR Load FSR into FP reg file:

FSR → FPU register (64-bit)

STFSRD Store FSR register:

FPU (lower 32-bit) → FSR register

STXFSR Store FSR register:

FPU → FSR register

FALIGNDATA Concatenates two 64-bit registers into one

based on GSR.ALIGN

TABLE 7-4 Instruction Summary for the Floating-point Execution Environment (Continued)

Instruction Description
Reference
Pages Notes
Chapter 7 Instruction Types 167

7.10.7 VIS Execution Environment Instructions

TABLE 7-5 Instruction Summary for the VIS Execution Environment

Instruction Description
Reference
Pages Notes

VIS Data Access Instructions

Refer to Section 7.10.6, “Floating-Point Execution Environment Instructions” of the Instruction Summary Table.

VIS Pixel Data Instructions
L= little-endian; N= fcc not modified; S= 32-bit (otherwise 64-bit);

ARRAY(8,16,32) 3D-array addressing

BMASK Writes the GSR.MASK field

BSHUFFLE Permute bytes as specified by GSR.MASK
field.

EDGE(8,16,32)

(L,N,LN)

Edge handling instructions

FEXPAND Pixel data expansion

FPMERGE Pixel merge

FPACK(16,32,FIX) Pixel packing

PDIST Pixel component distance

VIS Fixed-point 16/32-bit Data Instructions

FPADD(16,32){S} Fixed-point add, 16- or 32-bit operands,

32/64-bit register

FPSUB(16,32){S} Fixed-point subtract, 16- or 32-bit

operands, 32/64-bit register

FMUL8x16 8x16 partitioned multiply

FMUL8x16(AU,AL) 8x16 Upper/Lower α partitioned multiply

FMUL8(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FMULD8(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FCMP(GT,LE,NE,EQ)(16,32) Fixed-point compare (also known as

“pixel compare”)

VIS Logic Instructions
S= 32-bit (otherwise 64-bit)

FSRC(1,2){S} Copy source

FONE{S} Fill with ones (32/64-bit)

FZERO{S} Fill with zeroes (32/64-bit)

FAND{S} Logical AND (32/64-bit)

FANDNOT(1,2){S} Logical AND with a src inverted (32/64-

bit)

FOR{S} Logical OR (32/64-bit)

FNAND{S} Logical NAND (32/64-bit)

FNOR{S} Logical NOR (32/64-bit)
168 UltraSPARC IIIi Processor User’s Manual • June 2003

FORNOT(1,2){S} Logical OR with a source inverted (32/

64-bit)

FNOT(1,2){S} Logical inversion of source bits (32/64-

bit)

FXNOR{S} Logical XNOR (32/64-bit)

FXOR{S} Logical XOR (32/64-bit)

TABLE 7-5 Instruction Summary for the VIS Execution Environment (Continued)

Instruction Description
Reference
Pages Notes
Chapter 7 Instruction Types 169

7.10.8 Data Coherency Instructions

7.10.9 Register-window Management Instructions

7.10.10 Program Control Transfer Instructions

TABLE 7-6 Instruction Summary for Data Coherency

Instruction Description
Reference
Pages Notes

Data Coherency Instructions

FLUSH Flush I-cache

MEMBAR Memory barrier

STBARD Store barrier

TABLE 7-7 Instruction Summary for Register-window Management

Instruction Description
Reference
Pages Notes

Register-Window Management Instructions

SAVE Save caller’s window

SAVEDP Window has been saved

RESTORE Restore caller’s window

RESTOREDP Window has been restored

FLUSHW Flush register windows

TABLE 7-8 Instruction Summary for Program Control Transfer

Instruction Description
Reference
Pages Notes

Program Control Transfer Instructions
icc/xcc= integer condition codes (32/64-bit); fcc= FP condition codes

BiccD Conditional branch on icc/xcc

BPcc Conditional branch on icc/xcc with

branch prediction

BPr Conditional branch on IU reg value with

branch prediction

CALL Call and link

DONEP Return from Trap
170 UltraSPARC IIIi Processor User’s Manual • June 2003

7.10.11 Data Prefetch Instructions

7.11 Instruction Formats and Fields

Instructions are encoded in four major 32-bit formats and several minor formats, as shown in

FIGURE 7-1, FIGURE 7-2, and FIGURE 7-3.

FBfccD Conditional branch on fcc

FBPfcc Conditional branch on fcc with branch

prediction

ILLTRAP Causes illegal_instruction trap

JMPL Jump and link

NOP No operation

RETRYP Return from trap entry

RETURN Return (jump and link)

SHUTDOWNP Intended for Low Power, but is a NOP in

the processor

SIRPNOP Software initiated reset: a NOP when

executed in non-privileged mode

Tcc Trap on icc/xcc

TABLE 7-9 Instruction Summary Table

Instruction Description
Reference
Pages Notes

Prefetch Instructions

PREFETCH Instructs processor to fetch data

PREFETCHAPASI Instructs processor to fetch data from

alternate memory space

TABLE 7-8 Instruction Summary for Program Control Transfer (Continued)

Instruction Description
Reference
Pages Notes
Chapter 7 Instruction Types 171

FIGURE 7-1 Summary of Instruction Formats: Formats 1 and 2

31 030 29

disp30op

Format 1 (op = 1): CALL

Format 2 (op = 0): SETHI and Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

31 2224 21 02530 29

disp22op2condop a

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1 cc0 p

pd16hi

14 13

rs1

imm22op2rdop
172 UltraSPARC IIIi Processor User’s Manual • June 2003

op3rdop rs1 i=1 mmask

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Prefetch, Load, and Store

op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10rcond

—

—

op3rdop rs1 i=1 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

cmask

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

op3fcnop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs20 0 0 rs1 opfcc1 cc0

10 9 8 7 3

op3fcnop —rs1 i=0 rs2

op3fcnop rs1 i=1 simm13

FIGURE 7-2 Summary of Instruction Formats: Format 3
Chapter 7 Instruction Types 173

FIGURE 7-3 Summary of Instruction Formats: Format 4

The instruction fields are interpreted as described in TABLE 7-10.

TABLE 7-10 Instruction Field Interpretation (1 of 3)

Field Description

a The a bit annuls the execution of the following instruction if the branch is conditional and not

taken, or if it is unconditional and taken.

cc2, cc1, cc0 cc2, cc1, and cc0 specify the condition codes (icc, xcc, fcc0, fcc1, fcc2, fcc3) to be

used in the following instructions:

• Branch on Floating-Point Condition Codes with Prediction Instructions (FBPfcc)

• Branch on Integer Condition Codes with Prediction (BPcc)

• Floating-Point Compare Instructions (FCMP and FCMPE)

• Move Integer Register If Condition Is Satisfied (MOVcc)

• Move Floating-Point Register If Condition Is Satisfied (FMOVcc)

• Trap on Integer Condition Codes (Tcc)

In instructions such as Tcc that do not contain the cc2 bit, the missing cc2 bit takes on a

default value.

cmask This 3-bit field specifies sequencing constraints on the order of memory references and the

processing of instructions before and after a MEMBAR instruction.

cond This 4-bit field selects the condition tested by a branch instruction.

d16hi, d16lo These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-relative

displacement for a branch-on-register-contents with prediction (BPr) instruction.

disp19 This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an integer

branch-with-prediction (BPcc) instruction or a floating-point branch-with-prediction (FBPfcc)

instruction.

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 cc0sw_trap#

cc1 cc0 —

cc1cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1 cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0
174 UltraSPARC IIIi Processor User’s Manual • June 2003

disp22, disp30 These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative displacements for a

branch or call, respectively.

fcn This 5-bit field provides additional opcode bits to encode the DONE, RETRY, and PREFETCH(A)

instructions.

i The i bit selects the second operand for integer arithmetic and load/store instructions. If i = 0,

then the operand is r[rs2]. If i = 1, then the operand is simm10, simm11, or simm13,

depending on the instruction, sign-extended to 64 bits.

imm22 This 22-bit field is a constant that SETHI places in bits 31:10 of a destination register.

imm_asi This 8-bit field is the ASI in instructions that access alternate space.

mmask This 4-bit field imposes order constraints on memory references appearing before and after a

MEMBAR instruction.

op, op2 These 2-bit and 3-bit fields encode the three major formats and the Format 2 instructions.

op3 This 6-bit field (together with one bit from op) encodes the Format 3 instructions.

opf This 9-bit field encodes the operation for a floating-point operate (FPop) instruction.

opf_cc Specifies the condition codes to be used in FMOVcc instructions. See field cc0, cc1, and cc2
for details.

opf_low This 6-bit field encodes the specific operation for a Move Floating-Point Register if condition is

satisfied (FMOVcc) or Move Floating-Point Register if contents of integer register match

condition (FMOVr) instruction.

p This 1-bit field encodes static prediction for BPcc and FBPfcc instructions; branch prediction

bit (p) encodings are shown below.

rcond This 3-bit field selects the register-contents condition to test for a move, based on register

contents (MOVr or FMOVr) instruction or a Branch on Register Contents with Prediction (BPr)

instruction.

rd This 5-bit field is the address of the destination (or source) r or f register(s) for a load,

arithmetic, or store instruction.

rs1 This 5-bit field is the address of the first r or f register(s) source operand.

rs2 This 5-bit field is the address of the second r or f register(s) source operand with i = 0.

shcnt32 This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64 This 6-bit field provides the shift count for 64-bit shift instructions.

simm10 This 10-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for a MOVr instruction when i = 1.

simm11 This 11-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for a MOVcc instruction when i = 1.

simm13 This 13-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for an integer arithmetic instruction or for a load/store instruction when i = 1.

TABLE 7-10 Instruction Field Interpretation (2 of 3)

Field Description

p Branch Prediction

0 Predict that branch will not be taken

1 Predict that branch will be taken
Chapter 7 Instruction Types 175

7.12 Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned causes a trap,

specifically:

• Attempting to execute a reserved FPop (floating-point opcode) causes a

fp_exception_other exception (with FSR.ftt = unimplemented_FPop).

• Attempting to execute any other reserved opcode causes an illegal_instruction exception.

• Attempting to execute an FPop with a nonzero value in a reserved instruction field causes

a fp_exception_other exception (with FSR.ftt = unimplemented_FPop).1

• Attempting to execute a Tcc instruction with a nonzero value in a reserved instruction

field causes an illegal_instruction exception.

• Attempting to execute any other instruction with a nonzero value in a reserved instruction

field causes an illegal_instruction exception.1

7.12.1 Summary of Unimplemented Instructions

Certain SPARC-V9 instructions are not implemented in hardware in the processor. Executing

any of these instructions results in the behavior described in TABLE 7-11.

sw_trap# This 7-bit field is an immediate value that is used as the second ALU operand for a Trap on

Condition Code instruction.

x The x bit selects whether a 32-bit or 64-bit shift will be performed.

1. Although it is recommended that this exception is generated, a JPS1 implementation may ignore the contents of reserved

instruction fields (in instructions other than Tcc).

TABLE 7-11 Processor Actions on Unimplemented Instructions

Instructions Trap Taken Processor-specific Behavior Operating System Response

Quad FPops (including

FdMULq)

fp_exception_other FSR.ftt = unimplemented_FPop Emulates Instruction

POPC illegal_instruction None Emulates Instruction

RDPR FQ illegal_instruction None Skips Instruction and Returns

LDQF illegal_instruction None Emulates Instruction

STQF illegal_instruction None Emulates Instruction

TABLE 7-10 Instruction Field Interpretation (3 of 3)

Field Description
176 UltraSPARC IIIi Processor User’s Manual • June 2003

If a trap does not occur and the instruction is not a control transfer, the next program

counter (nPC) is copied into the PC, and the nPC is incremented by four (ignoring overflow,

if any). If the instruction is a control transfer instruction, the nPC is copied into the PC and

the target address is written to nPC. Thus, the two program counters provide for a delayed-

branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address

space identifier (ASI) to the 64-bit memory address. Load/store alternate instructions (see

Section 7.2.4, “Address Space Identifiers (ASIs)”) can provide an arbitrary ASI with their

data addresses or can use the ASI value currently contained in the ASI register.

7.13 Big/Little-Endian Addressing

The processor uses big-endian byte order for all instruction accesses and, by default, for data

accesses.

It is possible to access data in little-endian format by using selected ASIs.

It is also possible to change the default byte order for implicit data accesses.

7.13.1 Big-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a

byte’s significance decreases as its address increases. The big-endian addressing conventions

are illustrated in FIGURE 7-4 and described below the figure.
Chapter 7 Instruction Types 177

FIGURE 7-4 Big-Endian Addressing Convention

big-endian byte A load/store byte instruction accesses the addressed byte in both big-endian and little-

endian modes.

big-endian halfword For a load/store halfword instruction, 2 bytes are accessed. The most significant byte

(bits 15–8) is accessed at the address specified in the instruction; the least significant

byte (bits 7–0) is accessed at the address + 1.

big-endian word For a load/store word instruction, 4 bytes are accessed. The most significant byte

(bits 31–24) is accessed at the address specified in the instruction; the least significant

byte (bits 7–0) is accessed at the address + 3.

big-endian doubleword
or extended word For a load/store extended or floating-point load/store double instruction, 8 bytes are

accessed. The most significant byte (bits 63–56) is accessed at the address specified in

the instruction; the least significant byte (bits 7–0) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-endian

words are accessed. The word at the address specified in the instruction corresponds to

the even register specified in the instruction; the word at address + 4 corresponds to the

following odd-numbered register.

Byte
7 0

Halfword
15 0

Word

Doubleword/

78

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

31 015 700000000

63 3247 3940485556

31 015 78162324
178 UltraSPARC IIIi Processor User’s Manual • June 2003

big-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The most significant byte

(bits 127–120) is accessed at the address specified in the instruction; the least

significant byte (bits 7–0) is accessed at the address + 15.

7.13.2 Little-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a

byte’s significance increases as its address increases. The little-endian addressing

conventions are illustrated in FIGURE 7-5 and defined below the figure.

FIGURE 7-5 Little-Endian Addressing Conventions

little-endian byte A load/store byte instruction accesses the addressed byte in both big-endian and little-

endian modes.

little-endian halfword For a load/store halfword instruction, 2 bytes are accessed. The least significant byte

(bits 7–0) is accessed at the address specified in the instruction; the most significant

byte (bits 15–8) is accessed at the address + 1.

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword/

150

23 31168150

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

103 120119 12711210411196

71 8887 9580727964

Extended word 7 2423 31168150

39 5655 6348404732

7 2423 31168150
Chapter 7 Instruction Types 179

little-endian word For a load/store word instruction, 4 bytes are accessed. The least significant byte

(bits 7–0) is accessed at the address specified in the instruction; the most significant

byte (bits 31–24) is accessed at the address + 3.

little-endian doubleword
or extended word For a load/store extended or floating-point load/store double instruction, 8 bytes are

accessed. The least significant byte (bits 7–0) is accessed at the address specified in the

instruction; the most significant byte (bits 63–56) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two little-endian

words are accessed. The word at the address specified in the instruction corresponds to

the even register in the instruction; the word at the address specified in the instruction

plus four corresponds to the following odd-numbered register. With respect to little-

endian memory, an LDD (STD) instruction behaves as if it is composed of two 32-bit

loads (stores), each of which is byte-swapped independently before being written into

each destination register (memory word).

little-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The least significant byte

(bits 7–0) is accessed at the address specified in the instruction; the most significant

byte (bits 127–120) is accessed at the address + 15.
180 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION IV

Memory and Cache
June 2003 Section IV • Memory and Cache • 181

182 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 8

Memory Models

The SPARC-V9 architecture is a model that specifies the behavior observable by software on

SPARC-V9 systems. Therefore, access to memory can be implemented in any manner, as

long as the behavior observed by software conforms to that of the models described in the

following:

• Chapter 8 of The SPARC Architecture Manual, Version 9

• Appendix D of The SPARC Architecture Manual, Version 9

The SPARC-V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). The UltraSPARC IIIi

processor implements TSO, the strongest of the memory models defined by SPARC-V9. By

implementing TSO, software written for any memory model (TSO, PSO, and RMO) executes

correctly on the UltraSPARC IIIi processor.

This chapter departs from the organization of the memory models described in The SPARC
Architecture Manual, Version 9. It describes the characteristics of the memory models for the

UltraSPARC IIIi processor in sections organized as follows:

• TSO Behavior

• Memory Location Identification

• Memory Accesses and Cacheability

• Memory Synchronization

• Atomic Operations

• Non-Faulting Load

• Prefetch Instructions

• Block Loads and Stores

• I/O and Accesses with Side-Effects

• Internal ASIs

• Store Compression

• Read After Write (RAW) Bypassing
183

8.1 TSO Behavior
The UltraSPARC IIIi processor implements the TSO memory model. The current memory

model is indicated in the PSTATE.MM field and is set to TSO (PSTATE.MM = 0).

In some cases, the UltraSPARC IIIi processor implements stronger ordering than the TSO

requirements. The significant cases are listed below:

• A MEMBAR #Lookaside is not needed between a store and a subsequent load to the
same non-cacheable address.

• Accesses with the TTE.E bit set, such as those that have side-effects, are all strongly
ordered with respect to one another.

• An L2-cache or W-cache update is delayed on a store hit until all previous stores reach
global visibility. For example, a cacheable store following a non-cacheable store will not
appear globally visible until the non-cacheable store has become globally visible; there is
an implicit MEMBAR #MemIssue between them.

8.2 Memory Location Identification
A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit

(virtual) address. The 8-bit ASI can be obtained from an ASI register or included in a

memory access instruction. The ASI distinguishes among and provides an attribute to

different 64-bit address spaces. For example, the ASI is used by the MMU and memory

access hardware for control of virtual-to-physical address translations, access to

implementation-dependent control and data registers, and access protection. Attempts by

non-privileged software (PSTATE.PRIV = 0) to access restricted ASIs (ASI<7> = 0) cause a

privileged_action exception.

8.3 Memory Accesses and Cacheability
Memory is logically divided into real memory (cached) and I/O memory (non-cached with

and without side-effects) spaces. Real memory spaces can be accessed without side-effects.

For example, a read from real memory space returns the information most recently written.

In addition, an access to real memory space does not result in program-visible side-effects. In

contrast, a read from I/O space may not return the most recently written information and may

result in program-visible side-effects.
184 UltraSPARC IIIi Processor User’s Manual • June 2003

8.3.1 Coherence Domains

The two types of memory operations supported in the UltraSPARC IIIi processor are

cacheable and non-cacheable accesses, as indicated by the page translation (TTE.CP,

TTE.CV) of the MMU or by an ASI override.

SPARC-V9 does not specify memory ordering between cacheable and non-cacheable

accesses. The UltraSPARC IIIi processor maintains TSO ordering between memory

references regardless of their cacheability.

8.3.1.1 Cacheable Accesses

Accesses within the coherence domain are called cacheable accesses. They have the

following properties:

• Data reside in real memory locations.

• Accesses observe supported cache coherency protocol(s).

• The unit of coherence is 64 bytes.

8.3.1.2 Non-Cacheable and Side-Effect Accesses

Accesses outside of the coherence domain are called non-cacheable accesses. Some of these

memory-mapped locations may have side-effects when accessed. They have the following

properties:

• Data might not reside in real memory locations. Accesses may result in programmer-
visible side-effects. An example is memory-mapped I/O control registers, such as those in
a UART.

• Accesses do not observe supported cache coherency protocol(s).

• The smallest unit in each transaction is a single byte.

Non-cacheable accesses with the TTE.E bit set (those having side-effects) are all strongly

ordered with respect to other non-cacheable accesses with the E bit set. In addition, store

compression is disabled for these accesses. Speculative loads with the E bit set cause a

data_access_exception trap (with SFSR.FT = 2, speculative load to page marked with

E bit).

Note – TTE.E bit comes from the page translation of the MMU or an ASI override.
Chapter 8 Memory Models 185

Non-cacheable accesses with the TTE.E bit cleared (non-side-effect accesses) are processor

consistent and obey TSO memory ordering. In particular, processor consistency ensures that

a non-cacheable load that references the same location as a previous non-cacheable store will

load the data of the previous store. Store compression is supported. See Section 8.11, “Store

Compression” for details.

Note – Side-effect, as indicated in TTE.E, does not imply non-cacheability.

8.3.2 Global Visibility

A memory access is considered globally visible when the transaction request is issued on

JBUS.

8.3.3 Memory Ordering

To ensure the correct ordering between cacheable and non-cacheable domains, explicit

memory synchronization is needed in the form of MEMBAR instructions. CODE EXAMPLE 8-1

illustrates the issues involved in mixing cacheable and non-cacheable accesses.

CODE EXAMPLE 8-1 Memory Ordering and MEMBAR Examples

Assume that all accesses go to non-side-effect memory locations.

Process A:

While (1)

{

Store D1:data produced

1 MEMBAR #StoreStore (needed in PSO, RMO for SPARC-V9 compliance)

Store F1:set flag

While F1 is set (spin on flag)

Load F1

2 MEMBAR #LoadLoad, #LoadStore (needed in RMO for SPARC-V9
compliance)

Load D2

}

Process B:

While (1)

{

While F1 is cleared (spin on flag)

Load F1
186 UltraSPARC IIIi Processor User’s Manual • June 2003

8.4 Memory Synchronization
Normal loads and stores by an UltraSPARC IIIi processor are performed in order. TSO

defines how other processors may see the ordering of the loads and stores of a particular

processor. Memory synchronizations are used to force the ordering that other processors see

beyond the rules of TSO.

In some cases, memory synchronizations are required for deterministic behavior, even with

respect to the program’s own operations. This applies to memory operations outside of

normal cacheable loads and stores.

The UltraSPARC IIIi processor achieves memory synchronization through MEMBAR and

FLUSH. It provides MEMBAR (STBAR in SPARC-V8) and FLUSH instructions for explicit

control of memory ordering in program execution. MEMBAR has several variations. All

MEMBARs are implemented in one of two ways in the UltraSPARC IIIi processor:

• As a NOP

• With MEMBAR #Sync semantics

Since the processor always executes with TSO memory ordering semantics, three of the

ordering MEMBARs are implemented as NOPs. TABLE 8-1 lists the MEMBAR implementations.

2 MEMBAR #LoadLoad, #LoadStore (needed in RMO for SPARC-V9
compliance)

Load D1

Store D2

1 MEMBAR #StoreStore (needed in PSO, RMO for SPARC-V9 compliance)

Store F1:clear flag

}

TABLE 8-1 MEMBAR Semantics

MEMBAR Semantics

#LoadLoad NOP. All loads wait for completion of all previous loads.

#LoadStore NOP. All stores wait for completion of all previous loads.

#Lookaside #Sync. Wait until store buffer is empty.

#StoreStore,
STBAR

NOP. All stores wait for completion of all previous stores.

#StoreLoad #Sync. All loads wait for completion of all previous stores.

#MemIssue #Sync. Wait until all outstanding memory accesses complete.

#Sync #Sync. Wait for all outstanding instructions and all deferred errors.

CODE EXAMPLE 8-1 Memory Ordering and MEMBAR Examples (Continued)
Chapter 8 Memory Models 187

8.4.1 MEMBAR #Sync

MEMBAR #Sync forces all outstanding instructions and all deferred errors to be completed

before any instructions after the MEMBAR are issued.

8.4.2 MEMBAR Rules

TABLE 8-2 and TABLE 8-3 summarize the cases where the programmer must insert a MEMBAR
to ensure ordering between two memory operations on the UltraSPARC IIIi processor. Use

TABLE 8-2 and TABLE 8-3 for ordering purposes only. Be sure not to confuse memory

operation ordering with processor consistency or deterministic operation; MEMBARs are

required for deterministic operation of certain ASI register updates.

Caution – The MEMBAR requirements for the UltraSPARC IIIi processor are less stringent
than the requirements of SPARC-V9. To ensure code portability across systems, use the
stronger of the MEMBAR requirements of SPARC-V9.

Read the tables as follows: Read from row to column; the first memory operation in program

order in a row is followed by the memory operation found in the column. Two symbols are

used as table entries:

• # — No intervening operation is required because Fireplane-compliant systems
automatically order R before C.

• M — MEMBAR #Sync or MEMBAR #MemIssue or MEMBAR #StoreLoad

For VA<12:5> of a column operation not matching with VA<2:5> of a row operation while a

strong ordering is desired, the MEMBAR rules summarized in TABLE 8-2 reflect the

UltraSPARC IIIi processor hardware implementation.
188 UltraSPARC IIIi Processor User’s Manual • June 2003

TABLE 8-2 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong
Ordering

To Column Operation C:

From Row
Operation R: lo

ad

lo
ad

fr
o

m
in

te
rn

al
A

S
I

st
o

re

st
o

re
to

in
te

rn
al

A
S

I

at
o

m
ic

lo
ad

_n
c_

e

st
o

re
_n

c_
e

lo
ad

_n
c_

n
e

st
o

re
_n

c_
n

e

b
lo

ad

b
st

o
re

b
st

o
re

_c
o

m
m

it

b
lo

ad
_n

c

b
st

o
re

_n
c

load # # # # # # # # # M M # M M

load from internal ASI # # # # # # # # # # # # # #

store M # # # # M # M # M M # M M

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # M M # M M

load_nc_e # # # # # # # # # M M # M M

store_nc_e M # # # # # # M # M M # M M

load_nc_ne # # # # # # # # # M M # M M

store_nc_ne M # # # # M # M # M M # M M

bload M # M # M M M M M M M # M M

bstore M # M # M M M M M M M # M M

bstore_commit M # M # M M M M M M M # M M

bload_nc M # M # M M M M M M M # M M

bstore_nc M # M # M M M M M M M # M M
Chapter 8 Memory Models 189

When VA<12:5> of a column operation matches VA<12:5> of a row operation, the MEMBAR
rules summarized in TABLE 8-3 reflect the UltraSPARC IIIi processor hardware

implementation.

8.4.3 FLUSH

FLUSH behaves like a MEMBAR with further restrictions. MEMBAR blocks execution of

subsequent instructions until all memory operations and errors are resolved. FLUSH is

similar with further behavior in that all instruction fetch and instruction buffering operations

are also blocked.

TABLE 8-3 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong
Ordering

To Column Operation C:

From Row
Operation R: lo

ad

lo
ad

fr
o

m
in

te
rn

al
A

S
I

st
o

re

st
o

re
to

in
te

rn
al

A
S

I

at
o

m
ic

lo
ad

_n
c_

e

st
o

re
_n

c_
e

lo
ad

_n
c_

n
e

st
o

re
_n

c_
n

e

b
lo

ad

b
st

o
re

b
st

o
re

_c
o

m
m

it

b
lo

ad
_n

c

b
st

o
re

_n
c

load # # # # # # # # # # # # # #

load from internal ASI # # # # # # # # # # # # # #

store # # # # # # # # # M # # # #

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # # # # # #

load_nc_e # # # # # # # # # # # # # #

store_nc_e # # # # # # # # # M # # M #

load_nc_ne # # # # # # # # # # # # # #

store_nc_ne # # # # # # # # # M # # M #

bload # # # # # # # # # # # # # #

bstore # # # # # # # # # M # # # #

bstore_commit M # M # M M M M M M M # M M

bload_nc # # # # # # # # # # # # # #

bstore_nc # # # # # # # # # # # # M #
190 UltraSPARC IIIi Processor User’s Manual • June 2003

8.5 Atomic Operations
SPARC-V9 provides three atomic instructions to support mutual exclusion, including:

• SWAP — Atomically exchanges the lower 32 bits in an integer register with a word in
memory. This instruction is issued only after store buffers are empty. Subsequent loads
interlock on earlier SWAPs.

• If a page is marked as virtually non-cacheable but physically cacheable (TTE.CV = 0 and
TTE.CP = 1), allocation is done to the L2-cache and W-cache only. This includes all of
the atomic-access instructions.

• LDSTUB — Behaves like a SWAP except that it loads a byte from memory into an integer
register and atomically writes all 1’s (FF16) into the addressed byte.

• Compare and Swap (CAS(X)A) — Combines a load, compare, and store into a single
atomic instruction. It compares the value in an integer register to a value in memory. If
they are equal, the value in memory is swapped with the contents of a second integer
register. If they are not equal, the value in memory is still swapped with the contents of
the second integer register, but is not stored. The L2-cache will still go into M-state, even
if there is no store.

All of these operations are carried out atomically; in other words, no other memory
operation can be applied to the addressed memory location until the entire compare-and-
swap sequence is completed.

These instructions behave like both a load and store access, but the operation is carried out

indivisibly. These instructions can be used only in the cacheable domain (not in non-

cacheable I/O addresses).

These atomic instructions can be used with the ASIs listed in TABLE 8-4. Access with a

restricted ASI in unprivileged mode (PSTATE.PRIV = 0) results in a privileged_action trap.
Atomic accesses with non-cacheable addresses cause a data_access_exception trap (with

SFSR.FT = 4, atomic to page marked non-cacheable). Atomic accesses with unsupported

ASIs cause a data_access_exception trap (with SFSR.FT = 8, illegal ASI value or virtual

address).

TABLE 8-4 ASIs That Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI_NUCLEUS (LITTLE) Restricted

ASI_AS_IF_USER_PRIMARY (LITTLE) Restricted

ASI_AS_IF_USER_SECONDARY (LITTLE) Restricted

ASI_PRIMARY (LITTLE) Unrestricted

ASI_SECONDARY (LITTLE) Unrestricted

ASI_PHYS_USE_EC (LITTLE) Restricted
Chapter 8 Memory Models 191

Note – Atomic accesses with non-faulting ASIs are not allowed, because the latter have the
load-only attribute.

8.6 Non-Faulting Load
A non-faulting load behaves like a normal load, with the following exceptions:

• It does not allow side-effect access. An access with the TTE.E bit set causes a
data_access_exception trap (with SFSR.FT = 2, speculative load to page marked E bit).

• It can be applied to a page with the TTE.NFO (non-fault access only) bit set; other types
of accesses cause a data_access_exception trap (with SFSR.FT = 1016, normal access to
page marked NFO).

These loads are issued with ASI_PRIMARY_NO_FAULT{_LITTLE} or

ASI_SECONDARY_NO_FAULT{_LITTLE}. A store with a NO_FAULT ASI causes a

data_access_exception trap (with SFSR.FT = 8, illegal RW).

When a non-faulting load encounters a TLB miss, the operating system should attempt to

translate the page. If the translation results in an error, then zero is returned and the load

completes silently.

Typically, optimizers use non-faulting loads to move loads across conditional control

structures that guard their use. This technique potentially increases the distance between a

load of data and the first use of that data, in order to hide latency. The technique allows more

flexibility in code scheduling and improves performance in certain algorithms by removing

address checking from the critical code path.

For example, when following a linked list, non-faulting loads allow the null pointer to be

accessed safely in a speculative, read-ahead fashion; the page at virtual address 016 can safely

be accessed with no penalty. The NFO bit in the MMU marks pages that are mapped for safe

access by non-faulting loads, but that can still cause a trap by other, normal accesses.

Thus, programmers can trap on wild pointer references—many programmers count on an

exception being generated when accessing address 016 to debug code—while benefiting from

the acceleration of non-faulting access in debugged library routines.
192 UltraSPARC IIIi Processor User’s Manual • June 2003

8.7 Prefetch Instructions
The UltraSPARC IIIi processor implements all SPARC-V9 prefetch instructions except for

prefetch page. All prefetches check the L2-cache before issuing a system request for the

requested data. Prefetch instructions are a performance feature. Prefetch instructions do not

change the underlying memory model and do not have any effect from an architectural

standpoint.

TABLE 8-5 describes prefetch instructions.

TABLE 8-5 Types of Software Prefetch Instructions

fcn
Value
(hex) Instruction Type

Prefetch (64 bytes of
data) into:

Instruction
Strength

Request Exclusive
Ownership

00 Prefetch read many P-cache and
L2-cache

Weak No

01 Prefetch read once P-cache only Weak No

02 Prefetch write many L2-cache only Weak Yes

03 Prefetch write once1

1. Although the name is “prefetch write once,” the actual use is prefetch to L2-cache for a future read.

L2-cache only Weak No

04 Reserved Undefined

05 -
0F

Reserved Undefined

10 Prefetch invalidate Invalidates a P-cache
line, no data is
prefetched.

N/A

11 -
13

Reserved Undefined

14 Same as fcn = 00 Weak2

2. These weak instructions may be implemented as strong in future implementations.

No

15 Same as fcn = 01 Weak2 No

16 Same as fcn = 02 Weak2 Yes

17 Same as fcn = 03 Weak2 No

18 -
1F

Reserved Undefined
Chapter 8 Memory Models 193

8.8 Block Loads and Stores
Block load and store instructions work like normal floating-point load and store instructions,

except that the data size (granularity) is 64 bytes per transfer.

Block loads and stores do not obey TSO. They do not even obey the processor’s consistency

rules without the correct use of MEMBAR. Section A.4 “Block Load and Block Store (VIS I)”

on page A-274 discusses block loads and stores in detail.

8.9 I/O and Accesses with Side-Effects
I/O locations might not behave with memory semantics. Loads and stores could have side-

effects; for example, a read access could clear a register or pop an entry off a FIFO. A write

access could set a register address port so that the next access to that address will read or

write a particular internal register. Such devices are considered order sensitive. Also, such

devices may only allow accesses of a fixed size, so store merging of adjacent stores or stores

within a 16-byte region would cause an error.

The UltraSPARC IIIi MMU includes an attribute bit in each page translation, TTE.E, which

when set signifies that this page has side-effects. Accesses other than block loads or stores to

pages that have this bit set exhibit the following behavior:

• Non-cacheable accesses are strongly ordered with respect to each other.

• Non-cacheable loads with the E bit set will not be issued to the system until all previous
control transfers are resolved.

• Non-cacheable store compression is disabled for E bit accesses.

• Exactly those E bit accesses implied by the program are made in program order.

• Non-faulting loads are not allowed and cause a data_access_exception (with
SFSR.FT = 2, speculative load to page marked E bit).

• For portability across SPARC-V9 processors, a MEMBAR may be needed between side-
effect and non-side-effect accesses while in PSO and RMO modes, as well as in some
cases of TSO.
194 UltraSPARC IIIi Processor User’s Manual • June 2003

8.9.1 Instruction Prefetch to Side-Effect Locations

The processor does instruction prefetching and follows branches that it predicts are taken.

Addresses mapped by the I-MMU can be accessed even though they are not actually

executed by the program. Normally, locations with side-effects or that generate timeouts or

bus errors are not mapped by the I-MMU; therefore, prefetching will not cause problems.

When running with the I-MMU disabled, software must avoid placing data in the path of a

control transfer instruction target or sequentially following a trap or conditional branch

instruction. Data can be placed sequentially following the delay slot of a BA, BPA (p = 1),

CALL, or JMPL instruction. Instructions should not be placed closer than 256 bytes to

locations with side-effects.

8.9.2 Instruction Prefetch Exiting Red State

Exiting RED_state by writing zero to PSTATE.RED in the delay slot of a JMPL
instruction is not recommended. A non-cacheable instruction prefetch may be made to the

JMPL target, which may be in a cacheable memory area. This situation can result in a bus

error on some systems and can cause an instruction access error trap. Programmers can mask

the trap by setting the NCEEN bit in the L2-cache Error Enable Register to zero, but doing so

will mask all non-correctable error checking. Exiting RED_state with DONE, RETRY, or

with the destination of the JMPL non-cacheable will avoid the problem.

8.10 Internal ASIs
ASIs in the ranges 3016–6F16 and 7216–7F16 are used for accessing internal states. Stores to

these ASIs do not follow the normal memory-model ordering rules. Correct operation can be

assured by adhering to the following requirements:

• A MEMBAR #Sync is needed after a store to an internal ASI other than MMU ASIs before
the point that side-effects must be visible. This MEMBAR must precede the next load or
non-internal store. To avoid data corruption, the MEMBAR must also occur before the delay
slot of a delayed control transfer instruction of any type.

• Alternatively, a MEMBAR #Sync could be inserted at the beginning of any vulnerable trap
handler. “Vulnerable” trap handlers are those which contain one or more LDXAs from any
internal ASI (ASIs 0x30-0x6F, 0x72-0x77, and 0x7A-0x7F). However, this may cause an
unacceptable performance reduction in some trap handlers, so this is not the preferred
alternative.
Chapter 8 Memory Models 195

• A FLUSH, DONE, or RETRY is needed after a store to an internal I-MMU ASI (ASI 5016–
5216, 5416–5F16), an I-cache ASI (6616–6F16), or the IC bit in the DCU Control Register,
prior to the point that side-effects must be visible. A store to D-MMU registers other than
the context ASIs can use a MEMBAR #Sync. To avoid data corruption, the MEMBAR must
also occur before the delay slot of a delayed control transfer instruction of any type.

• If the store is to an I-MMU state register (ASI = 5016, virtual address = 1816), then the
FLUSH, DONE, or RETRY must immediately follow the store. Furthermore, one of the
following must be true, to prevent an intervening I-TLB miss from causing stale data to be
stored:
- The code must be locked down in the I-TLB, or
- The store and the subsequent FLUSH, DONE, or RETRY should be kept on the same

8 KB page of instruction memory.

8.11 Store Compression
Consecutive non-side-effect, non-cacheable stores can be combined into aligned 16-byte

entries in the store buffer to improve store bandwidth. Cacheable stores will naturally

coalesce in the W-cache rather than be compressed in the store buffer. Non-cacheable stores

can be compressed only with adjacent non-cacheable stores. To maintain strong ordering for

I/O accesses, stores with the side-effect attribute (E bit set) cannot be combined with any

other stores.

A 16-byte non-cacheable merge buffer is used to coalesce adjacent non-cacheable stores.

Non-cacheable stores will continue to coalesce into the 16-byte buffer until one of the

following conditions occurs:

• The data is pulled from the non-cacheable merge buffer by the target device.

• The store overwrites a previously written entry (a valid bit is kept for each of the
16 bytes).

Caution – This behavior is unique to the UltraSPARC IIIi processor and differs from
previous UltraSPARC processor implementations.

• The store is not within the current address range of the merge buffer (within the 16-byte
aligned merge region).

• The store is a cacheable store.

• The store is to a side-effect page.

• MEMBAR #Sync
196 UltraSPARC IIIi Processor User’s Manual • June 2003

8.12 Read After Write (RAW) Bypassing
Load data can be bypassed from previous stores before they become globally visible (data for

load from the store queue). This is specifically allowed by the TSO memory model. Data for

all types of loads cannot be bypassed from all types of stores.

All types of load instructions can get data from the store queue, except the following load

instructions:

• Signed loads (ldsb, ldsh, ldsw)

• Atomics

• Load double to integer register file (ldd)

• Quad loads to integer register file

• Load from FSR register

• Block loads

• Short floating-point loads

• Loads from internal ASIs

All types of store instructions can give data to a load, except the following store instructions:

• Floating-point partial stores

• Store double from integer register file (std)

• Store part of atomic

• Short FP stores

• Stores to pages with side-effect bit set

• Stores to non-cacheable pages

8.12.1 RAW Bypassing Algorithm

The algorithm used in the UltraSPARC IIIi processor for RAW bypassing is as follows:

if ((Load/store access the same physical address) and
(Load/store endianness is the same) and
(Load/store size is the same) and
(Load data can get its data from store queue)and
(Store data in store can give its data to a load)and
(Load hits in either D-cache or P-cache)

)
then

Load will get its data from store queue
Chapter 8 Memory Models 197

else
Load will get its data from the memory system

endif

8.12.2 RAW Detection Algorithm

When data for a load cannot be bypassed from previous stores before they become globally

visible (store data is not yet retired from the store queue), the load is recirculated after the

RAW hazard is removed. The following conditions can cause this recirculation:

• Load data can be bypassed from more than one store in the store queue.

• The load’s VA<12:0> overlaps a store’s VA<12:0> and store data cannot be bypassed from
the store queue.

• The load’s VA<12:5> matches a store’s VA<12:5> and the load misses the D-cache.

• Load is from side-effect page (page attribute E = 1) when the store queue contains one or
more stores to side-effect pages.
198 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 9

Caches and Coherency

This chapter describes the use of caches and TLBs, and contains the following sections:

• Cache Organization

• Cache Flushing

• Controlling P-Cache

• Translation Lookaside Buffers (TLBs)

9.1 Cache Organization

9.1.1 Virtually Indexed, Physically Tagged Caches (VIPT)

The D-cache is Virtually Indexed, Physically Tagged (VIPT). Virtual addresses are used to

index into the cache tag and data arrays while accessing the D-MMU (that is, D-TLBs). The

resulting tag is compared against the translated physical address to determine a cache hit.

A side-effect inherent in a virtual-indexed cache is address aliasing. This issue is addressed

in Section 9.2.1 “Address Aliasing Flushing” on page 206.

9.1.1.1 Data Cache (D-Cache)

The Data Cache is a write-through, non-allocating on a write miss, 64 KB, pseudo-4-way

associative cache with a 32-byte line.

Data accesses bypass the data cache when:

• The Data Cache enable (DC) bit in the Data Cache Unit Control Register (DCUCR) is

clear, or
199

• The D-MMU Enable (DCUCR.DM) bit and the virtual cacheability (DCUCR.CV) bit are

clear, or

• The access is mapped by the D-MMU as non-virtual-cacheable

Note – A non-virtual-cacheable access may access data in the Data Cache from an earlier

cacheable access to the same physical block, unless the Data Cache is disabled. Software

must flush the Data Cache when changing a physical page from cacheable to non-cacheable

(see Section 9.2 “Cache Flushing” on page 205).

9.1.2 Bypassing the D-Cache

D-cache can return stale data if CP == 1, CV == 0 is used to bypass the cache, after use of

CP==1 and CV==1, for loads and stores to a particular address.

D-cache should be flushed, after mixing use of any CP/CV settings for a physical address,

including cacheable (DRAM) and non-cacheable (I/O) physical addresses.

The term “virtually non-cacheable” refers to the “non-D-cacheable” CP == 1, CV == 0 case,

as opposed to the more common use of “non-cacheable” to describe I/O or graphics related

physical addresses.

• CP == 1, CV == 1: Cacheable, Virtually-cacheable

• CP == 1, CV == 0: Cacheable, Virtually-non-cacheable (ASI_PHYS_USE_EC has this

effect)

• CP == 0, CV == 1: P-cacheable

• CP == 0, CV == 0: Non-cacheable

Only two indexes in the D-cache need to be flushed for each 32-byte aligned physical

address:

• {VA[13] == 0,PA[12:5]} and

• {VA[13] == 1,PA[12:5]}

9.1.2.1 Special Case 1

When performing a load with a physical address, using ASI = 0x14 (ASI_PHYS_USE_EC),

causing CP == 1 and CV == 0, and the address hits in the D-cache, the following describes

how the data comes from D-cache instead of L2-cache:

If CP == 0 and CV == 0, which indicates a “non-cacheable” access, and the address is in the

D-cache, data can be returned from the D-cache.

The address should be flushed from the D-cache before changing its mapping.
200 UltraSPARC IIIi Processor User’s Manual • June 2003

Similarly, if CP == 1, and CV == 0, and the data is in the D-cache, data may be returned

from the D-cache. However, there are corner cases where it may not be the case.

For instance, with ASI_PHYS_USE_EC, the physical PA[13] is used to index the D-cache,

where VA[13] would ordinarily be used. Therefore, the data might not be correctly returned

if the real data was in VA[13] == 0, but PA[13] == 1. Ordinarily the rest of the PA bits will

have a difference, therefore, it will miss in the D-cache, and go to the L2-cache correctly.

This takes advantage of knowing that a valid PA can only exist in one VA[13] mapping at a

time in the D-cache.

This depends on how the addresses were mapped earlier, when the line was installed in the

D-cache.

This ASI_PHYS_USE_EC load hitting on the D-cache behavior is not defined or tested, so

software should not rely on it.

9.1.2.2 Special Case 2

When performing a store with a physical address, using ASI=0x14 (ASI_PHYS_USE_EC),

causing CP == 1 and CV == 0, and the address hits in the D-cache, the following describes

how the D-cache gets updated:

The software should make sure the physical address is not in the D-cache, before accessing

that address using CP == 1, CV == 0, whether by a TLB mapping, or using one of the special

ASIs.

9.1.3 Physically-Indexed, Physically-Tagged Caches (PIPT)

9.1.3.1 Instruction Cache (I-Cache)

The Instruction Cache is a 32KB pseudo 4-way, set-associative, write-invalidate cache with

32-byte lines. Instruction fetches bypass the Instruction Cache when:

• The Instruction Cache enable (DCUCR.IC) is clear, or

• The I-MMU enable (DCUCR.IM) bit and the physical cacheability (DCUCR.CP) bit are

clear, or

• The processor is in RED_state, or

• The fetch is mapped by the I-MMU as nonphysical-cacheable.

The Instruction Cache snoops stores from other processors or DMA transfers, as well as

stores in the same processor and block commit store.
Chapter 9 Caches and Coherency 201

The FLUSH instruction is not required to maintain coherency. Stores and block store commits

invalidate the Instruction Cache, but do not flush instructions that have already been

prefetched into the pipeline. A FLUSH, DONE, or RETRY instruction can be used to flush

the pipeline.

If a program changes I-cache mode to I-cache-ON from I-cache-OFF, then the next

instruction fetching always causes an I-cache miss even if it is supposed to hit. This rule

applies even when the DONE instruction turns on the I-cache by changing its status from

RED_state to normal mode. For example,

(in RED_state)

setx 0x37e0000000007, %g1, %g2
stxa %g2,[%g0]0x45 // Turn on I-cache when
processor

// returns normal mode.
done // Escape from RED_state.

(back to normal mode)

nop // 1st instruction; this always causes an I-cache
miss.

9.1.3.2 Prefetch Cache (P-Cache)

The P-cache is a write-invalidate, 2 KB, 4-way associative cache with a 64-byte line and two

32-byte sub-blocks. It is physically-indexed and physically-tagged and never contains

modified data. The P-cache only needs to be flushed for error handling.

The “PREFETCH fcn=16” instruction can be used to invalidate, or flush a P-cache entry, and

to prefetch non-cacheable data, after the data is loaded into registers from the P-cache.

The cache line size is 64 bytes with 32-byte subblocks. The P-cache is globally invalidated

on context changes and MMU updates, individual lines are invalidated on store hits.

The P-cache is globally invalidated if any of the following conditions occur:

• Context registers are written.

• Demap operation in the D-MMU

• D-MMU is turned on or off.

Individual lines are invalidated on any of the following conditions:

• A store hits

• An external snoop hit

• Use of software prefetch invalidate function. (PREFETCH with fcn = 16)
202 UltraSPARC IIIi Processor User’s Manual • June 2003

The P-cache is used for software prefetch instructions as well as a autonomous hardware

prefetch from the L2-cache. This cache never needs to be flushed (not even for address

aliases).

9.1.4 Second Level and Write Caches (L2-Cache, W-Cache)

The on-chip L2-cache1 and the W-cache—are physically-indexed, physically-tagged (PIPT).

These caches have no references to virtual address and context information. The operating

system needs no knowledge of such caches after initialization, except for stable storage

management and error handling.

The L2-Cache is a 1 MB unified, write-back, write-allocate, 4-way set associative cache with

64-byte lines. The L2-cache does not include the contents of the Instruction Cache, Prefetch

Cache and Data Cache. The replacement policy is pseudo-random. The L2-cache cannot be

disabled by software.

It is necessary to flush the L2-cache for stable storage.

Instruction fetches bypass the L2-cache when the following occurs:

• I-MMU is disabled AND when the CP bit in the Data Cache Unit Control Register is not

set.

• The processor is in RED_state.

• Access is mapped by the I-MMU as nonphysical cacheable.

Data accesses bypass the L2-cache if the D-MMU enable bit in the DCU Control Register is

clear, or if the access is mapped by the D-MMU as non-physical-cacheable (unless

ASI_PHYS_USE_EC is used).

The system must provide a non-cacheable, scratch memory for booting code use until the

MMUs are enabled.

Block loads and block stores, which load or store a 64-byte block of data from memory to

the floating-point register file, do not allocate into the L2-cache, in order to avoid pollution.

Prefetch Read Once instructions, which load a 64-byte block of data into the P-cache, do not

allocate into the L2-cache.

The W-cache is a 2 KB, 4-way associative, with 64 bytes per line and 32-byte sub-blocks.

The W-cache is included in the L2-cache, and flushing the L2-cache ensures that the

W-cache has also been flushed.

1. L2-cache and Embedded Cache (E-cache) are used interchangeably.
Chapter 9 Caches and Coherency 203

9.1.5 L2-Cache Replacement Policy

The selection is more complicated when some of the ways are blocked using EC_block.

That is not shown here. The victim way is determined by a 5-bit Linear Feedback Shift

Register (LFSR,) which is described in the following code. Note that the code reflects the

algorithm when all 4 ways are active.

CODE EXAMPLE 9-1 reflects the cache replacement algorithm when all four ways of the

L2-cache are active.

CODE EXAMPLE 9-1 L2-Cache Replacement Policy

module lfsr (rand_out, event_in, reset, clk);

output [3:0] rand_out;
input event_in;
input reset;
input clk;

wire [4:0] lfsr_reg;

dffe #(5) ff_lfsr (lfsr_reg, lfsr_in, ~reset, event_in, clk);

// 01010 is the non-reachable state for this implementation.

wire [4:0] lfsr_in = {~lfsr_reg[0],

 lfsr_reg[0] ^ lfsr_reg[4],

 lfsr_reg[3],

 lfsr_reg[0] ^ lfsr_reg[2],

 lfsr_reg[0] ^ lfsr_reg[1]};

// update on reads that miss the L2-cache

assign event_in = ec_lt_cs_r_d1 & ~ec_lt_we_r_d1 &
~lt_ec_hit_miss_d1;

dffire #(5) f_lfsr (lfsr_reg, lfsr_in, reset, event_in, clk);

assign rand_out = { lfsr_reg[1] & lfsr_reg[0],

 lfsr_reg[1] & ~lfsr_reg[0],

 ~lfsr_reg[1] & lfsr_reg[0],

 ~lfsr_reg[1] & ~lfsr_reg[0]};

endmodule
204 UltraSPARC IIIi Processor User’s Manual • June 2003

9.1.6 L2-Cache Locking

Networking applications get performance boost if the interrupt code is in the L2-cache.

Therefore, software can have guaranteed latency to certain critical data and instructions. The

UltraSPARC IIIi processor supports way blocking, that is, software can enable/disable a way

to take part in replacement strategy. Software could initialize a way with L2-cache diagnostic

writes and then prohibit this way from the replacement algorithm.

Software flushes a particular line in L2-cache even if it is locked, if it desires to do so by

issuing the ASI_ECACHE_FLUSH instruction.

Note – If software blocks all four ways of the L2-cache, then the ECU will behave as if

only way 0 is blocked.

9.2 Cache Flushing

Data in the write-invalidate or write-through caches can be flushed by invalidating the entry

in the cache. Modified data in the L2-cache and W-cache must be written back to memory

when flushed.

Cache flushing is required in the following cases:

• A D-cache flush is needed when a physical page is changed from (virtually) cacheable to

(virtually) non-cacheable, or an illegal address aliasing is created (see Section 9.2.1

“Address Aliasing Flushing” on page 206). This is done using ASI 0x42,

ASI_DCACHE_INVALIDATE, which specifies a physical address to flush, like for a

system bus snoop.

• L2-cache flush is needed for stable storage. This is done with either a

ASI_ECACHE_FLUSH or a store with ASI_BLK_COMMIT. Flushing the L2-cache will

flush the corresponding blocks from the W-cache. See Section 9.2.2 “Committing Block

Store Flushing” on page 206.

• L2-cache, D-cache, prefetch cache, and I-cache flushes may be required when an ECC

error occurs on a read from the memory or the L2-cache. When an ECC error occurs,

invalid data may be written into one of the caches and the cache lines must be flushed to

prevent further corruption of data.

Note – When flushing a single 64-byte line, with a given PA, there are sixteen locations that

must be flushed in the D-cache. This is because it has 32-byte lines (two places), one VA
index bit (two places), and the PA can simultaneously exist in all four ways of a set (four

places).
Chapter 9 Caches and Coherency 205

9.2.1 Address Aliasing Flushing

A side-effect inherent in a virtual-indexed cache is illegal address aliasing. Aliasing occurs

when multiple virtual addresses map to the same physical address.

Caution – Since the D-cache is indexed with the virtual address bits and is larger than the

minimum page size, it is possible for the different aliased virtual addresses to end up in

different cache blocks. Such aliases are illegal because updates to one cache block will not

be reflected in aliased cache blocks. (There are corner cases where the same cache block can

end up in different ways, within the same set (index); the hardware will update all ways

within a set that have the line.)

Normally, software avoids illegal aliasing by forcing aliases to have the same address bits

(virtual color) up to an alias boundary. The minimum alias boundary is 16 KB.

When the alias boundary is violated, software must flush the D-cache if the page was

virtually cacheable. In this case, only one mapping of the physical page can be allowed in the

D-MMU at a time.

Alternatively, software can turn off the virtual caching of illegally aliased pages. This allows

multiple mapping of the alias to be in the D-MMU and avoids flushing the D-cache each time

a different mapping is referenced.

Note – A change in virtual color when allocating a free page does not require a D-cache

flush, because the D-cache is write through.

9.2.2 Committing Block Store Flushing

Stable storage must be implemented by software cache flush. Examples of stable storage are

battery-backed memory and a transaction log. Data which is present and modified in the

L2-cache or the W-cache must be written back to the stable storage.

Two ASIs (ASI_BLK_COMMIT_PRIMARY and ASI_BLK_COMMIT_SECONDARY)

perform these write backs efficiently when software can ensure exclusive write access to the

block being flushed. These ASIs write back the data from the floating-point registers to

memory and invalidate the entry in the cache. The data in the floating-point registers must

first be loaded by a block load instruction. A MEMBAR #Sync instruction can be used to

ensure that the flush is complete.
206 UltraSPARC IIIi Processor User’s Manual • June 2003

9.2.3 L2-Cache Flushing

L2-cache flushing may also be accomplished by ASI loads (ASI_ECACHE_FLUSH). This is

done by reading a range of addresses that map to the corresponding cache line in a particular

way being flushed, forcing out modified entries in the local cache. The load ASI physical

address will be the same as its virtual address, and will cause a miss if the line it is intended

to replace is in a valid state (M/O/E/S) in the L2-cache. If the line is modified (M/O), the

data will also be forced out to memory. The hardware will guarantee a read miss to the way

accessed by the ASI even if there is a hit in any of the other ways. The fetched line will be

installed in the Invalid state (I) in the L2-cache.

Note – Diagnostic ASI accesses to the L2-cache can be used to invalidate a line, but they

are not an alternative to above type of flushing. Modified data in the L2-cache will not be

written back to memory using these Diagnostic ASI accesses (these are destructive flushes).

L2-cache flush operation is performed by accessing ASI 0x4E (ASI_ECACHE_FLUSH).

This ASI can be accessed only by a privileged instruction. A privileged action trap if

PSTATE.PRIV not set. The L2-cache flush ASI format is illustrated in FIGURE 9-1 and

described in TABLE 9-1.

FIGURE 9-1 L2-Cache Flush ASI Format

TABLE 9-1 L2-Cache Flush ASI Format

A load using the L2-cache Flush ASI can be used to flush a L2-cache line with

EC_TAG_ADDR supplying the index and EC_WAY providing the required way.

Bit Field Description

63:43 — Reserved. Set to 0.

42:41 — Reserved. Set to 0. Makes sure that the victimizing read is treated as a

cacheable space.

40:36 — Reserved

35:34 — Reserved.

33:32 EC_WAY L2 Way Selection

31 — Reserved. Set to 1.

30:18 — Reserved. Set to 0.

17:6 EC_TAG_ADDR Index into the L2-cache

5:0 — Reserved. Set to 0.

— —EC_TAG_ADDR

05617183132333463

1 EC_WAY

3540 3641

—

30

——
Chapter 9 Caches and Coherency 207

The loads will not generate a miss in L2-cache if there is no dirty data in the associated

set/way. However, they will cause a miss if there is dirty data to be flushed (the W-cache data

will be merged with L2-cache data if needed). The returned data for this load miss will be

installed in an invalid state. A store to this ASI will execute like a NOP.

Clean (S or E) lines are invalidated immediately. There is no JBUS read.

The VA<42:0> is used directly to create the PA<42:0> used for the read that goes out to

JBUS (as an RDS).

PA<33:0> is used for the DRAM at each memory controller. PA<33:32> is used for the Chip

Select decode, and not all encodings may point to a DIMM in a system. Therefore, it is not

possible to create an address that will definitely read from a DRAM.

The read will receive AFSR.JETO if a nonexistent port is used in the address, causing a fatal

error (system reset).

The read will not receive AFSR.TO if the DRAM does not exist on a valid port. Flush

completes normally. Unknown data is installed in the invalid state.

It is possible to log UE/FRU/RUE or CE/FRC/RCE due to the DRAM read, if DRAM exists

at the address created by hardware. (A read is done to create a displacement flush.) If this

happens, the processor traps like a normal read that triggered these errors.

In a multiprocessor system, the target address must point to your own ID, because as a

destination, the UltraSPARC IIIi processor cannot tolerate having to return multiple read

error packets to different masters around the same time (the system will hang). By pointing

to your own ID, a JBUS read error packet is not used. However, note that the address does

not need to point to valid DRAM.

It is possible that the JBUS read address may actually be in another processor’s cache. The

data will be correctly returned from that cache. Since a JBUS RDS is used, any write

permission will be removed at that cache (M to O). If the line was E, it will be reduced to S

state in other caches. It is possible that such a cache read could cause an L2-cache error to be

logged by that other processor.

Note – Since the I-cache, D-cache, and P-cache are non-inclusive, flushing the L2-cache

has no affect on them, and they may need to be flushed separately. The W-cache is inclusive,

and gets flushed with the L2-cache, if necessary.

9.3 Controlling P-Cache

This section clarifies the use of DCUCR.PE, DCUCR.HPE, and DCUCR.SPE bits.
208 UltraSPARC IIIi Processor User’s Manual • June 2003

Note – Block loads do not cause installs into the P-cache. They are also not allowed to hit

on the P-cache and, therefore, never triggers hardware prefetch.

Non-cacheable address space never installs in P-cache or L2-cache, unless a software

prefetch is done specifically to the non-cacheable address (should be followed by a prefetch

invalidate to that address, after using the data).

TABLE 9-2 Explanation of P-cache control bits

9.4 Translation Lookaside Buffers (TLBs)

The Instruction TLB has a 16-entry, fully-associative TLB to hold entries for 64 KB, 512 KB,

4 MB pages, and all locked pages of any size, and a 128-entry, 2-way associative TLB is used

for the unlocked 8 KB pages.

The Data TLB has a 16-entry, fully-associative TLB to hold entries for unlocked 8 KB,

64 KB, 512 KB, 4 MB pages, and all locked pages, and two 512-entry, 2-way associative

TLBs used for unlocked 8 KB, 64 KB, 512 KB, or 4 MB pages.

9.4.1 TLB Flushing

A demap-all operation that removes all unlocked TTEs has been added to both the I-TLBs

and D-TLBs.

DCUCR.
PE

DCUCR.
HPE

DCUCR.
SPE

Hardware
Prefetch
Enabled?

Software
Prefetch
Enabled?

FP load miss
(32B) installed
in the
P-Cache?

FP loads checked
for P-Cache
hit/miss?

0 X X no no no no

1 0 0 no no no yes

1 0 1 no yes no yes

1 1 0 yes no yes yes

1 1 1 yes yes yes yes
Chapter 9 Caches and Coherency 209

9.4.2 TTE Format

The UltraSPARC IIIi processor now has the additional elements in the TTE format:

• Physical Address field was expanded from 28 bits (PA<40:13>, TTE<40:13>) to 30 bits

(PA<42:13>, TTE<42:13>)

• A snoop bit was added to mark a page as outside the coherence domain (TTE<47>)

9.4.3 Synchronous Fault Status Register (SFSR) Extensions

One status bit has been added to the I/D-TLB SFSRs:

• NF — Set to indicate the faulting operation was a speculative load instruction

A new fault type was added to the FT field of the SFSR to indicate an I/D-TLB miss.

9.4.4 I/D Translation Storage Buffer Register

Three new register extensions of the I/D-TSB register have been added to the

UltraSPARC IIIi processor. These registers allow a different TSB virtual address base to be

used for each of the three virtual address spaces (Primary, Secondary, Nucleus) in the D-TLB

and two virtual address spaces (Primary, Nucleus) in the I-TLB. On an

I/D-TLB miss it selects which TSB Extension Register to use to form the TSB base address

based on the virtual space accessed by the faulting instruction.

9.4.5 TLB Data Access Register

The access address for the TLB Data Access Register has been expanded to enable access to

three TLBs each with up to 512 entries.

Warning – Under some circumstances a diagnostic read from the fully associative TLBs

(ASI_DTLB_DATA_ACCESS_REG (ASI = 0x5D) and ASI_ITLB_DATA_ACCESS_REG
(ASI = 0x55) will return wrong data. Software should read the fully associative TLB Entry

twice, back-to-back. The second access will return correct data.
210 UltraSPARC IIIi Processor User’s Manual • June 2003

9.4.5.1 Special Case for Data TLBs

If after any memory access instruction that misses TLB is followed by a read (LDXA from

ASI_DTLB_DATA_ACCESS_REG, that is, ASI = 0x5d) access from fully associative TLBs

and the accessed TTE has page size set to 64KB/512KB/4MB then data returned from TLB

will be wrong.

9.4.5.2 Special Case for Instruction TLBs

If after any instruction that misses instruction TLB is followed by a read (LDXA from

ASI_ITLB_DATA_ACCESS_REG, that is, ASI=0x55) access from fully associative TLBs

and the accessed TTE has page size set to 64KB/512KB/4MB then data returned from TLB

will be wrong.

9.4.6 TLB Diagnostic Register

This is a new register to replace the function of the diagnostic bits in the TTE.
Chapter 9 Caches and Coherency 211

212 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION V

Supervisor Programming
June 2003 Section V • Supervisor Programming • 213

214 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 10

Interrupt Handling

Processors and I/O devices can interrupt a selected processor by assembling and sending an

interrupt packet consisting of eight 64-bit words of interrupt vector data. The contents of

these data are defined by software convention. Thus, hardware interrupts and cross-calls can

have the same hardware mechanism for interrupt delivery and can share a common software

interface for processing.

The interrupt requesting/receiving mechanism is a two-step process: the sending of an

interrupt request on a vector data register to the target and the scheduling of the received

interrupt request on the target upon receipt.

An interrupt request packet is sent by processors or I/O devices through the interrupt vector

dispatch mechanism and is received by the specified target through the interrupt vector

receive mechanism. Upon receipt of an interrupt request packet, a special trap is invoked on

the target processor. The trap handler software invoked in the target processor then schedules

the interrupt request to itself by posting the interrupt into SOFTINT register at the desired

interrupt level.

Note that the processor may not send an interrupt request packet to itself through the

interrupt dispatch mechanism. Separate sets of dispatch (outgoing) and receive (incoming)

interrupt data registers allow simultaneous interrupt dispatching and receiving.

Different aspects of interrupt handling are described in the following sections:

• Interrupt Vector Dispatch

• Interrupt Vector Receive

• Interrupt Global Registers

• Interrupt ASI Registers

• Software Interrupt Register (SOFTINT)
215

10.1 Interrupt Vector Dispatch

To dispatch an interrupt or cross-call, a processor or I/O device first writes to the outgoing

Interrupt Vector Data Registers according to an established software convention, described

below. A subsequent write to the Interrupt Vector Dispatch Register triggers the interrupt

delivery. The status of the interrupt dispatch can be read by polling the

ASI_INTR_DISPATCH_STATUS BUSY and NACK bits. A MEMBAR #Sync should be used

before polling begins to ensure that earlier stores are completed. CODE EXAMPLE 10-1 shows

the pseudo-code sequence that sends an interrupt.

BUSY and NACK bits of the Interrupt Vector Dispatch Status Register, listed in TABLE 10-1,

indicate the status of the interrupt dispatched.

The ASI_INTR_DISPATCH_STATUS Register contains four pairs of BUSY/NACK bit pairs

enabling interrupts to be pipelined. Specifying a unique pair of BUSY/NACK bits used for

each interrupt when writing, the Interrupt Dispatch Register enables up to four interrupts to

be outstanding at one time.

Note – The processor may not send an interrupt vector to itself through outgoing interrupt

vector data registers. Doing so causes undefined interrupt vector data to be returned.

TABLE 10-1 BUSY and NACK Bits of Interrupt Vector Dispatch Register

BUSY NACK Status

0 0 Interrupt dispatch successful

1 0 Interrupt dispatch pending

0 1 Interrupt dispatch failed

CODE EXAMPLE 10-1 Code Sequence for Interrupt Dispatch

Read state of ASI_INTR_DISPATCH_STATUS; Error if BUSY

<no pending interrupt dispatch packet>

Repeat

Begin atomic sequence(PSTATE.IE ← 0)

Store to IV data reg 0 at ASI_INTR_W, VA=0x40 (optional)

Store to IV data reg 1 at ASI_INTR_W, VA=0x48 (optional)

Store to IV data reg 2 at ASI_INTR_W, VA=0x50 (optional)

Store to IV data reg 3 at ASI_INTR_W, VA=0x58 (optional)

Store to IV data reg 4 at ASI_INTR_W, VA=0x60 (optional)

Store to IV data reg 5 at ASI_INTR_W, VA=0x68 (optional)

Store to IV data reg 6 at ASI_INTR_W, VA=0x80 (optional)
216 UltraSPARC IIIi Processor User’s Manual • June 2003

Note – To avoid deadlocks, enable interrupts for some period before retrying the atomic

sequence. Alternatively, implement the atomic sequence with locks without disabling

interrupts.

10.2 Interrupt Vector Receive

When an interrupt is received, all eight Interrupt Data Registers are updated, regardless of

which are being used by software. This update is done in conjunction with the setting of the

BUSY bit in the ASI_INTR_RECEIVE register. At this point, the processor inhibits further

interrupt packets from the system bus. If interrupts are enabled (PSTATE.IE = 1), then an

interrupt trap (trap type 6016) is generated. Software reads the ASI_INTR_RECEIVE
register and Incoming Interrupt Data Registers to determine the entry point of the appropriate

trap handler. All of the external interrupt packets are processed at the highest interrupt

priority level and are then reprioritized as lower-priority interrupts in the software handler.

CODE EXAMPLE 10-2 illustrates interrupt receive handling.

Store to IV data reg 7 at ASI_INTR_W, VA=0x88 (optional)

Store to IV dispatch at ASI_INTR_W, VA<63:29>=0,

VA<28:24>=BUSY/NACK bit #,VA<23:14>=ITID,

VA<13:0>=0x70 initiates interrupt delivery

Membar #Sync (wait for stores to finish)

Poll state of ASI_INTR_DISPATCH_STATUS (BUSY, NACK)

Loop if BUSY

End atomic sequence(PSTATE.IE ← 1)
 DONE if !NACK

(Retry after random delay if NACKED)
Until DONE

CODE EXAMPLE 10-2 Code Sequence for an Interrupt Receive

Read state of ASI_INTR_RECEIVE; Error if !BUSY

Read from IV data reg 0 at ASI_SDB_INTR_R, VA=0x40 (optional)

Read from IV data reg 1 at ASI_SDB_INTR_R, VA=0x48 (optional)

Read from IV data reg 2 at ASI_SDB_INTR_R, VA=0x50 (optional)

Read from IV data reg 3 at ASI_SDB_INTR_R, VA=0x58 (optional)

Read from IV data reg 4 at ASI_SDB_INTR_R, VA=0x60 (optional)

Read from IV data reg 5 at ASI_SDB_INTR_R, VA=0x68 (optional)

CODE EXAMPLE 10-1 Code Sequence for Interrupt Dispatch (Continued)
Chapter 10 Interrupt Handling 217

10.3 Interrupt Global Registers

A separate set of global registers is implemented to expedite interrupt processing. As

described in Section 10.2, “Interrupt Vector Receive”, the processor takes an interrupt trap

after receiving an interrupt packet. Software uses a number of scratch registers while

determining the appropriate handler and constructing the interrupt state.

A separate set of eight Interrupt Global Registers (IGRs) replaces the eight

programmer-visible global registers during interrupt processing. After an interrupt trap is

dispatched, the hardware selects the interrupt global registers by setting the PSTATE.IG
field. The previous value of PSTATE is restored from the trap stack by a DONE or RETRY
instruction on exit from the interrupt handler.

10.4 Interrupt ASI Registers

MEMBAR #Sync is generally needed after stores to interrupt ASI registers, which avoids

unnecessary effects caused by possible prefetches to the locations with side effect.

10.4.1 Outgoing Interrupt Vector Data<7:0> Register

ASI_INTR_DATA0_W (data 0): ASI = 7716, VA<63:0> = 4016

ASI_INTR_DATA1_W (data 1): ASI = 7716, VA<63:0> = 4816

ASI_INTR_DATA2_W (data 2): ASI = 7716, VA<63:0> = 5016

ASI_INTR_DATA3_W (data 3): ASI = 7716, VA<63:0> = 5816

ASI_INTR_DATA4_W (data 4): ASI = 7716, VA<63:0> = 6016

ASI_INTR_DATA5_W (data 5): ASI = 7716, VA<63:0> = 6816

ASI_INTR_DATA6_W (data 6): ASI = 7716, VA<63:0> = 8016

ASI_INTR_DATA7_W (data 7): ASI = 7716, VA<63:0> = 8816

Read from IV data reg 6 at ASI_SDB_INTR_R, VA=0x80 (optional)

Read from IV data reg 7 at ASI_SDB_INTR_R, VA=0x88 (optional)

Determine the appropriate handler

Handle interrupt or reprioritize this trap and

set the SOFTINT register
Store zero to ASI_INTR_RECEIVE to clear the BUSY bit

CODE EXAMPLE 10-2 Code Sequence for an Interrupt Receive (Continued)
218 UltraSPARC IIIi Processor User’s Manual • June 2003

Name: ASI_INTR_DATA_W: Outgoing Interrupt Vector Data Registers (Privileged, Write-

only)

TABLE 10-2 describes the register field of the eight Outgoing Interrupt Vector Data Registers.

A write to these eight registers modifies the outgoing Interrupt Dispatch Data Registers.

Non-privileged access to this register causes a privileged_action trap. An attempt to read this

register causes a data_access_exception trap.

10.4.2 Interrupt Vector Dispatch Register

ASI 7716

VA<63:19> = 0

VA<18:14> = Target Processor ID

VA<13:0> = 7016

Name: ASI_INTR_W (Interrupt dispatch, Privileged, Write-only)

TABLE 10-3 describes the fields of the Interrupt Vector Dispatch Register.

TABLE 10-2 Outgoing Interrupt Vector Data Register Format

Bits Field Type Description

63:0 Data W Interrupt data

TABLE 10-3 Interrupt Vector Dispatch Register Format

Bits Field Type Description

VA<18:14> ITID W Interrupt Target ID. Specifies the interrupt target processor using the BUSY/

NACK bit pair BN, along with the contents of the eight Interrupt Vector Data

Registers. VA<15:14> specifies which of the BUSY/NACK bit pairs to use for

the interrupt (the lower two bits of Agent/Target ID are direct mapped to BN#).

• 0x0 in this field selects BUSY/NACK bits

ASI_INTR_DISPATCH_STATUS<1:0>.

• 0x1 in this field selects BUSY/NACK bits

ASI_INTR_DISPATCH_STATUS<3:2>.

• 0x2 in this field selects BUSY/NACK bits

ASI_INTR_DISPATCH_STATUS<5:4>.

• 0x3 in this field selects BUSY/NACK bits

ASI_INTR_DISPATCH_STATUS<7:6>.

If there are more than four processors in the system, software must take care of

aliasing caused by direct mapping of the lower two bits of AGENT IDs.
Chapter 10 Interrupt Handling 219

A write to this ASI triggers an interrupt vector dispatch to the target processor identified with

Interrupt Target ID (ITID), using BUSY/NACK bit pair BN along with the contents of the

eight Interrupt Vector Data Registers. Note that the write acts as a trigger; however, the data

for the write is ignored.

A read from the Interrupt Vector Dispatch Register causes a data_access_exception trap.

Non-privileged access to this register causes a privileged_action trap.

10.4.3 Interrupt Vector Dispatch Status Register

ASI 4816

VA<63:0> = 0

Name: ASI_INTR_DISPATCH_STATUS (Privileged, Read-only)

TABLE 10-4 describes the fields of the Interrupt Vector Dispatch Status Register.

In the UltraSPARC IIIi processor, four BUSY/NACK pairs are implemented in the Interrupt

Vector Dispatch Status Register.

The status of up to four outgoing interrupts can be read from

ASI_INTR_DISPATCH_STATUS BUSY/NACK bits. This register contains up to 4 pairs of

BUSY/NACK bit pairs: the pairs at <1:0>, <3:2>, <5:4>, and <7:6> are referred to as pair 0,

pair 1, pair 2, and pair 3, respectively.

The VA<15:14> field of the Interrupt Dispatch Register specifies which BUSY/NACK bit pair

will be used for the interrupt.

Writes to this ASI cause a data_access_exception trap. Non-privileged access to this register

causes a privileged_action trap.

TABLE 10-4 Interrupt Dispatch Status Register Format

Bits Field Type Description

<63:8> -- Reserved, read as 0.

1,3,5,7 NACK R Set if interrupt dispatch has failed. Cleared at the start of every interrupt dispatch

attempt; set when a dispatch has failed.

0,2,4,6 BUSY R Set when there is an outstanding dispatch.
220 UltraSPARC IIIi Processor User’s Manual • June 2003

10.4.4 Incoming Interrupt Vector Data<7:0>

ASI_INTR_R (data 0): ASI = 7F16, VA<63:0> = 4016

ASI_INTR_R (data 1): ASI = 7F16, VA<63:0> = 4816

ASI_INTR_R (data 2): ASI = 7F16, VA<63:0> = 5016

ASI_INTR_R (data 3): ASI = 7F16, VA<63:0> = 5816

ASI_INTR_R (data 4): ASI = 7F16, VA<63:0> = 6016

ASI_INTR_R (data 5): ASI = 7F16, VA<63:0> = 6816

ASI_INTR_R (data 6): ASI = 7F16, VA<63:0> = 8016

ASI_INTR_R (data 7): ASI = 7F16, VA<63:0> = 8816

Name: ASI_INTR_R (Privileged, Read-only)

TABLE 10-5 describes the register field of the eight Incoming Interrupt Vector Data Registers.

A read from these registers returns incoming interrupt information from the incoming

Interrupt Receive Data Registers.

Non-privileged access to this register causes a privileged_action trap.

10.4.5 Interrupt Vector Receive Register

ASI 4916

VA<63:0> = 0

Name: ASI_INTR_RECEIVE (Privileged)

TABLE 10-6 describes the fields of the Interrupt Receive Register.

TABLE 10-5 Incoming Interrupt Vector Data Register Format

Bits Field Type Description

63:0 Data R Interrupt data

TABLE 10-6 Interrupt Receive Register Format

Bits Field Type Description

63:6 -- R Reserved. Read as 0.

5 BUSY RW Set when an interrupt vector is received. The BUSY bit must be cleared by software

writing zero.

4:0 SOURCE R Source ID of Interrupter. Accurate when BUSY is set. Source ID is the AID field of

the interrupting agent.
Chapter 10 Interrupt Handling 221

The status of an incoming interrupt can be read from ASI_INTR_RECEIVE. The BUSY bit

is cleared by writing zero to this register. BUSY bit is also cleared during Power-on Reset.

Non-privileged access to the Interrupt Vector Receive Register causes a privileged_action
trap.

10.5 Software Interrupt Register (SOFTINT)

To schedule interrupt vectors for processing at a later time, each processor can send itself

signals by setting bits in the SOFTINT register.

The SOFTINT register (ASR 1616), described in TABLE 10-7, is used for communication from

nucleus (TL > 0) code to kernel (TL = 0) code. Interrupt packets and other service requests

can be scheduled in queues or mailboxes in memory by the nucleus, which then sets

SOFTINT<n> to cause an interrupt at level <n>.

Non-privileged access to this register causes a privileged_opcode trap.

TABLE 10-7 SOFTINT Register Format

Bits Field Description RW

<16> STICK_INT System Timer interrupt.

When the STICK_CMPR INT_DIS field is cleared (that is,

STICK interrupt is enabled) and the 63-bit

STICK_Compare Register’s STICK_CMPR field matches

the STICK Register’s counter field, the STICK_INT field is

set and a software interrupt is generated.

RW

<15:1> SOFTINT<15:1> When set, bits<15:1> cause interrupts with each bit

corresponding to levels IRL<15:1>, respectively.

RW

<0> TICK_INT Timer interrupt.

When TICK_CMPR’s INT_DIS field is cleared (that is,

TICK interrupt is enabled) and the 63-bit TICK_Compare
Register’s TICK_CMPR field matches the TICK Register’s

counter field, the TICK_INT field is set and a software

interrupt is generated.

RW
222 UltraSPARC IIIi Processor User’s Manual • June 2003

10.5.1 Setting the Software Interrupt Register

Setting SOFTINT<n> is done by a write to the SET_SOFTINT register (ASR 1416), with

bit n corresponding to the interrupt level set. The value written to the SET_SOFTINT
register is effectively ORed into the SOFTINT register. This approach allows the interrupt

handler to set one or more bits in the SOFTINT register with a single instruction.

Read accesses to the SET_SOFTINT register cause an illegal_instruction trap. Non-privileged

accesses to this register cause a privileged_opcode trap.

When the nucleus returns, if (PSTATE.IE = 1) and (n > PIL), then the processor will

receive the highest-priority interrupt IRL<n> of the asserted bits in SOFTINT<16:0>. The

processor then takes a trap for the interrupt request, and the nucleus sets the return state to

the interrupt handler at that PIL and returns to TL = 0. In this manner, the nucleus can

schedule services at various priorities and process them according to their priority.

10.5.2 Clearing the Software Interrupt Register

When all interrupts scheduled for service at level n have been serviced, the kernel writes to

the CLEAR_SOFTINT register (ASR 1516) with bit n set, to clear that interrupt. The

complement of the value written to the CLEAR_SOFTINT register is effectively ANDed

with the SOFTINT register. This approach allows the interrupt handler to clear one or more

bits in the SOFTINT register with a single instruction.

Read accesses to the CLEAR_SOFTINT register cause an illegal_instruction trap. Non-

privileged write accesses to this register cause a privileged_opcode trap.

The timer interrupt TICK_INT and system timer interrupt STICK_INT are equivalent to

SOFTINT<14> and have the same effect.

Note – To avoid a race condition between the kernel clearing an interrupt and the nucleus

setting it, the kernel should examine the queue for any valid entries again after clearing the

interrupt bit.

TABLE 10-8 summarizes the SOFTINT ASRs.

TABLE 10-8 SOFTINT ASRs

ASR Value ASR Name Type Description

1416 SET_SOFTINT W Sets bit(s) in Soft Interrupt Register.

1516 CLEAR_SOFTINT W Clears bit(s) in Soft Interrupt Register.

1616 SOFTINT RW Per-processor Soft Interrupt Register.
Chapter 10 Interrupt Handling 223

224 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION VI

Performance Programming
June 2003 Section VI • Performance Programming • 225

226 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 11

Performance Instrumentation

Performance instrumentation consists of processor event counters that can be used to gather

statistics during program execution. Approximately 70 events can be monitored, two at a

time, to gain information about the performance of the processor. Cache miss counts and stall

times, for example, can be measured using two, 32-bit Performance Instrumentation Counters

(PICs). Some event counting can be synthesized from the event counters available to provide

additional program execution statistics.

The counters can be monitored during program execution to gather on-going statistics or

reconfigure during steady-state program execution to gather statistics for more than two

events.

The Performance Control Register (PCR) is used to select the events to monitor and provide

control for counting in privileged and/or non-privileged modes.

Each of the two 32-bit performance instrumentation counters (PIC), PICL, and PICU, can

accumulate over four billion events before wrapping. Event logging counts can be extended

by periodically reading contents of the performance instrumentation counters to detect and

avoid an overflow. An interrupt can be enabled on a counter overflow. Additional event or

stall cycle statistics can be collected by reading the PIC counts between repeated program

executions.

This chapter describes the performance instrumentation features in the following sections:

• Section 11.1, “Performance Control Register (PCR)”

• Section 11.2, “Performance Instrumentation Counter (PIC) Register”

• Section 11.3, “Performance Instrumentation Operation”

• Section 11.4, “Pipeline Counters”

• Section 11.5, “Cache Access Counters”

• Section 11.6, “Memory Controller Counters”

• Section 11.7, “Miscellaneous Counters”

• Section 11.8, “PCR.SL and PCR.SU Encodings”
227

Supervisor/User Mode

Access to the PCR is restricted to supervisor software. User software accessing the PCR
causes a privileged_opcode trap.

Supervisor software controls user accessibility to the PIC counters through the PCR.PRIV
field. When PCR.PRIV = 1 (supervisor access only), an attempt by user software to access

the PIC register causes a privileged_action trap. By default, PCR.PRIV = 0. In this default

state, the PIC register is accessible to user software.

In Supervisor/User configuration, the mode in which the counters are enabled to count is

controlled by setting the PCR.UT (User Trace) and PCR.ST (System Trace) bits.

11.1 Performance Control Register (PCR)

The 64-bit PCR and PIC are accessed through read/write Ancillary State Register (ASR)

instructions (RDASR/WRASR). PCR and PIC are located at ASRs 16 (1016) and 17 (1116),

respectively.

Two events can simultaneously be measured by setting the PIC_SL and PIC_SU fields. The

counters can be enabled separately for Supervisor and User mode using UT and ST fields.

The selected statistics are reflected during subsequent accesses to the PICs.

The PCR is a read/write register used to control the counting of performance monitoring

events. FIGURE 11-1 shows the details of the PCR and TABLE 11-1 describes the various fields

of the PCR. Counts are collected in the PIC register (see Section 11.2 “Performance

Instrumentation Counter (PIC) Register” on page 230”).

FIGURE 11-1 Performance Control Register

The PCR selects the events and controls the operating modes of the Performance Instrumentation
Counters (PICs).

ASR 1610 64-bit Read/Write Privileged Mode, otherwise
privileged_action trap.

Reset:
0x0000.0000

ASR RegisterPCR - Performance Control Register
228 UltraSPARC IIIi Processor User’s Manual • June 2003

TABLE 11-1 PCR Bit Description

Bit Field Description

16:11 SU Selects 1 of up to 64 counters accessible in the upper half (bits <63:32>) of
the PIC register.

9:4 SL Selects 1 of up to 64 counters accessible in the lower half (bits <31:0>) of
the PIC register.

2 UT User Trace Enable.
If set to one, counts events in non-privileged mode (User).

1 ST System Trace Enable.
If set to one, counts events in privileged mode (Supervisor).
Notes:
If both PCR.UT and PCR.ST are set to one, all selected events are counted.
If both PCR.UT and PCR.ST are zero, counting is disabled.
PCR.UT and PCR.ST are global fields which apply to both PIC pairs.

0 PRIV Privileged. If PCR.PRIV = 1, a non-privileged (PSTATE.PRIV = 0)
attempt to access PIC (via a RDPIC or WRPIC instruction) will result in a
privileged_action exception.

63:48
31:27
10

— Reserved by SPARC architecture.
Read zero, Write zero, or Write value read previously.

47:32
26:17
3

— Unused in the UltraSPARC IIIi processor.
Read zero, Write zero, or Write value read previously.

mP reservedarch reserved

arch reserved mP reserved

SU

arch reserved

SL

UT (user trace)
ST (supervisor trace)

PRIV (privileged)

63 62 61 39 3555 3334363738 324041424344454647484950515253545657585960

31 30 29 7 323 12456 089101112131415161718192021222425262728

mP reserved
Chapter 11 Performance Instrumentation 229

11.2 Performance Instrumentation Counter (PIC)

Register

The difference between the values read from the PIC on two reads reflects the number of

events that occurred between register reads. Software can only rely on read-to-read PIC
accesses to get an accurate count and not a write-to-read of the PIC counters. Every time the

select values (PCR.SU or PCR.SL) are changed, the PIC register is reset and starts counting

from zero. If there is a context switch, it is the responsibility of software to save the previous

PCR and PIC values. FIGURE 11-2 shows the details of the PIC and TABLE 11-2 describes the

various fields of the PIC.

FIGURE 11-2 Performance Instrumentation Counter Register

The PIC register provides access to the counter values for the two events being monitored.

ASR 1710 64-bit Read/Write
Note: Writes are
designed for
diagnostic and test
purposes.

Accessibility depends on
PCR.PRIV bit:
0 = accessible in any mode
1 = accessible in Supervisor Mode,
otherwise privileged_action trap

Reset:
0x0000.0000

TABLE 11-2 PIC Register Fields

Bit Field Description

63:32 PICU 32-bit field representing the count of an event selected by the SU field of
the Performance Control Register (PCR)

31:0 PICL 32-bit field representing the count of an event selected by the SL field of
the Performance Control Register (PCR)

ASR RegisterPIC - Performance Instrumentation Counter register

31 30 29 7 323 12456 089101112131415161718192021222425262728

63 62 61 39 3555 3334363738 324041424344454647484950515253545657585960

PICL

PICU
230 UltraSPARC IIIi Processor User’s Manual • June 2003

11.2.1 PIC Counter Overflow Trap Operation

When a PIC counter overflows, an interrupt is generated as described in TABLE 11-3.

11.3 Performance Instrumentation Operation

shows how an operating system might use the performance instrumentation features to

provide event monitoring services. Setup the PCR register as desired to select two events and

in which modes data should be collected. The monitoring must consider the real effects of

the computer that includes calls to the system and interrupts. When used, the PCR register is

considered part of a process state and must be saved and restored when switching process

contexts.

Multiple data collection times can be done while the program executes to show on-going

statistics.

11.3.1 Gathering Data for More Than Two Events

When more than two events need to be monitored, the program, program sequence, or

program loop need to be run again with the new events enabled. It is not possible to monitor

more than two events at any given time.

11.3.2 Gathering Data in Privileged and Non-Privileged

Modes

The PCR has mode bits to enable the counters in privileged mode, non-privileged mode, or to

count when in either mode. The mode setting affects both counters.

TABLE 11-3 PIC Counter Overflow Processor Compatibility Comparison

Function Description

PIC Counter
Overflow

On overflow, a counter wraps to zero, SOFTINT register bit 15 is set to one, and an
interrupt_level_15 trap (a disrupting trap). The counter overflow trap is triggered on
the transition from value FFFF FFFF16 to value 0.
The point at which the interrupt is delivered may be several instructions after the
instruction responsible for the overflow event. This situation is known as a “skid.”
Chapter 11 Performance Instrumentation 231

FIGURE 11-3 Operational Flow Diagram for Controlling Event Counters

FOR ILLUSTRATIVE
PURPOSES ONLY

start

set up PCR

hi_select_value → PCR.SU

accumulate stat

PIC → r[rd]

in PIC

context switch to B

PCR → [savePCR]

PIC → [savePIC]

switch to context B

context switch to A

[savePCR] → PCR

[savePIC] → PIC

PIC → r[rd]

[0,1] → PCR.UT

[0,1] → PCR.PRIV
PIC → r[rd]

PIC → r[rd]

0 → PIC

low_select_value → PCR.SL

[0,1] → PCR.ST

back to context A

Yes

Switch

Context

No

No Yes

Counters

Switch
232 UltraSPARC IIIi Processor User’s Manual • June 2003

11.3.3 Performance Instrumentation Implementations

Counting events and cycle stalls are sometimes complex because of the dynamic conditions

and cancelled activities.

11.3.4 Performance Instrumentation Accuracy

The performance instrumentation counters are designed to provide reasonable accuracy

especially when used to count hundreds or thousands of events or stall cycles or when

comparing the PIC counts that have recorded a similar number of events or stall cycles.

Accuracy is most challenging when trying to associate an event to an instruction and when

comparing PIC counts with one count rarely occurring.

When using the overflow trap, it is sometimes difficult to pinpoint the instruction that is

responsible for the overflow because of the way the pipeline is designed. A delay of several

instructions is possible before the overflow is able to stop the current instruction flow and

fetch the trap vector. This delay is referred to as skid and can occur for dozens of clock

cycles. The skid for the load miss detection case is small. The skid value cannot be measured

and its length depends on what event or stall cycle is being measured and what other

instructions are in the pipeline.

11.4 Pipeline Counters

11.4.1 Instruction Execution and Processor Clock Counts

The instruction execution count monitors are described in TABLE 11-4 for clock and

instruction execution counts.

TABLE 11-4 Instruction Execution Clock Cycles and Counts

Counter Description

Cycle_cnt [PICL 00.0000 and PICU 00.0000]
Counts clock cycles. This counter increments the same as the SPARC-V9
TICK register, except that cycle counting is controlled by the PCR.UT and
PCR.ST fields.

Instr_cnt [PICL 00.0001 and PICU 00.0001]
Counts the number of instructions completed. Annulled, mispredicted, or
trapped instructions are not counted.
Chapter 11 Performance Instrumentation 233

Synthesized Clocks Per Instruction (CPI)

The cycle and instruction counts can be used to calculate the average number of instructions

completed per cycle: Clock cycles per instruction, CPI = Cycle_cnt / Instr_cnt.

11.4.2 IIU Event Counts

The counters listed in TABLE 11-5 record branch prediction event counts for taken and

untaken branches in the Instruction Issue Unit (IIU). A retired branch in the following

descriptions refers to a branch that reaches the D-stage without being invalidated.

11.4.3 IIU Dispatch Stall Counts

IIU stall counts, listed in TABLE 11-6 on page 235, are the major cause of pipeline stalls

(bubbles) from the instruction fetch and decode pipeline. Stalls are counted for each clock

cycle at which the associated condition is true.

FIGURE 11-4 illustrates the first two considerations described in Section 11.4.3.1.

11.4.3.1 Dispatch Counter Considerations

1. Dispatch Counters count when the buffer is empty, regardless of whether the execution
pipeline can accept more instructions from the instruction queue.

2. It is difficult to associate an empty queue. Various reasons taken together or separately can

cause the instruction queue to be empty. The hardware picks the most recent disruptive event

that is in the Fetch Unit to choose a counter to assign the empty queue cycles.

TABLE 11-5 Counters for Collecting IIU Statistics

Counter Description

IU_Stat_Br_miss_taken [PICL 01.0101] Counts retired branches that were
predicted to be taken, but in fact were not taken.

IU_Stat_Br_miss_untaken [PICU 01.1101] Counts retired branches that were
predicted to be untaken, but in fact were taken.

IU_Stat_Br_Count_taken [PICL 01.0110] Counts retired taken branches.

IU_Stat_Br_Count_untaken [PICU 01.1110] Counts retired untaken branches.
234 UltraSPARC IIIi Processor User’s Manual • June 2003

3. Count accuracy is also subject to the conditions described for all counters in the

Section 11.3.4 “Performance Instrumentation Accuracy” on page 233.”

FIGURE 11-4 Dispatch Counters

TABLE 11-6 Counters for IIU Stalls

Counter Description1

1. See Section 11.4.3.1 “Dispatch Counter Considerations” on page 234 for important
information.

Dispatch0_IC_miss [PICL 00.0010] Counts the stall cycles due to the event that no
instructions are issued because I-queue is empty from instruction cache
miss. This count includes L2-cache miss processing if a L2-cache miss
also occurs.

Dispatch0_mispred [PICU 00.0010] Counts the stall cycles due to the event that no
instructions are issued because I-queue is empty due to branch
misprediction.

Dispatch0_br_target [PICL 00.0011] Counts the stall cycles due to the event that no
instructions are issued because I-queue is empty due to a branch target
address calculation.

Dispatch0_2nd_br [PICL 00.0100] Counts the stall cycles due to the event of having
two branch instructions line-up in one 4-instruction group causing the
second branch in the group to be refetched, delaying its entrance into
the I-queue.

Dispatch_rs_mispred [PICL 01.0111] Counts the stall cycles due to the event that no
instructions are issued because the I-queue is empty due to a Return
Address Stack misprediction.

Fetch Unit Instruction
Queue

Execution
Pipeline

Dispatch Counter Considerations

Stall Cycles due to incoming delays are determined from the dispatch
counters that count clock cycles when the queue is empty (empty cycles).

Dispatch Counters

Stall Cycles
Chapter 11 Performance Instrumentation 235

11.4.4 R-stage Stall Counts

Stalls are caused by dependency checks (data not ready for use by the instruction ready for

dispatch) and by resources not being available (out-of-pipeline execution units needed, but

are in-use).

The counters in TABLE 11-7 count the stall cycles at the R-stage of the pipeline. Stalls are

counted for each clock at which the associated condition is true.

11.4.5 Recirculation Stall Counts

Recirculation instrumentation is implemented through the counters listed in TABLE 11-8.

TABLE 11-7 Counters for R-stage Stalls

Counter Description

Rstall_storeQ [PICL 00.0101] Counts R-stage stall cycles for a store instruction which is
the next instruction to be executed, but is stalled due to the store queue being
full, that is, cannot hold additional stores. Up to eight entries can be in the store
queue.

Rstall_FP_use [PICU 00.1011] Counts R-stage stall cycles due to the event that the next
instruction to be executed depends on the result of a preceding floating-point
instruction in the pipeline that is not yet available.

Rstall_IU_use [PICL 00.0110] Counts R-stage stall cycles due to the event that the next
instruction to be executed depends on the result of a preceding integer
instruction in the pipeline that is not yet available.

TABLE 11-8 Counters for Recirculation

Counter Description

Re_DC_missovhd1 [PICU 00.0100] Counts the stall cycles from when a D-cache load
misses (causes a recirculation), but L2-cache hit/miss has not been reported.
Counts portion/overhead of stall cycles due to D-cache load miss from the
point the load reaches D-stage (about to be recirculated) to the point L2-cache
hit/miss for the load is reported.

Re_endian_miss [NA] Event counter does not exist in the UltraSPARC IIIi processor.

Re_RAW_miss [PICU 10.0110] Counts stall cycles due to recirculation when there is a
load in the E-stage which has a non-bypassable read-after-write (RAW) hazard
with an earlier store instruction. This condition means that load data are being
delayed by completion of an earlier store. See the Section 8.12 “Read After
Write (RAW) Bypassing” on page 197” for a description of the RAW hazard
and causes of recirculation.

Re_FPU_bypass [PICU 00.0101] Counts stall cycles due to recirculation when a FPU
bypass condition that does not have a direct bypass path occurs.

Re_DC_miss [PICU 00.0110] Counts stall cycles due to loads that miss D-cache and
L2-cache and get recirculated. Includes cacheable loads only.
236 UltraSPARC IIIi Processor User’s Manual • June 2003

11.5 Cache Access Counters

Instruction cache, data cache, prefetch cache, write cache, and L2-cache access events can be

collected through the counters listed in TABLE 11-9. Counts are updated by each cache access,

regardless of whether the access will be used.

11.5.1 Instruction Cache Events

Re_EC_miss [PICU 00.0111] Counts stall cycles due to loads that miss D-cache and
L2-cache and get recirculated. Stall cycles from the point when L2-cache miss
is detected to the D-stage of the recirculated flow are counted. Includes
cacheable loads only.

Re_PC_miss [PICU 01.0000] Counts stall cycles due to recirculation when a P-cache
miss occurs on a prefetch predicted second load.

1. See Section 11.5.6 “Separating D-cache Stall Cycle Counts” on page 240.

TABLE 11-9 Counters for Instruction Cache Events

Counter Description

IC_ref [PICL 00.1000] Counts I-cache references. I-cache references are
fetches (up to four instructions) from an aligned block of eight
instructions. I-cache references are generally speculative and include
instructions that are later cancelled due to mis-speculation.

IC_miss [PICU 00.1000] Counts I-cache misses. Includes fetches from
mis-speculated execution paths which are later cancelled.

IC_miss_cancelled [PICU 00.0011] Counts I-cache misses cancelled due to
mis-speculation, recycle, or other events.

ITLB_miss [PICU 01.0001] Counts I-TLB miss traps taken.

TABLE 11-8 Counters for Recirculation (Continued)

Counter Description
Chapter 11 Performance Instrumentation 237

11.5.2 Data Cache Events

TABLE 11-10 describes the counters for D-cache events.

11.5.3 Write Cache Events

TABLE 11-11 describes the counters for W-cache events.

TABLE 11-10 Counters for Data Cache Events

Counter Description

DC_rd [PICL 00.1001] Counts D-cache read references (including
accesses that subsequently trap). References to pages that are not
virtually cacheable (TTE CV bit = 0) are not counted.

DC_rd_miss [PICU 00.1001] Counts recirculated loads that miss the D-cache.
Includes cacheable loads only.

DC_wr [PICL 00.1010] Counts D-cache cacheable store accesses
encountered (including cacheable stores that subsequently trap).
Non-cacheable accesses are not counted.

DC_wr_miss [PICU 00.1010] Counts D-cache cacheable store accesses that miss
D-cache. (There is no stall or recirculation on store miss.)

DTLB_miss [PICU 01.0010] Counts memory reference instructions which trap
due to a D-TLB miss.

TABLE 11-11 Counters for Write Cache Events

Counter Description

WC_miss [PICU 01.0011] Counts W-cache misses.

WC_snoop_cb [PICU 01.0100] Counts W-cache copybacks generated by a snoop
from a remote processor.

WC_scrubbed [PICU 01.0101] Counts W-cache hits to clean lines.

WC_wb_wo_read [PICU 01.0110] Counts W-cache writebacks not requiring a read.
238 UltraSPARC IIIi Processor User’s Manual • June 2003

11.5.4 Prefetch Cache Events

TABLE 11-12 describes the counters for P-cache events.

11.5.5 L2-Cache Events

The L2-cache write hit count is determined by subtraction of the read hit and the instruction

hit count from the total L2-cache hit count. The L2-cache write reference count is determined

by subtraction of the D-cache read miss and I-cache misses from the total L2-cache

references. Because of write caching, this is not the same as D-cache write misses.

TABLE 11-13 describes the counter for L2-cache events.

Note – A block load or store access is counted as 8 references. For atomics, the read and

write events are counted individually.

TABLE 11-12 Counters for Prefetch Cache Events

Counter Description

PC_MS_miss [PICU 01.1111] Counts FP loads through the MS pipeline that miss
P-cache.

PC_soft_hit [PICU 01.1000] Counts FP loads that hit a P-cache line that was
prefetched by a software-prefetch instruction.

PC_hard_hit [PICU 01.1010] Counts FP loads that hit a P-cache line that was
prefetched by a hardware prefetch.

PC_snoop_inv [PICU 01.1001] Counts P-cache invalidates generated by a snoop
from a remote processor and stores by a local processor.

PC_port0_rd [PICL 01.0000] Counts P-cache cacheable FP loads to the first port
(general-purpose load path to D-cache and P-cache via MS pipeline).

PC_port1_rd [PICU 01.1011] Counts P-cache cacheable FP loads to the second
port (memory and out-of-pipeline instruction execution loads via the A0
and A1 pipelines).

TABLE 11-13 Counters for L2-cache Events

Counter Description

EC_ref [PICL 00.1100] Counts L2-cache reference events. A 64-byte
request is counted as one reference. Includes speculative D-cache load
requests that turn out to be a D-cache hit. Count includes cacheable
accesses only.

EC_misses [PICU 00.1100] Counts L2-cache miss events sent to the System
Interface Unit. Includes I-cache, D-cache, P-cache, W-cache exclusive
(store), read stream (BLD), write stream (BST) requests that miss
L2-cache. Count includes cacheable accesses only.
Chapter 11 Performance Instrumentation 239

11.5.6 Separating D-cache Stall Cycle Counts

The D-Cache stall cycle counts can be measured separately for L2-cache hits and misses by

using the Re_DC_missovhd counter. The Re_DC_missovhd stall cycle counter is used with

the recirculation and cache access events to separately calculate the D-cache loads that hit

and miss the L2-cache. TABLE 11-14 describes the Re_DC_missovhd stall cycle counter

processor compatibility.

Synthesizing Individual Hit and Miss Stall Times

To explain the synthesis for L2-cache hit and miss stall times separately, consider the four

stall regions A, B, C, and D shown in FIGURE 11-5 and the definitions and calculations that

follow.

EC_write_hit_RDO [PICL 00.1101] Counts W-cache exclusive requests that hit
L2-cache in S or O state and thus, do a read-to-own (RDO) bus
transaction.

EC_wb [PICU 00.1101] Counts dirty subblocks that produce writebacks
due to L2-cache miss events.

EC_snoop_inv [PICL 00.1110] Counts L2-cache invalidates generated from a
snoop by a remote processor.

EC_snoop_cb [PICU 00.1110] Counts L2-cache copybacks generated from a
snoop by a remote processor.

EC_rd_miss [PICL 00.1111] Counts L2-cache miss events (including atomics)
from D-cache requests. Cacheable D-cache loads only.

EC_ic_miss [PICU 00.1111] Counts L2-cache read misses from I-cache
requests. The counter counts all I-cache misses including those for
instructions from the mis-speculated execution path. Cacheable requests
only.

TABLE 11-14 Re_DC_missovhd Stall Cycle Counter Processor Compatibility

Function Description

Miss Overhead Cycle Monitor
The Re_DC_missovhd cycle stall counter is defined in
TABLE 11-8 and in the equations below.

TABLE 11-13 Counters for L2-cache Events (Continued)

Counter Description
240 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE 11-5 D-Cache Load Miss Stall Regions

L2-cache Hit:

L2-cache Miss:

A B

DC

L2-cache Hit/MissD-cache load miss Recirculated load reaches
at D Pipeline stage is reported D Pipeline stage again

Stall Time (clock cycles)

T0 T1 T2 T3

D-cache misses to L2-cache

Re_DC_miss (stall cycles) = (A + B + C + D) stall cycles

miss L2
DC_rd_miss (events)
EC_rd_miss (events)

miss D-cache
==Fraction of D-cache misses

that miss L2-cache

Synthesized Stall Cycle Counts:

Definitions:

(C) Stall Cycles = Re_DC_missovhd * Miss L2 Ratio

L2-cache Miss Stall Cycles = (C + D) = (C) + Re_EC_miss

Miss L2 Ratio=

L2-cache Hit Stall Cycles = (A + B) = Re_DC_miss - (C + D)

Re_EC_miss (stall cycles) = (D) stall cycles

Re_DC_missovhd (stall cycles) = (A + C) stall cycles
Chapter 11 Performance Instrumentation 241

11.6 Memory Controller Counters

This section describes the memory controller counters in the UltraSPARC IIIi processor.

Descriptions of counters for the UltraSPARC IIIi processor memory controller is shown in

TABLE 11-15.

TABLE 11-15 Memory Controller Counters

Counter Description

MC_read_dispatched [PICL 10.0000] Counts the number of DDR
64-byte reads dispatched by the MIU.

MC_write_dispatched [PICL 10.0001] Counts the number of DDR
64-byte writes dispatched by the MIU.

MC_read_returned_to_JBU [PICL 10.0010] Counts the number of 64-byte
reads that return data to JBU.

MC_msl_busy_stall [PICL 10.0011] Counts the number of stall
cycles due to msl_busy.

MC_mdb_overflow_stall [PICL 10.0100] Counts the number of stall
cycles due to potential memory data buffer overflow.

MC_miu_spec_request [PICL 10.0101] Counts the number of
speculative requests accepted by MIU.

MC_open_bank_cmds [PICU 10.0000] Counts the number of open
bank commands sent to the DDR SDRAM. With
PTB enabled in MCU, this is PTB miss, no entry in
PTB.

MC_reads [PICU 10.0001] Counts the number of DDR
64-byte reads by the MSL.

MC_writes [PICU 10.0010] Counts the number of DDR
64-byte writes by the MSL.

MC_page_close_stall [PICU 10.0011] Counts the number of DDR
page conflicts. When there is already a Page
Tracking Buffer (PTB) entry, and a different page in
the same bank needs to be opened, a page close is
needed before opening a new page. Always zero
when PTB is disabled.
242 UltraSPARC IIIi Processor User’s Manual • June 2003

11.7 Miscellaneous Counters

11.7.1 System Interface Events and Clock Cycles

System interface statistics are collected through the counters listed in TABLE 11-16.

11.7.2 Software Events

Software statistics are collected through the counters listed in TABLE 11-17.

Note – Both counters measure the same event; thus, the count can be programmed to be

read from either the PICL or the PICU register.

TABLE 11-16 Counters for System Interface Statistics

Counter Description

SI_snoop [PICL 01.0001] Counts snoops from remote processor(s) including RDS,
RDO.

SI_ciq_flow [PICL 01.0010] Counts system clock cycles when the flow control
(DOK/AOK) is asserted from this processor.

SI_owned [PICL 010011] Counts the number of times J_PACK indicating OWNED
is asserted on requests.

TABLE 11-17 Counters for Software Statistics

Counter Description

SW_count0 [PICL 01.0100] Counts software-generated occurrences of sethi
%hi(0xfc000), %g0 instruction.

SW_count1 [PICU 01.1100] Counts software-generated occurrences of sethi
%hi(0xfc000), %g0 instruction.
Chapter 11 Performance Instrumentation 243

11.7.3 Floating-Point Operation Events

Floating-point operation statistics are collected through the counters listed in TABLE 11-18.

11.8 PCR.SL and PCR.SU Encodings

TABLE 11-19 lists PCR.SL and PCR.SL selection bit field encoding. Shaded blocks show SL
and SU field duplications.

TABLE 11-18 Counters for Floating-Point Operation Statistics

Event Counter Description

FA_pipe_completion [PICL 01.1000] Counts instructions that complete execution on the
Floating-Point/Graphics ALU pipelines.

FM_pipe_completion [PICU 10.0111] Counts instructions that complete execution on the
Floating-Point/Graphics Multiply pipelines.

TABLE 11-19 PIC.SL and PIC.SU Selection Bit Field Encoding

PCR.SL and
PCR.SU
Encodings PICL Event Selection PICU Event Selection

00.0000 Cycle_cnt Cycle_cnt

00.0001 Instr_cnt Instr_cnt

00.0010 Dispatch0_IC_miss Dispatch0_mispred

00.0011 Dispatch0_br_target IC_miss_cancelled

00.0100 Dispatch0_2nd_br Re_DC_missovhd

00.0101 Rstall_storeQ Re_FPU_bypass

00.0110 Rstall_IU_use Re_DC_miss

00.0111 Reserved Re_EC_miss

00.1000 IC_ref IC_miss

00.1001 DC_rd DC_rd_miss

00.1010 DC_wr DC_wr_miss

00.1011 Reserved Rstall_FP_use

00.1100 EC_ref EC_misses

00.1101 EC_write_hit_RDO EC_wb

00.1110 EC_snoop_inv EC_snoop_cb

00.1111 EC_rd_miss EC_ic_miss

01.0000 PC_port0_rd Re_PC_miss

01.0001 SI_snoop ITLB_miss

01.0010 SI_ciq_flow DTLB_miss
244 UltraSPARC IIIi Processor User’s Manual • June 2003

01.0011 SI_owned WC_miss

01.0100 SW_count0 WC_snoop_cb

01.0101 IU_Stat_Br_miss_taken WC_scrubbed

01.0110 IU_Stat_Br_count_taken WC_wb_wo_read

01.0111 Dispatch_rs_mispred Reserved

01.1000 FA_pipe_completion PC_soft_hit

01.1001 Reserved PC_snoop_inv

01.1010 Reserved PC_hard_hit

01.1011 Reserved PC_port1_rd

01.1100 Reserved SW_count1

01.1101 Reserved IU_Stat_Br_miss_untaken

01.1110 Reserved IU_Stat_Br_count_untaken

01.1111 Reserved PC_MS_miss

10.0000 MC_read_dispatched MC_open_bank_cmds

10.0001 MC_write_dispatched MC_reads

10.0010 MC_read_returned_to_JBU MC_writes

10.0011 MC_msl_busy_stall MC_page_close_stall

10.0100 MC_mdb_overflow_stall Reserved

10.0101 MC_miu_spec_request Reserved

10.0110 Reserved Re_RAW_miss

10.0111 Reserved FM_pipe_completion

10.1000 Reserved Reserved

10.1001 Reserved Reserved

10.1010 -
11.1111

Reserved Reserved

TABLE 11-19 PIC.SL and PIC.SU Selection Bit Field Encoding (Continued)

PCR.SL and
PCR.SU
Encodings PICL Event Selection PICU Event Selection
Chapter 11 Performance Instrumentation 245

246 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTION VII

Special Topics
June 2003 Section VII • Special Topics • 247

248 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER 12

Reset and RED_state

The UltraSPARC IIIi processor can be reset using various mechanisms. This section deals
with the reset and RED_state for the UltraSPARC IIIi processor.

12.1 RED_state Characteristics
A processor enters RED_state by one of the two ways:

• Trapping when already at the maximum trap level

• Setting the PSTATE.RED

When the processor enters RED_state, it will clear the DCU Control Register, including
enable bits for I-cache, D-cache, I-MMU, D-MMU, and virtual and physical watchpoints.

Note – Exiting RED_state by writing zero to PSTATE.RED in the delay slot of a JMPL
is not recommended. A non-cacheable instruction prefetch can be made to the JMPL target,
which may be in a cacheable memory area. This condition could result in a bus error on
some systems and cause an instruction_access_error trap. The trap can be masked by setting
the NCEEN bit in the ESTATE_ERR_EN register to zero, but this approach will mask all
non-correctable error checking. Exiting RED_state with DONE or RETRY avoids the
problem.

12.2 Resets
Reset priorities from highest to lowest are Power-On Reset (POR), System Reset, Externally
Initiated Reset (XIR), Watchdog Reset (WDR), and Software-Initiated Reset (SIR).
249

12.2.1 Power-On Reset

A Power-On Reset (POR) occurs when the J_POR_L and J_RST_L pins are activated and stay
asserted until the processor is within its specified operating range. During POR, all other
resets and traps are ignored. POR has a trap type of 1 at physical address offset 0x20. Any
pending external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown after
POR. The following bits must be initialized before the caches are enabled:

• In the I-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

• In the D-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

• All L2-cache tags and data.

• The I-MMU and D-MMU TLBs must also be initialized.

• The P-cache valid bits must be initialized before any floating-point loads are executed.

Caution – Executing a DONE or RETRY instruction when TSTATE is uninitialized after a
POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using wrpr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is
not at risk of damaging the chip.

12.2.2 System Reset

A System Reset occurs when the J_RST_L pin is activated without J_POR_L.When this pin
is active, all other resets and traps are ignored. System Reset has a trap type of 1 at physical
address offset 0x20. Any pending external transactions are cancelled.

After a system reset, software must initialize the following bits as unknown:

In particular,

• The valid and micro-tag bits in the Instruction Cache,

• The valid and micro-tag bits in the D-cache,

• All L2-cache tags and data must be cleared before enabling the caches.

• The I-MMU and D-MMU TLBs must also be initialized.

Memory refresh continues uninterrupted during a System Reset. System interface, L2-cache
configuration, memory controller configuration are preserved across a System Reset.
250 UltraSPARC IIIi Processor User’s Manual • June 2003

The JBUS clock ratio is unaffected during this reset. Clock PLLs are reset during a
Power-On Reset, but not during a System Reset unless the appropriate bit in the CSR is set
before the System Reset.

There are bits in JIO that software can write to cause a System Reset, or Power-On Reset at
any time. CSRs on the UltraSPARC IIIi processor that change clock ratios generally do not
take effect until a System Reset.

12.2.3 Externally Initiated Reset (XIR)

An Externally Initiated Reset (XIR) is sent to all processors through the XIR transaction on
the JBUS. It causes an XIR defined in SPARC-V9, which has a trap type 0x3 at physical
address offset 0x60. It has higher priority than all other resets except Power-On Reset and
System Reset.

This reset (actually a trap) only affects the processors, rather than the entire system. Memory
state, cache state and most CSR states remain unchanged.

The saved PC and nPC will only be approximations since the trap is not precise with respect
to pipeline state.

Reset due to XIR for the UltraSPARC IIIi processor initiates fetch of instruction code from
Boot PROM, and the memory controller continues to perform refresh cycles in order to
preserve main memory contents.

12.2.4 Watchdog Reset (WDR) and error_state

The processor enters error_state when a trap occurs at TL = MAXTL.

The processor automatically exits error_state using WDR. The processor signals itself
internally to take a WDR and sets TT = 2. The WDR traps to the address at
RSTVaddr + 0x4016. WDR sets the processor in a state where it is prepared for diagnosis of
failures.

WDR affects only one processor, rather than the entire system. CWP updates due to window
traps that cause watchdog traps are the same as the no watchdog trap case.

12.2.5 Software-Initiated Reset (SIR)

A Software-Initiated Reset (SIR) is initiated by an SIR instruction within any processor. This
per-processor reset has a trap type 4 at physical address offset 0x80. SIR affects only one
processor, rather than the entire system.
Chapter 12 Reset and RED_state 251

12.3 RED_state Trap Vector
When a SPARC-V9 processor processes a reset or trap that enters RED_state, it takes a trap
at an offset relative to the RED_state_trap_vector base address (RSTVaddr). The trap offset
depends on the type of RED mode trap and takes the values:

• POR 0x20

• WDR 0x40

• XIR 0x60

• SIR 0x80

• Other 0xA0

In the UltraSPARC IIIi processor, the following is the RSTV base address:

• Virtual Address: 0xFFFF FFFF F000 0000

• Physical Address, PA[42:0]: 0x7FF F000 0000

The UltraSPARC IIIi processor has a RMTV pin to select a second RSTV to allow use of PC
compatible SuperIO chips on a PCI bus. The following is the second RSTV base address:

• Virtual Address: 0xFFFF FFFF FFFF 0000

• Physical Address, PA[42:0]: 0x7FF FFFF 0000

12.4 Initialization and Use of the Return Address
Stack
The need to initialize the various L1-cache and L2-cache states, and MMU states, is well
understood, but in the past the need to initialize other caching devices has been overlooked.
The Return Address Stack (RAS) is one such device. While it is initialized to zero when
RED mode is entered, zeroes may not be an appropriate PA or VA.

Failure Scenario

With the I-MMU off, the RAS can be used to generate a predicated physical address for
prefetch. However, the RAS may have a virtual address in it, from execution while the
I-MMU was enabled. This virtual address is used as is for instruction prefetch and may cause
side-effects at whatever destination it indicates, or other errors.
252 UltraSPARC IIIi Processor User’s Manual • June 2003

The UltraSPARC IIIi processor uses the RAS for prediction for CALL, RETURN, DONE, and
RETRY. The UltraSPARC IIIi processor considers RETURN to be a JMPL with an %rs1
equal to %o7 (normal subroutine) or %i7 (leaf subroutine).

There are possibly other cases that use RAS for prefetch. For instance, immediately after
writing to the LSU control register to enable the I-MMU.

The issue also exists whenever software turns off the I-MMU after executing for a while with
the I-MMU enabled. This should only happen due to traps to RED mode, for normal
software. There is no problem for the transition of I-MMU off to on, because I-MMU will
block the prefetch address if it is an I-MMU miss, and it will get flushed away when the
prediction is determined to be wrong.

Software Rules

After any reset, trap to RED mode, or transition of the I-MMU from on to off, the 8-level
RAS should be initialized with eight CALL instructions to a valid non-cacheable address
before PSTATE.RED turns off. If the I-MMU is enabled before PSTATE.RED turns off,
there may be no issue to worry about, if VA == 0x0 is unmapped, the prefetch will be
disabled.

The output of the RAS is forced to the Red Mode Trap Vector (RMTV) while
PSTATE.RED == 1. However, the RAS is initialized to zeroes, so when PSTATE.RED turns
off, the zeroes are used for prediction, and may not be valid addresses (cacheable or
non-cacheable).

12.5 Machine States
TABLE 12-1 shows the machine state created as a result of any reset, or after entering
RED_state.
Chapter 12 Reset and RED_state 253

e‡

xa0

xa4
TABLE 12-1 Machine State After Reset and in RED_state (1 of 5)

Name Fields
Power-On
Reset System Reset WDR XIR SIR RED_stat

Integer Registers Unknown Unchanged Unchanged

Floating-Point Registers Unknown Unchanged Unchanged

L2-Cache
Control Register

EC_MOSI
EC_Pwr_Up
EC_Act_Way++
EC_Block
EC_size++
EC_par_En
EC_ECC_en
EC_ECC_force
EC_check

1
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0

Unchanged

RSTV Value If processor pin rmtv = 0 VA=0xffff ffff f000 0000, PA=0x7ff f000 0000 else
VA=0xffff ffff ffff 0000, PA = 0x7ff ffff 0000.

PC
nPC

RSTV | 0x20

RSTV | 0x24

RSTV | 0x20

RSTV | 0x24

RSTV |
0x40
RSTV |
0x44

RSTV |
0x60
RSTV |
0x64

RSTV |
0x80
RSTV |
0x84

RSTV | 0

RSTV | 0

PSTATE MM
RED
PEF
AM

PRIV

IE

AG

CLE

TLE

IG

MG

0 (TSO)
1(RED_state)
1 (FPU on)
0 (Full 64-bit
address
1 (Privileged
mode)
0 (Disable
interrupts)
1 (Alternate
globals
selected)
0 (Current
little-endian)
0 (Trap little-
endian)
0 (Interrupt
globals not
selected)
0 (MMU
globals not
selected)

0 (TSO)
1(RED_state)
1 (FPU on)
0 (Full 64-bit
address
1 (Privileged
mode)
0 (Disable
interrupts)
1 (Alternate
globals
selected)
0 (current little-
endian)
0 (trap little-
endian)
0 (Interrupt
globals not
selected)
0 (MMU
globals not
selected)

0 (TSO)
1(RED_state)
1 (FPU on)
0 (Full 64-bit address)

1 (Privileged mode)

0 (Disable interrupts)

1 (Alternate globals
selected)

PSTATE.TLE

Unchanged

0 (Interrupt globals
not selected)

0 (MMU globals not
selected)

TBA<63:15> Unknown Unchanged Unchanged

Y Unknown Unchanged Unchanged

PIL Unknown Unchanged Unchanged
254 UltraSPARC IIIi Processor User’s Manual • June 2003

e‡
CWP Unknown Unchanged Unchanged except for register window traps

TT[TL] 1 1 Unchanged 3 4 Trap type

CCR Unknown Unchanged Unchanged

ASI Unknown Unchanged Unchanged

TL MAXTL MAXTL min(TL+1, MAXTL)

TPC[TL]
TNPC[TL]

Unknown
Unknown

Unchanged
Unchanged

PC
nPC

PC & ~0x1f
nPC=PC+4

PC
nPC

TSTATE CCR
ASI
PSTATE
CWP
PC
nPC

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

CCR
ASI
PSTATE
CWP
PC
nPC

TICK NPT
counter

1
Restart at 0

1
Restart at 0

Unchanged
Count

Unchanged
Restart at 0

Unchanged
Count

CANSAVE Unknown Unchanged Unchanged

CANRESTORE Unknown Unchanged Unchanged

OTHERWIN Unknown Unchanged Unchanged

CLEANWIN Unknown Unchanged Unchanged

WSTATE OTHER
NORMAL

Unknown
Unknown

Unchanged
Unchanged

Unchanged
Unchanged

VER MANUF
IMPL
MASK
MAXTL
MAXWIN

0x003E
0x0016
mask dependent
5
7

FSR All 0 0 Unchanged

FPRS All Unknown Unchanged Unchanged

Non-SPARC-V9 ASRs

SOFTINT Unknown Unchanged Unchanged

TICK_COMPARE INT_DIS
TICK_CMPR

1 (off)
0

1 (off)
0

Unchanged
Unchanged

STICK NPT
counter

1
0

1
0

Unchanged
Count

STICK_COMPARE INT_DIS
TICK_CMPR

1 (off)
0

1 (off)
0

Unchanged
Unchanged

TABLE 12-1 Machine State After Reset and in RED_state (2 of 5)

Name Fields
Power-On
Reset System Reset WDR XIR SIR RED_stat
Chapter 12 Reset and RED_state 255

e‡
PERF_CONTROL S1
S0
UT (trace user)
ST
(trace system)
PRIV
(priv access)

Unknown
Unknown
Unknown

Unknown

Unknown

Unchanged
Unchanged
Unchanged

Unchanged

Unchanged

Unchanged
Unchanged
Unchanged

Unchanged

Unchanged

PERF_COUNTER All Unknown Unknown Unknown

GSR IM
Others

0
Unknown

0
Unchanged

Unchanged
Unchanged

DISPATCH_CONTROL MS
SI
RPE
BPE
OBS
IFPOE

0
0
0
0
0
0

0
0
0
0
0
0

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

Non-SPARC-V9 ASIs

DCU_CONTROL WE
All others

0(off)
0 (off)

0(off)
0 (off)

Unchanged
0 (off)

INST_BREAKPOINT All 0 (off) 0 (off) Unchanged

VA_WATCHPOINT Unknown Unchanged Unchanged

PA_WATCHPOINT Unknown Unchanged Unchanged

I-& DMMU_SFSR, ASI
FT
E
CTXT
PRIV
W
OW (overwrite)
FV (SFSR valid)
NF
TM

Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
0
Unknown
Unknown

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
0
Unchanged
Unchanged

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

DMMU_SFAR Unknown Unchanged Unchanged

INTR_DISPATCH All 0 0 Unchanged

INTR_RECEIVE BUSY 0 0 Unchanged

SOURCE Unknown Unchanged Unchanged

ESTATE_ERR_EN All 0 (All off) 0 (All off) Unchanged

AFAR PA Unknown Unchanged Unchanged

AFSR All 0 Unchanged Unchanged

TABLE 12-1 Machine State After Reset and in RED_state (3 of 5)

Name Fields
Power-On
Reset System Reset WDR XIR SIR RED_stat
256 UltraSPARC IIIi Processor User’s Manual • June 2003

e‡
MCU_CTL_REG1 Clk_Update
Clk_Stop
30
Remaining bits

Unknown
Unknown
Unknown
0

0
0
0
Unchanged

Unchanged
Unchanged
Unchanged
Unchanged

MCU_CTL_REG2 CLK

PLL2_M1

PLL2_M2

Remaining bits

2

2

3

0

effect
propagated
effect
propagated
effect
propagated
Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

MCU_CTL_REG3 All Unknown Unchanged Unchanged

JBUS_CONFIG PAR_DLY

PORT_LOCN

PORT_PRES

DBG2

DTL

MID
MR
MT

AID{[4:3],[2:0]}

SW_JERR
E*_CLK
SRT

TOF

TOV

DBG1

CLK

ARB_MODE

0

0x7f

J_PACK6-
0<2:0>
0xf

{DOWN_25,
UP_OPEN}
0x3e
0
0

{00,J_ID
<2:0>}
0
0
0

0

0

0x7

0

0

effect
propagated
effect
propagated
unchanged

effect
propagated
unchanged

unchanged
unchanged
unchanged

effect
propagated
0
unchanged
effect
propagated
effect
propagated
effect
propagated
effect
propagated
effect
propagated
effect
propagated

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

Unchanged
Unchanged
Unchanged

Unchanged

Unchanged
Unchanged
Unchanged

Unchanged

Unchanged

Unchanged

Unchanged

JP_IMP_CTL0 All Varies Varies Varies

JP_IMP_CTL1 All 0 Unchanged Unchanged

TABLE 12-1 Machine State After Reset and in RED_state (4 of 5)

Name Fields
Power-On
Reset System Reset WDR XIR SIR RED_stat
Chapter 12 Reset and RED_state 257

e‡
*This register is read-only from the system.
‡ Processor states are only updated according to the following table if RED_state is entered due to a reset or a trap. If RED_state is entered

because the PSTATE.RED bit was explicitly set to 1, then software must create the appropriate states itself.
++ These bits will read as 0 after POR or System Reset, but subsequent to the first write to this register, will read as 1.

Effect propagated: Some CSRs have delayed effects after writes by software. The readable CSR is updated by the software write, and on
the next reset, the contents of a shadow register is updated from the CSR, which affects chip behavior from then on. Until the update
happens, the shadow register has the old state. If the reset event never happens, it will never have an effect. A Hard POR initializes the
shadow register to the same state as the readable CSR.

JP_IMP_CTL2 [63:8]
[7:0]

0
0

0
Unchanged

Unchanged

Other Processor-Specific States

Processor L2-Cache Tags, Micro-tags and
Data (Includes Data, Instruction, Prefetch,
and Write Caches)

Unknown Unknown Unchanged

Cache Snooping Enabled

Instruction Queue Empty

Store Queue Empty Empty Unchanged

I-TLB, D-TLB Mappings, Valid,
Lock, E-bit, NC-
bit, Global bit,
etc.

Unknown Unknown Unchanged

TABLE 12-1 Machine State After Reset and in RED_state (5 of 5)

Name Fields
Power-On
Reset System Reset WDR XIR SIR RED_stat
258 UltraSPARC IIIi Processor User’s Manual • June 2003

SECTIONVIII

Appendix
June 2003 Section VIII • Appendix • 259

260 UltraSPARC IIIi Processor User’s Manual • June 2003

CHAPTER A

Instruction Definitions

Related instructions are grouped into subsections. Each subsection consists of the following

parts:

1. A table of the opcodes defined in the subsection with the values of the field(s) that

uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations, a dash (—)

indicates that the field is reserved for future versions of the architecture and shall be zero

in any instance of the instruction. If the processor encounters nonzero values in these

fields, its behavior is undefined.

3. A description of the features, restrictions, and exception-causing conditions.

4. A list of exceptions that can occur as a consequence of attempting to execute the

instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, fast_instruction_access_MMU_miss, fast_ECC_error,
ECC_error (corrected ECC_error), WDR, and interrupts are not listed because they can

occur on any instruction. Instructions not implemented in hardware shall generate an

illegal_instruction exception and therefore will not generate any of the other exceptions

listed. The illegal_instruction exception is not listed because it can occur on any

instruction that triggers an instruction breakpoint or contains an invalid field.

Instruction latencies and execution rates are provided in Chapter 4 “Instruction Execution.”
261

O

A

A

A

A

A

A

B

B

B

B

B

C

C

C

D

E

F

F

F

F

F

F

TABLE A-2 summarizes the instruction set; the instruction definitions follow the table. Within

TABLE A-2 and throughout this chapter, certain opcodes are marked with mnemonic

superscripts. The superscripts and their meanings are defined in TABLE A-1.

TABLE A-1 Opcode Superscripts

Superscript Meaning

D Deprecated instruction

P Privileged opcode

PASI Privileged action if bit 7 of the referenced ASI is zero

PASR Privileged opcode if the referenced ASR register is privileged

PNPT Privileged action if PSTATE.PRIV = 0 and (S)TICK.NPT = 1

PPIC Privileged action if PCR.PRIV = 1

TABLE A-2 Instruction Set (1 of 6)

peration Name Page
V9 extension
formats

DD, ADDcc Add (and modify condition codes) 268

DDC, ADDCcc Add with carry (and modify condition codes) 268

LIGNADDRESS{_LITTLE} Calculate address for misaligned data 269 3

ND, ANDcc And (and modify condition codes) 335

NDN, ANDNcc And not (and modify condition codes) 335

RRAY(8,16,32) Three-Dimensional array addressing instructions 271 3

Pcc Branch on integer condition codes with prediction 288

iccD Branch on integer condition codes 425

MASK Set the GSR.MASK field 282 3

Pr Branch on contents of integer register with prediction (also known

as BRr)

283

SHUFFLE Permute bytes as specified by GSR.MASK 282 3

ALL Call and link 290

ASAPASI Compare and swap word in alternate space 291

ASXAPASI Compare and swap doubleword in alternate space 291

ONEP Return from trap 294

DGE(8,16,32){,L,N,LN} Edge handling instructions 295 3

ABS(s,d,q) Floating-point absolute value 308

ADD(s,d,q) Floating-point add 298

ALIGNDATA Perform data alignment for misaligned data 269 3

AND{S} Logical AND operation 332 3

ANDNOT(1,2){S} Logical AND operation with one inverted source 332 3

BfccD Branch on floating-point condition codes 423
262 UltraSPARC IIIi Processor User’s Manual • June 2003

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

O

BPfcc Branch on floating-point condition codes with prediction 285

CMP(s,d,q) Floating-point compare 300

CMPE(s,d,q) Floating-point compare (exception if unordered) 300

CMP(GT,LE,NE,EQ)(16,32) Pixel compare operations 369 3

DIV(s,d,q) Floating-point divide 310

dMULq Floating-point multiply double to quad 310

EXPAND Pixel expansion 377 3

iTO(s,d,q) Convert integer to floating-point 306

LUSH Flush instruction memory 313

LUSHW Flush register windows 315

MOV(s,d,q) Floating-point move 308

MOV(s,d,q)cc Move floating-point register if condition is satisfied 343

MOV(s,d,q)r Move floating-point register if integer register contents satisfy

condition

349

MUL(s,d,q) Floating-point multiply 310

MUL8x16 8x16 partitioned product 364 3

MUL8x16(AU,AL) 8x16 upper/lower α partitioned product 365 3

MUL8(SU,UL)x16 8x16 upper/lower partitioned product 366 3

MULD8(SU,UL)x16 8x16 upper/lower partitioned product 367 3

NAND{S} Logical NAND operation 332 3

NEG(s,d,q) Floating-point negate 308

NOR{S} Logical NOR operation 332 3

NOT(1,2){S} Copy negated source 332 3

ONE{S} One fill 332 3

OR{S} Logical OR operation 332 3

ORNOT(1,2){S} Logical OR operation with one inverted source 332 3

PACK(16,32, FIX) Pixel packing 373, 375,

376

3

PADD(16,32){S} Pixel add (single) 16- or 32-bit 361 3

PMERGE Pixel merge 378 3

PSUB(16,32){S} Pixel subtract (single) 16- or 32-bit 361 3

sMULd Floating-point multiply single to double 310

SQRT(s,d,q) Floating-point square root 312

SRC(1,2){S} Copy source 332 3

(s,d,q)TOi Convert floating-point to integer 302

(s,d,q)TO(s,d,q) Convert between floating-point formats 304

(s,d,q)TOx Convert floating-point to 64-bit integer 302

TABLE A-2 Instruction Set (2 of 6)

peration Name Page
V9 extension
formats
Chapter A Instruction Definitions 263

F

F

F

F

F

I

J

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

O

SUB(s,d,q) Floating-point subtract 298

XNOR{S} Logical XNOR operation 332 3

XOR{S} Logical XOR operation 332 3

xTO(s,d,q) Convert 64-bit integer to floating-point 306

ZERO{S} Zero fill 332 3

LLTRAP Illegal instruction 316

MPL Jump and link 317

DDD Load integer doubleword 433

DDAD, PASI Load integer doubleword from alternate space 434

DDA ASI_NUCLEUS_QUAD* Atomic quad load 326 3

DDF Load double floating-point 318

DDFAPASI Load double floating-point from alternate space 274

DDFA ASI_BLK* Block loads 274 3

DDFA ASI_FL* Short floating-point loads (VIS I) 400 3

DF Load floating-point 318

DFAPASI Load floating-point from alternate space 318

DFSRD Load floating-point state register lower 431

DQF Load quad floating-point 318

DQFAPASI Load quad floating-point from alternate space 318

DSB Load signed byte 322

DSBAPASI Load signed byte from alternate space 324

DSH Load signed halfword 322

DSHAPASI Load signed halfword from alternate space 324

DSTUB Load-store unsigned byte 329

DSTUBAPASI Load-store unsigned byte in alternate space 330

DSW Load signed word 322

DSWAPASI Load signed word from alternate space 324

DUB Load unsigned byte 322

DUBAPASI Load unsigned byte from alternate space 324

DUH Load unsigned halfword 322

DUHAPASI Load unsigned halfword from alternate space 324

DUW Load unsigned word 322

DUWAPASI Load unsigned word from alternate space 324

DX Load extended 322

TABLE A-2 Instruction Set (3 of 6)

peration Name Page
V9 extension
formats
264 UltraSPARC IIIi Processor User’s Manual • June 2003

L

L

M

M

M

M

M

N

O

O

P

P

P

P

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

O

DXAPASI Load extended from alternate space 324

DXFSR Load floating-point state register 318

EMBAR Memory barrier 337

OVcc Move integer register if condition is satisfied 343

OVr Move integer register on contents of integer register 356

ULSccD Multiply step (and modify condition codes) 436

ULX Multiply 64-bit integers 357

OP No operation 358

R, ORcc Inclusive OR (and modify condition codes) 335

RN, ORNcc Inclusive OR not (and modify condition codes) 335

DIST Pixel component distance 371 3

OPC Population Count 378

REFETCH Prefetch data 379

REFETCHAPASI Prefetch data from alternate space 379

DASI Read ASI register 388

DASRPASR Read ancillary state register 388

DCCR Read condition codes register 388

DDCRP Read dispatch control register 388

DFPRS Read floating-point registers state register 388

DGSR Read graphic status register 388

DPC Read program counter 388

DPCRP Read performance control register 388

DPICPPIC Read performance instrumentation counters 388

DPRP Read privileged register 385

DSOFTINTP Read per-processor soft interrupt register 388

DSTICKPNPT Read system TICK register 388

DSTICK_CMPR Read system TICK compare register 388

DTICKPNPT Read TICK register 388

DTICK_CMPRP Read TICK compare register 388

DYD Read Y register 440

ESTORE Restore caller’s window 392

ESTOREDP Window has been restored 394

ETRYP Return from trap and retry 294

ETURN Return 390

TABLE A-2 Instruction Set (4 of 6)

peration Name Page
V9 extension
formats
Chapter A Instruction Definitions 265

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

O

AVE Save caller’s window 392

AVEDP Window has been saved 394

DIVD, SDIVccD 32-bit signed integer divide (and modify condition codes) 428

DIVX 64-bit signed integer divide 357

ETHI Set high 22 bits of low word of integer register 397

HUTDOWN Shut down the processor 402 3

IAM Set Interval Arithmetic Mode (VIS II) 395

IR Software-initiated reset 403

LL Shift left logical (IU) 398

LLX Shift left logical, extended (IU) 398

MULD, SMULccD Signed integer multiply (and modify condition codes) 436

RA Shift right arithmetic (IU) 398

RAX Shift right arithmetic, extended (IU) 398

RL Shift right logical (IU) 398

RLX Shift right logical, extended (IU) 398

TB Store byte (IU) 408

TBAPASI Store byte into alternate space (IU) 409

TBARD Store barrier 441

TDD Store doubleword 443

TDAD, PASI Store doubleword into alternate space 445

TDF Store double floating-point (FP) 404

TDFAPASI Store double floating-point into alternate space (FP) 406

TDFA ASI_BLK* Block stores 274 3

TDFA ASI_FL* Short floating-point stores (VIS I) 400 3

TDFA ASI_PST* Partial Store instructions 359 3

TF Store floating-point (FP) 404

TFAPASI Store floating-point into alternate space (FP) 406

TFSRD Store floating-point state register (FP) 442

TH Store halfword (IU) 408

THAPASI Store halfword into alternate space (IU) 409

TQF Store quad floating-point (FP) 404

TQFAPASI Store quad floating-point into alternate space (FP) 406

TW Store word (IU) 408

TWAPASI Store word into alternate space (IU) 409

TX Store extended (IU) 408

TABLE A-2 Instruction Set (5 of 6)

peration Name Page
V9 extension
formats
266 UltraSPARC IIIi Processor User’s Manual • June 2003

S

S

S

S

S

S

T

T

T

U

U

U

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

X

X

O

TXAPASI Store extended into alternate space (IU) 409

TXFSR Store extended floating-point state register (MS) 404

UB, SUBcc Subtract (and modify condition codes) 411

UBC, SUBCcc Subtract with carry (and modify condition codes) 411

WAPD Swap integer register with memory 446

WAPAD, PASI Swap integer register with memory in alternate space 448

ADDcc, TADDccTVD Tagged add and modify condition codes (trap on overflow) 412, 449

cc Trap on integer condition codes 415

SUBcc, TSUBccTVD Tagged subtract and modify condition codes (trap on overflow) 413, 450

DIVD, UDIVccD Unsigned integer divide (and modify condition codes) 428

DIVX 64-bit unsigned integer divide 357

MULD, UMULccD Unsigned integer multiply (and modify condition codes) 436

RASI Write ASI register 420

RASRPASR Write ancillary state register 420

RCCR Write condition codes register 420

RDCRP Write dispatch control register 420

RFPRS Write floating-point registers state register 420

RGSR Write graphic status register 420

RPCRP Write performance control register 420

RPICPPIC Write performance instrumentation counters register 420

RPRP Write privileged register 417

RSOFTINTP Write per-processor soft interrupt register 420

RSOFTINT_CLRP Clear bits of per-processor soft interrupt register 420

RSOFTINT_SETP Set bits of per-processor soft interrupt register 420

RTICK_CMPRP Write TICK compare register 420

RSTICKP Write System TICK register 420

RSTICK_CMPRP Write System TICK compare register 420

RYD Write Y register 452

NOR, XNORcc Exclusive NOR (and modify condition codes) 335

OR, XORcc Exclusive OR (and modify condition codes) 335

TABLE A-2 Instruction Set (6 of 6)

peration Name Page
V9 extension
formats
Chapter A Instruction Definitions 267

A.1 Add

Format (3)

Description

ADD and ADDcc compute “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1, and write the sum into r[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit;

that is, they compute “r[rs1] + r[rs2] + icc.c” or

“r[rs1] + sign_ext(simm13) + icc.c” and write the sum into r[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc).

Overflow occurs on addition if both operands have the same sign and the sign of the sum is

different.

Opcode Op3 Operation

ADD 00 0000 Add

ADDcc 01 0000 Add and modify condition codes

ADDC 00 1000 Add with Carry

ADDCcc 01 1000 Add with Carry and modify condition codes

Assembly Language Syntax

add regrs1, reg_or_imm, regrd

addcc regrs1, reg_or_imm, regrd

addc regrs1, reg_or_imm, regrd

addccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
268 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – ADDC and ADDCcc read the 32-bit condition codes carry bit

(CCR.icc.c), not the 64-bit condition codes carry bit (CCR.xcc.c).

Compatibility Note – ADDC and ADDCcc were named ADDX and ADDXcc, respectively,

in SPARC-V8.

Exceptions

None

A.2 Alignment Instructions (VIS I)

Format (3)

Opcode opf Operation

ALIGNADDRESS 0 0001 1000 Calculate address for misaligned data access

ALIGNADDRESS_LITTLE 0 0001 1010 Calculate address for misaligned data access little-

endian

FALIGNDATA 0 0100 1000 Perform data alignment for misaligned data

Assembly Language Syntax

alignaddr regrs1, regrs2, regrd

alignaddrl regrs1, regrs2, regrd

faligndata fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions 269

Description

ALIGNADDRESS adds two integer values, r[rs1] and r[rs2], and stores the result (with

the least significant three bits forced to zero in the integer register r[rd]. The least

significant three bits of the result are stored in the GSR.align field.

ALIGNADDRESS_LITTLE is the same as ALIGNADDRESS except that the two’s-

complement of the least significant 3 bits of the result is stored in GSR.align.

Note – ALIGNADDR_LITTLE generates the opposite-endian byte ordering for a subsequent

FALIGNDATA operation.

FALIGNDATA concatenates the two 64-bit floating-point registers specified by rs1 and rs2
to form a 128-bit (16-byte) intermediate value. The contents of the first source operand form

the more-significant 8 bytes of the intermediate value, and the contents of the second source

operand form the less-significant 8 bytes of the intermediate value. Bytes in the intermediate

value are numbered from most significant (byte 0) to least significant (byte 15). Eight bytes

are extracted from the intermediate value and stored in the 64-bit floating-point destination

register specified by rd. GSR.align, specifying the number of the most significant byte to

extract (therefore, the least significant byte extracted from the intermediate value is

numbered GSR.align + 7).

A byte-aligned 64-bit load can be performed as shown in CODE EXAMPLE A-1.

CODE EXAMPLE A-1 Byte-Aligned 64-Bit Load

Programming Note – For good performance, the result of FALIGNDATA should not be

used as a source operand for a 32-bit FP or VIS instruction in the next three instruction

groups.

Exceptions

fp_disabled

alignaddr Address, Offset, Address

ldd [Address], %f0

ldd [Address + 8], %f2

faligndata %f0, %f2, %f4
270 UltraSPARC IIIi Processor User’s Manual • June 2003

A.3 Three-Dimensional Array Addressing

Instructions (VIS I)

Format (3)

Description

These instructions convert three-dimensional (3D) fixed-point addresses contained in

r[rs1] to a blocked-byte address; they store the result in r[rd]. Fixed-point addresses

typically are used for address interpolation for planar reformatting operations. Blocking is

performed at the 64-byte level to maximize L2-cache block reuse, and at the 64 KB level to

maximize TLB entry reuse, regardless of the orientation of the address interpolation. These

instructions specify an element size of 8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits

(ARRAY32). The second operand, r[rs2], specifies the power-of-2 size of the X and Y

Opcode opf Operation

ARRAY8 0 0001 0000 Convert 8-bit 3D address to blocked byte address

ARRAY16 0 0001 0010 Convert 16-bit 3D address to blocked byte address

ARRAY32 0 0001 0100 Convert 32-bit 3D address to blocked byte address

Assembly Language Syntax

array8 regrs1, regrs2, regrd

array16 regrs1, regrs2, regrd

array32 regrs1, regrs2, regrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions 271

dimensions of a 3D image array. The legal values for rs2 and their meanings are shown in

TABLE A-3. Illegal values produce undefined results in the destination register, r[rd].

FIGURE A-1 illustrates a three-dimensional array fixed-point address format.

FIGURE A-1 Three-Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the following blocked-address formats

illustrated in FIGURE A-2, FIGURE A-3, and FIGURE A-4.

FIGURE A-2 Three-Dimensional Array Blocked-Address Format (Array8)

FIGURE A-3 Three-Dimensional Array Blocked-Address Format (Array16)

TABLE A-3 Three-Dimensional r[rs2] Array X/Y Dimensions

r[rs2] value Number of Elements

0 64

1 128

2 256

3 512

4 1024

5 2048

0323363 55 54 44 43 22 21 11 10

X fractionX integerY fractionY integerZ fractionZ integer

04 2

XYZ

Lower

513 9

XYZ

Middle

1717 17

XYZ

Upper

+ isrc2+ 2 isrc2
20
+ 2 isrc2

15 3

XYZ

Lower

614 10

XYZ

Middle

1818 18

XYZ

Upper

+ isrc2+ 2 isrc2
21
+ 2 isrc2

0

0

272 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE A-4 Three-Dimensional Array Blocked-Address Format (Array32)

The bits above Z upper are set to zero. The number of zeroes in the least significant bits is

determined by the element size. An element size of 8 bits has no zeroes, an element size of

16 bits has one zero, and an element size of 32 bits has two zeroes. Bits in X and Y above

the size specified by r[rs2] are ignored.

The code fragment in CODE EXAMPLE A-2 shows assembly of components along an

interpolated line at the rate of one component per clock.

CODE EXAMPLE A-2 Three-Dimensional Array Addressing Example

Note – To maximize reuse of L2-cache and TLB data, software should block array

references of a large image to the 64 KB level. This means processing elements within a

32x64x64 block.

Exceptions

None

add Addr, DeltaAddr, Addr

array8 Addr, %g0, bAddr

ldda [bAddr] ASI_FL8_PRIMARY, data

faligndata data, accum, accum

26 4

XYZ

Lower

715 11

XYZ

Middle

1919 19

XYZ

Upper

+ isrc2+ 2 isrc2
22
+ 2 isrc2

00

0

Chapter A Instruction Definitions 273

A.4 Block Load and Block Store (VIS I)

Format (3) LDDFA

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_BLK_AIUP 7016 64-byte block load/store from/to primary address

space, privilege mode access only

LDDFA
STDFA

ASI_BLK_AIUS 7116 64-byte block load/store from/to secondary

address space, privilege mode access only

LDDFA
STDFA

ASI_BLK_AIUPL 7816 64-byte block load/store from/to primary address

space, little-endian, privilege mode access only

LDDFA
STDFA

ASI_BLK_AIUSL 7916 64-byte block load/store from/to secondary

address space, little-endian, privilege mode access

only

LDDFA
STDFA

ASI_BLK_P F016 64-byte block load/store from/to primary address

space

LDDFA
STDFA

ASI_BLK_S F116 64-byte block load/store from/to secondary

address space

LDDFA
STDFA

ASI_BLK_PL F816 64-byte block load/store from/to primary address

space, little-endian

LDDFA
STDFA

ASI_BLK_SL F916 64-byte block load/store from/to secondary

address space, little-endian

STDFA ASI_BLK_COMMIT_P E016 64-byte block commit store to primary address

space

STDFA ASI_BLK_COMMIT_S E116 64-byte block commit store to secondary address

space

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0
274 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3) STDFA

Description

A block load (BLD) or block store (BST) instruction uses an LDDFA or STDFA instruction

combined with a block transfer ASI. Block transfer ASIs allow BLDs and BSTs to be

performed accessing the same address space as normal loads and stores. Little-endian ASIs

(those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed

to be big-endian. Byte swapping is performed separately for each of the eight double-

precision registers used by the instruction. Endianness does not matter if these instructions

are only being used for a block copy operation.

A BST with commit forces the data to be written to memory and invalidates copies in all

caches present. As a result, a BST with commit maintains coherency with the I-cache.1 It

does not, however, flush instructions that have already been fetched into the pipeline before

executing the modified code. If a BST with commit is used to write modified instructions, a

FLUSH instruction must still be executed to guarantee that the instruction pipeline is flushed.

LDDFA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned memory area

into the eight double-precision floating-point registers specified by rd. The lowest-addressed

eight bytes in memory are loaded into the lowest-numbered double-precision destination

register. An illegal_instruction exception occurs if the floating-point registers are not aligned

on an eight double-precision register boundary. The least significant six bits of the memory

address must be zero or a mem_address_not_aligned exception occurs.

STDFA with a block transfer ASI stores data from the eight double-precision floating-point

registers specified by rs1 to a 64-byte-aligned memory area. The lowest-addressed eight

bytes in memory are stored from the lowest-numbered double-precision rd. An

Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi

1. All store instructions in the processor coherently update the instruction cache. In general SPARC-V9 implementations,

the store instructions (other than BST with Commit) do not maintain data coherency between instruction and data caches.

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
Chapter A Instruction Definitions 275

illegal_instruction exception occurs if the floating-point registers are not aligned on an eight

register boundary. The least significant 6 bits of the memory address must be zero or a

mem_address_not_aligned exception occurs.

ASIs E016 and E116 are only used for BST with commit operations; they are not used for

BLD operations.

Programming Note – In the UltraSPARC IIIi processor, BLD does not offer a

performance advantage over normal loads. For high performance, the use of prefetch

instructions and 8-byte loads is recommended. BST and BST with commit can offer

performance advantage and are used in high performance UltraSPARC IIIi processor

libraries.

Programming Note – BLD does not provide register dependency interlocks, as ordinary

load instructions do.

Before BLD data can be referenced, a second BLD (to a different set of registers) or a

MEMBAR #Sync must be performed. If a second BLD is used to synchronize against

returning data, the processor will continue execution before all data has been returned. The

programmer is then responsible for scheduling instructions so registers are only used when

they become valid.

To determine when data is valid, the programmer must count instruction groups containing

floating-point (FP) operate instructions (not FP loads or stores). The lowest-numbered

destination register of the first BLD may be referenced in the first instruction group

following the second BLD, using an FP operate instruction only.

The second-lowest-numbered destination register of the first BLD may be referenced in the

second instruction group containing an FP operate instruction, and so on.

If this block-load/block-load synchronization mechanism is used, the initial reference to the

BLD data must be an FP operate instruction (not an FP store), and only instruction groups

with FP operate instructions are counted when determining BLD data availability.

If these rules are violated, data from before or after the BLD may be returned by a reference

to any of the BLD’s destination registers.

If a MEMBAR #Sync is used to synchronize on BLD data, there are no restrictions on data

usage, although performance will be lower than if block-load/block-load synchronization is

used. No other MEMBARs can be used to provide data synchronization for BLD.

FP operate instructions can be issued in a single instruction group with FP stores. If block-

load/block-load synchronization is used, FP operates and FP stores can be interlaced. This

allows an FP operate instruction, such as FMOVD or FALIGNDATA, to reference the returning

data before using the data in any FP store (normal store or BST).
276 UltraSPARC IIIi Processor User’s Manual • June 2003

The processor also continues execution, without register interlocks, before all the store data

for BSTs are transferred from the register file.

If store source registers are overwritten before the next BST or MEMBAR #Sync instruction,

then the following rule must be observed: The first register can be overwritten in the same

instruction group as the BST, the second register can be overwritten in the instruction group

following the BST, and so on. If this rule is violated, the BST may use the old or the new

(overwritten) data.

When determining correctness for a code sample, note that the processor may interlock more

than what is required above. For example, there may be partial register interlocks, such as on

the lowest-number register.

Code that does not meet the above constraints may appear to work on a particular processor.

However, to be portable across all processors similar to the UltraSPARC IIIi processor, all of

the above rules should be followed.

Rules

Note – These instructions are used for transferring large blocks of data (more than

256 bytes), for example, in C library routines bcopy() and bfill(). They do not allocate

in the data cache or L2-cache on a miss. They update the L2-cache on a hit. One BLD and,

in the most extreme cases, up to fifteen (maximum) BSTs can be outstanding on the

interconnect at one time.

To simplify the implementation, BLD destination registers may or may not interlock like

ordinary load instructions. Before the BLD data is referenced, a second BLD (to a different

set of registers) or a MEMBAR #Sync must be performed. If a second BLD is used to

synchronize with returning data, then it continues execution before all data have been

returned. The lowest-number register being loaded can be referenced in the first instruction

group following the second BLD, the second lowest number register can be referenced in the

second group, and so on. If this rule is violated, data from before or after the load may be

returned.

Similarly, BST source data registers are not interlocked against completion of previous load

instructions (even if a second BLD has been performed). The previous load data must be

referenced by some other intervening instruction, or an intervening MEMBAR #Sync must be

performed. If the programmer violates these rules, data from before or after the load may be

used. The load continues execution before all of the store data have been transferred. If store

data registers are overwritten before the next BST or MEMBAR #Sync instruction, then the

following rule must be observed: The first register can be overwritten in the same instruction

group as the BST, the second register can be overwritten in the instruction group following

the BST, and so on. If this rule is violated, the store may store correct data or the overwritten

data.
Chapter A Instruction Definitions 277

There must be a MEMBAR #Sync or a trap following a BST before a DONE, RETRY, or WRPR
to PSTATE instruction is executed. If this is rule is violated, instructions after the DONE,

RETRY, or WRPR to PSTATE may not see the effects of the updated PSTATE register.

BLD does not follow memory model ordering with respect to stores. In particular, read-after-

write and write-after-read hazards to overlapping addresses are not detected. The side-effects

bit (TTE.E) associated with the access is ignored. Some ordering considerations are as

follows:

• If ordering with respect to earlier stores is important (for example, a BLD that overlaps

previous stores), then there must be an intervening MEMBAR #StoreLoad or stronger

MEMBAR.

• If ordering with respect to later stores is important (for example, a BLD that overlaps a

subsequent store), then there must be an intervening MEMBAR #LoadStore or a

reference to the BLD data. This restriction does not apply when a trap is taken; therefore,

the trap handler does not have to worry about pending BLDs.

• If the BLD overlaps a previous or later store and there is no intervening MEMBAR, then the

trap or data referencing the BLD may return data from before or after the store.

BST does not follow memory model ordering with respect to loads, stores, or flushes. In

particular, read-after-write, write-after-write, flush-after-write, and write-after-read hazards to

overlapping addresses are not detected. The side-effects bit associated with the access is

ignored. Some ordering considerations are as follows:

• If ordering with respect to earlier or later loads or stores is important, then there must be

an intervening reference to the load data (for earlier loads) or an appropriate MEMBAR
instruction. This restriction does not apply when a trap is taken; therefore, the trap handler

does not have to worry about pending BSTs.

• If the BST overlaps a previous load and there is no intervening load data reference or

MEMBAR #StoreLoad instruction, then the load may return data from before or after the

store and the contents of the block are undefined.

• If the BST overlaps a later load and there is no intervening trap or

MEMBAR #LoadStore instruction, then the contents of the block are undefined.

• If the BST overlaps a later store or flush and there is no intervening trap or

MEMBAR #Sync instruction, then the contents of the block are undefined.

• If the ordering of two successive BST instructions (overlapping or not) is required, then a

MEMBAR #Sync must occur between the BST instructions.

Block operations do not obey the ordering restrictions of the currently selected processor

memory model (TSO, PSO, RMO). Block operations always execute under an RMO memory

ordering model. Explicit MEMBAR instructions are required to order block operations among

themselves or with respect to normal memory operations. In addition, block operations do

not conform to dependence order on the issuing processor; that is, no read-after-write, write-

after-read, or write-after-write checking occurs between block operations. Explicit

MEMBAR #Sync instructions are required to enforce dependence ordering between block

operations that reference the same address.
278 UltraSPARC IIIi Processor User’s Manual • June 2003

Typically, BLD and BST will be used in loops where software can ensure that the data being

loaded and the data being stored do not overlap. The loop will be preceded and followed by

the appropriate MEMBARs to ensure that there are no hazards with loads and stores outside the

loops. CODE EXAMPLE A-3 demonstrates the loop.

CODE EXAMPLE A-3 Byte-Aligned Block Copy Inner Loop with Block Load/Block Store

Note that the loop must be unrolled two times to achieve maximum performance. All FP registers

are double-precision. Eight versions of this loop are needed to handle all the cases of doubleword

misalignment between the source and destination.

loop:

faligndata %f0, %f2, %f34

faligndata %f2, %f4, %f36

faligndata %f4, %f6, %f38

faligndata %f6, %f8, %f40

faligndata %f8, %f10, %f42

faligndata %f10, %f12, %f44

faligndata %f12, %f14, %f46

addcc %l0, -1, %l0

bg,pt l1

fmovd %f14, %f48

! (end of loop handling)

l1: ldda [regaddr] ASI_BLK_P, %f0

stda %f32, [regaddr] ASI_BLK_P

faligndata %f48, %f16, %f32

faligndata %f16, %f18, %f34

faligndata %f18, %f20, %f36

faligndata %f20, %f22, %f38

faligndata %f22, %f24, %f40

faligndata %f24, %f26, %f42

faligndata %f26, %f28, %f44

faligndata %f28, %f30, %f46

addcc %l0, -1, %l0

be,pnt done

fmovd %f30, %f48

ldda [regaddr] ASI_BLK_P, %f16

stda %f32, [regaddr] ASI_BLK_P
Chapter A Instruction Definitions 279

Bcopy Code

To achieve the highest Bcopy bandwidths, use prefetch instructions and floating-point loads

instead of BLD instructions. Using prefetch instructions to bring memory data into the

prefetch cache hides all of the latency to memory. This allows a Bcopy loop to run at

maximum bandwidth. CODE EXAMPLE A-4 shows how to modify the standard UltraSPARC I

processor bcopy() loop to use PREFETCH and floating-point load instructions instead of

BLDs.

ba loop

faligndata %f48, %f0, %f32

done: !(end of loop processing)

CODE EXAMPLE A-4 High-Performance bcopy() Preamble Code

preamble:

prefetch [srcaddr],1

prefetch [srcaddr+0x40],1

prefetch [srcaddr+0x80],1

prefetch [srcaddr+0xc0],1

lddf [srcaddr],%f0

prefetch [srcaddr+0x100],1

lddf [srcaddr+0x8],%f2

lddf [srcaddr+0x10],%f4

faligndata %f0,%f2,%f32

lddf [srcaddr+0x18],%f6

faligndata %f2,%f4,%f34

lddf [srcaddr+0x20],%f8

faligndata %f4,%f6,%f36

lddf [srcaddr+0x28],%f10

faligndata %f6,%f8,%f38

lddf [srcaddr+0x30],%f12

faligndata %f8,%f10,%f40

lddf [srcaddr+0x38],%f14

faligndata %f10,%f12,%f42

lddf [srcaddr+0x40],%f16

subcc count,0x40,count

bpe <exit>

add srcaddr,0x40,srcaddr

CODE EXAMPLE A-3 Byte-Aligned Block Copy Inner Loop with Block Load/Block Store
280 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

fp_disabled
PA_watchpoint (recognized on only the first 8 bytes of a transfer)

VA_watchpoint (recognized on only the first 8 bytes of a transfer)

illegal_instruction (misaligned rd)

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

loop:

1 fmovd %f16,%f0

1 lddf [srcaddr+0x8],%f2

2 faligndata %f12,%f14,%f44

2 lddf [srcaddr+0x10],%f4

3 faligndata %f14,%f0,%f46

3 stda %f32,[dstaddr] ASI_BLK_P

3 lddf [srcaddr+0x18],%f6

4 faligndata %f0,%f2,%f32

4 lddf [srcaddr+0x20],%f8

5 faligndata %f2,%f4,%f34

5 lddf [srcaddr+0x28],%f10

6 faligndata %f4,%f6,%f36

6 lddf [srcaddr+0x30],%f12

7 faligndata %f6,%f8,%f38

7 lddf [srcaddr+0x38],%f14

8 faligndata %f8,%f10,%f40

8 lddf [srcaddr+0x40],%f16

8 prefetch [srcaddr+0x100],1

9 faligndata %f10,%f12,%f42

9 subcc count,0x40,count

9 add dstaddr,0x40,dstaddr

9 bpg loop

1 add srcaddr,0x40,srcaddr

CODE EXAMPLE A-4 High-Performance bcopy() Preamble Code (Continued)
Chapter A Instruction Definitions 281

A.5 Byte Mask and Shuffle Instructions (VIS II)

Format (3)

Description

BMASK adds two integer registers, r[rs1] and r[rs2], and stores the result in the integer

register r[rd]. The least significant 32 bits of the result are stored in the GSR.mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers specified by rs1 (more-

significant half) and rs2 (less-significant half) to form a 16-byte value. Bytes in the

concatenated value are numbered from most significant to least significant, with the most

significant byte being byte 0. BSHUFFLE extracts 8 of the 16 bytes and stores the result in

the 64-bit floating-point register specified by rd. Bytes in the rd register are also numbered

from most to least significant, with the most significant being byte 0. The following table

indicates which source byte is extracted from the concatenated value for each byte in rd.

Opcode opf Operation

BMASK 0 0001 1001 Set the GSR.MASK field in preparation for a

following BSHUFFLE instruction

BSHUFFLE 0 0100 1100 Permute bytes as specified by GSR.MASK

Assembly Language Syntax

bmask regrs1, regrs2, regrd

bshuffle fregrs1, fregrs2, fregrd

Destination Byte (in r[rd]) Source Byte

0 (Most significant) (r[rs1] r[rs2])[GSR.mask<31:28>]

1 (r[rs1] r[rs2])[GSR.mask<27:24>]

2 (r[rs1] r[rs2])[GSR.mask<23:20>]

3 (r[rs1] r[rs2])[GSR.mask<19:16>]

4 (r[rs1] r[rs2])[GSR.mask<15:12>]

5 (r[rs1] r[rs2])[GSR.mask<11:8>]

6 (r[rs1] r[rs2])[GSR.mask<7:4>]

7 (Least significant) (r[rs1] r[rs2])[GSR.mask<3:0>]

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
282 UltraSPARC IIIi Processor User’s Manual • June 2003

Note – The BMASK instruction uses the MS pipeline; therefore, it cannot be grouped with a

store, non-prefetchable load, or a special instruction. The integer rd register result is

available after a two-cycle latency. A younger BMASK can be grouped with an older

BSHUFFLE (BMASK is “break-after”).

Results have a four-cycle latency to other dependent instructions executed in FGA and FGM

pipelines. The FGA pipeline is used to execute BSHUFFLE. The GSR mask must be set at or

before the instruction group previous to the BSHUFFLE (GSR.mask dependency).

BSHUFFLE is fully pipelined (one per cycle).

Exceptions

fp_disabled

A.6 Branch on Integer Register with Prediction

(BPr)

Format (2)

Opcode rcond Operation Register Contents Test

— 000 Reserved —

BRZ 001 Branch on Register Zero r[rs1] = 0

BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rs1] ≤ 0

BRLZ 011 Branch on Register Less Than Zero r[rs1] < 0

— 100 Reserved —

BRNZ 101 Branch on Register Not Zero r[rs1] ≠ 0

BRGZ 110 Branch on Register Greater Than Zero r[rs1] > 0

BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rs1] ≥ 0

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0 rcond 011 d16hi p rs1 d16lo
Chapter A Instruction Definitions 283

Programming Note – To set the annul bit for BPr instructions, append “,a” to the

opcode mnemonic. For example, use “brz,a %i3, label.” In the preceding table, braces

signify that the “,a” is optional. To set the branch prediction bit p, append either “,pt” for

predict taken or “,pn” for predict not taken to the opcode mnemonic. If neither “,pt” nor

“,pn” is specified, the assembler shall default to “,pt.”

Programming Note – Both BP and BR represent branch on integer register with

prediction. They are, in fact, the same instruction.

Description

These instructions branch based on the contents of r[rs1]. They treat the register contents

as a signed integer value.

A BPr instruction examines all 64 bits of r[rs1] according to the rcond field of the

instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is,

the instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 * sign_ext(d16hi d16lo)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the

annul bit. If the branch is not taken and the annul bit (a) is one, the delay instruction is

annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be

taken. A one in the p bit indicates that the branch is expected to be taken; a zero indicates

that the branch is expected not to be taken.

Implementation Note – The UltraSPARC IIIi processor does not implement this

instruction by tagging each register value. The UltraSPARC IIIi processor looks at the full

64-bit register to determine a negative or zero.

Assembly Language Syntax

brz{,a}{,pt|,pn} regrs1, label

brlez{,a}{,pt|,pn} regrs1, label

brlz{,a}{,pt|,pn} regrs1, label

brnz{,a}{,pt|,pn} regrs1, label

brgz{,a}{,pt|,pn} regrs1, label

brgez{,a}{,pt|,pn} regrs1, label
284 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

illegal_instruction (if rcond = 0002 or 1002)

A.7 Branch on Floating-Point Condition Codes

with Prediction (FBPfcc)

Format (2)

Opcode cond Operation fcc Test

FBPA 1000 Branch Always 1

FBPN 0000 Branch Never 0

FBPU 0111 Branch on Unordered U

FBPG 0110 Branch on Greater G

FBPUG 0101 Branch on Unordered or Greater G or U

FBPL 0100 Branch on Less L

FBPUL 0011 Branch on Unordered or Less L or U

FBPLG 0010 Branch on Less or Greater L or G

FBPNE 0001 Branch on Not Equal L or G or U

FBPE 1001 Branch on Equal E

FBPUE 1010 Branch on Unordered or Equal E or U

FBPGE 1011 Branch on Greater or Equal E or G

FBPUGE 1100 Branch on Unordered or Greater or Equal E or G or U

FBPLE 1101 Branch on Less or Equal E or L

FBPULE 1110 Branch on Unordered or Less or Equal E or L or U

FBPO 1111 Branch on Ordered E or L or G

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0
Chapter A Instruction Definitions 285

Programming Note – To set the annul bit for FBPfcc instructions, append “,a” to the

opcode mnemonic. For example, use “fbl,a %fcc3,label.” In the preceding table,

braces signify that the “,a” is optional. To set the branch prediction bit, append either

“,pt” (for predict taken) or “,pn” (for predict not taken) to the opcode mnemonic. If

neither “,pt” nor “,pn” is specified, the assembler shall default to “,pt.” To select the

appropriate floating-point condition code, include “%fcc0,” “%fcc1,” “%fcc2,” or

“%fcc3” before the label.

Description

Unconditional branches and Fcc-conditional branches are described below.

cc1 cc0 Condition Code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

Assembly Language Syntax

fba{,a}{,pt|,pn} %fccn, label

fbn{,a}{,pt|,pn} %fccn, label

fbu{,a}{,pt|,pn} %fccn, label

fbg{,a}{,pt|,pn} %fccn, label

fbug{,a}{,pt|,pn} %fccn, label

fbl{,a}{,pt|,pn} %fccn, label

fbul{,a}{,pt|,pn} %fccn, label

fblg{,a}{,pt|,pn} %fccn, label

fbne{,a}{,pt|,pn} %fccn, label (synonym: fbnz)

fbe{,a}{,pt|,pn} %fccn, label (synonym: fbz)

fbue{,a}{,pt|,pn} %fccn, label

fbge{,a}{,pt|,pn} %fccn, label

fbuge{,a}{,pt|,pn} %fccn, label

fble{,a}{,pt|,pn} %fccn, label

fbule{,a}{,pt|,pn} %fccn, label

fbo{,a}{,pt|,pn} %fccn, label
286 UltraSPARC IIIi Processor User’s Manual • June 2003

• Unconditional branches (FBPA, FBPN) — If its annul field is zero, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the Branch

Never annul field is zero, the following (delay) instruction is executed; if the annul field is

one, the following instruction is annulled (not executed). In no case does an FBPN cause

a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-

relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If

the annul field of the branch instruction is one, the delay instruction is annulled (not

executed). If the annul field is zero, the delay instruction is executed.

• Fcc-conditional branches — Conditional FBPfcc instructions (except FBPA and FBPN)

evaluate one of the four floating-point condition codes (fcc0, fcc1, fcc2, fcc3) as

selected by cc0 and cc1, according to the cond field of the instruction, producing either

a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-

relative, delayed control transfer to the address “PC + (4 × sign_ext(disp19)).” If

FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the

value of the annul field. If a conditional branch is not taken and the annul field (a) is one,

the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on

unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected to be

taken. A one in the p bit indicates that the branch is expected to be taken. A zero indicates

that the branch is expected not to be taken.

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc instruction

is not executed and instead, an fp_disabled exception is generated.

Compatibility Note – Unlike SPARC-V8, SPARC-V9 does not require an instruction

between a floating-point compare operation and a floating-point branch (FBfcc, FBPfcc).

Exceptions

fp_disabled
Chapter A Instruction Definitions 287

A.8 Branch on Integer Condition Codes with

Prediction (BPcc)

Format (2)

Opcode cond Operation icc Test

BPA 1000 Branch Always 1

BPN 0000 Branch Never 0

BPNE 1001 Branch on Not Equal not Z

BPE 0001 Branch on Equal Z

BPG 1010 Branch on Greater not (Z or (N xor V))

BPLE 0010 Branch on Less or Equal Z or (N xor V)

BPGE 1011 Branch on Greater or Equal not (N xor V)

BPL 0011 Branch on Less N xor V

BPGU 1100 Branch on Greater Unsigned not (C or Z)

BPLEU 0100 Branch on Less or Equal Unsigned C or Z

BPCC 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C

BPCS 0101 Branch on Carry Set (Less than, Unsigned) C

BPPOS 1110 Branch on Positive not N

BPNEG 0110 Branch on Negative N

BPVC 1111 Branch on Overflow Clear not V

BPVS 0111 Branch on Overflow Set V

cc1 cc0 Condition Code

00 icc

01 —

10 xcc

11 —

31 1924 18 02530 29 28 22 21 20

00 a cond 001 cc1 p disp19cc0
288 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – To set the annul bit for BPcc instructions, append “,a” to the

opcode mnemonic. For example, use “bgu,a %icc,label.” Braces in the preceding table

signify that the “,a” is optional. To set the branch prediction bit, append to an opcode

mnemonic either “,pt” for predict taken or “,pn” for predict not taken. If neither “,pt”

nor “,pn” is specified, the assembler shall default to “,pt.” To select the appropriate integer

condition code, include “%icc” or “%xcc” before the label.

Description

Unconditional branches and conditional branches are described below:

• Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)

instruction for this branch type (op2 = 1) is used in SPARC-V9 as an instruction prefetch;

that is, the effective address (PC + (4 × sign_ext(disp19))) specifies an address of

an instruction that is expected to be executed soon. If the Branch Never annul field is one,

then the following (delay) instruction is annulled (not executed). If the annul field is zero,

then the following instruction is executed. In no case does a Branch Never cause a transfer

of control to take place.

Assembly Language Syntax

ba{,a}{,pt|,pn} i_or_x_cc, label

bn{,a}{,pt|,pn} i_or_x_cc, label (or: iprefetch label)

bne{,a}{,pt|,pn} i_or_x_cc, label (synonym: bnz)

be{,a}{,pt|,pn} i_or_x_cc, label (synonym: bz)

bg{,a}{,pt|,pn} i_or_x_cc, label

ble{,a}{,pt|,pn} i_or_x_cc, label

bge{,a}{,pt|,pn} i_or_x_cc, label

bl{,a}{,pt|,pn} i_or_x_cc, label

bgu{,a}{,pt|,pn} i_or_x_cc, label

bleu{,a}{,pt|,pn} i_or_x_cc, label

bcc{,a}{,pt|,pn} i_or_x_cc, label (synonym: bgeu)

bcs{,a}{,pt|,pn} i_or_x_cc, label (synonym: blu)

bpos{,a}{,pt|,pn} i_or_x_cc, label

bneg{,a}{,pt|,pn} i_or_x_cc, label

bvc{,a}{,pt|,pn} i_or_x_cc, label

bvs{,a}{,pt|,pn} i_or_x_cc, label
Chapter A Instruction Definitions 289

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed

control transfer to the address “PC + (4 × sign_ext(disp19)).” If the annul field of

the branch instruction is one, then the delay instruction is annulled (not executed). If the

annul field is zero, then the delay instruction is executed.

• Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate

one of the two integer condition codes (icc or xcc), as selected by cc0 and cc1,

according to the cond field of the instruction, producing either a TRUE or FALSE result.

If TRUE, the branch is taken; that is, the instruction causes a PC-relative, delayed control

transfer to the address “PC + (4 × sign_ext(disp19)).” If FALSE, the branch is not

taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the

value of the annul field. If a conditional branch is not taken and the annul field (a) is one,

the delay instruction is annulled (not executed).

Note – The annul bit has a different effect for conditional branches than it does for

unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is

expected to be taken. A one in the p bit indicates that the branch is expected to be taken;

a zero indicates that the branch is expected not to be taken.

Exceptions

illegal_instruction (cc1 cc0 = 012 or 112)

A.9 Call and Link

Format (1)

Opcode op Operation

CALL 01 Call and Link

31 030 29

01 disp30
290 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to

address PC + (4 × sign_ext(disp30)). Since the word displacement (disp30) field is

30 bits wide, the target address lies within a range of –231 to +231 – 4 bytes. The PC-relative

displacement is formed by sign-extending the 30-bit word displacement field to 62 bits and

appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL,

into r[15] (out register 7).

Exceptions

None

A.10 Compare and Swap

Format (3)

Assembly Language Syntax

call label

Opcode op3 Operation

CASAPASI 11 1100 Compare and Swap Word from Alternate Space

CASXAPASI 11 1110 Compare and Swap Extended from Alternate Space

31 141924 18 13 12 5 4 02530 29

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2
Chapter A Instruction Definitions 291

Description

Concurrent processes use these instructions for synchronization and memory updates. Uses

of compare-and-swap include spin-lock operations, updates of shared counters, and updates

of linked-list pointers. The last two can use wait-free (non-locking) protocols.

The CASXA instruction compares the value in register r[rs2] with the doubleword in

memory pointed to by the doubleword address in r[rs1]. If the values are equal, the value

in r[rd] is swapped with the doubleword pointed to by the doubleword address in

r[rs1]. If the values are not equal, the contents of the doubleword pointed to by r[rs1]
replaces the value in r[rd], but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register r[rs2] with a word in

memory pointed to by the word address in r[rs1]. If the values are equal, then the low-

order 32 bits of register r[rd] are swapped with the contents of the memory word pointed

to by the address in r[rs1] and the high-order 32 bits of register r[rd] are set to zero. If

the values are not equal, the memory location remains unchanged, but the zero-extended

contents of the memory word pointed to by r[rs1] replace the low-order 32 bits of r[rd]
and the high-order 32 bits of register r[rd] are set to zero.

A compare-and-swap instruction comprises three operations: load, compare, and swap. The

overall instruction is atomic; that is, no intervening interrupts or deferred traps are

recognized by the processor and no intervening update resulting from a compare-and-swap,

swap, load, load-store unsigned byte, or store instruction to the doubleword containing the

addressed location, or any portion of it, is performed by the memory system.

A compare-and-swap operation does not imply any memory barrier semantics. When

compare-and-swap is used for synchronization, the same consideration should be given to

memory barriers as if a load, store, or swap instruction were used.

A compare-and-swap operation behaves as if it performs a store, either of a new value from

r[rd] or of the previous value in memory. The addressed location must be writable, even if

the values in memory and r[rs2] are not equal.

If i = 0, the address space of the memory location is specified in the imm_asi field; if

i = 1, the address space is specified in the ASI register.

Assembly Language Syntax

casa [regrs1] imm_asi, regrs2, regrd

casa [regrs1] %asi, regrs2, regrd

casxa [regrs1] imm_asi, regrs2, regrd

casxa [regrs1] %asi, regrs2, regrd
292 UltraSPARC IIIi Processor User’s Manual • June 2003

A mem_address_not_aligned exception is generated if the address in r[rs1] is not properly

aligned. CASXA and CASA cause a privileged_action exception if PSTATE.PRIV = 0 and

bit 7 of the ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

Programming Note – Compare and Swap (CAS) and Compare and Swap Extended

(CASX) synthetic instructions are available for “big-endian” memory accesses. Compare and

Swap Little (CASL) and Compare and Swap Extended Little (CASXL) synthetic instructions

are available for “little-endian” memory accesses.

The compare-and-swap instructions do not affect the condition codes.

Exceptions

privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
Chapter A Instruction Definitions 293

A.11 DONE and RETRY

Format (3)

Description

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI, CCR,

and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting

PC ←TPC[TL] (the saved value of PC on trap) and nPC ←TNPC[TL] (the saved value of

nPC on trap).

The DONE instruction skips the trapped instruction by setting PC ←TNPC[TL] and

nPC ←TNPC[TL] + 4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruction

produces undefined results.

Opcode op3 fcn Operation

DONEP 11 1110 0 Return from Trap (skip trapped instruction)

RETRYP 11 1110 1 Return from Trap (retry trapped instruction)

— 11 1110 2–31 Reserved

Assembly Language Syntax

done

retry

10 op3fcn —

31 1924 18 02530 29
294 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – Use the DONE and RETRY instructions to return from privileged

trap handlers.

Exceptions

privileged_opcode
illegal_instruction (if TL = 0 or fcn = 2–31)

A.12 Edge Handling Instructions (VIS I, VIS II)

Format (3)

Opcode opf Operation

EDGE8 0 0000 0000 Eight 8-bit edge boundary processing

EDGE8N 0 0000 0001 Eight 8-bit edge boundary processing, no condition codes

EDGE8L 0 0000 0010 Eight 8-bit edge boundary processing, little-endian

EDGE8LN 0 0000 0011 Eight 8-bit edge boundary processing, little-endian, no condition

codes

EDGE16 0 0000 0100 Four 16-bit edge boundary processing

EDGE16N 0 0000 0101 Four 16-bit edge boundary processing, no condition codes

EDGE16L 0 0000 0110 Four 16-bit edge boundary processing, little-endian

EDGE16LN 0 0000 0111 Four 16-bit edge boundary processing, little-endian, no condition

codes

EDGE32 0 0000 1000 Two 32-bit edge boundary processing

EDGE32N 0 0000 1001 Two 32-bit edge boundary processing, no condition codes

EDGE32L 0 0000 1010 Two 32-bit edge boundary processing, little-endian

EDGE32LN 0 0000 1011 Two 32-bit edge boundary processing, little-endian, no condition

codes

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions 295

Description

These instructions handle the boundary conditions for parallel pixel scan line loops, where

src1 is the address of the next pixel to render and src2 is the address of the last pixel in

the scan line.

EDGE8L(N), EDGE16L(N), and EDGE32L(N) are little-endian versions of EDGE8(N),

EDGE16(N), and EDGE32(N). They produce an edge mask that is bit-reversed from their big-

endian counterparts but are otherwise identical. This makes the mask consistent with the

mask produced by the graphics compare operations (see Section A.44, “Pixel Compare

(VIS I)”) and with the Partial Store instruction (see Section A.41, “Partial Store (VIS I)”) on

little-endian data.

A 2-bit (EDGE32), 4-bit (EDGE16), or 8-bit (EDGE8) pixel mask is stored in the least

significant bits of r[rd]. The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the three least significant bits (LSBs) of r[rs1],

and the right edge mask is computed from the three LSBs of r[s2], according to

TABLE A-4 (TABLE A-5 for little-endian byte ordering).

2. If 32-bit address masking is disabled (PSTATE.AM = 0, 64-bit addressing) and the upper

61 bits of r[rs1] are equal to the corresponding bits in r[rs2], r[rd] is set to the

right edge mask ANDed with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE.AM = 1, 32-bit addressing) and bits 31:3 of

r[rs1] match bits 31:3 of r[rs2], r[rd] is set to the right edge mask ANDed with

the left edge mask.

4. Otherwise, r[rd] is set to the left edge mask.

Assembly Language Syntax

edge8 regrs1, regrs2, regrd

edge8n regrs1, regrs2, regrd

edge8l regrs1, regrs2, regrd

edge8ln regrs1, regrs2, regrd

edge16 regrs1, regrs2, regrd

edge16n regrs1, regrs2, regrd

edge16l regrs1, regrs2, regrd

edge16ln regrs1, regrs2, regrd

edge32 regrs1, regrs2, regrd

edge32n regrs1, regrs2, regrd

edge32l regrs1, regrs2, regrd

edge32ln regrs1, regrs2, regrd
296 UltraSPARC IIIi Processor User’s Manual • June 2003

The integer condition codes are set per the rules of the SUBCC instruction with the same

operands (see Section A.64, “Subtract”).

The EDGE(8, 16, 32)(L)N instructions do not set the integer condition codes.

Exceptions

None

TABLE A-4 Edge Mask Specification

Edge Size A2–A0 Left Edge Right Edge

8 000 1111 1111 1000 0000

8 001 0111 1111 1100 0000

8 010 0011 1111 1110 0000

8 011 0001 1111 1111 0000

8 100 0000 1111 1111 1000

8 101 0000 0111 1111 1100

8 110 0000 0011 1111 1110

8 111 0000 0001 1111 1111

16 00x 1111 1000

16 01x 0111 1100

16 10x 0011 1110

16 11x 0001 1111

32 0xx 11 10

32 1xx 01 11

TABLE A-5 Edge Mask Specification (Little-Endian)

Edge Size A2–A0 Left Edge Right Edge

8 000 1111 1111 0000 0001

8 001 1111 1110 0000 0011

8 010 1111 1100 0000 0111

8 011 1111 1000 0000 1111
Chapter A Instruction Definitions 297

A.13 Floating-Point Add and Subtract

Format (3)

8 100 1111 0000 0001 1111

8 101 1110 0000 0011 1111

8 110 1100 0000 0111 1111

8 111 1000 0000 1111 1111

16 00x 1111 0001

16 01x 1110 0011

16 10x 1100 0111

16 11x 1000 1111

32 0xx 11 01

32 1xx 10 11

Opcode op3 opf Operation

FADDs 11 0100 0 0100 0001 Add Single

FADDd 11 0100 0 0100 0010 Add Double

FADDq 11 0100 0 0100 0011 Add Quad

FSUBs 11 0100 0 0100 0101 Subtract Single

FSUBd 11 0100 0 0100 0110 Subtract Double

FSUBq 11 0100 0 0100 0111 Subtract Quad

TABLE A-5 Edge Mask Specification (Little-Endian) (Continued)

Edge Size A2–A0 Left Edge Right Edge

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

298 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The floating-point add instructions add the floating-point register(s) specified by the rs1
field and the floating-point register(s) specified by the rs2 field. The instructions then write

the sum into the floating-point register(s) specified by the rd field.

The floating-point subtract instructions subtract the floating-point register(s) specified by the

rs2 field from the floating-point register(s) specified by the rs1 field. The instructions then

write the difference into the floating-point register(s) specified by the rd field.

Rounding is performed as specified by the FSR.RD field.

Compatibility Note – When FSR.NS = 0, the processor operates in standard floating-

point mode. FADD or FSUB with a subnormal result causes an fp_exception_other exception

with FSR.ftt = unfinished_FPop, system software emulates the instruction, and the correct

numerical result is calculated.

When FSR.NS = 1, the processor operates in “nonstandard” floating-point mode. When

FSR.NS = 1, and FADD or FSUB produces a subnormal result on an UltraSPARC IIIi

processor, a fp_exception_other exception occurs with FSR.ftt = unfinished_FPop (even

though the processor is operating in nonstandard floating-point mode), then system software

emulates the instruction, and the correct numerical result is calculated (instead of replacing

the result with zero).

Therefore, the processor may produce a different (albeit more accurate) result than in

previous processors in the following situation:

FADD or FSUB produces a subnormal result

FSR.NS = 1

Assembly Language Syntax

fadds fregrs1, fregrs2, fregrd

faddd fregrs1, fregrs2, fregrd

faddq fregrs1, fregrs2, fregrd

fsubs fregrs1, fregrs2, fregrd

fsubd fregrs1, fregrs2, fregrd

fsubq fregrs1, fregrs2, fregrd
Chapter A Instruction Definitions 299

Notes –
1) The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

2) For FADDs, FADDd, FSUBs, FSUBd, an fp_exception_other with ftt = unfinished_FPop
can occur if either operand is NaN.

Exceptions

fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)

fp_exception_other (ftt = unimplemented_FPop (FADDq and FSUBq only))

fp_exception_other (ftt = unifinished_FPop (FADDs, FADDd, FSUBs, FSUBd only))

A.14 Floating-Point Compare

Format (3)

Opcode op3 opf Operation

FCMPs 11 0101 0 0101 0001 Compare Single

FCMPd 11 0101 0 0101 0010 Compare Double

FCMPq 11 0101 0 0101 0011 Compare Quad

FCMPEs 11 0101 0 0101 0101 Compare Single and Exception if Unordered

FCMPEd 11 0101 0 0101 0110 Compare Double and Exception if Unordered

FCMPEq 11 0101 0 0101 0111 Compare Quad and Exception if Unordered

10 op3 rs2000 rs1

31 141924 18 13 02530 29 4

opf

52627

cc1 cc0
300 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

These instructions compare the floating-point register(s) specified by the rs1 field with the

floating-point register(s) specified by the rs2 field, and set the selected floating-point

condition code (fccn) as shown below.

The “?” in the preceding table means that the comparison is unordered. The unordered

condition occurs when one or both of the operands to the compare is a signalling or quiet

NaN.

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq)

instructions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signalling NaN.

Assembly Language Syntax

fcmps %fccn, fregrs1, fregrs2

fcmpd %fccn, fregrs1, fregrs2

fcmpq %fccn, fregrs1, fregrs2

fcmpes %fccn, fregrs1, fregrs2

fcmped %fccn, fregrs1, fregrs2

fcmpeq %fccn, fregrs1, fregrs2

cc1 cc0 Condition Code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)
Chapter A Instruction Definitions 301

Compatibility Note – Unlike SPARC-V8, SPARC-V9 does not require an instruction

between a floating-point compare operation and a floating-point branch (FBfcc, FBPfcc).

SPARC-V8 floating-point compare instructions are required to have a zero in the r[rd]
field. In SPARC-V9, bits 26 and 25 of the r[rd] field specify the floating-point condition

code to be set. Legal SPARC-V8 code will work on SPARC-V9 because the zeroes in the

r[rd] field are interpreted as fcc0 and the FBfcc instruction branches according to

fcc0.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

Exceptions

fp_disabled
fp_exception_ieee_754 (NV)

fp_exception_other (ftt = unimplemented_FPop (FCMPq, FCMPEq only))

A.15 Convert Floating-Point to Integer

Opcode op3 opf Operation

FsTOx 11 0100 0 1000 0001 Convert Single to 64-bit Integer

FdTOx 11 0100 0 1000 0010 Convert Double to 64-bit Integer

FqTOx 11 0100 0 1000 0011 Convert Quad to 64-bit Integer

FsTOi 11 0100 0 1101 0001 Convert Single to 32-bit Integer

FdTOi 11 0100 0 1101 0010 Convert Double to 32-bit Integer

FqTOi 11 0100 0 1101 0011 Convert Quad to 32-bit Integer
302 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point

register(s) specified by rs2 to a 64-bit integer in the floating-point register(s) specified by

rd.

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point

register(s) specified by rs2 to a 32-bit integer in the floating-point register specified by rd.

The result is always rounded toward zero; that is, the rounding direction (RD) field of the

FSR register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the specified

size or is a NaN or infinity, then a fp_exception_ieee_754 “invalid” exception occurs.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

Assembly Language Syntax

fstox fregrs2, fregrd

fdtox fregrs2, fregrd

fqtox fregrs2, fregrd

fstoi fregrs2, fregrd

fdtoi fregrs2, fregrd

fqtoi fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

Chapter A Instruction Definitions 303

The following floating-point-to-integer conversion instructions generate an unfinished_FPop
exception for certain ranges of floating-point operands, as shown in TABLE A-6.

Exceptions

fp_disabled
fp_exception_ieee_754 (NV, NX)

unfinished_FPop
fp_exception_other (ftt = unimplemented_FPop (FqTOi, FqTOx only))

A.16 Convert Between Floating-Point Formats

Format (3)

TABLE A-6 Floating-Point to Integer unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FsTOi result < − 231, result ≥ 231, Inf, NaN

FsTOx |result| ≥ 252, Inf, NaN

FdTOi result < − 231, result ≥ 231, Inf, NaN

FdTOx |result| ≥ 252, Inf, NaN

Opcode op3 opf Operation

FsTOd 11 0100 0 1100 1001 Convert Single to Double

FsTOq 11 0100 0 1100 1101 Convert Single to Quad

FdTOs 11 0100 0 1100 0110 Convert Double to Single

FdTOq 11 0100 0 1100 1110 Convert Double to Quad

FqTOs 11 0100 0 1100 0111 Convert Quad to Single

FqTOd 11 0100 0 1100 1011 Convert Quad to Double

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

304 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

These instructions convert the floating-point operand in the floating-point register(s) specified

by rs2 to a floating-point number in the destination format. They write the result into the

floating-point register(s) specified by rd.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF, and

NX exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion instructions) cannot.

Any of these six instructions can trigger an NV exception if the source operand is a

signalling NaN.

Notes –
1) The UltraSPARC IIIi processor does not implement (in hardware) the instructions that

refer to a quad floating-point register. Execution of such an instruction generates

fp_exception_other (with ftt = unimplemented_FPop), which causes a trap. Supervisor

software then emulates these instructions.

2) For FdTOs and FsTOd, a fp_exception_other with ftt = unfinished_FPop can occur if

the source operand is NaN or subnormal, or out of range of the destination format.

The following floating-point to floating-point conversion instructions generate an

unfinished_FPop exception for certain ranges of floating-point operands, as shown in

TABLE A-7.

Assembly Language Syntax

fstod fregrs2, fregrd

fstoq fregrs2, fregrd

fdtos fregrs2, fregrd

fdtoq fregrs2, fregrd

fqtos fregrs2, fregrd

fqtod fregrs2, fregrd

TABLE A-7 Floating-Point/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FdTOs |result| ≥ 252, |result| <2-31, operand < − 222, operand ≥ 222, NaN
Chapter A Instruction Definitions 305

Exceptions

fp_disabled
fp_exception_ieee_754 (OF, UF, NV, NX)

fp_exception_other (ftt = unimplemented_FPop (FsTOq, FdTOq, FqTOs, FqTOd only))

unfinished_FPop
fp_exception_other (ftt = unfinished_FPop (FdTOs and FsTOd only))

A.17 Convert Integer to Floating-Point

Format (3)

Opcode op3 opf Operation

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to Single

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to Double

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to Quad

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to Single

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to Double

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to Quad

Assembly Language Syntax

fxtos fregrs2, fregrd

fxtod fregrs2, fregrd

fxtoq fregrs2, fregrd

fitos fregrs2, fregrd

fitod fregrs2, fregrd

fitoq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

306 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point

registers specified by rs2 into a floating-point number in the destination format.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point

register(s) specified by rs2 into a floating-point number in the destination format. All write

their result into the floating-point register(s) specified by rd.

FiTOs, FxTOs, and FxTOd round as specified by the FSR.RD field.

Note – The UltraSPARC IIIi processor does not implement (in hardware) the instructions

that refer to a quad floating-point register. Execution of such an instruction generates

fp_exception_other (with ftt = unimplemented_FPop), which causes a trap. Supervisor

software then emulates these instructions.

The following integer-to-floating-point conversion instructions generate an unfinished_FPop
exception for certain ranges of integer operands, as shown in TABLE A-8.

Exceptions

fp_disabled
fp_exception_ieee_754 (NX (FiTOs, FxTOs, FxTOd only))

unfinished_FPop
fp_exception_other (ftt = unimplemented_FPop (FiTOq, FxTOq only))

TABLE A-8 Integer/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FiTOs operand < − 222, operand ≥ 222

FxTOs operand < − 222, operand ≥ 222

FxTOd operand < − 251, operand ≥ 251
Chapter A Instruction Definitions 307

A.18 Floating-Point Move

Format (3)

Opcode op3 opf Operation

FMOVs 11 0100 0 0000 0001 Move Single

FMOVd 11 0100 0 0000 0010 Move Double

FMOVq 11 0100 0 0000 0011 Move Quad

FNEGs 11 0100 0 0000 0101 Negate Single

FNEGd 11 0100 0 0000 0110 Negate Double

FNEGq 11 0100 0 0000 0111 Negate Quad

FABSs 11 0100 0 0000 1001 Absolute Value Single

FABSd 11 0100 0 0000 1010 Absolute Value Double

FABSq 11 0100 0 0000 1011 Absolute Value Quad

Assembly Language Syntax

fmovs fregrs2, fregrd

fmovd fregrs2, fregrd

fmovq fregrs2, fregrd

fnegs fregrs2, fregrd

fnegd fregrs2, fregrd

fnegq fregrs2, fregrd

fabss fregrs2, fregrd

fabsd fregrs2, fregrd

fabsq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

308 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The single-precision versions of these instructions copy the contents of a single-precision

floating-point register to the destination. The double-precision versions copy the contents of

a double-precision floating-point register to the destination. The quad-precision versions

copy a quad-precision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.

FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

Exceptions

fp_disabled
fp_exception_other (ftt = unimplemented_FPop (FMOVq, FNEGq, FABSq only))
Chapter A Instruction Definitions 309

A.19 Floating-Point Multiply and Divide

Format (3)

Description

The floating-point multiply instructions multiply the contents of the floating-point register(s)

specified by the rs1 field by the contents of the floating-point register(s) specified by the

rs2 field. The instructions then write the product into the floating-point register(s) specified

by the rd field.

Opcode op3 opf Operation

FMULs 11 0100 0 0100 1001 Multiply Single

FMULd 11 0100 0 0100 1010 Multiply Double

FMULq 11 0100 0 0100 1011 Multiply Quad

FsMULd 11 0100 0 0110 1001 Multiply Single to Double

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad

FDIVs 11 0100 0 0100 1101 Divide Single

FDIVd 11 0100 0 0100 1110 Divide Double

FDIVq 11 0100 0 0100 1111 Divide Quad

Assembly Language Syntax

fmuls fregrs1, fregrs2, fregrd

fmuld fregrs1, fregrs2, fregrd

fmulq fregrs1, fregrs2, fregrd

fsmuld fregrs1, fregrs2, fregrd

fdmulq fregrs1, fregrs2, fregrd

fdivs fregrs1, fregrs2, fregrd

fdivd fregrs1, fregrs2, fregrd

fdivq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

310 UltraSPARC IIIi Processor User’s Manual • June 2003

The FsMULd instruction provides the exact double-precision product of two single-precision

operands, without underflow, overflow, or rounding error. Similarly, FdMULq provides the

exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s)

specified by the rs1 field by the contents of the floating-point register(s) specified by the

rs2 field. The instructions then write the quotient into the floating-point register(s) specified

by the rd field.

Rounding is performed as specified by the FSR.RD field.

Notes –
1) The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

2) For FDIVs and FDIVd, a fp_exception_other with ftt = unfinished_FPop can occur if

the divide unit detects certain unusual conditions.

Exceptions

fp_disabled
fp_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)

fp_exception_other (ftt = unimplemented_FPop (FMULq, FdMULq, FDIVq)

fp_exception_other (ftt = unifinished_FPop (FMULs, FMULd, FSMULd, FDIVs, FDIV))
Chapter A Instruction Definitions 311

A.20 Floating-Point Square Root

Format (3)

Description

These SPARC-V9 instructions generate the square root of the floating-point operand in the

floating-point register(s) specified by the rs2 field and place the result in the destination

floating-point register(s) specified by the rd field. Rounding is performed as specified by the

FSR.RD field.

Note – The processor does not implement (in hardware) the instructions that refer to a quad

floating-point register. Execution of such an instruction generates fp_exception_other (with

ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these

instructions.

For FSQRTs and FSQRTd a fp_exception_other (with ftt = unfinished_FPop) can occur if

the operand to the square root is positive denormalized.

Opcode op3 opf Operation

FSQRTs 11 0100 0 0010 1001 Square Root Single

FSQRTd 11 0100 0 0010 1010 Square Root Double

FSQRTq 11 0100 0 0010 1011 Square Root Quad

Assembly Language Syntax

fsqrts fregrs2, fregrd

fsqrtd fregrs2, fregrd

fsqrtq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

312 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

fp_disabled
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))

fp_exception_other (unimplemented_FPop) (Quad forms)

fp_exception_other (unfinished_FPop) (FSQRTs, FSQRTd)

A.21 Flush Instruction Memory

Format (3)

Description

FLUSH ensures that the doubleword specified as the effective address is consistent across any

local caches, and in a multiprocessor system, will eventually become consistent everywhere.

In the following discussion PFLUSH refers to the processor that executed the FLUSH
instruction.

FLUSH ensures that instruction fetches from the specified effective address by PFLUSH appear

to execute after any loads, stores, and atomic load-stores to that address issued by PFLUSH

prior to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will

eventually become visible to the instruction fetches of all other processors. FLUSH behaves

as if it were a store with respect to MEMBAR-induced orderings. See Section A.34, “Memory

Barrier.”

Opcode op3 Operation

FLUSH 11 1011 Flush Instruction Memory

Assembly Language Syntax

flush address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
Chapter A Instruction Definitions 313

The effective address operand for the FLUSH instruction is “r[rs1] + r[rs2]” if i = 0,

or “r[rs1] + sign_ext(simm13)” if i = 1. The least significant two address bits of the

effective address are unused and should be supplied as zeroes by software. Bit 2 of the

address is ignored because FLUSH operates on at least a doubleword.

Programming Note –

1. Typically, FLUSH is used in self-modifying code. The use of self-modifying code is

discouraged.

2. The order in which memory is modified can be controlled by means of FLUSH and

MEMBAR instructions interspersed appropriately between stores and atomic load-stores.

FLUSH is needed only between a store and a subsequent instruction fetch from the

modified location. When multiple processes may concurrently modify live (that is,

potentially executing) code, the programmer must ensure that the order of update

maintains the program in a semantically correct form at all times.

3. The memory model guarantees in a uniprocessor that data loads observe the results of the

most recent store, even if there is no intervening FLUSH.

4. FLUSH may be time consuming.

5. In a multiprocessor system, the time it takes for a FLUSH to take effect is dependent on

the system. No mechanism is provided to ensure or test completion.

6. Because FLUSH is designed to act on a doubleword and on some implementations FLUSH
may trap to system software, system software should provide a user-callable service

routine for flushing arbitrarily sized regions of memory. On some processor

implementations, this routine would issue a series of FLUSH instructions; on others, it

might issue a single trap to system software that would then flush the entire region.

On an UltraSPARC IIIi processor:

• A FLUSH instruction flushes the processor pipeline and synchronizes the processor.

• The instruction cache is kept coherent; therefore, there is no need to perform any action

on it.

• The address provided with the FLUSH instruction is ignored. However, for portability

across all SPARC-V9 implementations, software must supply the target effective address

in FLUSH instructions.

FLUSH synchronizes code and data spaces after code space is modified during program

execution. The FLUSH effective address is ignored. FLUSH does not access the data MMU

and cannot generate a data MMU miss or exception.

SPARC-V9 specifies that the FLUSH instruction has no latency on the issuing processor. In

other words, a store to instruction space prior to the FLUSH instruction is visible immediately

after the completion of FLUSH. When a FLUSH operation is performed, the processor

guarantees that earlier code modifications will be visible across the whole system.
314 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

None

A.22 Flush Register Windows

Format (3)

Description

FLUSHW causes all active register windows except the current window to be flushed to

memory at locations determined by privileged software. FLUSHW behaves as a NOP if there

are no active windows other than the current window. At the completion of the FLUSHW
instruction, the only active register window is the current one.

Programming Note – The FLUSHW instruction can be used by application software to

switch memory stacks or to examine register contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS – 2. Otherwise, there is more than one

active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is

based on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the

CWP set to the window to be spilled (that is, (CWP + CANSAVE + 2) mod NWINDOWS).

Opcode op3 Operation

FLUSHW 10 1011 Flush Register Windows

Assembly Language Syntax

flushw

31 24 02530 29 19 18

—10 op3 —

14 13 12

— i=0
Chapter A Instruction Definitions 315

Programming Note – Typically, the spill handler saves a window on a memory stack and

returns to re-execute the FLUSHW instruction. Thus, FLUSHW traps and re-executes until all

active windows other than the current window have been spilled.

Exceptions

spill_n_normal
spill_n_other

A.23 Illegal Instruction Trap

Format (2)

Description

The ILLTRAP instruction causes an illegal_instruction exception. The const22 value is

ignored by the hardware; specifically, this field is not reserved by the architecture for any

future use.

Compatibility Note – Except for its name, this instruction is identical to the SPARC-V8

UNIMP instruction.

Opcode op op2 Operation

ILLTRAP 00 000 illegal_instruction trap

Assembly Language Syntax

illtrap const22

00 000 const22—

31 2124 02530 29 22
316 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

illegal_instruction

A.24 Jump and Link

Format (3)

Description

The JMPL instruction causes a register-indirect delayed control transfer to the address given

by “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into

register r[rd].

If either of the low-order two bits of the jump address is nonzero, a

mem_address_not_aligned exception occurs.

Opcode op3 Operation

JMPL 11 1000 Jump and Link

Assembly Language Syntax

jmpl address, regrd

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

Chapter A Instruction Definitions 317

Programming Note – A JMPL instruction with rd = 15 functions as a register-indirect

call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is

“r[31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is entered by a CALL
instruction, or “r[15] + 8” if a leaf routine (one that does not use the SAVE instruction) is

entered by a CALL instruction or by a JMPL instruction with rd = 15.

Exceptions

mem_address_not_aligned

A.25 Load Floating-Point

† Encoded floating-point register value.

Format (3)

Opcode op3 rd Operation

LDF 10 0000 0–31 Load Floating-Point Register

LDDF 10 0011
†

Load Double Floating-Point Register

LDQF 10 0010
†

Load Quad Floating-Point Register

LDXFSR 10 0001 1 Load Floating-Point State Register

— 10 0001 2–31 Reserved

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
318 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The load single floating-point instruction (LDF) copies a word from memory into f[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword

from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) traps to software.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions

that have not finished execution to complete and then loads a doubleword from memory into

the FSR.

Load floating-point instructions access the primary address space (ASI = 8016). The effective

address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

LDF causes a mem_address_not_aligned exception if the effective memory address is not

word aligned. LDXFSR causes a mem_address_not_aligned exception if the address is not

doubleword aligned. If the floating-point unit is not enabled (per FPRS.FEF and

PSTATE.PEF) or if no FPU is present, then a load floating-point instruction causes an

fp_disabled exception.

LDDF requires doubleword aligned. If word alignment is used, then the LDDF causes an

LDDF_mem_address_not_aligned exception. The trap handler software shall emulate the

LDDF instruction and return.

Programming Note – In SPARC-V8, some compilers issued sequences of single-

precision loads when they could not determine that doubleword or quadword operands were

properly aligned. For SPARC-V9, since emulation of misaligned loads is expected to be fast,

compilers are recommended to issue sets of single-precision loads only when they can

determine that doubleword or quadword operands are not properly aligned.

If a load floating-point instruction traps with any type of access error, the contents of the

destination floating-point register(s) is undefined.

Assembly Language Syntax

ld [address], fregrd

ldd [address], fregrd

ldq [address], fregrd

ldx [address], %fsr
Chapter A Instruction Definitions 319

In the UltraSPARC IIIi processor, an LDDF instruction causes an

LDDF_mem_address_not_aligned trap if the effective address is 32-bit aligned but not 64-bit

(doubleword) aligned.

Exceptions

illegal_instruction (op3 = 2116 and rd = 2–31)

fp_disabled
LDDF_mem_address_not_aligned (LDDF only)

mem_address_not_aligned
data_access_exception
PA_watchpoint
VA_watchpoint
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.26 Load Floating-Point from Alternate Space

† Encoded floating-point register value.

Format (3)

Opcode op3 rd Operation

LDFAPASI 11 0000 0–31 Load Floating-Point Register from Alternate Space

LDDFAPASI 11 0011 † Load Double Floating-Point Register from Alternate Space

LDQFAPASI 11 0010 † Load Quad Floating-Point Register from Alternate Space

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
320 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The load single floating-point from alternate space instruction (LDFA) copies a word from

memory into f[rd].

The load double floating-point from alternate space instruction (LDDFA) copies a word-

aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) traps to software.

Load floating-point from alternate space instructions contain the address space

identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register

if i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not

word aligned. If the floating-point unit is not enabled (per FPRS.FEF and PSTATE.PEF) or

if no FPU is present, then load floating-point from alternate space instructions cause an

fp_disabled exception.

LDDFA with certain target ASIs is defined to be a 64-byte block-load instruction. See

Section A.4, “Block Load and Block Store (VIS I)” for details.

Implementation Note – LDFA and LDDFA cause a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

LDDF requires doubleword alignment. If word alignment is used, then the LDDF causes an

LDDF_mem_address_not_aligned exception. The trap handler software shall emulate the

LDDF instruction and return.

Assembly Language Syntax

lda [regaddr] imm_asi, fregrd

lda [reg_plus_imm] %asi, fregrd

ldda [regaddr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

ldqa [regaddr] imm_asi, fregrd

ldqa [reg_plus_imm] %asi, fregrd
Chapter A Instruction Definitions 321

Programming Note – In SPARC-V8, some compilers issued sequences of single-

precision loads when they could not determine that doubleword or quadword operands were

properly aligned. For SPARC-V9, since emulation of misaligned loads is expected to be fast,

compilers should issue sets of single-precision loads only when they can determine that

doubleword or quadword operands are not properly aligned.

If a load floating-point instruction traps with any type of access error, the contents of the

destination floating-point register(s) is undefined.

In the UltraSPARC IIIi processor, an LDDFA instruction causes an

LDDF_mem_address_not_aligned trap if the effective address is 32-bit aligned but not 64-bit

(doubleword) aligned.

Exceptions

illegal_instruction (LDQFA only)

fp_disabled
LDDF_mem_address_not_aligned (LDDFA only)

mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.27 Load Integer

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 00 1010 Load Signed Halfword

LDSW 00 1000 Load Signed Word

LDUB 00 0001 Load Unsigned Byte

LDUH 00 0010 Load Unsigned Halfword

LDUW 00 0000 Load Unsigned Word

LDX 00 1011 Load Extended Word
322 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

The load integer instructions copy a byte, a halfword, a word, or an extended word from

memory. All copy the fetched value into r[rd]. A fetched byte, halfword, or word is right-

justified in the destination register r[rd]; it is either sign-extended or zero-filled on the left,

depending on whether the opcode specifies a signed or unsigned operation, respectively.

Load integer instructions access the primary address space (ASI = 8016). The effective

address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not halfword

aligned. LDUW and LDSW cause a mem_address_not_aligned exception if the effective

address is not word aligned. LDX causes a mem_address_not_aligned exception if the address

is not doubleword aligned.

Compatibility Note – The SPARC-V8 LD instruction has been renamed LDUW in

SPARC-V9. The LDSW instruction is new in SPARC-V9.

Assembly Language Syntax

ldsb [address], regrd

ldsh [address], regrd

ldsw [address], regrd

ldub [address], regrd

lduh [address], regrd

lduw [address], regrd (synonym: ld)

ldx [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Chapter A Instruction Definitions 323

Exceptions

mem_address_not_aligned (all except LDSB, LDUB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.28 Load Integer from Alternate Space

Format (3)

Opcode op3 Operation

LDSBAPASI 01 1001 Load Signed Byte from Alternate Space

LDSHAPASI 01 1010 Load Signed Halfword from Alternate Space

LDSWAPASI 01 1000 Load Signed Word from Alternate Space

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate Space

LDUHAPASI 01 0010 Load Unsigned Halfword from Alternate Space

LDUWAPASI 01 0000 Load Unsigned Word from Alternate Space

LDXAPASI 01 1011 Load Extended Word from Alternate Space

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
324 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The load integer from alternate space instructions copy a byte, halfword, word, or an

extended word from memory. All copy the fetched value into r[rd]. A fetched byte,

halfword, or word is right-justified in the destination register r[rd]; it is either sign-

extended or zero-filled on the left, depending on whether the opcode specifies a signed or

unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI)

to be used for the load in the imm_asi field if i = 0, or in the ASI register if i = 1. The

access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective

address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended) instruction operates atomically.

LDUHA and LDSHA cause a mem_address_not_aligned exception if the address is not

halfword aligned. LDUWA and LDSWA cause a mem_address_not_aligned exception if the

effective address is not word aligned; LDXA causes a mem_address_not_aligned exception if

the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the

ASI is zero.

Assembly Language Syntax

ldsba [regaddr] imm_asi, regrd

ldsha [regaddr] imm_asi, regrd

ldswa [regaddr] imm_asi, regrd

lduba [regaddr] imm_asi, regrd

lduha [regaddr] imm_asi, regrd

lduwa [regaddr] imm_asi, regrd (synonym: lda)

ldxa [regaddr] imm_asi, regrd

ldsba [reg_plus_imm] %asi, regrd

ldsha [reg_plus_imm] %asi, regrd

ldswa [reg_plus_imm] %asi, regrd

lduba [reg_plus_imm] %asi, regrd

lduha [reg_plus_imm] %asi, regrd

lduwa [reg_plus_imm] %asi, regrd (synonym: lda)

ldxa [reg_plus_imm] %asi, regrd
Chapter A Instruction Definitions 325

Exceptions

privileged_action
mem_address_not_aligned (all except LDSBA and LDUBA)

data_access_exception
PA_watchpoint
VA_watchpoint
fast_data_access_MMU_miss
fast_data_access_protection
data_access_error

A.29 Load Quadword, Atomic (VIS I)

Format (3) LDDA

Opcode imm_asi ASI Value Operation

LDDA ASI_NUCLEUS_QUAD_LDD 2416 128-bit atomic load

LDDA ASI_NUCLEUS_QUAD_LDD_L 2C16 128-bit atomic load, little-endian

LDDA ASI_QUAD_LDD_PHYS 3416 128-bit atomic load

LDDA ASI_QUAD_LDD_PHYS_L 3C16 128-bit atomic load, little-endian

Assembly Language Syntax

ldda [reg_addr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18 14 13 5 4

rd11 010011 simm_13rs1 i=1

rd11 010011 imm_asirs1 rs2i=0
326 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

ASIs 2416 and 2C16 are used with the LDDA instruction to atomically read a 128-bit, virtually

addressed data item. They are intended to be used by a TLB miss handler to access TSB

entries without requiring locks. The data is placed in an even/odd pair of 64-bit registers. The

lowest-address 64 bits are placed in the even register; the highest-address 64 bits are placed

in the odd-numbered register. The reference is made from the nucleus context. ASIs 2416 and

2C16 are translated by the MMU into physical addresses according to normal translation rules

for the nucleus context.

To reduce the number of locked pages in D-TLB a new ASI load instruction, atomic quad

load physical (ldda ASI_QUAD_LDD_PHYS) was added. It allows a full TTE entry

(128 bits, tag and data) in TSB to be read directly with PA, bypassing the VA-to-PA

translation. In the D-TLB miss handler, a TTE entry is read using two ldx instructions. ASIs

3416 and 3C16 are not translated by the MMU and addresses provided are interpreted directly

as physical addresses.

Since quad load with these ASIs bypasses the D-MMU, the physical address is set equal to

the truncated virtual address, that is, PA[42:0] = VA[42:0]. Internally in hardware, the

physical page attribute bits of these ASIs are hardcoded (not coming from DCU Control

Register) as follows:

 CP = 1, CV = 0, IE = 0, E = 0, P = 0, W = 0, NFO = 0, Size = 8 K

Note that (CP, CV) = 10 means it is cacheable in L2-cache, W-cache, and P-cache, but not D-

cache (since D-cache is VA-indexed). Therefore, this atomic quad load physical instruction

can only be used with cacheable PA.

Semantically, ASI_QUAD_LDD_PHYS is like a combination of

ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC.

An illegal_instruction occurs if an odd “rd” register number is used. If non-privileged

software tries to use this ASI, a privileged_action exception occurs. If the physical address of

the data referenced matches the watchpoint register

(ASI_DMMU_PA_WATCHPOINT_REG), the PA_watchpoint exception occurs.

In addition to the usual traps for LDDA using a privileged ASI, a data_access_exception trap

occurs for a non-cacheable access or if a quadword-load ASI is used with any instruction

other than LDDA. A mem_address_not_aligned trap is taken if the access is not aligned on a

128-byte boundary.

Exceptions

privileged_action
PA_watchpoint (recognized on only the first 8 bytes of an access)

VA_watchpoint (recognized on only the first 8 bytes of an access)

illegal_instruction (misaligned rd)

mem_address_not_aligned
Chapter A Instruction Definitions 327

data_access_exception (an attempt to access a page marked as non-cacheable)

data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
328 UltraSPARC IIIi Processor User’s Manual • June 2003

A.30 Load-Store Unsigned Byte

Format (3)

Description

The load-store unsigned byte instruction copies a byte from memory into r[rd], then

rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the

destination register r[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or

deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,

LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same

doubleword simultaneously are guaranteed to execute them in an undefined, but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

Opcode op3 Operation

LDSTUB 00 1101 Load-Store Unsigned Byte

Assembly Language Syntax

ldstub [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Chapter A Instruction Definitions A-329

Exceptions

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

A.31 Load-Store Unsigned Byte to Alternate

Space

Format (3)

Description

The load-store unsigned byte into alternate space instruction copies a byte from memory into

r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is right-

justified in the destination register r[rd] and zero-filled on the left.

Opcode op3 Operation

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate Space

Assembly Language Syntax

ldstuba [regaddr] imm_asi, regrd

ldstuba [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
A-330 UltraSPARC IIIi Processor User’s Manual • June 2003

The operation is performed atomically, that is, without allowing intervening interrupts or

deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,

LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same

doubleword simultaneously are guaranteed to execute them in an undefined, but serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in the imm_asi
field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7 of the ASI is

zero; otherwise, it is not privileged. The effective address is “r[rs1] + r[rs2]” if i = 0,

or “r[rs1] + sign_ext(simm13)” if i = 1.

LDSTUBA causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is

zero.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

Exceptions

privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint
Chapter A Instruction Definitions A-331

A.32 Logical Operate Instructions (VIS I)

Opcode opf Operation

FZERO 0 0110 0000 Zero fill

FZEROS 0 0110 0001 Zero fill, single precision

FONE 0 0111 1110 One fill

FONES 0 0111 1111 One fill, single precision

FSRC1 0 0111 0100 Copy src1

FSRC1S 0 0111 0101 Copy src1, single precision

FSRC2 0 0111 1000 Copy src2

FSRC2S 0 0111 1001 Copy src2, single precision

FNOT1 0 0110 1010 Negate (ones-complement) src1

FNOT1S 0 0110 1011 Negate (ones-complement) src1, single precision

FNOT2 0 0110 0110 Negate (ones-complement) src2

FNOT2S 0 0110 0111 Negate (ones-complement) src2, single precision

FOR 0 0111 1100 Logical OR

FORS 0 0111 1101 Logical OR, single precision

FNOR 0 0110 0010 Logical NOR

FNORS 0 0110 0011 Logical NOR, single precision

FAND 0 0111 0000 Logical AND

FANDS 0 0111 0001 Logical AND, single precision

FNAND 0 0110 1110 Logical NAND

FNANDS 0 0110 1111 Logical NAND, single precision

FXOR 0 0110 1100 Logical XOR

FXORS 0 0110 1101 Logical XOR, single precision

FXNOR 0 0111 0010 Logical XNOR

FXNORS 0 0111 0011 Logical XNOR, single precision

FORNOT1 0 0111 1010 Negated src1 OR src2

FORNOT1S 0 0111 1011 Negated src1 OR src2, single precision

FORNOT2 0 0111 0110 src1 OR negated src2

FORNOT2S 0 0111 0111 src1 OR negated src2, single precision

FANDNOT1 0 0110 1000 Negated src1 AND src2

FANDNOT1S 0 0110 1001 Negated src1 AND src2, single precision
A-332 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

FANDNOT2 0 0110 0100 src1 AND negated src2

FANDNOT2S 0 0110 0101 src1 AND negated src2, single precision

Assembly Language Syntax

fzero fregrd

fzeros fregrd

fone fregrd

fones fregrd

fsrc1 fregrs1, fregrd

fsrc1s fregrs1, fregrd

fsrc2 fregrs2, fregrd

fsrc2s fregrs2, fregrd

fnot1 fregrs1, fregrd

fnot1s fregrs1, fregrd

fnot2 fregrs2, fregrd

fnot2s fregrs2, fregrd

for fregrs1, fregrs2, fregrd

fors fregrs1, fregrs2, fregrd

fnor fregrs1, fregrs2, fregrd

fnors fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fand fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fnands fregrs1, fregrs2, fregrd

fxor fregrs1, fregrs2, fregrd

fxors fregrs1, fregrs2, fregrd

fxnor fregrs1, fregrs2, fregrd

fxnors fregrs1, fregrs2, fregrd

Opcode opf Operation

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions A-333

Description

The standard 64-bit versions of these instructions perform 1 of 16 64-bit logical operations

between the 64-bit floating-point registers specified by rs1 and rs2. The result is stored in

the 64-bit floating-point destination register specified by rd. The 32-bit (single-precision)

version of these instructions perform 32-bit logical operations.

Note – For good performance, the result of a single logical instruction should not be used

as part of a 64-bit graphics instruction source operand in the next three instruction groups.

Similarly, the result of a standard logical should not be used as a 32-bit graphics instruction

source operand in the next three instruction groups.

Exceptions

fp_disabled

fornot1 fregrs1, fregrs2, fregrd

fornot1s fregrs1, fregrs2, fregrd

fornot2 fregrs1, fregrs2, fregrd

fornot2s fregrs1, fregrs2, fregrd

fandnot1 fregrs1, fregrs2, fregrd

fandnot1s fregrs1, fregrs2, fregrd

fandnot2 fregrs1, fregrs2, fregrd

fandnot2s fregrs1, fregrs2, fregrd

Assembly Language Syntax
A-334 UltraSPARC IIIi Processor User’s Manual • June 2003

A.33 Logical Operations

Format (3)

Opcode op3 Operation

AND 00 0001 AND

ANDcc 01 0001 AND and modify condition codes

ANDN 00 0101 AND Not

ANDNcc 01 0101 AND Not and modify condition codes

OR 00 0010 Inclusive OR

ORcc 01 0010 Inclusive OR and modify condition codes

ORN 00 0110 Inclusive OR Not

ORNcc 01 0110 Inclusive OR Not and modify condition

codes

XOR 00 0011 Exclusive OR

XORcc 01 0011 Exclusive OR and modify condition codes

XNOR 00 0111 Exclusive NOR

XNORcc 01 0111 Exclusive NOR and modify condition codes

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-335

Description

These instructions implement bitwise logical operations. They compute

“r[rs1] op r[rs2]” if i = 0, or “r[rs1] op sign_ext(simm13)” if i = 1, and

write the result into r[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition codes

(icc and xcc). They set the condition codes as follows:

• icc.v, icc.c, xcc.v, and xcc.c to zero

• icc.n to bit 31 of the result

• xcc.n to bit 63 of the result

• icc.z to one if bits 31:0 of the result are zero (otherwise to zero)

• xcc.z to one if all 64 bits of the result are zero (otherwise to zero)

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before applying the

main (AND or OR) operation.

Assembly Language Syntax

and regrs1, reg_or_imm, regrd

andcc regrs1, reg_or_imm, regrd

andn regrs1, reg_or_imm, regrd

andncc regrs1, reg_or_imm, regrd

or regrs1, reg_or_imm, regrd

orcc regrs1, reg_or_imm, regrd

orn regrs1, reg_or_imm, regrd

orncc regrs1, reg_or_imm, regrd

xor regrs1, reg_or_imm, regrd

xorcc regrs1, reg_or_imm, regrd

xnor regrs1, reg_or_imm, regrd

xnorcc regrs1, reg_or_imm, regrd
A-336 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc

logical operations, respectively.

Exceptions

None

A.34 Memory Barrier

Format (3)

Description

The memory barrier instruction, MEMBAR, has two complementary functions: to express

order constraints between memory references and to provide explicit control of memory-

reference completion. The membar_mask field in the suggested assembly language is the

concatenation of the cmask and mmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing

before the MEMBAR and memory references following it in a program. The particular classes

of memory references are specified by the mmask field. Memory references are classified as

loads (including load instructions LDSTUB(A), SWAP(A), CASA, and CASXA and stores

Opcode op3 Operation

MEMBAR 10 1000 Memory Barrier

Assembly Language Syntax

membar membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

6

4

7

cmask
Chapter A Instruction Definitions A-337

(including store instructions LDSTUB(A), SWAP(A), CASA, CASXA, and FLUSH). The mmask
field specifies the classes of memory references subject to ordering, as described. MEMBAR
applies to all memory operations in all address spaces referenced by the issuing processor,

but it has no effect on memory references by other processors. When the cmask field is

nonzero, completion as well as order constraints are imposed, and the order imposed can be

more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from memory and

cannot be modified by another processor. A store has been performed when the value stored

has become visible, that is, when the previous value can no longer be read by any processor.

In specifying the effect of MEMBAR, instructions are considered to be executed as if they

were processed in a strictly sequential fashion, with each instruction completed before the

next has begun.

The mmask field is encoded in bits 3 through 0 of the instruction. TABLE A-9 specifies the

order constraint that each bit of mmask (selected when set to one) imposes on memory

references appearing before and after the MEMBAR. From zero to four, mask bits may be

selected in the mmask field.

The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,

described in TABLE A-10, specify additional constraints on the order of memory references

and the processing of instructions. If cmask is zero, then MEMBAR enforces the partial

ordering specified by the mmask field; if cmask is nonzero, then completion and partial

order constraints are applied.

TABLE A-9 MEMBAR mmask Encodings

Mask Bit Name Description

mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction must be visible to

all processors before the effect of any stores following the MEMBAR; it is equivalent to

the deprecated STBAR instruction.

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been performed before

the effects of any stores following the MEMBAR are visible to any other processor.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction must be visible to

all processors before loads following the MEMBAR may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been performed before

any loads following the MEMBAR may be performed.

TABLE A-10 MEMBAR cmask Encodings

Mask Bit Function Name Description

cmask[2] Synchronization

barrier

#Sync All operations (including non-memory reference operations)

appearing prior to the MEMBAR must have been performed and the

effects of any exceptions be visible before any instruction after the

MEMBAR may be initiated.
A-338 UltraSPARC IIIi Processor User’s Manual • June 2003

The encoding of MEMBAR is identical to that of the RDASR instruction, except that rs1 = 15,

rd = 0, and i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses is maintained for cacheable memory space.

Compatibility Note – MEMBAR with mmask = 816 and cmask = 016

(“membar #StoreStore”) is identical in function to the SPARC-V8 STBAR instruction,

which is deprecated.

The information included in this section should not be used for the decision as to when

MEMBARs should be added to software that needs to be compliant across all

UltraSPARC-based platforms. The operations of block load/block store (BLD/BST) on the

UltraSPARC IIIi processor are generally more ordered with respect to other operations,

compared to the UltraSPARC I processor and the UltraSPARC II processor. Code written and

found to “work” on the UltraSPARC IIIi processor may not work on the UltraSPARC I

processor and the UltraSPARC II processor if it does not follow the rules for BLD/BST

specified for those processors. Code that happens to work on the UltraSPARC I processor

and the UltraSPARC II processor may not work on the UltraSPARC IIIi processor if it did

not meet the coding guidelines specified for those processors. In no case is the coding

requirement for the UltraSPARC IIIi processor more restrictive than that for the

UltraSPARC I and the UltraSPARC II processors.

Software developers should not use the information in this section for determining the need

for MEMBARs but instead should rely on the SPARC-V9 MEMBAR rules. These

UltraSPARC IIIi processor rules are less restrictive than SPARC-V9, UltraSPARC I

processor, and the UltraSPARC II processor rules and are never more restrictive.

MEMBAR Rules

The UltraSPARC IIIi hardware uses the following rules to guide the interlock

implementation.

1. Non-cacheable load or store with side-effect bit on will always be blocked.

2. Cacheable or non-cacheable BLD will not be blocked.

cmask[1] Memory issue

barrier

#MemIssue All memory reference operations appearing prior to the MEMBAR
must have been performed before any memory operation after the

MEMBAR may be initiated.

cmask[0] Lookaside

barrier

#Lookaside A store appearing prior to the MEMBAR must complete before any

load following the MEMBAR referencing the same address can be

initiated.

TABLE A-10 MEMBAR cmask Encodings (Continued)

Mask Bit Function Name Description
Chapter A Instruction Definitions A-339

3. VA<12:5> of a load (cacheable or non-cacheable) will be compared with the VA<12:5> of

all entries in Store Queue. When a matching is detected, this load (cacheable or non-

cacheable) will be blocked.

4. An insertion of MEMBAR is required if Strong Ordering is desired while not fitting

rules 1 to 3.

TABLE A-11 and TABLE A-12 reflect the hardware interlocking mechanism implemented in the

UltraSPARC IIIi processor. The tables are read from Row to Column, the first memory

operation in program order being in Row followed by the memory operation found in

Column. The following two symbols are used as table entries:

• # — No intervening operation required because Fireplane-compliant systems

automatically order R before C.

• M — MEMBAR #Sync or MEMBAR #MemIssue or MEMBAR #StoreLoad required.

For VA<12:5> of a column operation not matching with VA<2:5> of a row operation while a

strong ordering is desired, the MEMBAR rules summarized in TABLE A-11 reflect the

UltraSPARC IIIi processor’s hardware implementation.

TABLE A-11 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong

Ordering

From Row
Operation R:

To Column Operation C:

lo
ad

lo
ad

fr
om

in
te

rn
al

A
SI

st
or

e

st
or

e
to

in
te

rn
al

A
SI

at
om

ic

lo
ad

_n
c_

e

st
or

e_
nc

_e

lo
ad

_n
c_

ne

st
or

e_
nc

_n
e

bl
oa

d

bs
to

re

bs
to

re
_c

om
m

it

bl
oa

d_
nc

bs
to

re
_n

c

load # # # # # # # # # M M # M M

load from internal ASI # # # # # # # # # # # # # #

store M # # # # M # M # M M # M M

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # M M # M M

load_nc_e # # # # # # # # # M M # M M

store_nc_e M # # # # # # M # M M # M M

load_nc_ne # # # # # # # # # M M # M M

store_nc_ne M # # # # M # M # M M # M M

bload M # M # M M M M M M M # M M

bstore M # M # M M M M M M M # M M
A-340 UltraSPARC IIIi Processor User’s Manual • June 2003

When VA<12:5> of a column operation matches VA<12:5> of a row operation, the MEMBAR
rules summarized in TABLE A-12 reflect the UltraSPARC IIIi’s hardware implementation.

bstore_commit M # M # M M M M M M M # M M

bload_nc M # M # M M M M M M M # M M

bstore_nc M # M # M M M M M M M # M M

TABLE A-12 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering

From Row
Operation R:

To Column Operation C:

lo
ad

lo
ad

fr
om

in
te

rn
al

A
SI

st
or

e

st
or

e
to

in
te

rn
al

A
SI

at
om

ic

lo
ad

_n
c_

e

st
or

e_
nc

_e

lo
ad

_n
c_

ne

st
or

e_
nc

_n
e

bl
oa

d

bs
to

re

bs
to

re
_c

om
m

it

bl
oa

d_
nc

bs
to

re
_n

c

load # # # # # # # # # # # # # #

load from internal ASI # # # # # # # # # # # # # #

store # # # # # # # # # M # # # #

store to internal ASI # M # # # # # # # M # # M M

atomic # # # # # # # # # # # # # #

load_nc_e # # # # # # # # # # # # # #

store_nc_e # # # # # # # # # M # # M #

load_nc_ne # # # # # # # # # # # # # #

store_nc_ne # # # # # # # # # M # # M #

bload # # # # # # # # # # # # # #

bstore # # # # # # # # # M # # # #

TABLE A-11 MEMBAR Rules for Column VA <12:5> ≠ Row VA <12:5> While Desiring Strong

Ordering (Continued)

From Row
Operation R:

To Column Operation C:

lo
ad

lo
ad

fr
om

in
te

rn
al

A
SI

st
or

e

st
or

e
to

in
te

rn
al

A
SI

at
om

ic

lo
ad

_n
c_

e

st
or

e_
nc

_e

lo
ad

_n
c_

ne

st
or

e_
nc

_n
e

bl
oa

d

bs
to

re

bs
to

re
_c

om
m

it

bl
oa

d_
nc

bs
to

re
_n

c

Chapter A Instruction Definitions A-341

Special Rules for Quad LDD (ASI 2416 and ASI 2C16)

MEMBAR is only required before quad LDD if VA<12:5> of a preceding store to the same

address space matches VA<12:5> of the quad LDD.

Exceptions

None

bstore_commit M # M # M M M M M M M # M M

bload_nc # # # # # # # # # # # # # #

bstore_nc # # # # # # # # # # # # M #

TABLE A-12 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering (Continued)

From Row
Operation R:

To Column Operation C:

lo
ad

lo
ad

fr
om

in
te

rn
al

A
SI

st
or

e

st
or

e
to

in
te

rn
al

A
SI

at
om

ic

lo
ad

_n
c_

e

st
or

e_
nc

_e

lo
ad

_n
c_

ne

st
or

e_
nc

_n
e

bl
oa

d

bs
to

re

bs
to

re
_c

om
m

it

bl
oa

d_
nc

bs
to

re
_n

c

A-342 UltraSPARC IIIi Processor User’s Manual • June 2003

A.35 Move Floating-Point Register on Condition

(FMOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc /xcc Test

FMOVA 11 0101 1000 Move Always 1

FMOVN 11 0101 0000 Move Never 0

FMOVNE 11 0101 1001 Move if Not Equal not Z

FMOVE 11 0101 0001 Move if Equal Z

FMOVG 11 0101 1010 Move if Greater not (Z or (N xor V))

FMOVLE 11 0101 0010 Move if Less or Equal Z or (N xor V)

FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)

FMOVL 11 0101 0011 Move if Less N xor V

FMOVGU 11 0101 1100 Move if Greater Unsigned not (C or Z)

FMOVLEU 11 0101 0100 Move if Less or Equal Unsigned (C or Z)

FMOVCC 11 0101 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

FMOVCS 11 0101 0101 Move if Carry Set (Less than, Unsigned) C

FMOVPOS 11 0101 1110 Move if Positive not N

FMOVNEG 11 0101 0110 Move if Negative N

FMOVVC 11 0101 1111 Move if Overflow Clear not V

FMOVVS 11 0101 0111 Move if Overflow Set V
Chapter A Instruction Definitions A-343

For Floating-Point Condition Codes

Format (4)

Opcode op3 cond Operation fcc Test

FMOVFA 11 0101 1000 Move Always 1

FMOVFN 11 0101 0000 Move Never 0

FMOVFU 11 0101 0111 Move if Unordered U

FMOVFG 11 0101 0110 Move if Greater G

FMOVFUG 11 0101 0101 Move if Unordered or Greater G or U

FMOVFL 11 0101 0100 Move if Less L

FMOVFUL 11 0101 0011 Move if Unordered or Less L or U

FMOVFLG 11 0101 0010 Move if Less or Greater L or G

FMOVFNE 11 0101 0001 Move if Not Equal L or G or U

FMOVFE 11 0101 1001 Move if Equal E

FMOVFUE 11 0101 1010 Move if Unordered or Equal E or U

FMOVFGE 11 0101 1011 Move if Greater or Equal E or G

FMOVFUGE 11 0101 1100 Move if Unordered or Greater or Equal E or G or U

FMOVFLE 11 0101 1101 Move if Less or Equal E or L

FMOVFULE 11 0101 1110 Move if Unordered or Less or Equal E or L or U

FMOVFO 11 0101 1111 Move if Ordered E or L or G

31 1924 18 1314 11 5 4 010172530 29

10 rd op3 cond opf_cc opf_low rs20
A-344 UltraSPARC IIIi Processor User’s Manual • June 2003

Encoding of the opf_cc Field

Encoding of opf Field (opf_cc opf_low)

opf_cc Condition Code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 —

110 xcc

111 —

Instruction Variation opf_cc opf_low opf

FMOVScc %fccn,rs2,rd 0nn 00 0001 0 nn00 0001

FMOVDcc %fccn,rs2,rd 0nn 00 0010 0 nn00 0010

FMOVQcc %fccn,rs2,rd 0nn 00 0011 0 nn00 0011

FMOVScc %icc, rs2,rd 100 00 0001 1 0000 0001

FMOVDcc %icc, rs2,rd 100 00 0010 1 0000 0010

FMOVQcc %icc, rs2,rd 100 00 0011 1 0000 0011

FMOVScc %xcc, rs2,rd 110 00 0001 1 1000 0001

FMOVDcc %xcc, rs2,rd 110 00 0010 1 1000 0010

FMOVQcc %xcc, rs2,rd 110 00 0011 1 1000 0011
Chapter A Instruction Definitions A-345

For Integer Condition Codes

Assembly Language Syntax

fmov{s,d,q}a i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}n i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ne i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}g i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}le i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ge i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}l i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}gu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}leu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}cc i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}geu)

fmov{s,d,q}cs i_or_x_cc, fregrs2, fregrd (synonyms: fmov{s,d,q}lu)

fmov{s,d,q}pos i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}neg i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vc i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vs i_or_x_cc, fregrs2, fregrd
A-346 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – To select the appropriate condition code, include %icc or %xcc
before the registers.

For Floating-Point Condition Codes

Description

These instructions copy the floating-point register(s) specified by rs2 to the floating-point

register(s) specified by rd if the condition indicated by the cond field is satisfied by the

selected condition code. The condition code used is specified by the opf_cc field of the

instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Assembly Language Syntax

fmov{s,d,q}a %fccn, fregrs2, fregrd

fmov{s,d,q}n %fccn, fregrs2, fregrd

fmov{s,d,q}u %fccn, fregrs2, fregrd

fmov{s,d,q}g %fccn, fregrs2, fregrd

fmov{s,d,q}ug %fccn, fregrs2, fregrd

fmov{s,d,q}l %fccn, fregrs2, fregrd

fmov{s,d,q}ul %fccn, fregrs2, fregrd

fmov{s,d,q}lg %fccn, fregrs2, fregrd

fmov{s,d,q}ne %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}nz)

fmov{s,d,q}e %fccn, fregrs2, fregrd (synonyms: fmov{s,d,q}z)

fmov{s,d,q}ue %fccn, fregrs2, fregrd

fmov{s,d,q}ge %fccn, fregrs2, fregrd

fmov{s,d,q}uge %fccn, fregrs2, fregrd

fmov{s,d,q}le %fccn, fregrs2, fregrd

fmov{s,d,q}ule %fccn, fregrs2, fregrd

fmov{s,d,q}o %fccn, fregrs2, fregrd
Chapter A Instruction Definitions A-347

Programming Note – In general, branches cause the processor’s performance to degrade.

Frequently, the MOVcc and FMOVcc instructions can be used to avoid branches. For

example, the following C language segment:

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to constant area
ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This code also takes four instructions but requires no branches and may boost performance

significantly. Use MOVcc and FMOVcc instead of branches wherever these instructions would

improve performance.

Exceptions

fp_disabled
fp_exception_other (ftt = unimplemented_FPop (opf_cc = 1012 or 1112 and quad forms))
A-348 UltraSPARC IIIi Processor User’s Manual • June 2003

A.36 Move Floating-Point Register on Integer

Register Condition (FMOVr)

Format (4)

Encoding of opf_low Field

Opcode op3 rcond Operation Test

— 11 0101 000 Reserved —

FMOVRZ 11 0101 001 Move if Register Zero r[rs1] = 0

FMOVRLEZ 11 0101 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

FMOVRLZ 11 0101 011 Move if Register Less Than Zero r[rs1] < 0

— 11 0101 100 Reserved —

FMOVRNZ 11 0101 101 Move if Register Not Zero r[rs1] ≠ 0

FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r[rs1] > 0

FMOVRGEZ 11 0101 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Instruction variation opf_low

FMOVSrcond rs1, rs2, rd 0 0101

FMOVDrcond rs1, rs2, rd 0 0110

FMOVQrcond rs1, rs2, rd 0 0111

31 141924 18 13 12 9 5 4 0102530 29

10 rd op3 0 rcond opf_low rs2rs1
Chapter A Instruction Definitions A-349

Description

If the contents of integer register r[rs1] satisfy the condition specified in the rcond field,

these instructions copy the contents of the floating-point register(s) specified by the rs2 field

to the floating-point register(s) specified by the rd field. If the contents of r[rs1] do not

satisfy the condition, the floating-point register(s) specified by the rd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not

modify any condition codes.

Implementation Note – The UltraSPARC IIIi processor does not implement this

instruction by tagging each register value. The UltraSPARC IIIi processor looks at the full

64-bit register to determine a negative or zero.

Exceptions

fp_disabled
fp_exception_other (unimplemented_FPop (rcond = 0002 or 1002 and quad forms))

Assembly Language Syntax

fmovr{s,d,q}e regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}z)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}ne regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}nz)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd
A-350 UltraSPARC IIIi Processor User’s Manual • June 2003

A.37 Move Integer Register on Condition

(MOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcc Test

MOVA 10 1100 1000 Move Always 1

MOVN 10 1100 0000 Move Never 0

MOVNE 10 1100 1001 Move if Not Equal not Z

MOVE 10 1100 0001 Move if Equal Z

MOVG 10 1100 1010 Move if Greater not (Z or (N xor V))

MOVLE 10 1100 0010 Move if Less or Equal Z or (N xor V)

MOVGE 10 1100 1011 Move if Greater or Equal not (N xor V)

MOVL 10 1100 0011 Move if Less N xor V

MOVGU 10 1100 1100 Move if Greater Unsigned not (C or Z)

MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (C or Z)

MOVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C

MOVPOS 10 1100 1110 Move if Positive not N

MOVNEG 10 1100 0110 Move if Negative N

MOVVC 10 1100 1111 Move if Overflow Clear not V

MOVVS 10 1100 0111 Move if Overflow Set V
Chapter A Instruction Definitions A-351

For Floating-Point Condition Codes

Format (4)

Opcode op3 cond Operation fcc Test

MOVFA 10 1100 1000 Move Always 1

MOVFN 10 1100 0000 Move Never 0

MOVFU 10 1100 0111 Move if Unordered U

MOVFG 10 1100 0110 Move if Greater G

MOVFUG 10 1100 0101 Move if Unordered or Greater G or U

MOVFL 10 1100 0100 Move if Less L

MOVFUL 10 1100 0011 Move if Unordered or Less L or U

MOVFLG 10 1100 0010 Move if Less or Greater L or G

MOVFNE 10 1100 0001 Move if Not Equal L or G or U

MOVFE 10 1100 1001 Move if Equal E

MOVFUE 10 1100 1010 Move if Unordered or Equal E or U

MOVFGE 10 1100 1011 Move if Greater or Equal E or G

MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal E or G or U

MOVFLE 10 1100 1101 Move if Less or Equal E or L

MOVFULE 10 1100 1110 Move if Unordered or Less or Equal E or L or U

MOVFO 10 1100 1111 Move if Ordered E or L or G

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0
A-352 UltraSPARC IIIi Processor User’s Manual • June 2003

For Integer Condition Codes

cc2 cc1 cc0 Condition Code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 Reserved

110 xcc

111 Reserved

Assembly Language Syntax

mova i_or_x_cc, reg_or_imm11, regrd

movn i_or_x_cc, reg_or_imm11, regrd

movne i_or_x_cc, reg_or_imm11, regrd (synonym: movnz)

move i_or_x_cc, reg_or_imm11, regrd (synonym: movz)

movg i_or_x_cc, reg_or_imm11, regrd

movle i_or_x_cc, reg_or_imm11, regrd

movge i_or_x_cc, reg_or_imm11, regrd

movl i_or_x_cc, reg_or_imm11, regrd

movgu i_or_x_cc, reg_or_imm11, regrd

movleu i_or_x_cc, reg_or_imm11, regrd

movcc i_or_x_cc, reg_or_imm11, regrd (synonym: movgeu)

movcs i_or_x_cc, reg_or_imm11, regrd (synonym: movlu)

movpos i_or_x_cc, reg_or_imm11, regrd

movneg i_or_x_cc, reg_or_imm11, regrd

movvc i_or_x_cc, reg_or_imm11, regrd

movvs i_or_x_cc, reg_or_imm11, regrd
Chapter A Instruction Definitions A-353

Programming Note – To select the appropriate condition code, include %icc or %xcc
before the register or immediate field.

For Floating-Point Condition Codes

Programming Note – To select the appropriate condition code, include %fcc0, %fcc1,

%fcc2, or %fcc3 before the register or immediate field.

Description

These instructions test to see if cond is TRUE for the selected condition codes. If so, they

copy the value in r[rs2] if the i field = 0, or “sign_ext(simm11)” if i = 1 into

r[rd]. The condition code used is specified by the cc2, cc1, and cc0 fields of the

instruction. If the condition is FALSE, then r[rd] is not changed.

Assembly Language Syntax

mova %fccn, reg_or_imm11, regrd

movn %fccn, reg_or_imm11, regrd

movu %fccn, reg_or_imm11, regrd

movg %fccn, reg_or_imm11, regrd

movug %fccn, reg_or_imm11, regrd

movl %fccn, reg_or_imm11, regrd

movul %fccn, reg_or_imm11, regrd

movlg %fccn, reg_or_imm11, regrd

movne %fccn, reg_or_imm11, regrd (synonym: movnz)

move %fccn, reg_or_imm11, regrd (synonym: movz)

movue %fccn, reg_or_imm11, regrd

movge %fccn, reg_or_imm11, regrd

movuge %fccn, reg_or_imm11, regrd

movle %fccn, reg_or_imm11, regrd

movule %fccn, reg_or_imm11, regrd

movo %fccn, reg_or_imm11, regrd
A-354 UltraSPARC IIIi Processor User’s Manual • June 2003

These instructions copy an integer register to another integer register if the condition is

TRUE. The condition code that is used to determine whether the move will occur can be

either integer condition code (icc or xcc) or any floating-point condition code (fcc0,
fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

Programming Note – In general, branches cause the processor performance to degrade.

Frequently, the MOVcc and FMOVcc instructions can be used to avoid branches. For

example, consider the C language if-then-else statement:

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3 ! X = 1
or %g0,0,%i3 ! X = 0

label:...

This takes four instructions including a branch. With MOVcc, this could be coded as

cmp %i0,%i2
or %g0,1,%i3 ! assume X = 1
movle %xcc,0,%i3 ! overwrite with X = 0

This approach takes only three instructions and no branches and may boost performance

significantly. Use MOVcc and FMOVcc instead of branches wherever these instructions would

increase performance.

Exceptions

illegal_instruction (cc2 cc1 cc0 = 1012 or 1112)

fp_disabled (cc2 cc1 cc0 = 0002, 0012 , 0102 , or 0112 and the FPU is disabled)
Chapter A Instruction Definitions A-355

A.38 Move Integer Register on Register Condition

(MOVr)

Format (3)

Opcode op3 rcond Operation Test

— 10 1111 000 Reserved —

MOVRZ 10 1111 001 Move if Register Zero r[rs1] = 0

MOVRLEZ 10 1111 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

MOVRLZ 10 1111 011 Move if Register Less Than Zero r[rs1] < 0

— 10 1111 100 Reserved —

MOVRNZ 10 1111 101 Move if Register Not Zero r[rs1] ≠ 0

MOVRGZ 10 1111 110 Move if Register Greater Than Zero r[rs1] > 0

MOVRGEZ 10 1111 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Assembly Language Syntax

movrz regrs1, reg_or_imm10, regrd (synonym: movre)

movrlez regrs1, reg_or_imm10, regrd

movrlz regrs1, reg_or_imm10, regrd

movrnz regrs1, reg_or_imm10, regrd (synonym: movrne)

movrgz regrs1, reg_or_imm10, regrd

movrgez regrs1, reg_or_imm10, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9
A-356 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

If the contents of integer register r[rs1] satisfy the condition specified in the rcond field,

these instructions copy r[rs2] (if i = 0) or sign_ext(simm10) (if i = 1) into r[rd].

If the contents of r[rs1] do not satisfy the condition, then r[rd] is not modified. These

instructions treat the register contents as a signed integer value; they do not modify any

condition codes.

Implementation Note – The UltraSPARC IIIi processor does not implement this

instruction by tagging each register value. The UltraSPARC IIIi processor looks at the full

64-bit register to determine a negative or zero.

Exceptions

illegal_instruction (rcond = 0002 or 1002)

A.39 Multiply and Divide (64-bit)

Format (3)

Opcode op3 Operation

MULX 00 1001 Multiply (signed or unsigned)

SDIVX 10 1101 Signed Divide

UDIVX 00 1101 Unsigned Divide

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-357

Description

MULX computes “r[rs1] × r[rs2]” if i = 0 or “r[rs1] × sign_ext(simm13)” if

i = 1, and writes the 64-bit product into r[rd]. MULX can be used to calculate the 64-bit

product for signed or unsigned operands (the product is the same).

SDIVX and UDIVX compute “r[rs1] ÷ r[rs2]” if i = 0 or

“r[rs1] ÷ sign_ext(simm13)” if i = 1, and write the 64-bit result into r[rd].

SDIVX operates on the operands as signed integers and produces a corresponding signed

result. UDIVX operates on the operands as unsigned integers and produces a corresponding

unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest

negative number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

Exceptions

division_by_zero

A.40 No Operation

Assembly Language Syntax

mulx regrs1, reg_or_imm, regrd

sdivx regrs1, reg_or_imm, regrd

udivx regrs1, reg_or_imm, regrd

Opcode op op2 Operation

NOP 0 0000 100 No Operation
A-358 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (2)

Description

The NOP instruction changes no program-visible state (except that of the PC and nPC).

NOP is a special case of the SETHI instruction, with imm22 = 0 and rd = 0.

Exceptions

None

A.41 Partial Store (VIS I)

Assembly Language Syntax

nop

Opcode imm_asi ASI Value Operation

STDFA ASI_PST8_P C016 Eight 8-bit conditional stores to primary address space

STDFA ASI_PST8_S C116 Eight 8-bit conditional stores to secondary address space

STDFA ASI_PST8_PL C816 Eight 8-bit conditional stores to primary address space, little-endian

STDFA ASI_PST8_SL C916 Eight 8-bit conditional stores to secondary address space, little-endian

STDFA ASI_PST16_P C216 Four 16-bit conditional stores to primary address space

STDFA ASI_PST16_S C316 Four 16-bit conditional stores to secondary address space

STDFA ASI_PST16_PL CA16 Four 16-bit conditional stores to primary address space, little-endian

STDFA ASI_PST16_SL CB16 Four 16-bit conditional stores to secondary address space, little-endian

STDFA ASI_PST32_P C416 Two 32-bit conditional stores to primary address space

STDFA ASI_PST32_S C516 Two 32-bit conditional stores to secondary address space

31 24 02530 29 22 21

00 op op2 0
Chapter A Instruction Definitions A-359

Format (3)

Description

The partial store instructions are selected by one of the partial store ASIs with the STDFA
instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register specified

by rd are conditionally stored at the address specified by r[rs1], using the mask specified

in r[rs2]. The value in r[rs2] has the same format as the result specified by the pixel

compare instructions (see Section A.44, “Pixel Compare (VIS I)”). The most significant bit

of the mask (not the entire register) corresponds to the most significant part of the floating-

point register specified by rd. The data is stored in little-endian form in memory if the ASI

name has an “L” suffix; otherwise, it is stored in big-endian format.

A partial store instruction can cause a virtual (or physical) watchpoint exception when the

following conditions are met:

• The virtual (physical) address in r[rs1] matches the address in the VA (PA) Data

Watchpoint Register.

• The byte store mask in r[rs2] indicates that a byte is to be stored.

STDFA ASI_PST32_PL CC16 Two 32-bit conditional stores to primary address
space, little-endian

STDFA ASI_PST32_SL CD16 Two 32-bit conditional stores to secondary address
space, little-endian

Assembly Language Syntax1

1. The original assembly language syntax for a partial store instruction (“stda
fregrd, [regrs1] regrs2, imm_asi”) has been deprecated because of

inconsistency with the rest of the SPARC assembly language. Over time,

assemblers will support the new syntax for this instruction. In the meantime,

some assemblers may recognize only the original syntax.

stda fregrd, regrs2, [regrs1] imm_asi

Opcode imm_asi ASI Value Operation

31 24 02530 29 19 18 14 13 5 4

rd11 110111 imm_asirs1 rs2i=0
A-360 UltraSPARC IIIi Processor User’s Manual • June 2003

• The Virtual (Physical) Data Watchpoint Mask in DCUCR indicates that one or more of the

bytes to be stored at the watched address is being watched.

Watchpoint exceptions on partial store instructions behaves as if every partial store always

stores all 8 bytes. The DCUCR Data Watchpoint masks are only checked for nonzero value

(watchpoint enabled). The byte store mask (r[rs2]) in the partial store instruction is

ignored, and a watchpoint exception can occur even if the mask is zero (that is, no store will

take place).

ASIs C016-C516 and C816-CD16 are only used for partial store operations. In particular, they

should not be used with the LDDFA instruction.

Note – If the byte ordering is little-endian, the byte enables generated by this instruction are

swapped with respect to big-endian.

Exceptions

fp_disabled
illegal_instruction (When i = 1, no immediate mode is supported.)

PA_watchpoint
VA_watchpoint
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.42 Partitioned Add/Subtract Instructions (VIS I)

Opcode opf Operation

FPADD16 0 0101 0000 Four 16-bit Add

FPADD16S 0 0101 0001 Two 16-bit Add

FPADD32 0 0101 0010 Two 32-bit Add

FPADD32S 0 0101 0011 One 32-bit Add

FPSUB16 0 0101 0100 Four 16-bit Subtract

FPSUB16S 0 0101 0101 Two 16-bit Subtract

FPSUB32 0 0101 0110 Two 32-bit Subtract
Chapter A Instruction Definitions A-361

Format (3)

Description

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds

or subtracts between the corresponding fixed-point values contained in the source operands

(the 64-bit floating-point registers specified by rs1 and rs2). For subtraction, the second

operand (rs2) is subtracted from the first operand (rs1). The result is placed in the 64-bit

destination register specified by rd.

The single-precision versions of these instructions (FPADD16S, FPSUB16S, FPADD32S,

FPSUB32S) perform two 16-bit or one 32-bit partitioned add(s) or subtract(s); only the low

32 bits of the destination register are affected.

Note – For good performance, the result of a single FPADD should not be used as part of a

source operand of a 64-bit graphics instruction in the next instruction group. Similarly, the

result of a standard FPADD should not be used as a 32-bit graphics instruction source

operand in the next three instruction groups.

FPSUB32S 0 0101 0111 One 32-bit Subtract

Assembly Language Syntax

fpadd16 fregrs1, fregrs2, fregrd

fpadd16s fregrs1, fregrs2, fregrd

fpadd32 fregrs1, fregrs2, fregrd

fpadd32s fregrs1, fregrs2, fregrd

fpsub16 fregrs1, fregrs2, fregrd

fpsub16s fregrs1, fregrs2, fregrd

fpsub32 fregrs1, fregrs2, fregrd

fpsub32s fregrs1, fregrs2, fregrd

Opcode opf Operation

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
A-362 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

fp_disabled

A.43 Partitioned Multiply Instructions (VIS I)

Format (3)

Opcode opf Operation

FMUL8x16 0 0011 0001 8-bit x 16-bit Partitioned Product

FMUL8x16AU 0 0011 0011 8-bit x 16-bit Upper α Partitioned Product

FMUL8x16AL 0 0011 0101 8-bit x 16-bit Upper α Partitioned Product

FMUL8SUx16 0 0011 0110 Upper 8-bit x 16-bit Partitioned Product

FMUL8ULx16 0 0011 0111 Lower Unsigned 8-bit x 16-bit Partitioned Product

FMULD8SUx16 0 0011 1000 Upper 8-bit x 16-bit Partitioned Product

FMULD8ULx16 0 0011 1001 Lower Unsigned 8-bit x 16-bit Partitioned Product

Assembly Language Syntax

fmul8x16 fregrs1, fregrs2, fregrd

fmul8x16au fregrs1, fregrs2, fregrd

fmul8x16al fregrs1, fregrs2, fregrd

fmul8sux16 fregrs1, fregrs2, fregrd

fmul8ulx16 fregrs1, fregrs2, fregrd

fmuld8sux16 fregrs1, fregrs2, fregrd

fmuld8ulx16 fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions A-363

Description

Note – For good performance, the result of a partitioned multiply should not be used as a

32-bit graphics instruction source operand in the next three instruction groups.

Programming Note – When software emulates an 8-bit unsigned by16-bit signed

multiply, the unsigned value must be zero-extended and the 16-bit value sign-extended before

the multiplication.

Note – For good performance, the result of a partitioned multiply should not be used as a

source operand of a 32-bit graphics instruction in the next three instruction groups.

The following sections describe the versions of partitioned multiplies.

Exceptions

fp_disabled

A.43.1 FMUL8x16 Instruction

FMUL8x16 multiplies each unsigned 8-bit value (that is, a pixel) in f[rs1] by the

corresponding (signed) 16-bit fixed-point integer in the 64-bit floating-point register specified

by rs2; it rounds the 24-bit product (assuming binary point between bits 7 and 8) and stores

the upper 16 bits of the result into the corresponding 16-bit field in the 64-bit floating-point

destination register specified by rd. FIGURE A-5 illustrates the operation.

Note – This instruction treats the pixel values as fixed-point with the binary point to the left

of the most significant bit. Typically, this operation is used with filter coefficients as the

fixed-point rs2 value and image data as the rs1 pixel value. Appropriate scaling of the

coefficient allows various fixed-point scaling to be realized.
A-364 UltraSPARC IIIi Processor User’s Manual • June 2003

FIGURE A-5 FMUL8x16 Operation

A.43.2 FMUL8x16AU Instruction

FMUL8x16AU is the same as FMUL8x16, except that one 16-bit fixed-point value is used for

all four multiplies. This value is the most significant 16 bits of the 32-bit register f[rs2],

which is typically a proportional value. FIGURE A-6 illustrates the operation.

FIGURE A-6 FMUL8x16AU Operation

A.43.3 FMUL8x16AL Instruction

FMUL8x16AL is the same as FMUL8x16AU, except that the least significant 16 bits of the

32-bit register f[rs2] register are used as a proportional value. FIGURE A-7 illustrates the

operation.

0151631

rs1

rd

24 23 8 7

rs2

015163132474863

015163132474863

× MSB × MSB × MSB × MSB

0151631

rs1

rd

24 23 8 7

rs2

0151631

015163132474863

× × × ×
Chapter A Instruction Definitions A-365

FIGURE A-7 FMUL8x16AL Operation

A.43.4 FMUL8SUx16 Instruction

FMUL8SUx16 multiplies the upper 8 bits of each 16-bit signed value in the 64-bit floating-

point register specified by rs1 by the corresponding signed, 16-bit, fixed-point, signed

integer in the 64-bit floating-point register specified by rs2. It rounds the 24-bit product

toward the nearest representable value and then stores the upper 16 bits of the result into the

corresponding 16-bit field of the 64-bit floating-point destination register specified by rd. If

the product is exactly halfway between two integers, the result is rounded toward positive

infinity. FIGURE A-8 illustrates the operation.

FIGURE A-8 FMUL8SUx16 Operation

0151631

rs1

rd

24 23 8 7

rs2

0151631

015163132474863

× × × ×

rs1

rd

rs2

015163132474863

× MSB × MSB × MSB × MSB

015163132474863

015163132474863 56 55 40 39 24 23 8 7
A-366 UltraSPARC IIIi Processor User’s Manual • June 2003

A.43.5 FMUL8ULx16 Instruction

FMUL8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in the 64-bit floating-

point register specified by rs1 by the corresponding fixed-point signed integer in the 64-bit

floating-point register specified by rs2. Each 24-bit product is sign-extended to 32 bits. The

upper 16 bits of the sign-extended value are rounded to nearest representable value and then

stored in the corresponding 16-bit field of the 64-bit floating-point destination register

specified by rd. If the result is exactly halfway between two integers, the result is rounded

toward positive infinity. FIGURE A-9 illustrates the operation. CODE EXAMPLE A-5 shows an

example.

FIGURE A-9 FMUL8LUx16 Operation

CODE EXAMPLE A-5 FMUL8LUx16 Operation

A.43.6 FMULD8SUx16 Instruction

FMULD8SUx16 multiplies the upper 8 bits of each 16-bit signed value in f[rs1] by the

corresponding signed 16-bit fixed-point signed integer in f[rs2]. Each 24-bit product is

shifted left by 8 bits to make up a 32-bit result, which is then stored in the 64-bit floating-

point register specified by rd. FIGURE A-10 illustrates the operation.

fmul8sux16 %f0, %f1, %f2

fmul8ulx16 %f0, %f1, %f3

fpadd16 %f2, %f3, %f4

rs1

rd

rs2

015163132474863

× signed-extended × signed-extended × signed-extended × signed-extended

015163132474863

015163132474863 56 55 40 39 24 23 8 7

8 MSB 8 MSB 8 MSB 8 MSB
Chapter A Instruction Definitions A-367

FIGURE A-10 FMULD8SUx16 Operation

A.43.7 FMULD8ULx16 Instruction

FMULD8ULx16 multiplies the unsigned lower 8 bits of each 16-bit value in f[rs1] by the

corresponding fixed-point signed integer in f[rs2]. Each 24-bit product is sign-extended to

32 bits and stored in the 64-bit floating-point register specified by rd. FIGURE A-11 illustrates

the operation; CODE EXAMPLE A-6 exemplifies the operation.

FIGURE A-11 FMULD8ULx16 Operation

rs1

rd

rs2

0783132394063

× ×

0151631

0151631 24 23 8 7

0000000000000000

rs1

rd

rs2

0313263

0151631

0151631 24 23 8 7

sign-extended sign-extended× ×
A-368 UltraSPARC IIIi Processor User’s Manual • June 2003

CODE EXAMPLE A-6 FMULD8ULx16 Operation

A.44 Pixel Compare (VIS I)

Format (3)

fmuld8sux16 %f0, %f1, %f2

fmuld8ulx16 %f0, %f1, %f3

fpadd32 %f2, %f3, %f4

Opcode opf Operation

FCMPGT16 0 0010 1000 Four 16-bit Compares; set rd if src1 > src2

FCMPGT32 0 0010 1100 Two 32-bit Compares; set rd if src1 > src2

FCMPLE16 0 0010 0000 Four 16-bit Compares; set rd if src1 ≤ src2

FCMPLE32 0 0010 0100 Two 32-bit Compares; set rd if src1 ≤ src2

FCMPNE16 0 0010 0010 Four 16-bit Compares; set rd if src1 ≠ src2

FCMPNE32 0 0010 0110 Two 32-bit Compares; set rd if src1 ≠ src2

FCMPEQ16 0 0010 1010 Four 16-bit Compares; set rd if src1 = src2

FCMPEQ32 0 0010 1110 Two 32-bit Compares; set rd if src1 = src2

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions A-369

Description

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers

specified by rs1 and rs2 are compared. The 4-bit or 2-bit results are stored in the least

significant bits in the integer destination register r[rd]. Signed comparisons are used. Bit 0

of r[rd] corresponds to the least significant 16-bit or 32-bit comparison.

For FCMPGT, each bit in the result is set if the corresponding value in the first source operand

is greater than the value in the second source operand. Less-than comparisons are made by

swapping the operands.

For FCMPLE, each bit in the result is set if the corresponding value in the first source

operand is less than or equal to the value in the second source operand. Greater-than-or-equal

comparisons are made by swapping the operands.

For FCMPEQ, each bit in the result is set if the corresponding value in the first source

operand is equal to the value in the second source operand.

For FCMPNE, each bit in the result is set if the corresponding value in the first source

operand is not equal to the value in the second source operand.

Exceptions

fp_disabled

Assembly Language Syntax

fcmpgt16 fregrs1, fregrs2, regrd

fcmpgt32 fregrs1, fregrs2, regrd

fcmple16 fregrs1, fregrs2, regrd

fcmple32 fregrs1, fregrs2, regrd

fcmpne16 fregrs1, fregrs2, regrd

fcmpne32 fregrs1, fregrs2, regrd

fcmpeq16 fregrs1, fregrs2, regrd

fcmpeq32 fregrs1, fregrs2, regrd
A-370 UltraSPARC IIIi Processor User’s Manual • June 2003

A.45 Pixel Component Distance (PDIST) (VIS I)

Format (3)

Description

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers

specified by rs1 and rs2. The corresponding 8-bit values in the source registers are

subtracted (that is, the second source operand from the first source operand). The sum of the

absolute value of each difference is added to the integer in the 64-bit floating-point

destination register specified by rd. The result is stored in the destination register. Typically,

this instruction is used for motion estimation in video compression algorithms.

Note – For good performance, the rd operand of PDIST should not reference the result of

a non-PDIST instruction in the five previously executed instruction groups.

Exceptions

fp_disabled

Opcode opf Operation

PDIST 0 0011 1110 Distance between eight 8-bit components

Assembly Language Syntax

pdist fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
Chapter A Instruction Definitions A-371

A.46 Pixel Formatting (VIS I)

Format (3)

Description

The FPACK instructions convert multiple values in a source register to a lower-precision

fixed or pixel format and stores the resulting values in the destination register. Input values

are clipped to the dynamic range of the output format. Packing applies a scale factor from

GSR.scale to allow flexible positioning of the binary point.

Opcode opf Operation

FPACK16 0 0011 1011 Four 16-bit packs into 8 unsigned bits

FPACK32 0 0011 1010 Two 32-bit packs into 8 unsigned bit

FPACKFIX 0 0011 1101 Four 16-bit packs into 16 signed bits

FEXPAND 0 0100 1101 Four 16-bit expands

FPMERGE 0 0100 1011 Two 32-bit merges

Assembly Language Syntax

fpack16 fregrs2, fregrd

fpack32 fregrs1, fregrs2, fregrd

fpackfix fregrs2, fregrd

fexpand fregrs2, fregrd

fpmerge fregrs1, fregrs2, fregrd

31 24 02530 29 19 18 14 13 5 4

rd10 110110 opfrs1 rs2
A-372 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – For good performance, the result of an FPACK (including

FPACK32) should not be used as part of a 64-bit graphics instruction source operand in the

next three instruction groups.

FEXPAND performs the inverse of the FPACK16 operation.

FPMERGE interleaves four 8-bit values from each of two 32-bit registers into a single 64-bit

destination register.

Programming Note – The result of FEXPAND or FPMERGE should not be used as a 32-

bit graphics instruction source operand in the next three instruction groups.

Exceptions

fp_disabled

A.46.1 FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register specified by

rs2, scales, truncates, and clips them into four 8-bit unsigned integers, and stores the results

in the 32-bit destination register, f[rd]. FIGURE A-12 illustrates the FPACK16 operation.
Chapter A Instruction Definitions A-373

FIGURE A-12 FPACK16 Operation

Note – FPACK16 ignores the most significant bit of GSR.scale (GSR.scale<4>).

This operation is carried out as follows:

1. Left-shift the value from the 64-bit floating-point register specified by rs2 by the number

of bits specified in GSR.scale while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of

the implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation

converts the scaled value into a signed integer (that is, round toward negative infinity). If

the resulting value is negative (that is, its most significant bit is set), zero is returned as

the clipped value. If the value is greater than 255, then 255 is delivered as the clipped

value. Otherwise, the scaled value is returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, f[rd].

015163132474863

04

x0 1 0 0GSR.scale

rs2

rd

067

19

0 0 0 0

1415 4

3
implicit binary point

07

04

GSR.scale

0910

25

1415 6

3
implicit binary point

07

0 0 0 0 0 0 0

x1 0 1 0

0 0 0

rs2 rs2

rd rd

015015
A-374 UltraSPARC IIIi Processor User’s Manual • June 2003

A.46.2 FPACK32

FPACK32 takes two 32-bit fixed values from the second source operand (the 64-bit floating-

point register specified by rs2) and scales, truncates, and clips them into two 8-bit unsigned

integers. The two 8-bit integers are merged at the corresponding least significant byte

positions with each 32-bit word in the 64-bit floating-point register specified by rs1, left-

shifted by 8 bits. The 64-bit result is stored in the 64-bit floating-point register specified by

rd. Thus, successive FPACK32 instructions can assemble two pixels by using three or four

pairs of 32-bit fixed values. FIGURE A-13 illustrates the FPACK32 operation.

FIGURE A-13 FPACK32 Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from the second source operand by the number of bits

specified in GSR.scale, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit

immediately to the left of the implicit binary point (that is, between bits 23 and 22 for

each 32-bit word). Truncation converts the scaled value into a signed integer (that is,

015163132474863

rs2

rd

04

GSR.scale

0

37

2223 5

implicit binary point

07

0 0 0 0 0 0

0 0 1 1 0

rs2

rd

015

56 55 40 39 24 23 8 7

rs1

31
Chapter A Instruction Definitions A-375

round toward negative infinity). If the resulting value is negative (that is, MSB is set), then

zero is returned as the clipped value. If the value is greater than 255, then 255 is delivered

as the clipped value. Otherwise, the scaled value is returned as the result.

3. Left-shift each 32-bit value from the first source operand (the 64-bit floating-point register

specified by rs1) by 8 bits.

4. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte

positions in the left-shifted value from the second source operand.

5. Store the result in the rd register.

A.46.3 FPACKFIX

FPACKFIX takes two 32-bit fixed values from the 64-bit floating-point register specified by

rs2, scales, truncates, and clips them into two 16-bit unsigned integers, and then stores the

result in the 32-bit destination register f[rd]. FIGURE A-14 illustrates the FPACKFIX
operation.

FIGURE A-14 FPACKFIX Operation

01516313263

rs2

rd

04

GSR.scale

0

37

1516 5

implicit binary point

015

0 0 0 0 0 0

0 0 1 1 0

rs2

rd

0

31
A-376 UltraSPARC IIIi Processor User’s Manual • June 2003

This operation is carried out as follows:

1. Left-shift each 32-bit value from the source operand (the 64-bit floating-point register

specified by rs2) by the number of bits specified in GSR.scale while maintaining

clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit

immediately to the left of the implicit binary point (that is, between bits 16 and 15 for

each 32-bit word). Truncation converts the scaled value into a signed integer (that is,

round toward negative infinity). If the resulting value is less than −32768, then −32768 is

returned as the clipped value. If the value is greater than 32767, then 32767 is delivered as

the clipped value. Otherwise, the scaled value is returned as the result.

3. Store the result in the 32-bit destination register f[rd].

A.46.4 FEXPAND

FEXPAND takes four 8-bit unsigned integers from f[rs2], converts each integer to a 16-bit

fixed-point value, and stores the four resulting 16-bit values in a 64-bit floating-point register

specified by rd. FIGURE A-15 illustrates the operation.

FIGURE A-15 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by four and zero-extend the results to a 16-bit fixed value.

2. Store the result in the destination register.

01516313263

rs2

rd

1215 3

07

0 0 0 0

rs2

rd

011

1516

0151631 2324 78

0 0 0 0

4

Chapter A Instruction Definitions A-377

A.46.5 FPMERGE

FPMERGE interleaves four corresponding 8-bit unsigned values in f[rs1] and f[rs2] to

produce a 64-bit value in the 64-bit floating-point destination register specified by rd. This

instruction converts from packed to planar representation when it is applied twice in

succession; for example,

R1G1B1A1, R3G3B3A3 → R1R3G1G3A1A3 → R1R2R3R4G1G2G3G4.

FPMERGE also converts from planar to packed when it is applied twice in succession; for

example, R1R2R3R4, B1B2B3B4 → R1B1R2B2R3B3R4B4 → R1G1B1A1R2G2B2A2.

FIGURE A-16 illustrates the operation.

FIGURE A-16 FPMERGE Operation

Back-to-back FPMERMGEs cannot be done on adjacent cycles.

A.47 Population Count

Opcode op3 Operation

POPC 10 1110 Population Count

rd

015163132474863 56 55 40 39 24 23 8 7

0151631 24 23 8 7

0151631 24 23 8 7

rs1

rs2
A-378 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

POPC counts the number of one bits in r[rs2] if i = 0, or the number of one bits in

sign_ext(simm13) if i = 1, and stores the count in r[rd]. This instruction does not

modify the condition codes.

Note – The UltraSPARC IIIi processor does not implement this instruction in hardware;

instead, it traps to software. The instruction is emulated in supervisor software.

Exceptions

illegal_instruction

A.48 Prefetch Data

Implementation Note – The PREFETCH{A} instructions are supported in the

UltraSPARC IIIi processor.

Assembly Language Syntax

popc reg_or_imm, regrd

Opcode op3 Operation

PREFETCH 10 1101 Prefetch Data

PREFETCHAPASI 11 1101 Prefetch Data from Alternate Space

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0

rd10 op3 0 0000 simm13i=1
Chapter A Instruction Definitions A-379

Format (3) PREFETCH{A}

Description

Prefetching is used to help manage data memory cache(s). A prefetch to a non-prefetchable

location has no effect. Non-cacheable and non-prefetchable locations are not the same.

Variants of the prefetch instruction are used to prepare the memory system for different types

of memory accesses.

In non-privileged code, a prefetch instruction has no observable effect. Its execution is

nonblocking and cannot cause an observable trap. In particular, a prefetch instruction shall

not trap if it is applied to an illegal or nonexistent memory address.

Programming Note – When software needs to prefetch 64 bytes beginning at an

arbitrary address, issue two prefetch instructions to canvas all bytes:

prefetch[address], prefetch_fcn
prefetch[address + 63], prefetch_fcn

PREFETCH A

Prefetch instructions that do not load from an alternate address space access the primary

address space (ASI_PRIMARY{_LITTLE}). Prefetch instructions that do load from an

alternate address space contain the address space identifier (ASI) to be used for the load in

the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7

of the ASI is zero; otherwise, it is not privileged. The effective address for these instructions

is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

Assembly Language Syntax

prefetch [address], prefetch_fcn

prefetcha [regaddr] imm_asi, prefetch_fcn

prefetcha [reg_plus_imm] %asi, prefetch_fcn

31 24 02530 29 19 18

fcn11 op3
PREFETCHA: imm_asi

14 13 12 5 4

rs1 rs2i=0

fcn11 op3 rs1 simm13i=1

PREFETCH: —
A-380 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

illegal_instruction

A.48.1 Prefetch Instruction Variants

PREFETCH(A) instructions with fcn = 0–3 are implemented.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is

different from other instructions in SPARC-V9 (except BPN), all of which specify specific

actions.

The prefetch instruction variants are intended to provide scalability for future improvements

in both hardware and compilers.

The prefetch variant is selected by the fcn field of the instruction. In accordance with

SPARC-V9, fcn values 4–15 cause an illegal_instruction exception.

A prefetch with fcn = 16 invalidates the P-cache line corresponding to the effective address

of the prefetch. Use this characteristic to prefetch non-cacheable data after data are loaded

into registers from the P-cache. A prefetch invalidate is issued to remove the data from the P-

cache so it will not be found by a later reference. Prefetch with fcn = 20, 21, 22, 23 are new.

TABLE A-13 lists the types of software prefetch instructions. Note that the table contains

hexadecimal values for fcn unlike the decimal values in the explanation above.

TABLE A-13 Types of Software Prefetch Instructions

fcn
Value
(hex) Instruction Type Prefetch into:

Instruction
Strength

Request Exclusive
OwnershipUltraSPARC IIIi

00 Prefetch read many P-cache and

L2-cache

weak No

01 Prefetch read once P-cache only weak No

02 Prefetch write many L2-cache only weak Yes

03 Prefetch write once1 L2-cache only weak No

04 reserved Undefined

05 -

0F

reserved Undefined

10 Prefetch invalidate Invalidates a P-

cache line, no data

is prefetched.

N/A

11 -

13

reserved Undefined
Chapter A Instruction Definitions A-381

A.48.2 New Error Handling of PREFETCH,2 and Other

Prefetches

Since PREFETCH,2 request for cache line ownership (RTO/R_RTO), an error occurs while

processing it will be handled differently compared to other prefetch requests with RTS/

R_RTS, as described in TABLE A-14.

14 Same as fcn = 00 weak2 No

15 Same as fcn = 01 weak2 No

16 Same as fcn = 02 weak2 Yes

17 Same as fcn = 03 weak2 No

18 -

1F

reserved Undefined

1. Although the name is “prefetch write once,” the actual use is prefetch to L2-cache for a future read.

2. These weak instructions may be implemented as strong in future implementations.

TABLE A-13 Types of Software Prefetch Instructions (Continued)

fcn
Value
(hex) Instruction Type Prefetch into:

Instruction
Strength

Request Exclusive
OwnershipUltraSPARC IIIi
A-382 UltraSPARC IIIi Processor User’s Manual • June 2003

TABLE A-14 Error Handling of Prefetch Requests

Prefetch Type L2-cache
Hit/Miss

Error Type L2-cache Action P-cache
Action

Error
Logging

Trap

PREFETCH,2

(RTO/R_RTO)

Hit Tag,

Hardware-corrected

No state change None THCE Disrupting

Miss Tag,

Hardware-corrected

Install data, state

change to M

None THCE Disrupting

“Hit”

(tag error)

Tag, uncorrectable No data install,

no state change

None TUE Fatal Error

Hit Data,

Hardware-corrected

No state change None EDC Disrupting

Hit Data,

uncorrectable

No state change None EDU Disrupting

Miss Data,

Hardware-corrected

Install data, state

change to M

None CE Disrupting

Miss Data,

uncorrectable

Install uncorrected

data, state change to M

None DUE Disrupting

Miss Mtag,

Hardware-corrected

Install data, state

change to M

None EMC Disrupting

Miss Mtag,

uncorrectable

Install data if L2-cache

state is M or Os

None EMU Fatal Error
Chapter A Instruction Definitions A-383

A.48.2.1 New Column in Coherence Table

A new column has been added to the UltraSPARC IIIi Coherence Table to describe the

processor action on write prefetch RTO. Basically, the behavior of coherence state change is

the following:

• On L2-cache hit: same as Load request (no state change)

• On L2-cache miss: same as Store request (send RTO/R_RTO to get M state)

PREFETCH,0

PREFETCH,1

PREFETCH,3

Hardware

prefetch

(RTS/R_RTS)

Hit Tag,

Hardware-corrected

No state change Install data

(except

PREFETCH,

3)

THCE Disrupting

Miss Tag,

Hardware-corrected

Install data, state

change to S or E

Install data

(except

PREFETCH,

3)

THCE Disrupting

“Hit”

(tag error)

Tag,

uncorrectable

No data install,

no state change

Cancel

install

TUE Fatal Error

Hit Data,

Hardware-corrected

No state change Install data

(except

PREFETCH,

3)

EDC Disrupting

Hit Data,

uncorrectable

No state change Cancel

install

EDU Disrupting

Miss Data,

Hardware-corrected

Install data, state

change to S or E

Install data

(except

PREFETCH,

3)

CE Disrupting

Miss Data,

uncorrectable

-If RTS, cancel install,

no state change.

-If R_RTS, install

uncorrected data, state

change to Os.

Cancel

install

DUE Disrupting

Miss Mtag,

Hardware-corrected

Install data, state

change to S or E

None EMC Disrupting

Miss Mtag,

uncorrectable

Install data if L2-cache

state is M or Os

None EMU Fatal Error

TABLE A-14 Error Handling of Prefetch Requests (Continued)

Prefetch Type L2-cache
Hit/Miss

Error Type L2-cache Action P-cache
Action

Error
Logging

Trap
A-384 UltraSPARC IIIi Processor User’s Manual • June 2003

A.49 Read Privileged Register

Format (3)

Opcode op3 Operation

RDPRP 10 1010 Read Privileged Register

rs1 Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15 FQ

16–30 —

31 VER

31 141924 18 13 02530 29

10 rd op3 rs1 —
Chapter A Instruction Definitions A-385

Description

The rs1 field in the instruction determines the privileged register that is read. There are

MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these

registers returns the value in the register indexed by the current value in the trap level

register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)

causes an illegal_instruction exception.

RDPR instructions with rs1 in the range 16 –30 are reserved; executing an RDPR instruction

with rs1 in that range causes an illegal_instruction exception.

Assembly Language Syntax

rdpr %tpc, regrd

rdpr %tnpc, regrd

rdpr %tstate, regrd

rdpr %tt, regrd

rdpr %tick, regrd

rdpr %tba, regrd

rdpr %pstate, regrd

rdpr %tl, regrd

rdpr %pil, regrd

rdpr %cwp, regrd

rdpr %cansave, regrd

rdpr %canrestore, regrd

rdpr %cleanwin, regrd

rdpr %otherwin, regrd

rdpr %wstate, regrd

rdpr %fq, regrd

rdpr %ver, regrd
A-386 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – On this implementation with precise floating-point traps, the

address of a trapping instruction will be in the TPC[TL] register when the trap code begins

execution.

Exceptions

privileged_opcode
illegal_instruction ((rs1 = 16–30) or ((rs1 ≤ 3) and (TL = 0)))
Chapter A Instruction Definitions A-387

A.50 Read State Register

Format (3)

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register; deprecated (see Section A.70.9, “Read Y

Register”)

— 10 1000 1 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

RDCCR 10 1000 2 Read Condition Codes Register

RDASI 10 1000 3 Read ASI Register

RDTICKPNPT 10 1000 4 Read Tick Register

RDPC 10 1000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

— 10 1000 7−14 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

See section description 10 1000 15 STBAR, MEMBAR, or Reserved; see section description.

RDASR 10 1000 16−31 Read non-SPARC-V9 ASRs

RDPCRPPCR 16 Read Performance Control Registers (PCR)

RDPICPPIC 17 Read Performance Instrumentation Counters (PIC)

RDDCRP 18 Read Dispatch Control Register (DCR)

RDGSR 19 Read Graphic Status Register (GSR)

— 20–21 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

RDSOFTINTP 22 Read per-processor Soft Interrupt Register

RDTICK_CMPRP 23 Read Tick Compare Register

RDSTICKPNPT 24 Read System TICK Register

RDSTICK_CMPRP 25 Read System TICK Compare Register

— 26–31 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0
A-388 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

These instructions read the state register specified by rs1 into r[rd].

Values 7–14 of rs1 are reserved for future versions of the architecture. A Read State

Register instruction with rs1 = 15, rd = 0, and i = 0 is defined to be a (deprecated) STBAR
instruction (see Section A.70.10, “Store Barrier”). An RDASR instruction with rs1 = 15,

rd = 0, and i = 1 is defined to be a MEMBAR instruction. RDASR with rs1 = 15 and rd ≠ 0

is reserved for future versions of the architecture; it causes an illegal_instruction exception.

For RDPC, the processor writes the full 64-bit program counter value to the destination

register of a CALL, JMPL, or RDPC instruction. When PSTATE.AM = 1 and a trap occurs,

the processor writes the full 64-bit program counter value to TPC[TL].

RDFPRS waits for all pending FPops and loads of floating-point registers to complete before

reading the FPRS register.

RDGSR causes a fp_disabled exception if PSTATE.PEF = 0 or FPRS.FEF = 0.

RDTICK causes a privileged_action exception if PSTATE.PRIV = 0 and TICK.NPT = 1.

RDSTICK causes a privileged_action exception if PSTATE.PRIV = 0 and STICK.NPT = 1.

RDPIC causes a privileged_action exception if PSTATE.PRIV = 0 and PCR.PRIV = 1.

RDPCR causes a privileged_opcode exception due to access privilege violation.

Assembly Language Syntax

rd %ccr, regrd

rd %asi, regrd

rd %tick, regrd

rd %pc, regrd

rd %fprs, regrd

rd %pcr, regrd

rd %pic, regrd

rd %dcr, regrd

rd %gsr, regrd

rd %softint, regrd

rd %tick_cmpr, regrd

rd %sys_tick, regrd

rd %sys_tick_cmpr, regrd
Chapter A Instruction Definitions A-389

Implementation Note – Ancillary state registers include, for example, timer, counter,

diagnostic, self-test, and trap-control registers.

Compatibility Note – The SPARC-V8 RDPSR, RDWIM, and RDTBR instructions do not

exist in SPARC-V9 since the PSR, WIM, and TBR registers do not exist in SPARC-V9.

Exceptions

privileged_opcode(RDDCR, RDSOFTINT, RDTICK_CMPR, RDSTICK, RDSTICK_CMPR,

and RDPCR)

illegal_instruction (RDASR with rs1 = 1 or 7–14;

RDASR with rs1 = 15 and rd ≠ 0;

RDASR with rs1 = 20–21, 26–31)

privileged_action (RDTICK with PSTATE.PRIV = 0 and TICK.NPT = 1;

RDPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1;

RDSTICK with PSTATE.PRIV = 0 and STICK.NPT = 1)

fp_disabled (RDGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)

A.51 RETURN

Format (3)

Opcode op3 Operation

RETURN 11 1001 Return

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—
A-390 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The RETURN instruction causes a delayed transfer of control to the target address and has the

window semantics of a RESTORE instruction; that is, it restores the register window prior to

the last SAVE instruction. The target address is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1. Registers r[rs1] and r[rs2] come from

the old window.

The RETURN instruction may cause an exception. It may cause a window_fill exception as

part of its RESTORE semantics, or it may cause a mem_address_not_aligned exception if

either of the two low-order bits of the target address is nonzero.

Programming Note – To re-execute the trapped instruction when returning from a user

trap handler, use the RETURN instruction in the delay slot of a JMPL instruction, for

example:

jmpl %l6,%g0 | Trapped PC supplied to user trap handler
return %l7 | Trapped nPC supplied to user trap handler

Programming Note – A routine that uses a register window may be structured either as:

save %sp,-framesize, %sp
. . .
ret | Same as jmpl %i7 + 8, %g0
restore | Something useful like “restore

| %o2,%l2,%o0”

or,

save %sp,-framesize, %sp
. . .
return %i7 + 8
nop | Could do some useful work in the caller’s

| window, for example, “or %o1, %o2,%o0”

Assembly Language Syntax

return address
Chapter A Instruction Definitions A-391

Exceptions

mem_address_not_aligned
fill_n_normal (n = 0–7)

fill_n_other (n = 0–7)

A.52 SAVE and RESTORE

Format (3)

Description (Effect on Non-Privileged State)

The SAVE instruction provides the routine executing it with a new register window. The out
registers from the old window become the in registers of the new window. The contents of

the out and the local registers in the new window are zero or contain values from the

executing process; that is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruction

executed by the current process. The in registers of the old window become the out registers

of the new window. The in and local registers in the new window contain the previous values.

Opcode op3 Operation

SAVE 11 1100 Save Caller’s Window

RESTORE 11 1101 Restore Caller’s Window

Assembly Language Syntax

save regrs1, reg_or_imm, regrd

restore regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd
A-392 UltraSPARC IIIi Processor User’s Manual • June 2003

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE behave

like normal ADD instructions, except that the source operands r[rs1] or r[rs2] are read

from the old window (that is, the window addressed by the original CWP) and the sum is

written into r[rd] of the new window (that is, the window addressed by the new CWP).

Note – CWP arithmetic is performed modulo the number of windows, NWINDOWS.

Programming Note – Typically, if a SAVE (RESTORE) instruction traps, the spill (fill)

trap handler returns to the trapped instruction to reexecute it. So, although the ADD operation

is not performed the first time (when the instruction traps), it is performed the second time

the instruction executes. The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new window in the register file

and a new software stack frame in memory.

There is a performance trade-off to consider between using SAVE/RESTORE and saving and

restoring selected registers explicitly.

Description (Effect on Privileged State)

If the SAVE instruction does not trap, it increments the CWP (mod NWINDOWS) to provide a

new register window and updates the state of the register windows by decrementing

CANSAVE and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The

trap vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap

handler is invoked with the CWP set to point to the window to be spilled (that is, old

CWP + 2).

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be cleaned.

It causes a clean_window trap if the number of unused clean windows is zero, that is,

(CLEANWIN – CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP
set to point to the window to be cleaned (that is, old CWP + 1).

If the RESTORE instruction does not trap, it decrements the CWP (mod NWINDOWS) to

restore the register window that was in use prior to the last SAVE instruction executed by the

current process. It also updates the state of the register windows by decrementing

CANRESTORE and incrementing CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is

generated. The trap vector for the fill trap is based on the values of OTHERWIN and

WSTATE. The fill trap handler is invoked with CWP set to point to the window to be filled,

that is, old CWP – 1.
Chapter A Instruction Definitions A-393

Programming Note – The vectoring of spill and fill traps can be controlled by setting the

value of the OTHERWIN and WSTATE registers appropriately.

The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by

a RETRY instruction.

Exceptions

clean_window (SAVE only)

fill_n_normal (RESTORE only, n =0–7)

fill_n_other (RESTORE only, n = 0–7)

spill_n_normal (SAVE only, n = 0–7)

spill_n_other (SAVE only, n = 0–7)

A.53 SAVED and RESTORED

Format (3)

Description

SAVED and RESTORED adjust the state of the register-windows control registers.

Opcode op3 fcn Operation

SAVEDP 11 0001 0 Window has been saved

RESTOREDP 11 0001 1 Window has been restored

— 11 0001 2–31 Reserved

Assembly Language Syntax

saved

restored

31 1924 18 02530 29

10 fcn op3 —
A-394 UltraSPARC IIIi Processor User’s Manual • June 2003

SAVED increments CANSAVE. If OTHERWIN = 0, SAVED decrements CANRESTORE.

If OTHERWIN ≠ 0, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWIN < (NWINDOWS−1), then RESTORED
increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE. If OTHERWIN ≠ 0, it

decrements OTHERWIN.

Programming Note – The spill (fill) handlers use the SAVED (RESTORED) instruction to

indicate that a window has been spilled (filled) successfully.

Normal privileged software would probably not do a SAVED or RESTORED from trap level

zero (TL = 0). However, it is not illegal to do so and doing so does not cause a trap.

Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is

likely to create an inconsistent window state. Hardware will not signal an exception,

however, since maintaining a consistent window state is the responsibility of privileged

software.

Exceptions

privileged_opcode
illegal_instruction (fcn = 2–31)

A.54 Set Interval Arithmetic Mode (VIS II)

Format (3)

Opcode opf Operation

SIAM 0 1000 0001 Set the interval arithmetic mode fields in the GSR

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— — mode

3 2
Chapter A Instruction Definitions A-395

Description

The SIAM instruction sets the GSR.IM and GSR.IRND fields as follows:

GSR.IM = mode<2>

GSR.IRND = mode<1:0>

Note – SIAM is a groupable, break-after instruction. It enables the interval rounding mode

to be changed every cycle without flushing the pipeline. FPops in the same instruction group

as an SIAM instruction use the previous rounding mode.

Exceptions

fp_disabled

Assembly Language Syntax

siam mode
A-396 UltraSPARC IIIi Processor User’s Manual • June 2003

A.55 SETHI

Format (2)

Description

SETHI zeroes the least significant 10 bits and the most significant 32 bits of r[rd] and

replaces bits 31 through 10 of r[rd] with the value from its imm22 field.

SETHI does not affect the condition codes.

Some SETHI instructions with rd = 0 has a special use:

• rd = 0 and imm22 = 0: has no architectural effect and is defined to be a NOP instruction

• rd = 0 and imm22 ≠ 0 is used to trigger hardware performance counters. See Chapter 11

“Performance Instrumentation” for details.

Programming Note – The most common form of 64-bit constant generation is creating

stack offsets whose magnitude is less than 232. The code below can be used to create the

constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note: The immediate field of

the xor instruction is sign extended and can be used to get ones in all of the upper 32 bits.

For example, to set the negative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0 ! note 0x5432EDCB, not 0xABCD1234

Opcode op2 Operation

SETHI 100 Set High 22 Bits of Low Word

Assembly Language Syntax

sethi const22, regrd

sethi %hi (value), regrd

31 2224 21 02530 29

00 rd op2 imm22
Chapter A Instruction Definitions A-397

xor %o0, 0x1e34, %o0 ! part of imm. overlaps upper bits

Exceptions

None

A.56 Shift

Format (3)

Opcode op3 x Operation

SLL 10 0101 0 Shift Left Logical – 32 bits

SRL 10 0110 0 Shift Right Logical – 32 bits

SRA 10 0111 0 Shift Right Arithmetic – 32 bits

SLLX 10 0101 1 Shift Left Logical – 64 bits

SRLX 10 0110 1 Shift Right Logical – 64 bits

SRAX 10 0111 1 Shift Right Arithmetic – 64 bits

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1 x=0

rd10 op3 —rs1 shcnt64i=1 x=1

6

A-398 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

When i = 0 and x = 0, the shift count is the least significant five bits of r[rs2]. When

i = 0 and x = 1, the shift count is the least significant six bits of r[rs2]. When i = 1 and

x = 0, the shift count is the immediate value specified in bits 0 through 4 of the instruction.

When i = 1 and x = 1, the shift count is the immediate value specified in bits 0 through 5 of

the instruction.

TABLE A-15 shows the shift count encodings for all values of i and x.

SLL and SLLX shift all 64 bits of the value in r[rs1] left by the number of bits specified

by the shift count, replacing the vacated positions with zeroes, and write the shifted result to

r[rd].

SRL shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by

the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result

is written to r[rd].

SRLX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the

shift count. Zeroes are shifted into the vacated high-order bit positions, and the shifted result

is written to r[rd].

SRA shifts the low 32 bits of the value in r[rs1] right by the number of bits specified by

the shift count and replaces the vacated positions with bit 31 of r[rs1]. The high-order

32 bits of the result are all set with bit 31 of r[rs1], and the result is written to r[rd].

Assembly Language Syntax

sll regrs1, reg_or_shcnt, regrd

srl regrs1, reg_or_shcnt, regrd

sra regrs1, reg_or_shcnt, regrd

sllx regrs1, reg_or_shcnt, regrd

srlx regrs1, reg_or_shcnt, regrd

srax regrs1, reg_or_shcnt, regrd

TABLE A-15 Shift Count Encodings

i x Shift Count

0 0 bits 4–0 of r[rs2]

0 1 bits 5–0 of r[rs2]

1 0 bits 4–0 of instruction

1 1 bits 5–0 of instruction
Chapter A Instruction Definitions A-399

SRAX shifts all 64 bits of the value in r[rs1] right by the number of bits specified by the

shift count and replaces the vacated positions with bit 63 of r[rs1]. The shifted result is

written to r[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-bit

shifts as noted above.

These instructions do not modify the condition codes.

Programming Note – “Arithmetic left shift by 1 (and calculate overflow)” can be

effected with the ADDcc instruction.

The instruction “sra rs1,0,rd” can be used to convert a 32-bit value to 64 bits, with

sign extension into the upper word; “srl rs1,0,rd” can be used to clear the upper

32 bits of r[rd].

Exceptions

None

A.57 Short Floating-Point Load and Store (VIS I)

Opcode imm_asi ASI Value Operation

LDDFA
STDFA

ASI_FL8_P D016 8-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL8_S D116 8-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL8_PL D816 8-bit load/store from/to primary address space, little-endian

LDDFA
STDFA

ASI_FL8_SL D916 8-bit load/store from/to secondary address space, little-endian

LDDFA
STDFA

ASI_FL16_P D216 16-bit load/store from/to primary address space

LDDFA
STDFA

ASI_FL16_S D316 16-bit load/store from/to secondary address space

LDDFA
STDFA

ASI_FL16_PL DA16 16-bit load/store from/to primary address space, little-endian

LDDFA
STDFA

ASI_FL16_SL DB16 16-bit load/store from/to secondary address space, little-endian
A-400 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3) LDDFA

Format (3) STDFA

Description

Short floating-point load and store instructions are selected by means of one of the short

ASIs with the LDDFA and STDFA instructions.

These ASIs allow 8- and 16-bit loads or stores to be performed to/from the floating-point

registers. Eight-bit loads can be performed to arbitrary byte addresses. For 16-bit loads, the

least significant bit of the address must be zero or a mem_address_not_aligned trap is taken.

Short loads are zero-extended to the full floating-point register. Short stores access the low-

order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format in memory; otherwise, memory is

assumed to be big-endian. Short loads and stores are typically used with the FALIGNDATA
instruction (see Section A.2, “Alignment Instructions (VIS I)”) to assemble or store 64 bits

on noncontiguous components.

Assembly Language Syntax

ldda [reg_addr] imm_asi, fregrd

ldda [reg_plus_imm] %asi, fregrd

stda fregrd, [reg_addr] imm_asi

stda fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18 14 13 5 4

rd11 110011 simm_13rs1 i=1

rd11 110011 imm_asirs1 rs2i=0

31 24 02530 29 19 18 14 13 5 4

rd11 110111 simm_13rs1 i=1

rd11 110111 imm_asirs1 rs2i=0
Chapter A Instruction Definitions A-401

Exceptions

fp_disabled
PA_watchpoint
VA_watchpoint
mem_address_not_aligned (odd memory address for a 16-bit load or store)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.58 SHUTDOWN (VIS I)

Format (3)

Description

SHUTDOWN is a privileged instruction.

The SHUTDOWN instruction executes as a NOP. An external system signal is used to enter

and leave Low Power mode.

Because SHUTDOWN is a privileged instruction, an attempt to execute it while in non-

privileged mode causes a privileged_opcode trap.

Opcode opf Operation

SHUTDOWNP 0 1000 0000 Shut down to enter power-down mode

Assembly Language Syntax

shutdown

31 24 02530 29 19 18 14 13 5 4

—10 110110 opf— —
A-402 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

privileged_opcode

A.59 Software-Initiated Reset

Format (3)

Description

SIR is used to generate a software-initiated reset (SIR). As with other traps, a software-

initiated reset performs different actions when TL = MAXTL than it does when TL < MAXTL.

When executed in non-privileged mode, SIR acts like a NOP with no visible effect.

Exceptions

software_initiated_reset

Opcode op3 rd Operation

SIR 11 0000 15 Software-Initiated Reset

Assembly Language Syntax

sir simm13

31 1924 18 02530 29

10 0 1111 op3

14 13

0 0000 simm13

12

i=1
Chapter A Instruction Definitions A-403

A.60 Store Floating-Point

† Encoded floating-point register value.

Format (3)

Description

The store single floating-point instruction (STF) copies f[rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double

floating-point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) traps to software.

Opcode op3 rd Operation

STF 10 0100 0–31 Store Floating-Point Register

STDF 10 0111
†

Store Double Floating-Point Register

STQF 10 0110
†

Store Quad Floating-Point Register

STXFSR 10 0101 1 Store Floating-Point State Register

— 10 0101 2–31 Reserved

Assembly Language Syntax

st fregrd, [address]

std fregrd, [address]

stq fregrd, [address]

stx %fsr, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
A-404 UltraSPARC IIIi Processor User’s Manual • June 2003

The store floating-point state register instruction (STXFSR) waits for any currently executing

FPop instructions to complete, and then it writes all 64 bits of the FSR into memory.

STXFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the store

will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

STF requires word alignment otherwise a mem_address_not_aligned exception occurs.

STDF instruction causes a STDF_mem_address_not_aligned trap if the effective address is

32-bit aligned but not 64-bit (doubleword) aligned. In this case, the trap handler software

shall emulate the STDF instruction and return.

STXFSR requires doubleword alignment; otherwise, it causes a mem_address_not_aligned
exception. In this case, the trap handler software shall emulate the STXFSR instruction and

return.

If the floating-point unit is not enabled for the source register rd (per FPRS.FEF and

PSTATE.PEF) or if the FPU is not present, then a store floating-point instruction causes a

fp_disabled exception.

Programming Note – In SPARC-V8, some compilers issued sets of single-precision

stores when they could not determine that doubleword or quadword operands were properly

aligned. For SPARC-V9, since emulation of misaligned stores is expected to be fast, it is

recommended that compilers issue sets of single-precision stores only when they can

determine that doubleword or quadword operands are not properly aligned.

Exceptions

illegal_instruction (op3 = 2516 and rd = 2–31)

fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
Chapter A Instruction Definitions A-405

A.61 Store Floating-Point into Alternate Space

† Encoded floating-point register value.

Format (3)

Description

The store single floating-point into alternate space instruction (STFA) copies f[rd] into

memory.

The store double floating-point into alternate space instruction (STDFA) copies a doubleword

from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) traps to software.

Opcode op3 rd Operation

STFAPASI 11 0100 0–31 Store Floating-Point Register to Alternate Space

STDFAPASI 11 0111
†

Store Double Floating-Point Register to Alternate Space

STQFAPASI 11 0110
†

Store Quad Floating-Point Register to Alternate Space

Assembly Language Syntax

sta fregrd, [regaddr] imm_asi

sta fregrd, [reg_plus_imm] %asi

stda fregrd, [regaddr] imm_asi

stda fregrd, [reg_plus_imm] %asi

stqa fregrd, [regaddr] imm_asi

stqa fregrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
A-406 UltraSPARC IIIi Processor User’s Manual • June 2003

Store floating-point into alternate space instructions contain the address space

identifier (ASI) to be used for the load in the imm_asi field if i = 0 or in the ASI register if

i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The

effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

STFA requires word alignment; otherwise, a mem_address_not_aligned exception occurs.

STDFA instruction causes a STDF_mem_address_not_aligned trap if the effective address is

32-bit aligned but not 64-bit (doubleword) aligned. In this case, the trap handler software

shall emulate the STDF instruction and return.

STDFA with certain target ASI is defined to be a 64-byte block-store instruction. See

Section A.4, “Block Load and Block Store (VIS I)” for details.

If the floating-point unit is not enabled for the source register rd (per FPRS.FEF and

PSTATE.PEF) or if the FPU is not present, store floating-point into alternate space

instructions cause a fp_disabled exception.

Implementation Note – This check is not made for STQFA. STFA and STDFA cause a

privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Programming Note – In SPARC-V8, some compilers issued sets of single-precision

stores when they could not determine that doubleword or quadword operands were properly

aligned. For SPARC-V9, since emulation of misaligned stores is expected to be fast,

compilers are recommended to issue sets of single-precision stores only when they can

determine that doubleword or quadword operands are not properly aligned.

Exceptions

illegal_instruction
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA only)

privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
Chapter A Instruction Definitions A-407

A.62 Store Integer

Format (3)

Description

The store integer instructions (except store doubleword) copy the whole extended (64-bit)

integer, the less significant word, the least significant halfword, or the least significant byte of

r[rd] into memory.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, store extended) instruction operates atomically.

Opcode op3 Operation

STB 00 0101 Store Byte

STH 00 0110 Store Halfword

STW 00 0100 Store Word

STX 00 1110 Store Extended Word

Assembly Language Syntax

stb regrd, [address] (synonyms: stub, stsb)

sth regrd, [address] (synonyms: stuh, stsh)

stw regrd, [address] (synonyms: st, stuw, stsw)

stx regrd, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
A-408 UltraSPARC IIIi Processor User’s Manual • June 2003

STH causes a mem_address_not_aligned exception if the effective address is not halfword

aligned. STW causes a mem_address_not_aligned exception if the effective address is not

word aligned. STX causes a mem_address_not_aligned exception if the effective address is

not doubleword aligned.

Exceptions

mem_address_not_aligned (all except STB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.63 Store Integer into Alternate Space

Format (3)

Opcode op3 Operation

STBAPASI 01 0101 Store Byte into Alternate Space

STHAPASI 01 0110 Store Halfword into Alternate Space

STWAPASI 01 0100 Store Word into Alternate Space

STXAPASI 01 1110 Store Extended Word into Alternate Space

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-409

Description

The store integer into alternate space instructions copy the whole extended (64-bit) integer,

the less significant word, the least significant halfword, or the least significant byte of r[rd]
into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be

used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1. The access

is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective address

for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1]+sign_ext(simm13)”

if i = 1.

A successful store (notably, store extended) instruction operates atomically.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword

aligned. STWA causes a mem_address_not_aligned exception if the effective address is not

word aligned. STXA causes a mem_address_not_aligned exception if the effective address is

not doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Compatibility Note – The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions

privileged_action
mem_address_not_aligned (all except STBA)

data_access_exception
data_access_error

Assembly Language Syntax

stba regrd, [regaddr] imm_asi (synonyms: stuba, stsba)

stha regrd, [regaddr] imm_asi (synonyms: stuha, stsha)

stwa regrd, [regaddr] imm_asi (synonyms: sta, stuwa, stswa)

stxa regrd, [regaddr] imm_asi

stba regrd, [reg_plus_imm] %asi (synonyms: stuba, stsba)

stha regrd, [reg_plus_imm] %asi (synonyms: stuha, stsha)

stwa regrd, [reg_plus_imm] %asi (synonyms: sta, stuwa, stswa)

stxa regrd, [reg_plus_imm] %asi
A-410 UltraSPARC IIIi Processor User’s Manual • June 2003

fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.64 Subtract

Format (3)

Description

These instructions compute “r[rs1] – r[rs2]” if i = 0, or

“r[rs1] – sign_ext(simm13)” if i = 1, and write the difference into r[rd].

SUBC and SUBCcc (“subtract with carry”) also subtract the CCR register’s 32-bit carry

(icc.c) bit; that is, they compute “r[rs1] – r[rs2] – icc.c” or

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify condition codes

SUBC 00 1100 Subtract with Carry

SUBCcc 01 1100 Subtract with Carry and modify condition codes

Assembly Language Syntax

sub regrs1, reg_or_imm, regrd

subcc regrs1, reg_or_imm, regrd

subc regrs1, reg_or_imm, regrd

subccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-411

“r[rs1] –sign_ext(simm13) – icc.c,” and write the difference into r[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). A 32-

bit overflow (CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands differs

and bit 31 (the sign) of the difference differs from r[rs1]<31>. A 64-bit overflow

(CCR.xcc.v) occurs on subtraction if bit 63 (the sign) of the operands differs and bit 63

(the sign) of the difference differs from r[rs1]<63>.

Programming Note – A SUBcc with rd = 0 can be used to effect a signed or unsigned

integer comparison.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit

condition codes’ carry bit (CCR.xcc.c).

Exceptions

None

A.65 Tagged Add

Format (3)

Opcode op3 Operation

TADDcc 10 0000 Tagged Add and modify condition codes

Assembly Language Syntax

taddcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
A-412 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

This instruction computes a sum that is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

TADDcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition

generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and

the sum of bit 31 is different).

If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to one; if

TADDcc does not cause a tag overflow, CCR.icc.v is set to zero.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal ADD instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set only, based on

the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Exceptions

None

A.66 Tagged Subtract

Format (3)

Opcode op3 Operation

TSUBcc 10 0001 Tagged Subtract and modify condition codes

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-413

Description

This instruction computes “r[rs1] – r[rs2]” if i = 0, or

“r[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the

subtraction generates 32-bit arithmetic overflow; that is, the operands have different values in

bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31

of r[rs1].

If a TSUBcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to one; if

TSUBcc does not cause a tag overflow, CCR.icc.v is set to zero.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). The CCR.xcc.v setting is based

only on the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.

Exceptions

None

Assembly Language Syntax

tsubcc regrs1, reg_or_imm, regrd
A-414 UltraSPARC IIIi Processor User’s Manual • June 2003

A.67 Trap on Integer Condition Codes (Tcc)

Format (4)

Opcode op3 cond Operation icc Test

TA 11 1010 1000 Trap Always 1

TN 11 1010 0000 Trap Never 0

TNE 11 1010 1001 Trap on Not Equal not Z

TE 11 1010 0001 Trap on Equal Z

TG 11 1010 1010 Trap on Greater not (Z or (N xor V))

TLE 11 1010 0010 Trap on Less or Equal Z or (N xor V)

TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)

TL 11 1010 0011 Trap on Less N xor V

TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)

TLEU 11 1010 0100 Trap on Less or Equal Unsigned (C or Z)

TCC 11 1010 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C

TCS 11 1010 0101 Trap on Carry Set (Less Than, Unsigned) C

TPOS 11 1010 1110 Trap on Positive or zero not N

TNEG 11 1010 0110 Trap on Negative N

TVC 11 1010 1111 Trap on Overflow Clear not V

TVS 11 1010 0111 Trap on Overflow Set V

cc1 cc0 Condition Codes

00 icc

01 —

10 xcc

11 —

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 7 6

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 sw_trap_#
Chapter A Instruction Definitions A-415

Description

The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according

to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE and

no higher-priority exceptions or interrupt requests are pending, then a trap_instruction
exception is generated. If FALSE, a trap_instruction exception does not occur and the

instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of

“r[rs1] + r[rs2]” if i = 0, or the least significant seven bits of

“r[rs1] + sw_trap_#” if i = 1.

When i = 1, bits 7 through 10 are reserved and should be supplied as zeroes by software.

When i = 0, bits 5 through 10 are reserved, the most significant 57 bits of

“r[rs1] + r[rs2]” are unused, and both should be supplied as zeroes by software.

Description (Effect on Privileged State)

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. Then

the trap is taken, and the processor performs the normal trap entry procedure.

Assembly Language Syntax

ta i_or_x_cc, software_trap_number

tn i_or_x_cc, software_trap_number

tne i_or_x_cc, software_trap_number (synonym: tnz)

te i_or_x_cc, software_trap_number (synonym: tz)

tg i_or_x_cc, software_trap_number

tle i_or_x_cc, software_trap_number

tge i_or_x_cc, software_trap_number

tl i_or_x_cc, software_trap_number

tgu i_or_x_cc, software_trap_number

tleu i_or_x_cc, software_trap_number

tcc i_or_x_cc, software_trap_number (synonym: tgeu)

tcs i_or_x_cc, software_trap_number (synonym: tlu)

tpos i_or_x_cc, software_trap_number

tneg i_or_x_cc, software_trap_number

tvc i_or_x_cc, software_trap_number

tvs i_or_x_cc, software_trap_number
A-416 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – Tcc can be used to implement breakpointing, tracing, and calls to

supervisor software. It can also be used for runtime checks, such as out-of-range array

indexes, integer overflow, and so on.

Compatibility Note – Tcc is upward compatible with the SPARC-V8 Ticc instruction,

with one qualification: a Ticc with i = 1 and simm13 < 0 may execute differently on a

SPARC-V9 processor. Use of the i = 1 form of Ticc is believed to be rare in SPARC-V8

software, and simm13 < 0 is probably not used at all; therefore, it is believed in practice,

that full software compatibility will be achieved.

Exceptions

trap_instruction
illegal_instruction (cc1 cc0 = 012 or 112, or reserved fields nonzero)

A.68 Write Privileged Register

Format (3)

Opcode op3 Operation

WRPRP 11 0010 Write Privileged Register

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-417

rd Privileged Register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15–31 Reserved

Assembly Language Syntax

wrpr regrs1, reg_or_imm, %tpc

wrpr regrs1, reg_or_imm, %tnpc

wrpr regrs1, reg_or_imm, %tstate

wrpr regrs1, reg_or_imm, %tt

wrpr regrs1, reg_or_imm, %tick

wrpr regrs1, reg_or_imm, %tba

wrpr regrs1, reg_or_imm, %pstate

wrpr regrs1, reg_or_imm, %tl

wrpr regrs1, reg_or_imm, %pil

wrpr regrs1, reg_or_imm, %cwp

wrpr regrs1, reg_or_imm, %cansave

wrpr regrs1, reg_or_imm, %canrestore

wrpr regrs1, reg_or_imm, %cleanwin

wrpr regrs1, reg_or_imm, %otherwin

wrpr regrs1, reg_or_imm, %wstate
A-418 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or

“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the specified

privileged state register.

Note – The operation is an exclusive OR.

The rd field in the instruction determines the privileged register that is written. There are at

least four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A

write to one of these registers sets the register indexed by the current value in the trap level

register (TL). A write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)

causes an illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other machine

state.

Programming Note – A WRPR of TL can be used to read the values of TPC, TNPC, and

TSTATE for any trap level; however, make sure that traps do not occur while the TL register

is modified.

The WRPR instruction is a non-delayed write instruction. The instruction immediately

following the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions with rd in the range 15–31 are reserved for future versions of the

architecture; executing a WRPR instruction with rd in that range causes an illegal_instruction
exception.

Implementation Note – Some WRPR instructions could serialize the processor in some

implementations.

Exceptions

privileged_opcode
illegal_instruction ((rd = 15–31) or ((rd ≤ 3) and (TL = 0)))
Chapter A Instruction Definitions A-419

A.69 Write State Register

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register; deprecated (see Section A.70.18, “Write Y

Register”).

— 11 0000 1 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

WRCCR 11 0000 2 Write Condition Codes Register

WRASI 11 0000 3 Write Graphics Status Register

— 11 0000 4, 5 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

WRFPRS 11 0000 6 Write Floating-Point Registers Status Register

— 11 0000 7–14 Reserved, do not access; attempt to access causes an
illegal_instruction exception.

— 11 0000 15 Software-initiated reset (see Section A.59, “Software-

Initiated Reset”).

WRASR 11 0000 16–31 Write non-SPARC-V9 ASRs

WRPCRPPCR 16 Write Performance Control Registers (PCR)

WRPICPPIC 17 Write Performance Instrumentation Counters (PIC)

WRDCRP 18 Write Dispatch Control Register (DCR)

WRGSR 19 Write Graphic Status Register (GSR)

WRSOFTINT_SETP 20 Set bits of per-processor Soft Interrupt Register

WRSOFTINT_CLRP 21 Clear bits of per-processor Soft Interrupt Register

WRSOFTINTP 22 Write per-processor Soft Interrupt Register

WRTICK_CMPRP 23 Write Tick Compare Register

WRSTICKP 24 Write System TICK Register

WRSTICK_CMPRP 25 Write System TICK Compare Register

— 26–31 Reserved, do not access; attempt to access causes an
illegal_instruction exception.
A-420 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

These instructions store the value “r[rs1] xor r[rs2]” if i = 0, or

“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the specified state

register.

Note – The operation is an exclusive OR.

WRASR writes a value to the ancillary state register (ASR) indicated by rd. The operation

performed to generate the value written may be rd dependent or implementation dependent

(see below). A WRASR instruction is indicated by op = 2, rd = ≥ 16, and op3 = 3016.

The WRASR opcode for rd = 15, rs1 = 0, and i = 1 is used for the software-initiated

reset (SIR) instruction (see Section A.59, “Software-Initiated Reset”).

Assembly Language Syntax

wr regrs1, reg_or_imm, %ccr

wr regrs1, reg_or_imm, %asi

wr regrs1, reg_or_imm, %fprs

wr regrs1, reg_or_imm, %pcr

wr regrs1, reg_or_imm, %pic

wr regrs1, reg_or_imm, %dcr

wr regrs1, reg_or_imm, %gsr

wr regrs1, reg_or_imm, %set_softint

wr regrs1, reg_or_imm, %clear_softint

wr regrs1, reg_or_imm, %softint

wr regrs1, reg_or_imm, %tick_cmpr

wr regrs1, reg_or_imm, %sys_tick

wr regrs1, reg_or_imm, %sys_tick_cmpr

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-421

The WRCCR, WRFPRS, and WRASI instructions are not delayed-write instructions. The

instruction immediately following a WRCCR, WRFPRS, or WRASIR observes the new value of

the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the

FPRS register.

WRGSR causes a fp_disabled trap if PSTATE.PEF = 0 or FPRS.FEF = 0.

WRPIC causes a privileged_action exception if PSTATE.PRIV = 0 and PCR.PRIV = 1.

WRPCR causes a privileged_opcode exception due to access privilege violation.

Implementation Note – Ancillary state registers may include, for example, timer,

counter, diagnostic, self-test, and trap-control registers.

Compatibility Note – The SPARC-V8 WRIER, WRPSR, WRWIM, and WRTBR instructions

do not exist in SPARC-V9 because the IER, PSR, TBR, and WIM registers do not exist in

SPARC-V9.

Implementation Note – Some WRASR instructions could serialize the processor in some

implementations.

Exceptions

software_initiated_reset (rd = 15, rs1 = 0, and i = 1 only)

privileged_opcode (WRDCR, WRSOFTINT_SET, WRSOFTINT_CLR, WRSOFTINT,

WRTICK_CMPR, WRSTICK, WRSTICK_CMPR,

and WRPCR)

illegal_instruction (WRASR with rd = 1, 4, 5, 7–14, 26–31;

WRASR with rd = 15 and rs1 ≠ 0 or i ≠ 1)

privileged_action (WRPIC with PSTATE.PRIV = 0 and PCR.PRIV = 1)

fp_disabled (WRGSR with PSTATE.PEF = 0 or FPRS.FEF = 0)
A-422 UltraSPARC IIIi Processor User’s Manual • June 2003

A.70 Deprecated Instructions

The following instructions are deprecated; they are provided only for compatibility with

previous versions of the architecture. They should not be used in new SPARC-V9 software.

For each deprecated instruction, another instruction is recommended to be used instead.

Please see TABLE A-2 for the page number at which you can find a description of the

preferred instruction.

A.70.1 Branch on Floating-Point Condition Codes (FBfcc)

The FBfcc instructions are deprecated. Use the FBPfcc instructions instead.

Opcode cond Operation fcc Test

FBAD 1000 Branch Always 1

FBND 0000 Branch Never 0

FBUD 0111 Branch on Unordered U

FBGD 0110 Branch on Greater G

FBUGD 0101 Branch on Unordered or Greater G or U

FBLD 0100 Branch on Less L

FBULD 0011 Branch on Unordered or Less L or U

FBLGD 0010 Branch on Less or Greater L or G

FBNED 0001 Branch on Not Equal L or G or U

FBED 1001 Branch on Equal E

FBUED 1010 Branch on Unordered or Equal E or U

FBGED 1011 Branch on Greater or Equal E or G

FBUGED 1100 Branch on Unordered or Greater or Equal E or G or U

FBLED 1101 Branch on Less or Equal E or L

FBULED 1110 Branch on Unordered or Less or Equal E or L or U

FBOD 1111 Branch on Ordered E or L or G
Chapter A Instruction Definitions A-423

Format (2)

Programming Note – To set the annul bit for FBfcc instructions, append “,a” to the

opcode mnemonic. For example, use “fbl,a label.” In the preceding table, braces around

“,a” signify that “,a” is optional.

Description

Unconditional and Fcc branches are described below:

• Unconditional branches (FBA, FBN) — If its annul field is zero, an FBN (Branch Never)

instruction acts like a NOP. If its annul field is one, the following (delay) instruction is

annulled (not executed) when the FBN is executed. In neither case does a transfer of

control take place.

Assembly Language Syntax

fba{,a} label

fbn{,a} label

fbu{,a} label

fbg{,a} label

fbug{,a} label

fbl{,a} label

fbul{,a} label

fblg{,a} label

fbne{,a} label (synonym: fbnz)

fbe{,a} label (synonym: fbz)

fbue{,a} label

fbge{,a} label

fbuge{,a} label

fble{,a} label

fbule{,a} label

fbo{,a} label

31 24 02530 29 28 22 21

cond00 a 110 disp22
A-424 UltraSPARC IIIi Processor User’s Manual • June 2003

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address

“PC + (4 × sign_ext(disp22)),” regardless of the value of the floating-point

condition code bits. If the annul field of the branch instruction is one, the delay instruction

is annulled (not executed). If the annul field is zero, the delay instruction is executed.

• Fcc-conditional branches — Conditional FBfcc instructions (except FBA and FBN)

evaluate floating-point condition code zero (fcc0) according to the cond field of the

instruction. Such evaluation produces either a TRUE or FALSE result. If TRUE, the branch

is taken, that is, the instruction causes a PC-relative, delayed control transfer to the

address “PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the

value of the annul field. If a conditional branch is not taken and the annul (a) field is one,

the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on

unconditional branches.

Compatibility Note – Unlike SPARC-V8, SPARC-V9 does not require an instruction

between a floating-point compare operation and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, the FBfcc instruction

is not executed and instead generates a fp_disabled exception.

Exceptions

fp_disabled

A.70.2 Branch on Integer Condition Codes (Bicc)

Use the BPcc instructions in place of Bicc instructions.
Chapter A Instruction Definitions A-425

Format (2)

Opcode cond Operation icc Test

BAD 1000 Branch Always 1

BND 0000 Branch Never 0

BNED 1001 Branch on Not Equal not Z

BED 0001 Branch on Equal Z

BGD 1010 Branch on Greater not (Z or (N xor V))

BLED 0010 Branch on Less or Equal Z or (N xor V)

BGED 1011 Branch on Greater or Equal not (N xor V)

BLD 0011 Branch on Less N xor V

BGUD 1100 Branch on Greater Unsigned not (C or Z)

BLEUD 0100 Branch on Less or Equal Unsigned C or Z

BCCD 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C

BCSD 0101 Branch on Carry Set (Less Than, Unsigned) C

BPOSD 1110 Branch on Positive not N

BNEGD 0110 Branch on Negative N

BVCD 1111 Branch on Overflow Clear not V

BVSD 0111 Branch on Overflow Set V

31 24 02530 29 28 22 21

00 a cond 010 disp22
A-426 UltraSPARC IIIi Processor User’s Manual • June 2003

Programming Note – To set the annul bit for Bicc instructions, append “,a” to the

opcode mnemonic. For example, use “bgu,a label.” In the preceding table, braces signify

that the “,a” is optional.

Description

Unconditional branches and icc-conditional branches are described below:

• Unconditional branches (BA, BN) — If its annul field is zero, a BN (Branch Never)

instruction is treated as a NOP. If its annul field is one, the following (delay) instruction is

annulled (not executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the

address “PC + (4 × sign_ext(disp22)).” If the annul field of the branch instruction is

one, the delay instruction is annulled (not executed). If the annul field is zero, the delay

instruction is executed.

• Icc-conditional branches — Conditional Bicc instructions (all except BA and BN)

evaluate the 32-bit integer condition codes (icc), according to the cond field of the

instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken, that

is, the instruction causes a PC-relative, delayed control transfer to the address

“PC + (4 × sign_ext(disp22)).” If FALSE, the branch is not taken.

Assembly Language Syntax

ba{,a} label

bn{,a} label

bne{,a} label (synonym: bnz)

be{,a} label (synonym: bz)

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bcc{,a} label (synonym: bgeu)

bcs{,a} label (synonym: blu)

bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label
Chapter A Instruction Definitions A-427

If a conditional branch is taken, the delay instruction is always executed regardless of the

value of the annul field. If a conditional branch is not taken and the annul (a) field is one,

the delay instruction is annulled (not executed).

Note – The annul bit has a different effect on conditional branches than it does on

unconditional branches.

Exceptions

None

A.70.3 Divide (64-bit / 32-bit)

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated. Use the UDIVX and

SDIVX instructions instead.

Format (3)

Opcode op3 Operation

UDIVD 00 1110 Unsigned Integer Divide

SDIVD 00 1111 Signed Integer Divide

UDIVcc
D

01 1110 Unsigned Integer Divide and modify condition codes

SDIVcc
D

01 1111 Signed Integer Divide and modify condition codes

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
A-428 UltraSPARC IIIi Processor User’s Manual • June 2003

Description

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i = 0,

they compute “(Y r[rs1]<31:0>) ÷ r[rs2]<31:0>.” Otherwise (that is, if i = 1), the

divide instructions compute “(Y r[rs1]<31:0>) ÷ (sign_ext(simm13)<31:0>).” In

either case, if overflow does not occur, the less significant 32 bits of the integer quotient are

sign-extended or zero-extended to 64 bits and are written into r[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide

operation.

Unsigned Divide

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend

(Y r[rs1]<31:0>) and an unsigned integer word divisor r[rs2<31:0>] or

(sign_ext(simm13)<31:0>) and computes an unsigned integer word quotient (r[rd]).

Immediate values in simm13 are in the ranges 0 to 212 – 1 and 232 – 212 to 232 – 1 for

unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

In the UltraSPARC IIIi processor, LDD is implemented in hardware.

Assembly Language Syntax

udiv regrs1, reg_or_imm, regrd

sdiv regrs1, reg_or_imm, regrd

udivcc regrs1, reg_or_imm, regrd

sdivcc regrs1, reg_or_imm, regrd
Chapter A Instruction Definitions A-429

Programming Note – The rational quotient is the infinitely precise result quotient. It

includes both the integer part and the fractional part of the result. For example, the rational

quotient of 11/4 = 2.75 (integer part = 2, fractional part = .75).

The result of an unsigned divide instruction can overflow the less significant 32 bits of the

destination register r[rd] under certain conditions. When overflow occurs, the largest

appropriate unsigned integer is returned as the quotient in r[rd]. The condition under

which overflow occurs and the value returned in r[rd] under this condition are specified in

TABLE A-16.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into

register r[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bits

as shown in the following table. Note that negative (N) and zero (Z) are set according to the

value of r[rd] after it has been set to reflect overflow, if any.

Signed Divide

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend

(Y lower 32 bits of r[rs1]) and a signed integer word divisor (lower 32 bits of r[rs2]
or lower 32 bits of sign_ext(simm13)) and computes a signed integer word quotient

(r[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7 ÷ 4 equals the

rational quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.

TABLE A-16 UDIV / UDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r[rd]

Rational quotient ≥ 232 232 − 1

(0000 0000 FFFF FFFF16)

Bit UDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per TABLE A-16)

icc.C Zero

xcc.N Set if r[rd]<63> =1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero
A-430 UltraSPARC IIIi Processor User’s Manual • June 2003

The result of a signed divide can overflow the low-order 32 bits of the destination register

r[rd] under certain conditions. When overflow occurs, the largest appropriate signed

integer is returned as the quotient in r[rd]. The conditions under which overflow occurs

and the value returned in r[rd] under those conditions are specified in TABLE A-17.

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into

register r[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits

as shown in the following table. Note that negative (N) and zero (Z) are set according to the

value of r[rd] after it has been set to reflect overflow, if any.

Exceptions

division_by_zero

A.70.4 Load Floating-Point Status Register

The LDFSR instruction is deprecated. Use the LDXFSR instruction instead.

TABLE A-17 SDIV / SDIVcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r[rd]

Rational quotient ≥ 231 231 −1

(0000 0000 7FFF FFFF16)

Rational quotient ≤ −231 − 1 −231

(FFFF FFFF 8000 000016)

Bit SDIVcc

icc.N Set if r[rd]<31> = 1

icc.Z Set if r[rd]<31:0> = 0

icc.V Set if overflow (per TABLE A-17)

icc.C Zero

xcc.N Set if r[rd]<63> = 1

xcc.Z Set if r[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

Opcode op3 rd Operation

LDFSRD 10 0001 0 Load Floating-Point State Register Lower
Chapter A Instruction Definitions A-431

Format (3)

Description

The load floating-point state register lower instruction (LDFSR) waits for all FPop

instructions that have not finished execution to complete and then loads a word from memory

into the less significant 32 bits of the FSR. The upper 32 bits of FSR are unaffected by

LDFSR.

LDFSR causes a mem_address_not_aligned exception if the effective memory address is not

word aligned.

Compatibility Note – SPARC-V9 supports two different instructions to load the FSR: the

SPARC-V8 LDFSR instruction is defined to load only the less significant 32 bits of the FSR,

whereas LDXFSR allows SPARC-V9 programs to load all 64 bits of the FSR.

Exceptions

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

Assembly Language Syntax

ld [address], %fsr

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
A-432 UltraSPARC IIIi Processor User’s Manual • June 2003

A.70.5 Load Integer Doubleword

The LDD instruction is deprecated; it is provided only for compatibility with previous

versions of the architecture. It should not be used in new SPARC-V9 software. Use the LDX
instruction instead.

Please refer to Section A.27, “Load Integer” for the current load integer instructions.

Format (3)

Description

The load doubleword integer instruction (LDD) copies a doubleword from memory into an

r register pair. The word at the effective memory address is copied into the even r register.

The word at the effective memory address + 4 is copied into the following odd-numbered

r register. The upper 32 bits of both the even-numbered and odd-numbered r registers are

zero-filled.

Opcode op3 Operation

LDDD 00 0011 Load doubleword

Assembly Language Syntax

ldd [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Chapter A Instruction Definitions A-433

Notes – A load doubleword with rd = 0 modifies only r[1]. The least significant bit of

the rd field in an LDD instruction is unused and should be set to zero by software. An

attempt to execute a load doubleword instruction that refers to a misaligned (odd-numbered)

destination register causes an illegal_instruction exception.

With respect to little-endian memory, an LDD instruction behaves as if it is composed of two

32-bit loads, each of which is byte swapped independently before being written into each

destination register.

Load integer doubleword instructions access the primary address space (ASI = 8016). The

effective address is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)”

if i = 1.

A successful load doubleword instruction operates atomically.

Programming Note – LDD is provided for compatibility with SPARC-V8. It may execute

slowly on SPARC-V9 machines because of data path and register-access difficulties.

Exceptions

illegal_instruction (LDD with odd rd)

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.6 Load Integer Doubleword from Alternate Space

The LDDA instruction is deprecated. Use the LDXA instruction in its place.

Please refer to Section A.28, “Load Integer from Alternate Space” for current load integer

from alternate space instructions.

Opcode op3 Operation

LDDAD, PASI 01 0011 Load Doubleword from Alternate Space
A-434 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

The load doubleword integer from alternate space instruction (LDDA) copies a doubleword

from memory into an r register pair. The word at the effective memory address is copied into

the even r register. The word at the effective memory address + 4 is copied into the

following odd-numbered r register. The upper 32 bits of both the even-numbered and odd-

numbered r registers are zero-filled.

Notes – A load doubleword with rd = 0 modifies only r[1]. The least significant bit of

the rd field in an LDDA instruction is unused and should be set to zero by software. An

attempt to execute a load doubleword instruction that refers to a misaligned (odd-numbered)

destination register causes an illegal_instruction exception.

With respect to little-endian memory, an LDDA instruction behaves as if it is composed of

two 32-bit loads, each of which is byte-swapped independently before being written into

each destination register.

The load integer doubleword from alternate space instructions contain the address space

identifier (ASI) to be used for the load in the imm_asi field if i = 0, or in the ASI register

if i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful load doubleword instruction operates atomically.

LDDA causes a mem_address_not_aligned exception if the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the

ASI is zero.

Assembly Language Syntax

ldda [regaddr] imm_asi, regrd

ldda [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13
Chapter A Instruction Definitions A-435

In the UltraSPARC IIIi processor, LDDA is implemented in hardware.

LDDA with ASI=2416 or 2C16 is defined to be a Load Quadword Atomic instruction. See

Section A.29, “Load Quadword, Atomic (VIS I)” for details.

Programming Note – LDDA is provided for compatibility with SPARC-V8. It may

execute slowly on SPARC-V9 machines because of data path and register-access difficulties.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access

in order to preserve atomicity.

Exceptions

privileged_action
illegal_instruction (LDDA with odd rd)

mem_address_not_aligned
data_access_exception
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.7 Multiply (32-bit)

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated. Use the MULX
instruction instead.

Opcode op3 Operation

UMULD 00 1010 Unsigned Integer Multiply

SMULD 00 1011 Signed Integer Multiply

UMULccD 01 1010 Unsigned Integer Multiply and modify condition codes

SMULccD 01 1011 Signed Integer Multiply and modify condition codes
A-436 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.

They compute “r[rs1]<31:0> × r[rs2]<31:0>” if i = 0, or

“r[rs1]<31:0> × sign_ext(simm13)<31:0>” if i = 1. They write the 32 most

significant bits of the product into the Y register and all 64 bits of the product into r[rd].

Unsigned multiply instructions (UMUL, UMULcc) operate on unsigned integer word operands

and compute an unsigned integer doubleword product. Signed multiply instructions (SMUL,

SMULcc) operate on signed integer word operands and compute a signed integer doubleword

product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the

integer condition code bits, icc and xcc, as shown in TABLE A-18.

Assembly Language Syntax

umul regrs1, reg_or_imm, regrd

smul regrs1, reg_or_imm, regrd

umulcc regrs1, reg_or_imm, regrd

smulcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-437

Note – Zero (icc.Z) and 32-bit negative (icc.N) condition codes are set according to the

less significant word of the product, not according to the full 64-bit result.

Programming Notes – 32-bit overflow after UMUL/UMULcc is indicated by Y ≠ 0.

Y ≠ (r[rd] >> 31) is indicates 32-bit overflow after SMUL/SMULcc, where “>>” indicates

32-bit arithmetic right-shift.

Exceptions

None

A.70.8 Multiply Step

The MULScc instruction is deprecated. Use the MULX instruction instead.

TABLE A-18 UMULcc / SMULcc Condition Code Settings

Bit UMULcc / SMULcc

icc.N Set if product<31> = 1

icc.Z Set if product<31:0>= 0

icc.V 0

icc.C 0

xcc.N Set if product<63> = 1

xcc.Z Set if product<63:0> = 0

xcc.V 0

xcc.C 0

Opcode op3 Operation

MULSccD 10 0100 Multiply Step and modify condition codes
A-438 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

MULScc treats the less significant 32 bits of both r[rs1] and the Y register as a single 64-

bit, right-shiftable doubleword register. The least significant bit of r[rs1] is treated as if it

were adjacent to bit 31 of the Y register. The MULScc instruction adds, based on the least

significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, r[rs1] contains

the most significant bits of the product, and r[rs2] contains the multiplicand. Upon

completion of the multiplication, the Y register contains the least significant bits of the

product.

Note – A standard MULScc instruction has rs1 = rd.

MULScc operates as follows:

1. The multiplicand is r[rs2] if i = 0, or sign_ext(simm13) if i = 1.

2. A 32-bit value is computed by shifting r[rs1] right by one bit with

“CCR.icc.n xor CCR.icc.v” replacing bit 31 of r[rs1]. (This is the proper sign for

the previous partial product).

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are

added. If the least significant bit of Y = 0, then zero is added to the shifted value from

step (2).

4. The sum from step (3) is written into r[rd]. The upper 32 bits of r[rd] are undefined.

The integer condition codes are updated according to the addition performed in step (3).

The values of the extended condition codes are undefined.

Assembly Language Syntax

mulscc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-439

5. The Y register is shifted right by one bit, with the least significant bit of the unshifted

r[rs1] replacing bit 31 of Y.

Exceptions

None

A.70.9 Read Y Register

The RDY instruction from the Read State Register instructions (Section A.50, “Read State

Register”) is deprecated. It is recommended that all instructions that reference the Y register

be avoided.

Format (3)

Description

This instruction reads the Y register into r[rd].

Exceptions

None

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register

Assembly Language Syntax

rd %y, regrd

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0
A-440 UltraSPARC IIIi Processor User’s Manual • June 2003

A.70.10 Store Barrier

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Format (3)

Description

The store barrier instruction (STBAR) forces all store and atomic load-store operations issued

by a processor prior to the STBAR to complete their effects on memory before any store or

atomic load-store operations issued by that processor subsequent to the STBAR are executed

by memory.

Note – The encoding of STBAR is identical to that of the RDASR instruction except that

rs1 = 15 and rd = 0, and it is identical to that of the MEMBAR instruction except that bit 13

(i) = 0.

Compatibility Note – STBAR is identical in function to a MEMBAR instruction with

mmask = 816. STBAR is retained for compatibility with SPARC-V8.

Opcode op3 Operation

STBARD 10 1000 Store Barrier

Assembly Language Syntax

stbar

31 141924 18 13 02530 29

10 0 op3 0 1111 —

12

0

Chapter A Instruction Definitions A-441

Implementation Note – For correctness, it is sufficient for a processor to stop issuing

new store and atomic load-store operations when an STBAR is encountered and to resume

after all stores have completed and are observed in memory by all processors. More efficient

implementations may take advantage of the fact that the processor is allowed to issue store

and load-store operations after the STBAR, as long as those operations are guaranteed not to

become visible before all the earlier stores and atomic load-stores have become visible to all

processors.

Exceptions

None

A.70.11 Store Floating-Point Status Register Lower

The STFSR instruction is deprecated. Use the STXFSR instruction instead.

Format (3)

Description

The store floating-point state register lower instruction (STFSR) waits for any currently

executing FPop instructions to complete, and then it writes the less significant 32 bits of the

FSR into memory.

Opcode op3 rd Operation

STFSRD 10 0101 0 Store Floating-Point State Register Lower

Assembly Language Syntax

st %fsr, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
A-442 UltraSPARC IIIi Processor User’s Manual • June 2003

Compatibility Note – SPARC-V9 needs two store-FSR instructions, since the SPARC-V8

STFSR instruction is defined to store only 32 bits of the FSR into memory. STXFSR allows

SPARC-V9 programs to store all 64 bits of the FSR.

STFSR zeroes FSR.ftt after writing the FSR to memory.

Implementation Note – FSR.ftt should not be zeroed until it is known that the store

will not cause a precise trap.

The effective address for this instruction is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

STFSR causes a mem_address_not_aligned exception if the effective memory address is not

word aligned.

Exceptions

illegal_instruction (op3 = 2516 and rd = 2–31)

fp_disabled
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.12 Store Integer Doubleword

The STD instruction is deprecated. Use the STX instruction instead.

Opcode op3 Operation

STDD 00 0111 Store Doubleword
Chapter A Instruction Definitions A-443

Format (3)

Description

The store doubleword integer instruction (STD) copies two words from an r register pair into

memory. The least significant 32 bits of the even-numbered r register are written into

memory at the effective address, and the least significant 32 bits of the following odd-

numbered r register are written into memory at the “effective address + 4.” The least

significant bit of the rd field of a store doubleword instruction is unused and should always

be set to zero by software. An attempt to execute a store doubleword instruction that refers to

a misaligned (odd-numbered) rd causes an illegal_instruction exception.

The effective address for this instruction is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

A successful store doubleword instruction operates atomically.

STD causes a mem_address_not_aligned exception if the effective address is not doubleword

aligned.

In the UltraSPARC IIIi processor, STD is implemented in hardware.

Programming Notes – STD is provided for compatibility with SPARC-V8. It may

execute slowly on SPARC-V9 machines because of data path and register-access difficulties.

Therefore, programmers should avoid using STD.

If STD is emulated in software, STX should be used to preserve atomicity.

With respect to little-endian memory, a STD instruction behaves as if it is composed of two

32-bit stores, each of which is byte-swapped independently before being written into each

destination memory word.

Assembly Language Syntax

std regrd, [address]

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
A-444 UltraSPARC IIIi Processor User’s Manual • June 2003

Exceptions

illegal_instruction (STD with odd rd)

mem_address_not_aligned (all except STB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.13 Store Integer Doubleword into Alternate Space

The STDA instruction is deprecated. Instead, use the STXA instruction.

Format (3)

Description

The store doubleword integer instruction (STDA) copies two words from an r register pair

into memory. The least significant 32 bits of the even-numbered r register are written into

memory at the effective address, and the least significant 32 bits of the following odd-

numbered r register are written into memory at the “effective address + 4.” The least

Opcode op3 Operation

STDAD, PASI 01 0111 Store Doubleword into Alternate Space

Assembly Language Syntax

stda regrd, [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-445

significant bit of the rd field of a store doubleword instruction is unused and should always

be set to zero by software. An attempt to execute a store doubleword instruction that refers to

a misaligned (odd-numbered) rd causes an illegal_instruction exception.

Store integer doubleword to alternate space instructions contain the address space identifier

(ASI) to be used for the store in the imm_asi field if i = 0, or in the ASI register if i = 1.

The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The

effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1]+sign_ext(simm13)” if i = 1.

A successful store doubleword instruction operates atomically.

STDA causes a mem_address_not_aligned exception if the effective address is not

doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if

PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

In the UltraSPARC IIIi processor, STDA is implemented in hardware.

Programming Note – STDA is provided for compatibility with SPARC-V8. It may

execute slowly on SPARC-V9 machines because of data path and register-access difficulties.

Therefore, programmers should avoid using STDA.

Exceptions

illegal_instruction (STDA with odd rd)

privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.14 Swap Register with Memory

The SWAP instruction is deprecated. Use the CASA or CASXA instruction in its place.

Opcode op3 Operation

SWAPD 00 1111 Swap Register with Memory
A-446 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

SWAP exchanges the less significant 32 bits of r[rd] with the contents of the word at the

addressed memory location. The upper 32 bits of r[rd] are set to zero. The operation is

performed atomically, that is, without allowing intervening interrupts or deferred traps. In a

multiprocessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,

LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword

simultaneously are guaranteed to execute them in an undefined, but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1. This instruction causes a

mem_address_not_aligned exception if the effective address is not word aligned.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are implementation dependent.

Implementation Note – See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for

information on the presence of hardware support for these instructions in the various

SPARC-V9 implementations.

Exceptions

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss

Assembly Language Syntax

swap [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2
Chapter A Instruction Definitions A-447

fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.15 Swap Register with Alternate Space Memory

The SWAPA instruction is deprecated. Use the CASXA instruction instead.

Format (3)

Description

SWAPA exchanges the less significant 32 bits of r[rd] with the contents of the word at the

addressed memory location. The upper 32 bits of r[rd] are set to zero. The operation is

performed atomically, that is, without allowing intervening interrupts or deferred traps. In a

multiprocessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,

LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword

simultaneously are guaranteed to execute them in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load in

the imm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7

of the ASI is zero; otherwise, it is not privileged. The effective address for this instruction is

“r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

Opcode op3 Operation

SWAPAD, PASI 01 1111 Swap register with Alternate Space Memory

Assembly Language Syntax

swapa [regaddr] imm_asi, regrd

swapa [reg_plus_imm] %asi, regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1
A-448 UltraSPARC IIIi Processor User’s Manual • June 2003

This instruction causes a mem_address_not_aligned exception if the effective address is not

word aligned. It causes a privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the

ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are implementation dependent.

Implementation Note – See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for

information on the presence of hardware support for this instruction in the various

SPARC-V9 implementations.

Exceptions

mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.70.16 Tagged Add and Trap on Overflow

The TADDccTV instruction is deprecated. Use the TADDcc followed by BPVS instruction

(with instructions to save the pre-TADDcc integer condition codes if necessary).

Format (3)

Opcode op3 Operation

TADDccTVD 10 0010 Tagged Add and modify condition codes, or Trap on Overflow

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-449

Description

This instruction computes a sum that is “r[rs1] + r[rs2]” if i = 0, or

“r[rs1] + sign_ext(simm13)” if i = 1.

TADDccTV modifies the integer condition codes if it does not trap.

A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero or if the

addition generates 32-bit arithmetic overflow (that is, both operands have the same value in

bit 31 and the sum of bit 31 is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and r[rd] and

the integer condition codes remain unchanged. If a TADDccTV does not cause a tag overflow,

the sum is written into r[rd] and the integer condition codes are updated. CCR.icc.v is

set to zero to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal ADD instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set, based only on

the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Compatibility Note – TADDccTV traps based on the 32-bit overflow condition, just as in

SPARC-V8. Although the tagged add instructions set the 64-bit condition codes CCR.xcc,

there is no form of the instruction that traps the 64-bit overflow condition.

Exceptions

tag_overflow

A.70.17 Tagged Subtract and Trap on Overflow

The TSUBccTV instruction is deprecated. Use the TSUBcc instruction followed by BPVS
(with instructions to save the pre-TSUBcc integer condition codes if necessary).

Assembly Language Syntax

taddcctv regrs1, reg_or_imm, regrd
A-450 UltraSPARC IIIi Processor User’s Manual • June 2003

Format (3)

Description

This instruction computes “r[rs1] – r[rs2]” if i = 0, or

“r[rs1] – sign_ext(simm13)” if i = 1.

TSUBccTV modifies the integer condition codes (icc and xcc) if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction

generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the

32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of r[rs1].

If TSUBccTV causes a tag overflow, then a tag_overflow exception is generated and r[rd]
and the integer condition codes remain unchanged. If a TSUBccTV does not cause a tag

overflow condition, the difference is written into r[rd] and the integer condition codes are

updated. CCR.icc.v is set to zero to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all

the CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In

particular, the setting of the CCR.xcc.v bit is not determined by the tag overflow condition

(tag overflow is used only to set the 32-bit overflow bit). CCR.xcc.v is set, based only on

the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.

Opcode op3 Operation

TSUBccTVD 10 0011 Tagged Subtract and modify condition codes, or Trap on Overflow

Assembly Language Syntax

tsubcctv regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
Chapter A Instruction Definitions A-451

Compatibility Note – TSUBccTV traps are based on the 32-bit overflow condition, just

as in SPARC-V8. Although the tagged-subtract instructions set the 64-bit condition codes

CCR.xcc, there is no form of the instruction that traps on 64-bit overflow.

Exceptions

tag_overflow

A.70.18 Write Y Register

The WRY instruction is deprecated. It is recommended that all instructions that reference the

Y register be avoided.

Format (3)

Description

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or

“r[rs1] xor sign_ext(simm13)” if i = 1, to the writable fields of the Y register.

Note – The operation is an exclusive OR.

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register

— 11 0000 1–31 See Section A.69, “Write State Register”

Assembly Language Syntax

wr regrs1, reg_or_imm,%y

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1
A-452 UltraSPARC IIIi Processor User’s Manual • June 2003

The WRY instruction is not a delayed-write instruction. The instruction immediately

following a WRY observes the new value of the Y register.

Exceptions

None
Chapter A Instruction Definitions A-453

A-454 UltraSPARC IIIi Processor User’s Manual • June 2003

Index
June 2003 455

456 UltraSPARC IIIi Processor User’s Manual • June 2003

A
a field of instructions 174, 284, 287, 288, 291, 424, 427

A pipeline stage 36, 39

A0 pipeline stage 37

A1 pipeline stage 37

accesses

cacheable 185

I/O 194

noncacheable 185

nonfaulting ASIs 192

real memory space 184

restricted ASI 184

with side effects 184, 185, 194

accrued exception (aexc) field of FSR register 121, 122,

124

ADD instruction 268

ADDC instruction 268

ADDcc instruction 268, 400

ADDCcc instruction 268

address

64-bit virtual data watchpoint 132

aliasing 199

illegal address alliasing 206

physical address data watchpoint 133

space identifier (ASI) 184

virtual address

data watchpoint 132

watchpoint priority 132

virtual passed to physical 129

virtual-to-physical translation 184

address mask (AM) field of PSTATE register 112

address space identifier (ASI)

affected by watchpoint traps 132

appended to memory address 139, 177

bit 7 setting for privileged_action exception 407

definition xxxi

explicit values 138

imm_asi instruction field 175

implicit values 138

load floating-point instructions 319

load integer doubleword instructions 434

load integer instructions 323

with prefetch instructions 380

restriction indicator 92

address space identifier (ASI) register

for load/store alternate instructions 92

and imm_asi instruction field 138

and LDDA instruction 435

and LDSTUBA instruction 331

load floating-point from alternate space instructions

321

load integer from alternate space instructions 325

with prefetch instructions 380

restoring saved state 294

and STDA instruction 446

store floating-point into alternate space instructions

407

store integer to alternate space instructions 410

and SWAPA instruction 448

and TSTATE Register 105

and write state register instructions 422

addressing conventions 137, 177

ADDX instruction (SPARC V8) 269

ADDXcc instruction (SPARC V8) 269

alias

address 199

boundary 206

floating-point registers 81

ALIGNADDRESS instruction 269

ALIGNADDRESS_LITTLE instruction 269

alignment

data (load/store) 137, 137

doubleword 137, 137

extended-word 137

halfword 137, 137

instructions 137, 137

integer registers 434, 435

quadword 137, 137

word 137, 137

alternate address space 380

alternate global registers 76

alternate globals enable (AG) field of PSTATE register

76, 110

alternate space instructions 92

ancillary state registers (ASRs) 90–??

access 94

number 90

possible registers included 390, 422

writing to 421

AND instruction 335

ANDcc instruction 335

ANDN instruction 335

ANDNcc instruction 335

annul bit

in branch instructions 284

in conditional branches 425

in control transfer instruction 93

annulled branches 284
Index 457

application program xxxi, 127

Architectural Register File (ARF) 46

architecture, meaning for SPARC V9 xxviii

ARF (Architectural Register File) 46

arithmetic overflow 91

ARRAY16 instruction 271

ARRAY32 instruction 271

ARRAY8 instruction 271

ASI

_BLK_COMMIT_PRIMARY 206

_BLK_COMMIT_SECONDARY 206

_NUCLEUS_QUAD_LDD_S 326

atomic access 192

nonfaulting 192

restricted 184

UltraSPARC III internal 195

ASI_AS_IF_USER_PRIMARY 191

ASI_AS_IF_USER_PRIMARY_LITTLE 191

ASI_AS_IF_USER_SECONDARY 191

ASI_AS_IF_USER_SECONDARY_LITTLE 191

ASI_DCU_CONTROL_REGISTER 127

ASI_INTR_DISPATCH_STATUS 216, 220

ASI_INTR_DISPATCH_STATUS.BUSY bit 216

ASI_INTR_DISPATCH_STATUS.NACK bit 216

ASI_INTR_DISPATCH_W 219

ASI_INTR_RECEIVE 217, 221

ASI_INTR_W 216, 219

ASI_NUCLEUS 191

ASI_NUCLEUS_LITTLE 191

ASI_PHYS_USE_EC 191

ASI_PHYS_USE_EC_LITTLE 191

ASI_PRIMARY 138, 191

ASI_PRIMARY_LITTLE 110, 191

ASI_PRIMARY_NO_FAULT 192

ASI_PRIMARY_NO_FAULT_LITTLE 192

ASI_PST16_P 359

ASI_PST16_PL 359

ASI_PST16_S 359

ASI_PST16_SL 359

ASI_PST32_P 359

ASI_PST32_PL 360

ASI_PST32_S 359

ASI_PST32_SL 360

ASI_PST8_P 359

ASI_PST8_PL 359

ASI_PST8_S 359

ASI_PST8_SL 359

ASI_SDB_INTR 218, 221

ASI_SDB_INTR_R 217

ASI_SECONDARY 191

ASI_SECONDARY_LITTLE 191

ASI_SECONDARY_NO_FAULT 192

ASI_SECONDARY_NO_FAULT_LITTLE 192

ASRs

grouping rules 46

async_data_error exception 320, 326, 330, 436

atomic

load quadword 326

memory operations 327

store doubleword instruction 444, 446

store instructions 408, 410

atomic instructions

compare and swap 191

LDSTUB 191

mutual exclusion support 191

and store queue 197

SWAP 191

use with ASIs 191

atomic load-store instructions 292

compare and swap 291

load-store unsigned byte 329, 447, 448

load-store unsigned byte to alternate space 330

swap r register with alternate space memory 448

swap r register with memory 292, 446

B
B pipeline stage 37

BA instruction 426, 427

BCC instruction 426

BCS instruction 426

BE instruction 426

BG instruction 426

BGE instruction 426

BGU instruction 426

Bicc instructions 92, 93, 425

big-endian

swapping in partial store instructions 361

big-endian byte order 110, 136, 137, 177

bit vector concatenation xxix

BLE instruction 426

BLEU instruction 426

block

load and store instructions

compliance across UltraSPARC platforms 339

data size (granularity) 194

E-cache access counting 239
458 UltraSPARC IIIi Processor User’s Manual • June 2003

load instruction 194

grouping 47

ordering 278

and store queue 197

load instructions 81, 203, 206, 274

operations and memory model 278

overlapping stores 278

store instruction

data size (granularity) 194

grouping 47

ordering 278

and PDIST 45

use in loops 279

store instructions 81, 203, 274

use in loops 279

BMASK instruction 282

and BSHUFFLE instruction 283

and MS pipeline 283

grouping rules 45

BN instruction 426, 427

BNE instruction 426

BNEG instruction 426

BPA instruction 288

BPCC instruction 288

BPcc instructions 92, 93, 174, 175, 288

BPCS instruction 288

BPE instruction 288

BPG instruction 288

BPGE instruction 288

BPGU instruction 288

BPL instruction 288

BPLE instruction 288

BPLEU instruction 288

BPN instruction 288

BPNE instruction 288

BPNEG instruction 288

BPOS instruction 426

BPPOS instruction 288

BPr instructions 93, 174, 175, 283

BPVC instruction 288

BPVS instruction 288

BR pipeline 37

branch

annulled 284

delayed 177

elimination 140, 141

fcc-conditional 287, 425

icc-conditional 427

prediction bit 284

unconditional 287, 289, 424, 427

branch if contents of integer register match condition

instructions 283

branch instructions, conditional 39

branch on floating-point condition codes instructions 423

branch on floating-point condition codes with prediction

instructions 285

branch on integer condition codes instructions, See Bicc
instructions

branch on integer condition codes with prediction (BPcc)

instructions 288

branch prediction

in B pipeline stage 37

mispredict signal 39

statistics for taken/untaken 234

Branch Predictor (BP) 36

break-after, definition 41

break-before, definition 41

BRGEZ instruction 283

BRGZ instruction 283

BRLEZ instruction 283

BRLZ instruction 283

BRNZ instruction 283

BRZ instruction 283

BSHUFFLE instruction 282

and BMASK instruction 283

fully pipelined 283

grouping rules 45

bubble, vs. helper 46

bubbles 234

BUSY/NACK pairs 220

BVC instruction 426

BVS instruction 426

byte

addressing 179

data format 59

order 136, 137, 177

order, big-endian 110, 136

order, implicit 110

order, little-endian 110, 136

byte mask

grouping 283

byte ordering 361

C
C pipeline stage 39, 40

cache
Index 459

coherency protocol 185

flushing 205

level 1 199

level 2 201

organization 199

cacheable accesses

indication 185

properties 185

CALL instruction

description 290

destination register 93

displacement 155

does not change CWP 80

and JMPL instruction 318

writing address into r[15] 76

CANRESTORE register 114

CANSAVE register 114

carry (C) bit of condition fields of CCR 91

CAS(X)A instruction 191

CASA instruction 142, 291, 329, 331, 447, 448

CASXA instruction 142, 291, 329, 331, 447, 448

cc0 field of instructions 174, 287, 288, 301, 353

cc1 field of instructions 174, 287, 288, 301, 353

cc2 field of instructions 174, 353

CCR, See condition codes (CCR) register

clean register window 115, 392

clean windows (CLEANWIN) register 114, 114, 385,

418

clean_window exception 114, 393, 394

CLEAR_SOFTINT pseudo-register 223

clock-tick register (TICK) 102, 103, 385, 418

code

kernel 222

nucleus 222

coherence

domain 185

unit of 185

compare and swap instructions 291

comparison instruction 144, 412

complex calculations, fixed data format 71

concatenation of bit vectors xxix

cond field of instructions 174, 287, 288, 345, 353, 424,

427

condition codes 293

adding 413

extended integer (Xcc) 92

floating-point 425

icc field 91

integer 90

results of integer operation (icc) 92

subtracting 412, 414

trapping on 416

xcc field 91

condition codes (CCR) register 90, 105, 268, 294, 422,

439

conditional branch instructions 39

conditional branches 287, 425, 427

conditional move instructions

grouping rules 48

const22 field of instructions 316

constants, generating 397

control and status registers 90

control-transfer instructions (CTIs) 154, 294

conventions

font xxviii

notational xxix

conversion

between floating-point formats instructions 304

floating-point to integer instructions 302

integer to floating-point instructions 306

planar to packed 378

CTI queue 37

current exception (cexc) field of FSR register 121, 122,

123, 124, 125, 126, 147

current window pointer (CWP) register

and CALL/JMPL instructions 80

and clean windows 115

definition xxxii

and FLUSHW instruction 315

function 114

incremented/decremented 78, 393

and overlapping windows 78

range of values 114

reading CWP with RDPR instruction 385

and RESTORE instruction 154, 393

restored during DONE or RETRY 294

and SAVE instruction 154, 393

and TSTATE Register 105

writing CWP with WRPR instruction 418

current_little_endian (CLE) field of PSTATE register

110, 110

cycles accumulated, count 233

D
D pipeline stage 40, 234

d16hi field of instructions 174, 284
460 UltraSPARC IIIi Processor User’s Manual • June 2003

d16lo field of instructions 174, 284

data

formats

byte 59

doubleword 59

extended word 59

halfword 59

quadword 59

tagged word 59

word 59

types

floating-point 59

signed integer 59

unsigned integer 59

width 59

watchpoint

behavior 132

exception 360

physical address 133

register format 133

virtual address 133

Data Cache 199

flush 205

data cache

and block load/store 277

Data Cache Unit Control Register, See DCUCR

data_access_error exception 281, 293, 320, 324, 328,

330, 331, 361, 402, 405, 407, 409, 410, 434, 443,

445, 446

data_access_exception exception 110, 220, 293, 320,

322, 330, 331, 405, 407, 409, 410, 445, 446, 447, 449

data_access_exception exception 185, 191, 192, 194

data_access_protection exception 281, 324, 326, 328,

361, 402, 434, 436

DB_PA field of PA Data Watchpoint register 133

DC_wr 238

DC_wr_miss 238

DCR

branch and return control 95

fields

BPE (branch prediction enable) 95

MS (multiscalar dispatch enable) 96

RPE (return address prediction enable) 96

SI (single issue disable) 96

IFPOE field 96

instruction dispatch control 96

layout 95

DCUCR

access data format 128

DC (data cache enable) field 130

DM (DMMU enable) field 129

IC (I-cache enable) field 196

IC (instruction cache enable) field 130

IMI (IMMU enable) field 129

PM (PA data watchpoint mask) field 130

PR/PW (PA watchpoint enable) fields 131

VM (VA data watchpoint mask) field 131

VR/VW (VA data watchpoint enable) fields 131

watchpoint byte masks/enable bits 132

deferred trap

queue, floating-point (FQ) 385

delay instruction 93, 154, 284, 287, 290, 294, 391, 425

delayed branch 177

delayed control transfer 93, 284

deprecated instructions

BA 426

BCC 426

BCS 426

BE 426

BG 426

BGE 426

BGU 426

Bicc 425

BLE 426

BLEU 426

BN 426

BNE 426

BNEG 426

BPOS 426

BVC 426

BVS 426

FBA 423

FBE 423

FBG 423

FBGE 423

FBL 423

FBLE 423

FBLG 423

FBN 423

FBNE 423

FBO 423

FBU 423

FBUE 423

FBUGE 423

FBUL 423

FBULE 423

LDD 433

LDDA 434
Index 461

LDFSR 431

MULScc 90, 438

RDY 90, 388, 440

SDIV 90, 428

SDIVcc 90, 428

SMUL 90, 436

SMULcc 90, 436

STD 443

STDA 445

STFSR 442

SWAP 446

SWAPA 448

TSUBccTV 449, 451

UDIV 90, 428

UDIVcc 90, 428

UMUL 90, 436

UMULcc 90, 436

WRY 90, 420, 452

disp19 field of instructions 174, 287, 288

disp22 field of instructions 175, 424, 427

disp30 field of instructions 175, 290

Dispatch_rs_mispred 235

Dispatch0_2nd_br 235

Dispatch0_br_target 235

divide instructions 357, 428

divide-by-zero mask (DZM) bit of TEM field of FSR

register 124

division_by_zero exception 144, 358

division-by-zero accrued (dza) bit of aexc field of FSR

register 127

division-by-zero current (dzc) bit of cexc field of FSR

register 127

DONE instruction 92, 109, 294

after internal store to ASI 196

and BST 278

exiting RED_state 25, 249

grouping rules 47

restoring AG, IG, MG bits 109

target address 155

when TSTATE uninitialized 25, 250

doublet xxxii

doubleword

addressing 180

alignment 137

data format 59

definition xxxii

in memory 76

D-SFAR register

exception address (64-bit) 112

D-TLB

access 39

E
E pipeline stage 38

EC_ic_miss 240

EC_misses 239

E-cache 203

EDGE16 instruction 295

EDGE16L instruction 295

EDGE16LN instruction 295

EDGE16N instruction 295

EDGE32 instruction 295

EDGE32L instruction 295

EDGE32LN instruction 295

EDGE32N instruction 295

EDGE8 instruction 295

EDGE8L instruction 295

EDGE8LN instruction 295

EDGE8N instruction 295

emulating multiple unsigned condition codes 141

enable floating-point (FEF) field of FPRS register 94,

111, 146, 287, 319, 321, 405, 407, 425

enable floating-point (PEF) field of PSTATE register 94,

111, 146, 287, 319, 321, 405, 407, 425

Error Enable Register

NCEEN field 195

error_state

and watchdog reset 251

error_state, and watchdog reset 26

exceptions

async_data_error 320, 326, 330, 436

clean_window 114, 393, 394

data_access_error 281, 293, 320, 324, 328, 330, 331,

361, 402, 405, 407, 409, 410, 434, 443, 445, 446

data_access_exception 293, 320, 322, 330, 331, 405,

407, 409, 410, 445, 446, 447, 449

data_access_protection 281, 324, 326, 328, 361, 402,

434, 436

division_by_zero 144, 358

fill_n_normal 392, 394

fill_n_other 392, 394

fp_disabled 94, 146, 287, 300, 304, 306, 307, 309,

311, 319, 320, 321, 322, 348, 350, 355, 405, 407,

425, 432, 443

fp_exception_ieee_754 119, 124, 125, 126, 300, 304,

306, 307, 311
462 UltraSPARC IIIi Processor User’s Manual • June 2003

fp_exception_other 83, 176, 299, 300, 302, 304, 306,

307, 309, 311, 313, 350

illegal_instruction 76, 105, 176, 285, 290, 295, 317,

320, 355, 357, 379, 386, 387, 389, 395, 405, 407,

417, 419, 434, 435, 436, 443, 444, 445, 446

LDDF_mem_address_not_aligned 137, 319, 321, 322

mem_address_not_aligned 137, 293, 318, 319, 320,

322, 323, 324, 325, 326, 391, 392, 405, 407, 409,

410, 434, 436, 443, 445, 446, 447, 449

privileged_action 92, 138, 293, 321, 322, 325, 326,

331, 389, 390, 407, 410, 435, 436, 446, 449

privileged_opcode 295, 387, 395, 419

spill_n_normal 316, 394

spill_n_other 316, 394

STDF_mem_address_not_aligned 137, 405, 407

tag_overflow 143, 413, 414, 450, 452

trap_instruction 416, 417

window_fill 115, 391

window_spill 115

extended word addressing 180

extended word data format 59

Externally Initiated Reset (XIR) 251

F
F pipeline stage 36

FABSd instruction 308

FABSq instruction 308

FABSs instruction 308

FADD instruction 299

fadd of numbers with opposite signs 119

FADDd instruction 298

FADDq instruction 298

FADDs instruction 298

FALIGNADDR instruction

grouping rules 45

FALIGNDATA instruction 269

grouping rules 45

FAND instruction 332

FANDNOT1 instruction 332

FANDNOT1S instruction 332

FANDNOT2 instruction 333

FANDNOT2S instruction 333

FANDS instruction 332

fast_data_access_MMU_miss exception 110

fast_data_access_protection exception 110

fast_instruction_access_MMU_miss exception 110

FBA instruction 423, 425

FBE instruction 423

FBfcc instructions 93, 118, 146, 423, 425

FBG instruction 423

FBGE instruction 423

FBL instruction 423

FBLE instruction 423

FBLG instruction 423

FBN instruction 423, 424

FBNE instruction 423

FBO instruction 423

FBPA instruction 285, 287

FBPcc instructions 174

FBPE instruction 285

FBPfcc instructions 93, 118, 146, 174, 175, 285, 425

FBPG instruction 285

FBPGE instruction 285

FBPL instruction 285

FBPLE instruction 285

FBPLG instruction 285

FBPN instruction 285, 287

FBPNE instruction 285

FBPO instruction 285

FBPU instruction 285

FBPUE instruction 285

FBPUG instruction 285

FBPUGE instruction 285

FBPUL instruction 285

FBPULE instruction 285

FBU instruction 423

FBUE instruction 423

FBUG instruction 423

FBUGE instruction 423

FBUL instruction 423

FBULE instruction 423

fcc-conditional branches 287, 425

FCMP* instructions 118, 119, 300

FCMPd instruction 300

FCMPE* instructions 118, 119, 300

FCMPEd instruction 300

FCMPEQ instruction 370

FCMPEq instruction 300

FCMPEQ16 instruction 369

FCMPEQ32 instruction 369

FCMPEs instruction 300

FCMPG instruction 370

FCMPGT16 instruction 369

FCMPGT32 instruction 369

FCMPL instruction 370

FCMPLE16 instruction 369
Index 463

FCMPLE32 instruction 369

FCMPNE instruction 370

FCMPNE16 instruction 369

FCMPNE32 instruction 369

FCMPq instruction 300

FCMPs instruction 300

fcn field of instructions 294

FDIVd instruction 310

FDIVq instruction 310

FDIVs instruction 310

FdMULq instruction 310

FdTOi instruction 302, 304

FdTOq instruction 304

FdTOs instruction 304

fdtos instruction 120

FdTOx instruction 302, 304

FEXPAND instruction 151, 372, 377

FEXPAND instruction, pixel formatting 373

FEXPAND operation 377

FFA (f.p./Graphics ALU) pipeline 37

FFA pipeline 244

FGA pipeline xxxiii, 283

FGM (F.p./Graphics multiply) pipeline 37

FGM pipeline xxxiii, 244

fill register window 78, 154, 393, 395

fill_n_normal exception 392, 394

fill_n_other exception 392, 394

FiTOd instruction 306

FiTOq instruction 306

FiTOs instruction 306, 307

fixed-point scaling 364

floating point

divide/square root 45

grouping rules ??–45

latencies 44

operation statistics 244

register file access 39

store instructions 45

subnormal value generation 119

floating point complex calculations 71

floating-point add and subtract instructions 298

floating-point compare instructions 118, 119, 300, 300

floating-point condition code bits 425

floating-point condition codes (fcc) fields of FSR register

118, 121, 122, 287, 301, 425

floating-point data type 59

floating-point deferred-trap queue (FQ) 385

floating-point exception 120

floating-point move instructions 308

floating-point multiply and divide instructions 310

floating-point operate (FPop) instructions 120, 124, 146,

175, 432

floating-point registers 83

floating-point registers state (FPRS) register 93, 389, 422

floating-point square root instructions 312

floating-point state (FSR) register 117, 124, 125, 127,

405, 432, 442, 443

floating-point trap type (ftt) field of FSR register 125

floating-point trap type (ftt) field of FSR register 117,

120, 124, 147, 405, 443

floating-point trap types

IEEE_754_exception 121, 122, 124, 125, 127

invalid_fp_register 83, 121, 309, 313

numeric values 121

sequence_error 121

unfinished_FPop 121, 122, 127, 299, 311

unimplemented_FPop 121, 127, 300, 302, 304, 306,

307, 311, 348, 350

floating-point traps

precise 387

FLUSH instruction 313

after internal store 196

grouping rule 47

memory ordering control 187

self-modifying code 314

flush register windows instruction 315

flushing

TLB 209

FLUSHW instruction 153, 315

FLUSHW instruction, grouping rule 46

FMOVA instruction 343

FMOVcc instruction 343

FMOVcc instructions 92, 118, 140, 174, 175, 343, 348,

355

grouping rules 48

FMOVCS instruction 343

FMOVd instruction 308

FMOVDcc instruction 345

FMOVE instruction 343

FMOVFA instruction 344

FMOVFE instruction 344

FMOVFG instruction 344

FMOVFGE instruction 344

FMOVFL instruction 344

FMOVFLE instruction 344

FMOVFLG instruction 344

FMOVFN instruction 344

FMOVFNE instruction 344
464 UltraSPARC IIIi Processor User’s Manual • June 2003

FMOVFO instruction 344

FMOVFU instruction 344

FMOVFUE instruction 344

FMOVFUG instruction 344

FMOVFUGE instruction 344

FMOVFUL instruction 344

FMOVFULE instruction 344

FMOVG instruction 343

FMOVGE instruction 343

FMOVGU instruction 343

FMOVL instruction 343

FMOVLE instruction 343

FMOVLEU instruction 343

FMOVN instruction 343

FMOVNE instruction 343

FMOVNEG instruction 343

FMOVPOS instruction 343

FMOVq instruction 308

FMOVQcc instruction 345

FMOVr instructions 175, 349

FMOVRGEZ instruction 349

FMOVRGZ instruction 349

FMOVRLEZ instruction 349

FMOVRLZ instruction 349

FMOVRNZ instruction 349

FMOVRZ instruction 349

FMOVs instruction 308

FMOVScc instruction 345

FMOVVC instruction 343

FMOVVS instruction 343

FMUL8SUx16 instruction 363, 366

FMUL8ULx16 instruction 363, 367

FMUL8x16 instruction 152, 363, 364

FMUL8x16AL instruction 363, 365

FMUL8x16AU instruction 363, 365

FMULd instruction 310

FMULD8SUx16 instruction 363, 367

FMULD8ULx16 instruction 363, 368

FMULq instruction 310

FMULs instruction 310

FNAND instruction 332

FNANDS instruction 332

FNEGd instruction 308

FNEGq instruction 308

FNEGs instruction 308

FNOR instruction 332

FNORS instruction 332

FNOT1 instruction 332

FNOT1S instruction 332

FNOT2 instruction 332

FNOT2S instruction 332

FONE instruction 332

FONES instruction 332

FOR instruction 332

formats, instruction 171

FORNOT1 instruction 332

FORNOT1S instruction 332

FORNOT2 instruction 332

FORNOT2S instruction 332

FORS instruction 332

fp_disabled exception 94, 96, 146, 287, 300, 304, 306,

307, 309, 311, 319, 320, 321, 322, 348, 350, 355,

402, 405, 407, 425, 432, 443

fp_disabled trap 98

fp_exception exception 124

fp_exception_ieee_754 "invalid" exception 303

fp_exception_ieee_754 exception 97, 119, 124, 125, 126,

300, 304, 306, 307, 311

fp_exception_other exception 83, 97, 119, 122, 147, 176,

299, 300, 302, 304, 306, 307, 309, 311, 313, 350

FPACK instructions 151–??, 372–377

FPACK, performance usage 373

FPACK16 instruction 151, 372, 373

FPACK16 operation 374

FPACK32 instruction 372, 375

FPACK32 operation 375

FPACKFIX instruction 372, 376

FPACKFIX operation 377

FPADD16 instruction 361

FPADD16S instruction 361

FPADD32 instruction 361

FPADD32S instruction 361

FPMERGE instruction 372, 378

FPMERGE instruction, back-to-back execution 373

FPRS

.FEF 98

FPRS register

description 93

FEF field 97, 422

FPSUB16 instruction 361

FPSUB16S instruction 361

FPSUB32 instruction 361

FPSUB32S instruction 362

FqTOd instruction 304

FqTOi instruction 302

FqTOs instruction 304

FqTOx instruction 302

FsMULd instruction 310
Index 465

FSQRTd instruction 312

FSQRTq instruction 312

FSQRTs instruction 312

FSR

ftt field 119

nonstandard floating-point operation 119

NS field 119

= 1 119

=0 299

=1 299

FSRC1 instruction 332

FSRC1S instruction 332

FSRC2 instruction 332

FSRC2S instruction 332

FsTOd instruction 304

FsTOi instruction 302, 304

FsTOq instruction 304

FsTOx instruction 302, 304

FSUB instruction 299

fsub of numbers with the same signs 120

FSUBd instruction 298

FSUBq instruction 298

FSUBs instruction 298

FXNOR instruction 332

FXNORS instruction 332

FXOR instruction 332

FXORS instruction 332

FxTOd instruction 306, 307

FxTOq instruction 306

FxTOs instruction 306, 307

FZERO instruction 332

FZEROS instruction 332

G
generating constants 397

global registers

interrupt 109

trap 109

global registers 74, 76, 76

global visibility 186

graphics data format

fixed 16-bit 71

Graphics Status Register

format 98

grouping rules 41–45

BMASK and BSHUFFLE 283

SIAM instruction 396

GSR

fields

ALIGN 99

IM (interval mode) field 98

IRND (rounding) 99

MASK 98

SCALE 99

format 98

mask, setting before BSHUFFLE 283

write instruction latency 45

H
halfword

addressing 179

alignment 137

data format 59

hardware

interlocking mechanism 340

helper

cycle 43

execution order 43

generation 43

in pipelines 43

I
i field of instructions 175, 268, 313, 315, 317, 319, 321,

323, 325, 329, 330, 336, 353, 356, 358, 379, 389,

391, 429, 432, 433, 435, 437, 439, 440

I pipeline stage 37

I/D Translation Storage Buffer Register

differences from UltraSPARC-I 210

I/O

access 194, 196

memory 184

memory-mapped 185

noncacheable address 191

IC_miss 237

IC_miss_cancelled 237

icc field of CCR register 90, 92, 268, 290, 336, 355, 412,

413, 416, 427, 430, 431, 437, 439

icc-conditional branches 427

IEEE Std 754-1985 xxxiii, 119, 122, 126, 127, 147

IEEE_754_exception floating-point trap type xxxiii, 121,

122, 124, 127

IER register (SPARC V8) 422
466 UltraSPARC IIIi Processor User’s Manual • June 2003

IIU

branch prediction statistics 234

stall counts 234

illegal address aliasing 206

illegal_instruction exception 76, 105, 176, 261, 285, 290,

295, 317, 320, 355, 357, 379, 386, 387, 389, 395,

405, 407, 417, 419, 434, 435, 436, 443, 444, 445, 446

illegal_instruction exception 381

ILLTRAP instruction 316

images

band interleaved 70

band sequential 70

imm_asi field of instructions 138, 175, 291, 319, 321,

323, 325, 329, 330, 432, 433, 435

imm22 field of instructions 175

I-MMU

disabled 195

Enable bit 129

and instruction prefetching 195

implementation

dependency xxvi

implementation note xxx

implementation number (impl) field of VER register 116
implicit

ASI 138

byte order 110

in registers 74, 78, 392

inexact accrued (nxa) bit of aexc field of FSR register 127

inexact current (nxc) bit of cexc field of FSR register 127

inexact mask (NXM) bit of TEM field of FSR register 124

inexact quotient 429, 430

initiated xxxiv

instruction

bypass 44

conditional branch 39

dependency check 42

dispatching properties 49

execution order 42

explicit synchronization 278

grouping rules 41–45

latency 42, 49

multicycle, blocking 42

number completed 233

prefetch 25, 195, 249

window-saving 46

with helpers 47

writing integer register 43

Instruction Cache 201

physically indexed

physically tagged 201

instruction cache

effect of mode change 202

reference counts 237

instruction fields

a 174, 284, 288, 291, 424, 427

cc0 174, 287, 288, 301, 353

cc1 174, 287, 288, 301, 353

cc2 174, 353

cond 174, 287, 288, 345, 353, 424, 427

const22 316

d16hi 174, 284

d16lo 174, 284

definition xxxiv

disp19 174, 287, 288

disp22 175, 424, 427

disp30 175, 290

fcn 294

i 175, 268, 313, 315, 317, 319, 321, 323, 325, 329,

330, 336, 353, 356, 358, 379, 389, 391, 429, 432,

433, 435, 437, 439, 440

imm_asi 138, 175, 291, 319, 321, 323, 325, 432, 433,

435

imm22 175

mmask 175, 441

op3 175, 268, 291, 294, 313, 315, 317, 319, 321, 323,

325, 329, 330, 336, 358, 385, 389, 391, 429, 432,

433, 435, 437, 439, 440

opf 175, 299, 301, 303, 305, 306, 308, 310, 312

opf_cc 175, 345

opf_low 175, 345, 349

p 175, 284, 287, 288

rcond 175, 284, 349, 356

rd 175, 268, 291, 299, 303, 305, 306, 308, 310, 312,

317, 319, 321, 323, 325, 329, 330, 336, 345, 349,

353, 356, 358, 379, 385, 389, 429, 432, 433, 435,

437, 439, 440

reserved 261

rs1 175, 268, 284, 291, 299, 301, 310, 313, 317, 319,

321, 323, 325, 329, 330, 336, 349, 356, 358, 385,

389, 391, 429, 432, 433, 435, 437, 439, 440

rs2 175, 268, 291, 299, 301, 303, 305, 306, 308, 310,

312, 313, 317, 319, 321, 323, 325, 329, 330, 336,

345, 349, 353, 356, 358, 379, 391, 429, 432, 433,

435, 437, 439

shcnt32 175

shcnt64 175

simm10 175, 356

simm11 175, 353
Index 467

simm13 175, 268, 313, 317, 319, 321, 323, 324, 329,

330, 336, 358, 379, 390, 429, 432, 433, 435, 437,

439

sw_trap# 176

x 176

instruction set architecture (ISA) xxxiv

instruction_access_error exception 25, 249

instruction_access_exception exception 110

instructions

alignment 137, 137, 270

array addressing 150, 271

atomic 292

atomic load-store 291, 292, 329, 330, 446, 448

block load and store 275

branch if contents of integer register match condition

283

branch on floating-point condition codes 423

branch on floating-point condition codes with

prediction 285

branch on integer condition codes 425

branch on integer condition codes with prediction 288

causing illegal instruction 316

compare and swap 291

comparison 144, 412

control-transfer (CTIs) 154, 294

convert between floating-point formats 304

convert floating-point to integer 302

convert integer to floating-point 306

count of number of bits 379

divide 357, 428

DONE 109, 294

edge handling 151, 296

floating-point add and subtract 298

floating-point compare 118, 119, 300, 300

floating-point move 308

floating-point multiply and divide 310

floating-point operate (FPop) 120, 124, 146, 432

floating-point square root 312

flush instruction memory 313

flush register windows 315

formats 171

generate software-initiated reset 403

jump and link 155, 317

load floating-point 431

load floating-point from alternate space 320

load integer 322, 433

load integer from alternate space 324, 434

load quadword 327

load-store unsigned byte 292, 329, 447, 448

load-store unsigned byte to alternate space 330

logical 335

logical operate 334

move floating-point register if condition is true 343

move floating-point register if contents of integer

register satisfy condition 349

move integer register if contents of integer register

satisfies condition 356

multiply 357, 436, 436

ordering MEMBAR 153

partial store 360

partitioned add/subtract 151, 362

partitioned multiply 364

permuting bytes specified by GSR.MASK 282

pixel compare 152, 370

pixel component distance 371

pixel formatting (PACK) 151, 372

prefetch data 379

read privileged register 385

read state register 388, 440

register window management 153

reserved 176

reserved fields 261

RETRY 109, 294

RETURN vs. RESTORE 391

sequencing MEMBAR 153

set high bits of low word 397

set interval arithmetic mode 396

setting GSR.MASK field 150, 282

shift 143, 398

shift count 399

short floating-point load/store 401

shut down to enter power-down mode 402

software-initiated reset 403

store 408

store floating point 404

store floating-point into alternate space 406, 406

store integer 408

store integer into alternate space 410

subtract 411, 411

swap r register with alternate space memory 448

swap r register with memory 446

tagged addition 413

tagged arithmetic 143

tagged subtraction 414

timing 261

trap on condition codes 416

trap on integer condition codes 415

unimplemented 176
468 UltraSPARC IIIi Processor User’s Manual • June 2003

write privileged register 417

writing privileged register 419

integer register file access 38

integer unit (IU)

condition codes 92

interrupt

enable (IE) field of PSTATE register 112

on floating-point instructions 96

global registers 109

level 113

request xxxiv

trap 217

vector dispatch 216

vector dispatch register 219

vector dispatch status register 220

vector receive 217

vector receive register 221

Interrupt Vector Dispatch Status Register 220

interrupt_vector exception 97

interrupt_vector trap 109

invalid accrued (nva) bit of aexc field of FSR register 126

invalid current (nvc) bit of cexc field of FSR register 126

invalid mask (NVM) bit of TEM field of FSR register 124

invalid_exception exception 303

invalid_fp_register floating-point trap type 83, 121, 309,

313

invalidation

prefetch cache 381

issued xxxiv

ITID field of Interrupt Vector Dispatch register 217

J
JMPL instruction 25, 39, 249

computing target address 155

description 317

destination register 93

does not change CWP 80

reexecuting trapped instruction 391

jump and link (JMPL) instruction 155, 317

K
kernel code 222

L
L2 203

L2-Cache 203, 207

L2-cache 184, 205, 207, 277

latency

BMASK and BSHUFFLE 283

floating-point operations 44

FPADD instruction 362

partitioned multiply 364

LD instruction (SPARC V8) 323

LDD instruction 197, 322, 433

LDDA instruction 76, 324, 326, 434

LDDF instruction 137, 318, 431

LDDF_mem_address_not_aligned exception 137, 322

LDDFA instruction 137, 274, 320, 361, 400

LDF instruction 318, 431

LDFA instruction 320

LDFSR instruction 47, 118, 120, 121, 197, 431

LDQF instruction 176, 318, 431

LDQFA instruction 320

LDSB instruction 197, 322, 433

LDSBA instruction 324, 434

LDSH instruction 197, 322, 433

LDSHA instruction 324, 434

LDSTUB instruction 139, 191, 329, 331

LDSTUBA instruction 329, 330

LDSW instruction 197, 322, 433

LDSWA instruction 324, 434

LDUB instruction 322, 433

LDUBA instruction 324, 434

LDUH instruction 322, 433

LDUHA instruction 324, 434

LDUW instruction 322, 433

LDUWA instruction 324, 434

LDX instruction 322, 433

LDXA instruction 324, 434

LDXFSR instruction 117, 118, 120, 121, 197, 318, 431

level-1 cache 199

flushing 205

little-endian

ordering in partial store instructions 361

little-endian byte order xxxv, 110, 136

load floating-point from alternate space instructions 320

load floating-point instructions 431

load instructions xxxv

load instructions, getting data from store queue 197

load integer from alternate space instructions 324, 434

load integer instructions 322, 433

load quadword atomic 326
Index 469

load recirculation 198

LoadLoad MEMBAR relationship 338

loads

from alternate space 92, 138

load-store alignment 137, 137

load-store instructions 139

compare and swap 291

definition xxxv

load-store unsigned byte 292, 329, 447, 448

load-store unsigned byte to alternate space 330

swap r register with alternate space memory 448

swap r register with memory 292, 446

LoadStore MEMBAR relationship 338

local registers 74, 78, 392

logical instructions 335

Lookaside MEMBAR relationship 339

Low Power 402

lower registers dirty (DL) field of FPRS register 94

M
M pipeline stage 39

machine state

after reset 253

in RED_state 253

mask number (mask) field of VER register 117

maximum trap levels (MAXTL) field of VER register

117

MAXTL 112, 403

may (keyword) xxxv

mem_address_not_aligned exception 137, 293, 318, 319,

320, 322, 323, 324, 325, 326, 391, 392, 402, 405,

407, 409, 410, 434, 436, 443, 445, 446, 447, 449

MEMBAR

#LoadLoad 186, 338

#LoadStore 186, 338

#LoadStore and block store 278

#Lookaside 184

#MemIssue 184, 340

#StoreLoad 338

and BLD 278

and BST 278

for strong ordering 340

#StoreStore 314, 338

and BST 278

code example 186

#Sync 206

after BST 278

after internal ASI store 195

BLD and BST 277

semantics 188

for strong ordering 340

instruction 153, 175, 218, 313, 337, 389, 441

explicit synchronization 186

grouping rules 47

memory ordering 187

side-effect accesses 194

single group 47

QUAD_LDD requirement 342

rules for interlock implementation 339

UltraSPARC-III specifics 339

MemIssue MEMBAR relationship 339

memory

access instructions 139

cached 184

current model, indication 184

global visibility of memory accesses 186

location 184

models

and block operations 278

ordering and block store 278

partial store order (PSO) 183, 278

relaxed memory order (RMO) 278

strongly ordered 196, 340

total store order (TSO) 183

total store order (TSO)TSO 278

ordering 186

synchronization 187

memory_model (MM) field of PSTATE register 111

memory-mapped I/O 185

merge buffer 196

mispredict signal 39

mmask field of instructions 175, 441

MMU

global registers 109

mode

privileged 104

user 92

MOVA instruction 351

MOVCC instruction 351

MOVcc instructions 92, 118, 140, 174, 175, 348, 355

grouping rules 48

MOVCS instruction 351

move floating-point register if condition is true 343

move floating-point register if contents of integer register

satisfy condition 349

MOVE instruction 351
470 UltraSPARC IIIi Processor User’s Manual • June 2003

move integer register if contents of integer register

satisfies condition instructions 356

MOVFA instruction 352

MOVFE instruction 352

MOVFG instruction 352

MOVFGE instruction 352

MOVFL instruction 352

MOVFLE instruction 352

MOVFLG instruction 352

MOVFN instruction 352

MOVFNE instruction 352

MOVFO instruction 352

MOVFU instruction 352

MOVFUE instruction 352

MOVFUG instruction 352

MOVFUGE instruction 352

MOVFUL instruction 352

MOVFULE instruction 352

MOVG instruction 351

MOVGE instruction 351

MOVGU instruction 351

MOVL instruction 351

MOVLE instruction 351

MOVLEU instruction 351

MOVN instruction 351

MOVNE instruction 351

MOVNEG instruction 351

MOVPOS instruction 351

MOVR instructions

grouping rules 48

MOVr instructions 175, 356

MOVRGEZ instruction 356

MOVRGZ instruction 356

MOVRLEZ instruction 356

MOVRLZ instruction 356

MOVRNZ instruction 356

MOVRZ instruction 356

MOVVC instruction 351

MOVVS instruction 351

MS pipeline

description 37

E-stage bypass 42

integer instruction execution 39

and W-stage 40

multiple unsigned condition codes, emulating 141

multiply instructions 357, 436, 436

multiprocessor synchronization instructions 292, 447,

448

multiprocessor system 313, 447, 448, 449

MULX instruction 357

must (keyword) xxxv

mutual exclusion, atomic instructions 191

N
NaN (not-a-number)

converting floating-point to integer 303

quiet 301

signalling 119, 301, 305

negative (N) bit of condition fields of CCR 91

next program counter (nPC) 93, 105, 177, 294, 359

noncacheable

accesses 185

I/O address 191

instruction prefetch 25, 195, 249

store compression 196

store merging enable 129

nonfaulting

ASIs and atomic accesses 192

load

and TLB miss 192

behavior 192

use by optimizer 192

nonfaulting load xxxvi

nonleaf routine 318

nonprivileged

mode xxxi, 121

software 93

nonprivileged trap (NPT) field of TICK register 389

nonstandard floating-point operation 119

NOP instruction 287, 358, 416, 424, 427

note

implementation xxx

programming xxx

nPC register, See next program counter (nPC)

NS field of FSR 119

Nucleus code 222

NWINDOWS 78, 78, 393

O
op3 field of instructions 175, 268, 291, 294, 313, 315,

317, 319, 321, 323, 325, 329, 330, 336, 358, 385,

389, 391, 429, 432, 433, 435, 437, 439, 440

opcode

definition xxxvi
Index 471

opf field of instructions 175, 299, 301, 303, 305, 306,

308, 310, 312

opf_cc field of instructions 175, 345

opf_low field of instructions 175, 345, 349

OR instruction 335

ORcc instruction 335

ordering

block load 278

block store 278

ordering MEMBAR instructions 153

ORN instruction 335

ORNcc instruction 335

other windows (OTHERWIN) register 114, 315, 385,

393, 418

out register #7 76

out registers 78, 392

overflow (V) bit of condition fields of CCR 91, 143

overflow accrued (ofa) bit of aexc field of FSR register

126

overflow current (ofc) bit of cexc field of FSR register 126

overflow mask (OFM) bit of TEM field of FSR register

124

P
p field of instructions 175, 284, 287, 288

PA Data Watchpoint Register

DB_PA field 133

format 133

PA_watchpoint exception 132

packed-to-planar conversion 151, 378

partial store instruction 45

partial store instructions 359

partitioned multiply instructions 364

PC register, See program counter (PC)

PC, Instr_cnt 233

PC_1st_rd 239

PC_2nd_rd 239

PC_counter_inv 239

PC_hard_hit 239

PC_MS_misses 239

PC_soft_hit 239

PCR

access 228

fields

PRIV 229

ST(system trace enable) field 229

SU (select upper bits of PIC) field 229

UT (user trace enable) field 229

function

Cycle_cnt 233

DC_hit 238

Dispatch0_2nd_br 235

Dispatch0_br_target 235

Dispatch0_IC_miss 234

Dispatch0_mispred 235

EC_ref 239

EC_snoop_inv 240

EC_snoop_wb 240

EC_wb 240

EC_write_hit_clean 240

IC_ref 237

SI_snoops 243

PRIV field 228

ST field 228, 233

UT field 228, 233

PDIST instruction 371

PDIST, instruction latency 45

performance hints

FPACK usage 373

FPADD usage 362

logical operate instructions 334

partitioned multiply usage 364

physical address

data watchpoint 133

Physical Indexed Caches 201

Physical Tagged Caches 201

physical-indexed

physical-tagged (PIPT) cache 203

PIC register

and PCR 228

access 228

PIC0 Events 244

PIC1 Events 244

PICL field 230

SL selection bit field encoding 244

pipeline

A0 37, 38

A1 37

BR 37

conditional moves 48

dependencies 38

FFA 37, 244

FGA xxxiii, 283

FGM xxxiii, 37, 244

MS 37, 39, 40

stages
472 UltraSPARC IIIi Processor User’s Manual • June 2003

A 36, 39

B 37

C 39, 40

D 40, 234

E 38

F 36

I 37

M 39

mnemonics 32

R 38, 236

T 40

W 40

stalls, causes 234

pixel instructions

comparison 152, 370

component distance 371

formatting 151, 372

planar-to-packed conversion 378

POK pin 250

POPC instruction 176, 378

power-on reset (POR) 102, 103

system reset when Reset pin activated 26

Power-On-Reset (POR) 250

precise floating-point traps 387

predict bit 284

prefetch

instruction, noncacheable 25, 249

instructions 195

noncacheable data 381

Prefetch Cache

physically indexed

physically tagged 202

prefetch cache

invalidation 381

valid bits 25, 250

prefetch data instruction 379

PREFETCH instruction 160, 379

descriptions 193

types 381

PREFETCHA instruction 379

priority

VA vs. PA_watchpoint 132

privileged

mode 104

registers 104

software 78, 111, 120, 138, 315

privileged (PRIV) field of PSTATE register 112, 293,

321, 331, 389, 407, 410, 446, 449

privileged mode (PRIV) field of PSTATE register 112

privileged registers 46

privileged_action exception 92, 138, 219, 220, 221, 222,

293, 321, 322, 325, 326, 331, 389, 390, 407, 410,

435, 436, 446, 449

privileged_action exception 184, 191, 228, 230

PIC access 229

privileged_opcode exception 222, 295, 387, 395, 419

privileged_opcode exception 228

processor interrupt level (PIL) register 113, 223, 385, 418

processor pipeline

address stage 36

branch target computation stage 37

cache stage 39

done stage 40

execute stage 38

fetch stage 36

instruction issue 37

register stage 38

trap stage 40

processor state (PSTATE) register 77, 105, 107, 110, 294,

385, 418

program counter (PC) 93, 104, 177, 291, 294, 317, 359

programming note xxx

PSO memory model 183, 186, 187, 194

PSR register (SPARC V8) 422

PSTATE

.PEF 98

AM field 112

global register selection encodings 108

IE field 97, 223

IG field 108, 109, 218

MG field 108, 109

MM field 184

PEF field 422

PRIV field xxxvi, xxxvii, 184, 191

RED field 96

exiting RED_state 25, 195, 249

register 109

WRPR instruction and BST 278

Q
Quad FPop instructions 176

quad load instruction 197, 342

quadword

addressing 180

alignment 137

data format 59
Index 473

definition xxxvii

quiet NaN (not-a-number) 119, 301

R
R pipeline stage 38

r register

#15 76

categories 75

special-purpose 76

alignment 434, 435

rational quotient 430

R-A-W

Bypass Enable bit in DCUCR 129

bypassing algorithm 197

bypassing data from store queue 129

detection algorithm 198

rcond field of instructions 175, 284, 349, 356

rd field of instructions 175, 268, 291, 299, 303, 305, 306,

308, 310, 312, 317, 319, 321, 323, 325, 329, 330,

336, 345, 349, 353, 356, 358, 379, 385, 389, 429,

432, 433, 435, 437, 439, 440

RDASI instruction 388, 388, 440

RDASR

format 98
RDASR instruction 94, 228, 388, 388, 440, 441

dispatching 46

forcing bubbles before 46

RDCCR instruction 50, 388, 388, 440

RDDCR instruction 388

RDFPRS instruction 388, 388, 440

RDGSR instruction 388

RDPC instruction 93, 388, 388, 440

RDPIC instruction 229, 388

RDPR FQ instruction 176

RDPR instruction 104, 108, 113, 116, 385, 390

dispatching 46

forcing bubbles before 46

RDSOFTINT instruction 388

RDSTICK instruction 388

RDSTICK_CMPR instruction 388

RDTICK instruction 388, 388, 390, 440

RDTICK_CMPR instruction 388

RDY instruction 90

Re_DC_miss counter 236

Re_EC_miss counter 237

Re_FPU_bypass counter 236

Re_PC_miss counter 237

Re_RAW_miss counter 236

read privileged register (RDPR) instruction 385

read state register instructions 388, 440

real memory 184

recirculation instrumentation 236

RED_state 249
exiting 195

trap vector 27, 252

RED_state (RED) field of PSTATE register 110

register

access

floating-point 39

integer 38

Floating-Point Status (FSR) 119

global trap 109

PSTATE 109

register window management instructions 153

register windows 78

clean 115

fill 78, 154, 393, 395

spill 78, 154, 393, 395

registers

address space identifier (ASI) 294, 321, 325, 331,

380, 407, 410, 422, 435, 446, 448

alternate global 76

ancillary state registers (ASRs) 90, 94

ASI 92, 105

CANRESTORE 114

CANSAVE 114

clean windows (CLEANWIN) 114, 114, 385, 418

CLEAR_SOFTINT 223

condition codes register (CCR) 105, 268, 294, 422,

439

control and status 90

current window pointer (CWP) 78, 105, 114, 114,

115, 294, 315, 385, 393, 418

Data Cache Unit Control (DCUCR) 128

dispatch control register (DCR) 95

floating-point 83

floating-point registers state (FPRS) 93, 389, 422

floating-point state (FSR) 117, 124, 125, 127, 432,

442

global 74, 76, 76

IER (SPARC V8) 422

in 74, 78, 392

Interrupt Vector Dispatch register 219

Interrupt Vector Dispatch Status register 220

Interrupt Vector Receive register 221

local 74, 78, 392
474 UltraSPARC IIIi Processor User’s Manual • June 2003

other windows (OTHERWIN) 114, 315, 385, 393,

418

out 78, 392

out #7 76

PC 93

performance control (PCR) 228

privileged 104

processor interrupt level (PIL) 113, 385, 418

processor state (PSTATE) 77, 105, 107, 110, 294,

385, 418

PSR (SPARC V8) 422

r 75

r register #15 76

restorable windows (CANRESTORE) 78, 114, 115,

385, 393, 395, 418

savable windows (CANSAVE) 78, 114, 114, 315,

385, 393, 395, 418

SET_SOFTINT 223

SOFTINT 222

TBR (SPARC V8) 422

TICK 102, 103, 385, 418

TICK_COMPARE 103

trap base address (TBA) 107, 385, 418

trap level (TL) 104, 107, 112, 112, 115, 117, 294,

385, 386, 395, 403, 418, 419

trap next program counter (TNPC) 105, 385, 418

trap program counter (TPC) 385, 387, 418

trap state (TSTATE) 105, 109, 294, 385, 418

trap type (TT) 105, 107, 115, 385, 416, 418

version register (VER) 116, 385

WIM (SPARC V8) 422

window state (WSTATE) 113, 115, 315, 385, 393,

418

Y 90, 90, 429, 437, 439, 453

reserved

fields in instructions 261

instructions 176

reset

power-on 102, 103

reset trap 102, 103

system 26

restorable windows (CANRESTORE) register 78, 114,

115, 385, 393, 395, 418

RESTORE instruction 392–394

actions 154

and current window 79

decrementing CWP register 78

followed by SAVE instruction 80

managing register windows 153

operation 392

performance trade-off 393

and restorable windows (CANRESTORE) register

114

restoring register window 393

SPARC V9 vs. SPARC V8 115

RESTORED instruction 154, 394, 394, 394

use by privileged software 153

RESTORED instruction, single group 46

restricted address space identifier 138

restricted ASI 184

RETRY instruction 92, 97, 109, 155, 294

after internal store to ASI 196

and BST 278

exiting RED_state 25, 249

grouping rules 47

restoring AG, IG, MG bits 109

use with IFPOE 97

when TSTATE uninitialized 25, 250

RETURN instruction 39, 390–392

computing target address 155

destination register 93

operation 390

reexecuting trapped instruction 391

RMO memory model 183, 186, 187, 194, 278

rounding

behavior in GSR 98

for floating-point results 119

in signed division 430

rounding direction (RD) field of FSR register 119, 299,

303, 305, 307, 311, 312

routine, nonleaf 318

rs1 field of instructions 175, 268, 284, 291, 299, 301,

310, 313, 317, 319, 321, 323, 325, 329, 330, 336,

349, 356, 358, 385, 389, 391, 429, 432, 433, 435,

437, 439, 440

rs2 field of instructions 175, 268, 291, 299, 301, 303,

305, 306, 308, 310, 312, 313, 317, 319, 321, 323,

325, 336, 345, 349, 353, 356, 358, 379, 429, 432,

433, 435, 437, 439

R-stage stall counts 236

Rstall_FP_use counter 236

Rstall_IU_use counter 236

Rstall_storeQ counter 236

RSTVaddr 27, 252
Index 475

S
savable windows (CANSAVE) register 78, 114, 114, 315,

385, 393, 395, 418

SAVE instruction 392–394

actions 154

after RESTORE instruction 391

and current window 79

decrementing CWP register 78

leaf procedure 318

and local/out registers of register window 80

managing register windows 153

no clean window available 115

number of usable windows 114

operation 392

performance trade-off 393

and savable windows (CANSAVE) register 114

SPARC V9 vs. SPARC V8 115

SAVED instruction 153, 154, 394, 394, 394

SAVED instruction, single group 46

Scalable Processor Architecture see SPARC

scaling of the coefficient 364

SDIV instruction 90, 428

SDIVcc instruction 90, 428

SDIVX instruction 357

self-modifying code 314

sequence_error floating-point trap type 121

sequencing MEMBAR instructions 153

SET_SOFTINT pseudo-register 223

SETCC instruction, grouping 43

SETHI instruction 143, 144, 175, 359, 397, 397

SFSR

FT field

FT = 10 192

FT = 2 185, 192, 194

FT = 4 191

FT = 8 191, 192

shall (keyword) xxxviii

shcnt32 field of instructions 175

shcnt64 field of instructions 175

shift count encodings 399

shift instructions 143, 144, 398

short floating-point load and store instructions 400

short floating-point load instruction 197

should (keyword) xxxix

SHUTDOWN instruction 402

SIAM instruction 395

grouping rules 45

rounding 396

setting GSR fields 396

side effect

accesses 185, 194

and block load 278

instruction placement 195

instruction prefetching 195

visible 185

signalling NaN (not-a-number) 119, 301, 305

signed integer data type 59

sign-extended 64-bit constant 175

simm10 field of instructions 175, 356

simm11 field of instructions 175, 353

simm13 field of instructions 175, 268, 313, 317, 319,

321, 323, 325, 329, 330, 336, 358, 379, 391, 429,

432, 433, 435, 437, 439

single-instruction group 42, 43, 46, 47, 50

SIR instruction 26, 251, 403, 421

grouping rule 47

SLL instruction 398, 398

SLLX instruction 398, 398

SMUL instruction 90, 436

SMULcc instruction 90, 436

snooping

snoop counts 243

SOFTINT register 222

software interrupt (SOFTINT) register

clearing 223

in code sequence for Interrupt Receive 218

scheduling interrupt vectors 222

setting 223

software statistics, counters 243

software trap 416

software_initiated_reset (SIR) 26, 403

Software-Initiated Reset (SIR) 47, 251

SPARC xxv

Architecture Manual, Version 9 xxv

brief history xxv

International, address of xxvi

V9, architecture xxv

SPARC V8 compatibility

ADDC/ADDCcc renamed 269

current window pointer (CWP) register differences

115

delay instruction 155

delay instruction fetch 158

executing delayed conditional branch 158

existing nonprivileged SPARC V8 software 77

instruction between FBfcc /FBPfcc 287

LD, LDUW instructions 323

level 15 interrupt 113
476 UltraSPARC IIIi Processor User’s Manual • June 2003

read state register instructions 390

STA instruction renamed 410

STBAR instruction 339, 441

STD instruction 444

STDA instruction 446

STFSR instruction 443

tagged add instructions 450

tagged subtract instructions 452

Ticc instruction 417

UNIMP instruction renamed 316

write state register instructions 422

SPARC V9

compliance xxxvi

speculative load 185

spill register window 78, 154, 393, 395

spill windows 393

spill_n_normal exception 316, 394

spill_n_other exception 316, 394

SRA instruction 398, 398

SRAX instruction 398, 398

SRL instruction 398, 398

SRLX instruction 398, 398

stable storage 206

stack frame 393

stalls

counted 234

pipeline 234

R Stage counts 236

STB instruction 408

STBA instruction 409

STBAR instruction 187, 339, 389

STDA instruction 76

STDF instruction 137, 404

STDF_mem_address_not_aligned exception 137, 405,

407

STDFA instruction 137, 274, 359, 400, 406, 406

STF instruction 404

STFA instruction 406

STFSR instruction 117, 118, 120

STH instruction 408

STHA instruction 409

STICK register 388

STICK_COMPARE register 103, 388

STICK_INT 223

store

buffer

merging 194

compression 185, 196

instructions, giving data to a load 197

noncacheable, coalescing 196

queue

R-stage stall count 236

store floating-point into alternate space instructions 406

store instructions xxxix

StoreLoad MEMBAR relationship 338

stores to alternate space 92, 138

StoreStore MEMBAR relationship 338

STQF instruction 176, 404

STQFA instruction 406, 406

strongly ordered memory model 196, 340

STW instruction 408

STWA instruction 409

STX instruction 408

STXA instruction 409

STXFSR instruction 117, 118, 120, 404

SUB instruction 411, 411

SUBC instruction 411, 411

SUBcc instruction 144, 411, 411

SUBCcc instruction 411, 411

subtract instructions 411

supervisor software 77, 121, 138

SW_count_0 243

SW_count_1 243

sw_trap# field of instructions 176

SWAP instruction 191, 329, 331, 446

swap r register with alternate space memory instructions

448

swap r register with memory instructions 292, 446

SWAPA instruction 329, 331, 448

Sync MEMBAR relationship 338

Synchronous Fault

Status Registers(SFSR)

Extensions

Differences From UltraS-

PARC-I 210

system interface

statistics, counters 243

system interface unit (SIU) instructions 39

system software 314

system timer interrupt, STICK_INT 223

T
T pipeline stage 40

TA instruction 415

TADDcc instruction 143, 412
Index 477

TADDccTV instruction 143

tag overflow 143

tag_overflow exception 143, 413, 414, 450, 452

tagged arithmetic instructions 143

tagged word data format 59

tagged words 59

TBR register (SPARC V8) 422

TCC instruction 415

Tcc instructions 92, 174, 176, 415

TCS instruction 415

TE instruction 415

TG instruction 415

TGE instruction 415

TGU instruction 415

Ticc instruction (SPARC V8) 417

TICK

_CMPR.INT_DIS field 222

TICK_COMPARE register 103

TICK_INT 223

timer interrupt, TICK_INT 223

timing of instructions 261

TL instruction 415

TL register 419

TLB

and 3-dimensional arrays 273

data access 39

Data Access Register 210

Diagnostic Register 211

flushing 209

hit xxxix

miss and nonfaulting load 192

miss counts 237

TLE instruction 415

TLEU instruction 415

TN instruction 415

TNE instruction 415

TNEG instruction 415

total store order (TSO) memory model 111

TPOS instruction 415

trap

atomic accesses 191

atomic instructions 191

fp_disabled

GSR access 422

fp_disabled 96

fp_exception_ieee_754 97

fp_exception_other 97, 119

level 112

noncacheable accesses 185

stack 108

VA_/PA_watchpoint 132

trap base address (TBA) register 107, 385, 418

trap enable mask (TEM) field of FSR register 123, 124

trap globals 109

trap handler 295

user 121

trap level (TL) register 104, 107, 112, 112, 115, 117,

294, 385, 386, 395, 403, 418, 419

trap next program counter (TNPC) register 105, 385, 418

trap on integer condition codes instructions 415

trap program counter (TPC) register 385, 387, 418

trap state (TSTATE) register 105, 109, 294, 385, 418

trap type (TT) register 105, 107, 115, 385, 416, 418

trap_instruction (ISA) exception 416, 417

trap_little_endian (TLE) field of PSTATE register 110,

110

traps

software 416

TSO memory model 183, 184, 185, 186, 187, 194

TSTATE register

initializing 25, 250

PEF field 97

TSUBcc instruction 143, 413

TSUBccTV instruction 143

TTE

CP (cacheability) field 185, 191

CV (cacheability) field 185, 191

E field 184, 185, 186, 192, 194

format 210

NFO field 192

TVC instruction 415

TVS instruction 415

U
UART 185

UDIV instruction 90, 428

UDIVcc instruction 90, 428

UDIVX instruction 357

UltraSPARC-I 339

UltraSPARC-II 339

UMUL instruction 90, 436

UMULcc instruction 90, 436

unconditional branches 287, 289, 424, 427

underflow accrued (ufa) bit of aexc field of FSR register

127

underflow current (ufc) bit of cexc field of FSR register
478 UltraSPARC IIIi Processor User’s Manual • June 2003

127

underflow mask (UFM) bit of TEM field of FSR register

124, 127

unfinished_FPop exception 119

unfinished_FPop exception 304, 305, 307

unfinished_FPop floating-point trap type 121, 122, 127,

311

UNIMP instruction (SPARC V8) 316

unimplemented instructions 176

unimplemented_FPop floating-point trap type 121, 123,

127, 300, 302, 304, 306, 307, 311, 348, 350

unsigned integer data type 59

upper registers dirty (DU) field of FPRS register 94

user

mode 92

trap handler 121

V
VA Data Watchpoint Register

DB_VA field 132

VA_watchpoint exception 132

version register (VER) 116, 385

virtual address 184

data watchpoint 132

virtual address 0 192

Virtual Indexed, Physical Tagged Caches 199

virtual-indexed

physical-tagged (VIPT) cache 199

virtual-to-physical address translation 184

VIS instruction execution 39

Visual Instruction Set (VIS) 97

W
W pipeline stage 40

watchdog_reset (WDR) 26, 251

watchpoints

data registers 132

WC_miss 238

WC_scrubbed 238

WC_snoop_cb 238

WC_wb_wo_read 238

WIM register (SPARC V8) 422

window changing 46

window fill trap handler 153

window overflow 78

window spill trap handler 153

window state (WSTATE) register

description 115

overview 113

reading WSTATE with RDPR instruction 385

spill exception 315

spill trap 393

writing WSTATE with WRPR instruction 418

window underflow 78

window, clean 392

window_fill exception 115, 391

window_spill exception 115

word

addressing 180

alignment 137

data format 59

Working Register File (WRF) 46

WRASI instruction 420

WRASR

format 98
WRASR instruction 94, 228, 420

forcing bubbles after 46

grouping rule 46

WRDCR instruction 420

WRGSR instruction 420

WRPCR instruction 420

WRPIC instruction 420

WRSOFTINT instruction 420

WRSOFTINT_CLR instruction 420

WRSOFTINT_SET instruction 420

WRSTICK instruction 420

WRSTICK_CMPR instruction 420

WRTICK_CMP instruction 420

WRCCR instruction 92, 420

WRF (Working Register File) 46

WRFPRS instruction 420

WRGSR instruction 45

WRIER instruction (SPARC V8) 422

Write Cache 203

write cache

miss counts 238

write privileged register instruction 417

WRPIC instruction 229

WRPR instruction 102, 108, 113, 417, 417

forcing bubbles after 46

grouping rule 46

to PSTATE and BST 278

WRPSR instruction (SPARC V8) 422

WRTBR instruction (SPARC V8) 422
Index 479

WRWIM instruction (SPARC V8) 422

WRY instruction 90, 420

X
x field of instructions 176

xcc field of CCR register 92, 268, 290, 336, 355, 412,

413, 430, 431, 437, 439

XNOR instruction 335

XNORcc instruction 335

XOR instruction 335

XORcc instruction 335

Y
Y register 90, 90, 429, 437, 439, 453

Z
zero (Z) bit of condition fields of CCR 91

zero virtual address 192
480 UltraSPARC IIIi Processor User’s Manual • June 2003

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Target Audience
	A Brief History of SPARC
	Prerequisites
	User’s Manual Overview
	SPARC�V9 Architecture

	Textual Usage
	Fonts
	Notational Conventions
	Notation for Numbers
	Informational Notes

	Acronyms and Definitions
	Introducing the UltraSPARC�IIIi Processor
	1.1 Overview
	1.2 Features
	1.3 Summary

	UltraSPARC�IIIi Processor in a System
	2.1 System Configurations
	2.1.1 Four-Processor System
	2.1.2 Two-Processor System
	2.1.3 One-Processor System

	2.2 JBUS Interface
	2.3 Memory System
	2.4 Power Management

	UltraSPARC IIIi Processor Architecture Basics
	3.1 Component Overview
	3.1.1 Instruction Fetch and Buffering
	3.1.2 Execution Pipelines
	3.1.3 Load/Store Unit
	3.1.3.1 Data Prefetching Support

	3.1.4 Memory Management Units
	3.1.5 Embedded Cache Unit (Level-2 Unified Cache)
	3.1.6 JBUS Interface Unit
	3.1.7 Memory Controller Unit

	3.2 Processor Operating Modes
	3.2.1 Privileged Mode
	3.2.2 Non-Privileged Mode
	3.2.3 Reset and RED_State
	3.2.3.1 RED_state Characteristics
	3.2.3.2 Resets

	3.2.4 Error Handling
	3.2.4.1 Error Classes in Severity
	3.2.4.2 Corrective Actions
	3.2.4.3 Errors Synchronous and Asynchronous to Instruction Execution

	3.2.5 Debug and Diagnostics Mode

	Instruction Execution
	4.1 Introduction
	4.1.1 NOP, Neutralized, and Helper Instructions
	4.1.1.1 NOP Instruction
	4.1.1.2 Neutralized Instruction
	4.1.1.3 Helper Instructions

	4.2 Processor Pipeline
	4.2.1 Instruction Dependencies
	4.2.1.1 Grouping Dependencies
	4.2.1.2 Dispatch Dependencies
	4.2.1.3 Execution Dependencies

	4.2.2 Instruction-Fetch Stages
	4.2.2.1 A-stage (Address Generation)
	4.2.2.2 P-stage (Preliminary Fetch)
	4.2.2.3 F-stage (Fetch)
	4.2.2.4 B-stage (Branch Target Computation)

	4.2.3 Instruction Issue and Queue Stages
	4.2.3.1 I-stage (Instruction Group Formation)
	4.2.3.2 J-stage (Instruction Group Staging)
	4.2.3.3 R-stage (Dispatch and Register Access)
	4.2.3.4 S-stage (Normally Bypassed)

	4.2.4 Execution Pipeline
	4.2.4.1 Integer Instruction Execution: E-stage (Execute)
	4.2.4.2 C-stage (Cache)
	4.2.4.3 M-stage (Miss)
	4.2.4.4 W-stage (Write)
	4.2.4.5 X-stage (Extend)

	4.2.5 Trap and Done Stages
	4.2.5.1 T-stage (Trap)
	4.2.5.2 D-stage (Done)

	4.3 Pipeline Recirculation
	4.4 Grouping Rules
	4.4.1 Execution Order
	4.4.2 Integer Register Dependencies to Instructions in the MS Pipeline
	4.4.2.1 Helpers

	4.4.3 Integer Instructions Within a Group
	4.4.4 Same-Group Bypass
	4.4.5 Floating-Point Unit Operand Dependencies
	4.4.5.1 Latency and Destination Register Addresses
	4.4.5.2 Grouping Rules for Floating-Point Instructions
	4.4.5.3 Grouping Rules for VIS Instructions
	4.4.5.4 PDIST Special Cases

	4.4.6 Grouping Rules for Register-Window Management Instructions
	4.4.7 Grouping Rules for Reads and Writes of the ASRs
	4.4.8 Grouping Rules for Other Instructions

	4.5 Conditional Moves
	4.6 Instruction Latencies and Dispatching Properties
	4.6.1 Latency
	4.6.2 Blocking
	4.6.3 Pipeline
	4.6.4 Break and SIG

	Data Formats
	5.1 Integer Data Formats
	5.1.1 Integer Data Value Range
	5.1.2 Integer Data Alignment
	5.1.3 Signed Integer Data Types
	5.1.3.1 Signed Integer Byte
	5.1.3.2 Signed Integer Halfword
	5.1.3.3 Signed Integer Word
	5.1.3.4 Signed Integer Double
	5.1.3.5 Signed Extended Integer

	5.1.4 Unsigned Integer Data Types
	5.1.4.1 Unsigned Integer Byte
	5.1.4.2 Unsigned Integer Halfword
	5.1.4.3 Unsigned Integer Word
	5.1.4.4 Unsigned Integer Double
	5.1.4.5 Unsigned Extended Integer

	5.1.5 Tagged Word

	5.2 Floating-Point Data Formats
	5.2.1 Floating-Point Data Value Range
	5.2.2 Floating-Point Data Alignment
	5.2.3 Floating-Point, Single-Precision
	5.2.4 Floating-Point, Double-Precision
	5.2.5 Floating-Point, Quad-Precision

	5.3 VIS Execution Unit Data Formats
	5.3.1 Pixel Data Format
	5.3.2 Fixed-Point Data Formats
	5.3.2.1 Fixed16 Data Format
	5.3.2.2 Fixed32 Data Format

	Registers
	6.1 Introduction
	6.1.1 Document Notes

	6.2 Integer Unit General-Purpose r Registers
	6.2.1 Windowed (in/local/out) r Registers
	6.2.1.1 Predefined r Register Usages
	6.2.1.2 128-bit Operand Considerations

	6.2.2 Global r Register Sets
	6.2.2.1 Overlapping Windows

	6.3 Register Window Management
	6.3.1 CALL and JMPL Instructions
	6.3.2 Circular Windowing
	6.3.3 Clean Window with RESTORE and SAVE Instructions

	6.4 Floating-Point General-Purpose Registers
	6.4.1 Floating-Point Register Number Encoding
	6.4.2 Double and Quad Floating-Point Operands

	6.5 Control and Status Register Summary
	6.5.1 State and Ancillary State Register Summary
	6.5.2 Privileged Register Summary
	6.5.3 ASI and Specially Accessed Register Summary

	6.6 State Registers
	6.6.1 32-bit Multiply/Divide (YD) State Register 0
	6.6.2 Integer Unit Condition Codes State Register 2 (CCR)
	6.6.2.1 CCR Condition Code Fields (xcc and icc)

	6.6.3 Address Space Identifier (ASI) Register ASR 3
	6.6.4 TICK Register (TICK) ASR4
	6.6.5 Program Counters State Register 5
	6.6.6 Floating-Point Registers State (FPRS) Register 6
	6.6.6.1 FPRS_enable_fp (FEF)
	6.6.6.2 FPRS_dirty_upper (DU)
	6.6.6.3 FPRS_dirty_lower (DL)

	6.7 Ancillary State Registers: ASRs 16-25
	6.7.1 Dispatch Control Register (DCR) ASR 18
	6.7.2 Graphics Status Register (GSR) ASR 19
	6.7.3 Software Interrupt State Registers: ASRs�20,�21,�and�22
	6.7.4 Timer State Registers: ASRs 4, 23, 24, 25

	6.8 Privileged Registers
	6.8.1 Trap Stack Privileged Registers 0 through 3
	6.8.1.1 Common Attributes
	6.8.1.2 Trap Stack Operation
	6.8.1.3 Effects of Reset and Normal Operation

	6.8.2 Trap Base Address (TBA) Privileged Register 5
	6.8.3 Processor State (PSTATE) Privileged Register 6
	6.8.3.1 Global Register Set Selection - IG, MG, AG bits
	6.8.3.2 PSTATE_current_little_endian (CLE)
	6.8.3.3 PSTATE_trap_little_endian (TLE)
	6.8.3.4 PSTATE_mem_model (MM)
	6.8.3.5 PSTATE_RED_state (RED)
	6.8.3.6 PSTATE_enable_floating-point (PEF)
	6.8.3.7 PSTATE_address_mask (AM)
	6.8.3.8 PSTATE_privileged_mode (PRIV)
	6.8.3.9 PSTATE_interrupt_enable (IE)

	6.8.4 Trap Level (TL) Privileged Register 7
	6.8.5 Processor Interrupt Level (PIL) Privileged Register 8
	6.8.6 Register-Window State Privileged Registers 9 through�13
	6.8.7 Window State (WSTATE) Privileged Register 14
	6.8.8 Version (VER) Privileged Register 31

	6.9 Special Access Register
	6.9.1 Floating-Point Status Register (FSR)
	6.9.1.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)
	6.9.1.2 FSR_rounding_direction (RD)
	6.9.1.3 FSR_nonstandard_fp (NS)
	6.9.1.4 FSR_version (ver)
	6.9.1.5 FSR_floating-point_trap_type (ftt)
	6.9.1.6 Floating-Point Exceptions Control and Status
	6.9.1.7 Floating-Point Exception Fields

	6.10 ASI Mapped Registers
	6.10.1 Data Cache Unit Control Register (DCUCR)
	6.10.2 Data Watchpoint Registers

	Instruction Types
	7.1 Introduction
	7.2 Memory Addressing for Load and Store Instructions
	7.2.1 Integer Unit Memory Alignment Requirements
	7.2.2 FP/VIS Memory Alignment Requirements
	7.2.3 Byte Order Addressing Conventions (Endianess)
	7.2.4 Address Space Identifiers (ASIs)
	7.2.5 Maintaining Data Coherency

	7.3 Integer Execution Environment
	7.3.1 IU Data Access Instructions
	7.3.1.1 Load and Store Instructions
	7.3.1.2 Move Instruction
	7.3.1.3 Conditional Move Instructions
	7.3.1.4 Atomic Instructions

	7.3.2 IU Arithmetic Instructions
	7.3.2.1 Integer Add and Subtract Instructions
	7.3.2.2 Tagged Integer Add and Subtract Instructions
	7.3.2.3 Integer Multiply and Divide Instructions
	7.3.2.4 Set High 22 Bits of Low Word
	7.3.2.5 Integer Shift Instructions

	7.3.3 IU Logic Instructions
	7.3.3.1 ADD, ANDN, OR, ORN, XOR, XNOR Instructions

	7.3.4 IU Compare Instructions
	7.3.5 IU Miscellaneous Instructions
	7.3.5.1 Interval Arithmetic Mode Instruction (SIAM) (VIS II)
	7.3.5.2 Align Address Instruction
	7.3.5.3 Population of Ones Count
	7.3.5.4 Privileged Register Access Instructions
	7.3.5.5 State Register Access Instructions

	7.4 Floating-Point Execution Environment
	7.4.1 Floating-Point Operate Instructions
	7.4.2 FPU/VIS Data Access Instructions
	7.4.2.1 Load Instructions
	7.4.2.2 Store Instructions
	7.4.2.3 Block Load and Store Instructions
	7.4.2.4 Conditional Move Instructions

	7.4.3 Floating-Point Arithmetic Instructions
	7.4.3.1 Absolute Value and Negate Instructions
	7.4.3.2 Add and Subtract Instructions
	7.4.3.3 Multiply Instructions
	7.4.3.4 Square Root and Divide Instructions

	7.4.4 Floating-Point Conversion Instructions
	7.4.4.1 Floating-Point to Integer
	7.4.4.2 Integer to Floating-Point
	7.4.4.3 Floating-Point to Floating-Point

	7.4.5 Floating-Point Compare Instructions
	7.4.6 Floating-Point Miscellaneous Instructions
	7.4.6.1 Load and Store FSR Register
	7.4.6.2 Data Alignment Instruction

	7.5 VIS Execution Environment
	7.5.1 VIS Pixel Data Instructions
	7.5.1.1 Array Instruction
	7.5.1.2 Byte Mask and Shuffle Instructions
	7.5.1.3 Edge Handling Instructions
	7.5.1.4 Pixel Packing Instructions
	7.5.1.5 Expand and Merge Instructions
	7.5.1.6 Pixel Distance Instruction

	7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructions
	7.5.2.1 Partitioned Add and Subtract Instructions
	7.5.2.2 Partitioned Multiply Instructions
	7.5.2.3 Pixel Compare Instruction

	7.5.3 VIS Logic Instructions
	7.5.3.1 Fill with Ones and Zeroes Instruction
	7.5.3.2 Source Copy
	7.5.3.3 AND, OR, NAND, NOR, and XNOR Instructions

	7.6 Data Coherency Instructions
	7.6.1 FLUSH Instruction Cache Instruction
	7.6.2 MEMBAR (Memory Synchronization) Instruction
	7.6.3 Store Barrier Instruction

	7.7 Register Window Management Instructions
	7.8 Program Control Transfer Instructions
	7.8.1 Control Transfer Instructions (CTIs)
	7.8.1.1 Conditional Branches
	7.8.1.2 Unconditional Branches
	7.8.1.3 CALL/JMPL and RETURN Instructions
	7.8.1.4 DONE and RETRY Instructions
	7.8.1.5 Trap Instruction (Tcc)
	7.8.1.6 ILLTRAP
	7.8.1.7 NOP

	7.9 Prefetch Instructions
	7.10 Instruction Summary Table by Category
	7.10.1 Instruction Superscripts
	7.10.2 Instruction Mnemonics Expansion
	7.10.3 Instruction Grouping Rules
	7.10.4 Table Organization
	7.10.5 Integer Execution Environment Instructions
	7.10.6 Floating-Point Execution Environment Instructions
	7.10.7 VIS Execution Environment Instructions
	7.10.8 Data Coherency Instructions
	7.10.9 Register-window Management Instructions
	7.10.10 Program Control Transfer Instructions
	7.10.11 Data Prefetch Instructions

	7.11 Instruction Formats and Fields
	7.12 Reserved Opcodes and Instruction Fields
	7.12.1 Summary of Unimplemented Instructions

	7.13 Big/Little-Endian Addressing
	7.13.1 Big-Endian Addressing Convention
	7.13.2 Little-Endian Addressing Convention

	Memory Models
	8.1 TSO Behavior
	8.2 Memory Location Identification
	8.3 Memory Accesses and Cacheability
	8.3.1 Coherence Domains
	8.3.1.1 Cacheable Accesses
	8.3.1.2 Non-Cacheable and Side-Effect Accesses

	8.3.2 Global Visibility
	8.3.3 Memory Ordering

	8.4 Memory Synchronization
	8.4.1 MEMBAR #Sync
	8.4.2 MEMBAR Rules
	8.4.3 FLUSH

	8.5 Atomic Operations
	8.6 Non-Faulting Load
	8.7 Prefetch Instructions
	8.8 Block Loads and Stores
	8.9 I/O and Accesses with Side-Effects
	8.9.1 Instruction Prefetch to Side-Effect Locations
	8.9.2 Instruction Prefetch Exiting Red State

	8.10 Internal ASIs
	8.11 Store Compression
	8.12 Read After Write (RAW) Bypassing
	8.12.1 RAW Bypassing Algorithm
	8.12.2 RAW Detection Algorithm

	Caches and Coherency
	9.1 Cache Organization
	9.1.1 Virtually Indexed, Physically Tagged Caches (VIPT)
	9.1.1.1 Data Cache (D-Cache)

	9.1.2 Bypassing the D-Cache
	9.1.2.1 Special Case 1
	9.1.2.2 Special Case 2

	9.1.3 Physically-Indexed, Physically-Tagged Caches (PIPT)
	9.1.3.1 Instruction Cache (I-Cache)
	9.1.3.2 Prefetch Cache (P-Cache)

	9.1.4 Second Level and Write Caches (L2�Cache, W-Cache)
	9.1.5 L2�Cache Replacement Policy
	9.1.6 L2�Cache Locking

	9.2 Cache Flushing
	9.2.1 Address Aliasing Flushing
	9.2.2 Committing Block Store Flushing
	9.2.3 L2-Cache Flushing

	9.3 Controlling P-Cache
	9.4 Translation Lookaside Buffers (TLBs)
	9.4.1 TLB Flushing
	9.4.2 TTE Format
	9.4.3 Synchronous Fault Status Register (SFSR) Extensions
	9.4.4 I/D Translation Storage Buffer Register
	9.4.5 TLB Data Access Register
	9.4.5.1 Special Case for Data TLBs
	9.4.5.2 Special Case for Instruction TLBs

	9.4.6 TLB Diagnostic Register

	Interrupt Handling
	10.1 Interrupt Vector Dispatch
	10.2 Interrupt Vector Receive
	10.3 Interrupt Global Registers
	10.4 Interrupt ASI Registers
	10.4.1 Outgoing Interrupt Vector Data<7:0> Register
	10.4.2 Interrupt Vector Dispatch Register
	10.4.3 Interrupt Vector Dispatch Status Register
	10.4.4 Incoming Interrupt Vector Data<7:0>
	10.4.5 Interrupt Vector Receive Register

	10.5 Software Interrupt Register (SOFTINT)
	10.5.1 Setting the Software Interrupt Register
	10.5.2 Clearing the Software Interrupt Register

	Performance Instrumentation
	11.1 Performance Control Register (PCR)
	11.2 Performance Instrumentation Counter (PIC) Register
	11.2.1 PIC Counter Overflow Trap Operation

	11.3 Performance Instrumentation Operation
	11.3.1 Gathering Data for More Than Two Events
	11.3.2 Gathering Data in Privileged and Non-Privileged Modes
	11.3.3 Performance Instrumentation Implementations
	11.3.4 Performance Instrumentation Accuracy

	11.4 Pipeline Counters
	11.4.1 Instruction Execution and Processor Clock Counts
	11.4.2 IIU Event Counts
	11.4.3 IIU Dispatch Stall Counts
	11.4.3.1 Dispatch Counter Considerations

	11.4.4 R-stage Stall Counts
	11.4.5 Recirculation Stall Counts

	11.5 Cache Access Counters
	11.5.1 Instruction Cache Events
	11.5.2 Data Cache Events
	11.5.3 Write Cache Events
	11.5.4 Prefetch Cache Events
	11.5.5 L2-Cache Events
	11.5.6 Separating D-cache Stall Cycle Counts

	11.6 Memory Controller Counters
	11.7 Miscellaneous Counters
	11.7.1 System Interface Events and Clock Cycles
	11.7.2 Software Events
	11.7.3 Floating-Point Operation Events

	11.8 PCR.SL and PCR.SU Encodings

	Reset and RED_state
	12.1 RED_state Characteristics
	12.2 Resets
	12.2.1 Power�On Reset
	12.2.2 System Reset
	12.2.3 Externally Initiated Reset (XIR)
	12.2.4 Watchdog Reset (WDR) and error_state
	12.2.5 Software-Initiated Reset (SIR)

	12.3 RED_state Trap Vector
	12.4 Initialization and Use of the Return Address Stack
	12.5 Machine States

	Instruction Definitions
	A.1 Add
	A.2 Alignment Instructions (VIS I)
	A.3 Three-Dimensional Array Addressing Instructions (VIS I)
	A.4 Block Load and Block Store (VIS�I)
	A.5 Byte Mask and Shuffle Instructions (VIS II)
	A.6 Branch on Integer Register with Prediction (BPr)
	A.7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	A.8 Branch on Integer Condition Codes with Prediction (BPcc)
	A.9 Call and Link
	A.10 Compare and Swap
	A.11 DONE and RETRY
	A.12 Edge Handling Instructions (VIS I, VIS II)
	A.13 Floating-Point Add and Subtract
	A.14 Floating-Point Compare
	A.15 Convert Floating-Point to Integer
	A.16 Convert Between Floating-Point Formats
	A.17 Convert Integer to Floating-Point
	A.18 Floating-Point Move
	A.19 Floating-Point Multiply and Divide
	A.20 Floating-Point Square Root
	A.21 Flush Instruction Memory
	A.22 Flush Register Windows
	A.23 Illegal Instruction Trap
	A.24 Jump and Link
	A.25 Load Floating-Point
	A.26 Load Floating-Point from Alternate Space
	A.27 Load Integer
	A.28 Load Integer from Alternate Space
	A.29 Load Quadword, Atomic (VIS I)
	A.30 Load-Store Unsigned Byte
	A.31 Load-Store Unsigned Byte to Alternate Space
	A.32 Logical Operate Instructions (VIS I)
	A.33 Logical Operations
	A.34 Memory Barrier
	A.35 Move Floating-Point Register on Condition (FMOVcc)
	A.36 Move Floating-Point Register on Integer Register Condition (FMOVr)
	A.37 Move Integer Register on Condition (MOVcc)
	A.38 Move Integer Register on Register Condition (MOVr)
	A.39 Multiply and Divide (64-bit)
	A.40 No Operation
	A.41 Partial Store (VIS I)
	A.42 Partitioned Add/Subtract Instructions (VIS I)
	A.43 Partitioned Multiply Instructions (VIS I)
	A.43.1 FMUL8x16 Instruction
	A.43.2 FMUL8x16AU Instruction
	A.43.3 FMUL8x16AL Instruction
	A.43.4 FMUL8SUx16 Instruction
	A.43.5 FMUL8ULx16 Instruction
	A.43.6 FMULD8SUx16 Instruction
	A.43.7 FMULD8ULx16 Instruction

	A.44 Pixel Compare (VIS�I)
	A.45 Pixel Component Distance (PDIST) (VIS I)
	A.46 Pixel Formatting (VIS I)
	A.46.1 FPACK16
	A.46.2 FPACK32
	A.46.3 FPACKFIX
	A.46.4 FEXPAND
	A.46.5 FPMERGE

	A.47 Population Count
	A.48 Prefetch Data
	A.48.1 Prefetch Instruction Variants
	A.48.2 New Error Handling of PREFETCH,2 and Other Prefetches

	A.49 Read Privileged Register
	A.50 Read State Register
	A.51 RETURN
	A.52 SAVE and RESTORE
	A.53 SAVED and RESTORED
	A.54 Set Interval Arithmetic Mode (VIS II)
	A.55 SETHI
	A.56 Shift
	A.57 Short Floating-Point Load and Store (VIS I)
	A.58 SHUTDOWN (VIS I)
	A.59 Software-Initiated Reset
	A.60 Store Floating-Point
	A.61 Store Floating-Point into Alternate Space
	A.62 Store Integer
	A.63 Store Integer into Alternate Space
	A.64 Subtract
	A.65 Tagged Add
	A.66 Tagged Subtract
	A.67 Trap on Integer Condition Codes (Tcc)
	A.68 Write Privileged Register
	A.69 Write State Register
	A.70 Deprecated Instructions
	A.70.1 Branch on Floating-Point Condition Codes (FBfcc)
	A.70.2 Branch on Integer Condition Codes (Bicc)
	A.70.3 Divide (64-bit / 32-bit)
	A.70.4 Load Floating-Point Status Register
	A.70.5 Load Integer Doubleword
	A.70.6 Load Integer Doubleword from Alternate Space
	A.70.7 Multiply (32-bit)
	A.70.8 Multiply Step
	A.70.9 Read Y Register
	A.70.10 Store Barrier
	A.70.11 Store Floating-Point Status Register Lower
	A.70.12 Store Integer Doubleword
	A.70.13 Store Integer Doubleword into Alternate Space
	A.70.14 Swap Register with Memory
	A.70.15 Swap Register with Alternate Space Memory
	A.70.16 Tagged Add and Trap on Overflow
	A.70.17 Tagged Subtract and Trap on Overflow
	A.70.18 Write Y Register

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

