UltraSPARC?® Illi Processor

User’s Manual

D Sun

microsystems
Version 1.0
June 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, U.S.A. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Chorus, VIS, OpenBootPROM,
UltraSPARC IIIi Processor User’s Manual and SPARC are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Use of any spare or replacement processors is limited to repair or one-for-one replacement of
processors in products exported in compliance with U.S. export laws. Use of processors as
product upgrades unless authorized by the U.S. Government is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Table of Contents

Preface xxv

Acronyms and Definitions xxxi

Section I: Processor Introduction

1. Introducing the UltraSPARC IIIi Processorcoccoieenenseecsrenssenseessnesssesssesssnesssessseses 3
1.1 OVEIVIEW ..ttt eitee ettt e ettt e et e e et e e st e e e st e e e saeesmteeesmteeeasaeeesaeeenneeaenseeesnneeennseenn 3
1.2 FOATUIES ettt e e e 4
1.3 SUMIMATY ...tteiiiiiiieteeiie ettt e e ettt e e s sbbt et e s eabbbeeesaabbteeesaabbaeeesabeeeeesnanes 5
2. UltraSPARC I1Ti Processor in a SYStemcoeeveeiseecsrensensnessnecssensseesssesssesssesssnesssesssenes 9
2.1 System CONfIGUIATIONSccuiieiiieeiiieeiieeeie et et e et e e see et e et eeseeeeseeeeeneeeenes 9
2.1.1 Four-Processor SYSTEIMc.ueeeiiiiiiiiiniiiieeiiiieee ettt 9
2.1.2 TWO-Processor SYSIEIMLcccuuuieiiiiiiiieiiiiiieee it eeiiitee ettt e 11
2.1.3 One-Processor SYSTEMcc.uuieeiiiiiiiiiniiiieee ittt et e 12
2.2 JBUS INEEITACE ..ooiuiieeiiiieeiiie ettt ettt e et e e e e eesnneeenneee s 13
2.3 IMEMOTY SYSTEIM ...eeeiiiiiiiiiiee ettt ettt e ettt e et e e sttt e e sabbaeeesaabeeeas 13
2.4 Power Managementoeoiiiiiiiiiiiiiieei et 14

Table of Contents

Section ll: Architecture and Functions

3. UltraSPARC IIIi Processor Architecture Basicscccevuienrnecnsnenssneensneccsnecssnnecsneens 17
3.1 COMPONENT OVEIVIEW ...vveieiiieeiiieeiieeeieeesteeeseteestteesseeesseeesseesssseesssseessseeesssesanes 17
3.1.1 Instruction Fetch and Bufferingcccccooviiiiiiiiniiiiie e, 19

3.1.2 EXecution PIpeliNesccccieviiiiiiiiiieiiieiiiie et ciee et svee e 20

3.1.3 Load/Store UNIE ..ccc.eevieiiiiiieiiesiie ettt 20

3.1.4 Memory Management UNitSc.cccoceeiviieiiiireiiiieenieeenreesneeesveeeseneeenns 22

3.1.5 Embedded Cache Unit (Level-2 Unified Cache)c..cccceevevviiiiiiennennns 23

3.1.6 JBUS Interface UNitceeiieiieiiiiieeiteese et 23

3.1.7 Memory Controller UNitcccoevieriiieiiiieiiieeiiie e erevee e sveeesevee e 23

3.2 Processor Operating MOAESeeceviieriiieiiiieiieeerrte et e e sree e sreeeaeeesaaeeeeseeenes 24
3.2.1 Privileged MOdeooouiiiiiiieiiieciie et 24

3.2.2 Non-Privileged MoOdecccoeeviiiiiiiieiiieiiie e 24

323 Reset and RED _STAE ..oovieeiiiiiiiiiieeeeeeeeeeee e e e e e e e e e e e e eeeeeeeeeee e 24

3.2.4 Error HANAIINGccvviiiiiiiiiiieiieecee et 27

3.2.5 Debug and Diagnostics MOdeccceceerierieiiiiiienieniieeieeeeeesee e 29

4. Instruction EXECULION ...cciiiiiiniiiniiininiininiinineinnieinniensnicseecsseessiesssseessssesssssesssseens 31
4.1 INEEOAUCLION ..eitiiiiiiiie ittt ettt e e s st enee s 31
4.1.1 NOP, Neutralized, and Helper Instructionsc.ccceveereveeerieeieneeenneeenns 31

4.2 Processor PIPELINEccceiiiiiiiiiiieeiiieciee ettt ettt re s e e sbeeeteeesaaeeenneeenes 32
4.2.1 Instruction Dependenciesccccueeevuereririieriieiiieeirieesreeesreeesveeesseeenes 35

4.2.2 Instruction-Fetch Stagescccccovviiiiiiiiiiiiieciie e 36

4.2.3 Instruction Issue and QUeue Stagesccceevvveeiriieiiiieeiiie e siee e 37

4.2.4 EXecution PIPEliNecccoiiviiiiiiiiiiiiiiiiiieeciee et svee e saeeesenee e 38

4.2.5 Trap and DOne StaAZEScccceeveveeeriieriiieeiiieesreeeieeesreeesreeesteeesaeeeseseeenes 40

4.3 Pipeline RECITCULAtIONoioviviiiiiieeiiieciee ettt et e saaeeeebee e 41
4.4 Grouping RUIEScccviiiiiiiiiiie ettt ettt ettt e e s aeeesbee s sabaesreeesnseeesnsaeenes 41
4.4.1 EXECUtION OTAET ...ooitiiiiiiiiiiiiieiieeiie ettt et 42

UltraSPARC llli Processor User’s Manual ¢ June 2003

4.5
4.6

4.4.2 Integer Register Dependencies to Instructions in the MS Pipeline 42
4.43 Integer Instructions Within a Groupccccceeiiieriiieniiieiieeeeeeee e 43
4.4.4 Same-Group BYPasscoooviiieiiiiiiiiiiiiiieee e 44
4.4.5 Floating-Point Unit Operand Dependenciescccceecueeereeeenirenceeennennn 44
4.4.6 Grouping Rules for Register-Window Management Instructions 46
4.4.7 Grouping Rules for Reads and Writes of the ASRScccovvviiiiviinnnnenn. 46
4.4.8 Grouping Rules for Other InStructionsccceeeeiveviieniieeiireeieeeenn 47
ConditioNal MOVESootiiiiiniiiniiietieieenite ettt ettt sttt sie e sttt e s sere s 48
Instruction Latencies and Dispatching Propertiesccocoveveiieniieniieneeen. 49
4.6.1 LAteNCY oeeeeiiiiiiiiiee ettt e e 49
4.6.2 BIOCKING ..eoieiiieiiiie ettt ettt 50
0 T o5 | o T<) 11 T SRR 50
4.6.4 Break and SIGcoccooiiiiiiiiniiiiiie e 50

Section lll: Execution Environment

5. Data Formats

5.1

5.2

.. 59
Integer Data FOrmatsccooiiiiiiiiiniiiiiiciicec e 60
5.1.1 Integer Data Value Rangeccocceoveeiiiniiiniiiiiiniinicccccececcee 60
5.1.2 Integer Data ALIGNMENtcooiiriiriiiiiiiniinieiieeiceeeee e 61
5.1.3 Signed Integer Data TYPEeSccooeeviiiiiiniiniiiieiieeecseeeeeeee e 61
5.1.4 Unsigned Integer Data TYPEScoceevieeriiniiniiiieenieenicnieciceieenee e 63
5.1.5 Taged WOTd ..ooeviieiiieeeeee et 64
Floating-Point Data FOImMAatsccccoviiriiiiiiniiiiiiiiiiccnecncececcsee e 65
5.2.1 Floating-Point Data Value Rangec..ccccevviriiiiniininiiniicnecniciiceeen 65
5.2.2 Floating-Point Data AlIGNMENtcccceeriemiiiiiiiieenienieiieeeeeenee e 65
5.2.3 Floating-Point, Single-Precisioncc..ccoccevverieenieiniinicniieneenicnieeeen 66
5.2.4 Floating-Point, Double-Precisionc..ccoccevvveivieeniinicniieenieneenicnieeeen 67
5.2.5 Floating-Point, Quad-PreciSionccocevvieriirnieeneenienieeieenieeneeereeen 68

Table of Contents

53 VIS Execution Unit Data FOrmatsooooviiiiimiimeiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaiaee 69

5.3.1 Pixel Data FOrmatcccocieiiiniiiiiiiiiiienicniceceeeseeeec e 70
5.3.2 Fixed-Point Data FOrmatscc.cccocerviiniiniieniiiiiienieniececeeeeecseeeeee 70
L R] 3 73
6.1 INEFOAUCLION ..oeiiiiiiiiiiiiee ettt et en 73
6.1.1 Document NOTESccccoiiriiiiiiiiiiiiieiii et 74
6.2 Integer Unit General-Purpose r RegiStersccoooiveiiiiiiiieniieeciie e 74
6.2.1 Windowed (in/local/out) r REGISterscccocoereiiireiiiieiiiieiiiie e 76
6.2.2 Global r Re@ISter SEtScceieiiiiiiiiieeiiie ettt 76
6.3 Register Window Managementccceeeieieriieeniieenieeeieeeeeceeseeeeesneee e e sneee e 78
6.3.1 CALL and JMPL INStructionsc..ccccceeveemeeruiruieneenieniieeeenieeneeneenns 80
6.3.2 Circular WindOWingcccceeeiiiieiiiieiiie et 80
6.3.3 Clean Window with RESTORE and SAVE Instructionscc..ccecceeeene 80
6.4 Floating-Point General-Purpose RegiSterscccoovveiiieiiiiiiiieeiiie e 80
6.4.1 Floating-Point Register Number Encodingccccceviiiiiiiiiiiieninne 82
6.4.2 Double and Quad Floating-Point Operandsccccccevviiriiiiirriiennieene 83
6.5 Control and Status Register SUMMATryccccccveiiiieiiiieiie e 83
6.5.1 State and Ancillary State Register Summaryccccoecevviiiiiiinenieene 85
6.5.2 Privileged RegiSter SUMMAIYccocoveiiiieiiiieiiie e 87
6.5.3 ASI and Specially Accessed Register Summaryccccevveeeviieenieennne 89
6.6 State REGISTEIS ...oeiiiieiiiieiiieeitie ettt ettt ettt e et e e st e et eeeneeeenteeeenseeenees 90
6.6.1 32-bit Multiply/Divide (YD) State Register 0cccevvviieriiirniirenieene 90
6.6.2 Integer Unit Condition Codes State Register 2 (CCR)occevvveivennennne 90
6.6.3 Address Space Identifier (ASI) Register ASR 3occooiiiiiiiiiiiieeeee 92
6.6.4 TICK Register (TICK) ASR4cooiiiiiiiiiniiiiieieeeseeeec e 93
6.6.5 Program Counters State RegiSter 5occvvviiiiiiiiiiiie e 93
6.6.6 Floating-Point Registers State (FPRS) Register 6cccevvvieviieenennnne 93
6.7 Ancillary State Registers: ASRS 16-25 ...oooiiiiiiiiiiiiee e 94
6.7.1 Dispatch Control Register (DCR) ASR 18cooiiiiiiiiiieeee e 95

UltraSPARC llli Processor User’s Manual ¢ June 2003

6.7.2 Graphics Status Register (GSR) ASR 19cooviiiiiieieeeeeen 97

6.7.3 Software Interrupt State Registers: ASRs 20, 21, and 22ccccuveennee. 99
6.7.4 Timer State Registers: ASRs 4, 23, 24,25 oo 101
6.8 Privileged REGISTETSoooiiiiiiiieiiie ettt et eee s 104
6.8.1 Trap Stack Privileged Registers 0 through 3ccoooiiiiiiiiiiiiie, 104
6.8.2 Trap Base Address (TBA) Privileged Register 5cccoevviviiieniinenenn. 107
6.8.3 Processor State (PSTATE) Privileged Register 6ccccocoveviiveninenennn. 107
6.8.4 Trap Level (TL) Privileged Register 7ccceeoiveiiieiiiieieeieeee e 112
6.8.5 Processor Interrupt Level (PIL) Privileged Register 8ccceviveneenn. 113
6.8.6 Register-Window State Privileged Registers 9 through 13 113
6.8.7 Window State (WSTATE) Privileged Register 14ccccceviivevinennenn. 115
6.8.8 Version (VER) Privileged Register 31cccovoiieiiiieiiiiiieeieeeeeen 116
6.9 Special ACCeSS REZISTETccuuiieiiiieeiiieiiie ettt et eeee e eneee e 117
6.9.1 Floating-Point Status Register (FSR)ccoveviiiiiiieeeen 117
6.10 AST Mapped REGISLEIS ...ouuieiiiieiiieeeiie ettt e e e eeee e s 127
6.10.1 Data Cache Unit Control Register (DCUCR)ccccoeviiiviieniiieiiieeen 127
6.10.2 Data Watchpoint Re@IStersc.ccecviiriiiieiiieeiieeciee et 132
INStruction TYPES .eceveeevieiieisiiiisiensiensinniensienssenseesssesssesssesssseessesssessssesssesssssssassssesssesssess 135
7.1 INEFOAUCLION ...ttt et e 136
7.2 Memory Addressing for Load and Store InStructionscccccceeeveveeiirenieeennenn. 136
7.2.1 Integer Unit Memory Alignment Requirementscccccceevveveruieennnnn. 137
7.2.2 FP/VIS Memory Alignment Requirementscccoeeeeveeiiveniirenneeeneennn 137
7.2.3 Byte Order Addressing Conventions (Endianess)cccccceevvevereeennnnn. 137
7.2.4 Address Space Identifiers (ASIS) ..oceeeeiuiieeiiieeiieeeie et 138
7.2.5 Maintaining Data CONETENCYccoviiriiiieriiieriieeeiee et 139
7.3 Integer Execution ENVIrONMENTcceeeiiiiiiiiiniiieiie et 139
7.3.1 TU Data Access INSIIUCTIONS ...c..coocvirrieeniieniiniiiieenieenee e 139
7.3.2 TU Arithmetic INStIUCHIONS ...eovviiriiiiiieiiieniirieeieeeenee e 143
7.3.3 TU Lo@ic INStrUCHIONS .uveeeiiiiieiiiieeiiie ettt 144

Table of Contents

Vi

7.4

7.5

7.6

7.7
7.8

7.9
7.10

7.3.4 TU Compare INStIUCLIONSeevuereieieeiiiieeiieeeiieeeieeeeteeesieeeseeeeeseeeeeneee e 144

7.3.5 IU Miscellaneous INStructionsccccceveereeriiriieneenieniieieenieeneeneenas 145
Floating-Point Execution ENvironmentcccoeouiieiiieiiieniieesiee e 146
7.4.1 Floating-Point Operate INStructionsccccceeeriiieeriiieiniieesiee e 146
7.4.2 FPU/VIS Data Access INStructionsc.ccceceeeveievuienienieniinnieeneeneeneens 147
7.4.3 Floating-Point Arithmetic Instructionsccocceeeviiiiiiiniieeie e 148
7.4.4 Floating-Point Conversion InStructionscccccceeevoeieriieennieeniieenieeene 149
7.4.5 Floating-Point Compare InStructionsccceeveeeerieieriiieeniieeiie e 149
7.4.6 Floating-Point Miscellaneous Instructionscccceeceeeeiieeriieeniieenieenns 149
VIS Execution ENVIrONMENtcccueeiiieniiniiiiiieniieniieieeeieeieenee st 150
7.5.1 VIS Pixel Data INStructionsc..ccoceeeuiereenieniiiniieneenieneeeieenie e 150
7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructionsccceceerveerecne 151
7.5.3 VIS Logic INStIrUCHIONS ...ccvviieiiiieiiieeiiee et 152
Data Coherency INStrUCTIONScevuiieiiiieeiiieeieeeiie et seee e eeee e 152
7.6.1 FLUSH Instruction Cache InStructionccccceceeveeniencuinnieeneenieennenns 153
7.6.2 MEMBAR (Memory Synchronization) Instructionc..cccoeveveenieennne 153
7.6.3 Store Barrier INStruCtionc.ccooeiriiiiiiiiniinieniieieee et 153
Register Window Management InStructionscecceveevieeniieeniiieniiee e 153
Program Control Transfer INStructionscccccceevouireriiieeiiieiie e 154
7.8.1 Control Transfer Instructions (CTIS)cccceeieveiieeeiiiiiiie e 155
Prefetch INSTIUCTIONS ...o..iiiiiiiiiiiiiiieieee et 160
Instruction Summary Table by Categorycccccveviuiieiiieiiiieeieeeee e 160
7.10.1 InStruction SUPETSCTIPLS ..everereieeieieeiiieeiieeeteeeeteeeeneeeeseeeeseneeeseeeesneeeenns 161
7.10.2 Instruction Mnemonics EXPansioncccoecceeeviiirrniieiiieeiiiee e 161
7.10.3 Instruction Grouping RUlesccccoeiiiiiiiiiiiiee e 161
7.10.4 Table Organizationccceeoeeeiiieeiiiieeiiie e e e eee e e seeeeseee e 161
7.10.5 Integer Execution Environment Instructionscccceevceeeviiiiniiienieenns 163
7.10.6 Floating-Point Execution Environment Instructionsccccoccevevieennee 166
7.10.7 VIS Execution Environment InStructionsccccceeveeriercvinneeneenieennenns 168
7.10.8 Data Coherency InStructionsccecceeeiieieiiieeniieeeiie e 170

UltraSPARC llli Processor User’s Manual ¢ June 2003

7.10.9 Register-window Management Instructionscceceeveeieieriiienieeennenn. 170

7.10.10 Program Control Transfer INStructionscccceeveeeeiiieeniieniieenieeeennn 170
7.10.11 Data Prefetch INStructionsccocoueeeiieeriiieniieesiie e 171
7.11 Instruction Formats and Fieldscccooiiiiiiiiiniii e 171
7.12 Reserved Opcodes and Instruction Fieldsccccccoeviiiiiiiiniiiiiieceeeeen 176
7.12.1 Summary of Unimplemented Instructionscccceeveveeiiieniirenieeneennn 176
7.13 Big/Little-Endian AddreSSingccoccceeeiieeeiieeriieeriee e 177
7.13.1 Big-Endian Addressing COnventionccceeeeeerueeenereeneeenieeeseeeeneeenns 177
7.13.2 Little-Endian Addressing COnventionccccoeeeueeerveeeneeenneeeneeeeneenns 179
Section IV: Memory and Cache
A7 311000 g A T L4) L 183
8.1 TSO BERAVIOT ..eeiiiiiiiiiiiiiieiic ettt et e 184
8.2 Memory Location Identificationcoceevieriiniiiiiiniiniciicececceesee e 184
8.3 Memory Accesses and Cacheabilityccocceerciiiriiiiiiiiieeeee e 184
8.3.1 Coherence DOmaiNSccceveeriiniiiiiiieniienieieeteeeesee e 185
8.3.2 Global VISIDIIILY ..eccovvieeiiieeiiieciie et 186
8.3.3 MemOry OrdeIingceecuveeeiiieiiieeiiie et e et esite et e eiaeeeneeesreeesnneeenneeas 186
8.4 Memory SYNCATONIZATIONeeviiieeriieeiiie et e eiee et e e et e e e e e eeaeeeneeeenneens 187
8.4.1 MEMBAR #SYNC .ottt 188
8.4.2 MEMBAR RUIES ..coouiiiiiiiiiiiiiiiiiiecccte e 188
843 FLUSH oottt n 190
8.5 ALOMIC OPCIATIONS ...eieueiieiiiieiiieeetieeeteeeteeestteesteesseeeestaeessteeessseessseesnseeessseeesnes 191
8.6 Non-Faulting Loadc..cooiiiiiiiiiiie et 192
8.7 Prefetch INSTIUCTIONS ...couiiriiiiiiiiiiiierie et 193
8.8 Block Loads and STOTesc.cueeuieriiniiniiiiieneenite et 194
8.9 I/O and Accesses with Side-Effectscocoeriiniiiiiiiiiniiiiciccececceeeee 194
8.9.1 Instruction Prefetch to Side-Effect Locationsccoceevvveeiienecnicnncnnnen. 195

Table of Contents

vii

8.9.2 Instruction Prefetch Exiting Red Stateccccoovieiiiiiiiiniiiiieeee 195

8.10 INtEINAl ASTS et s 195
8.11 StOTE COMPIESSION ...eenneiieiiieeiiiieesieeeeeieesteeeeeteeesnteesteeesteeesnteeenneeesneeesnneeeanseeenes 196
8.12 Read After Write (RAW) BYPasSingoeevviieriiiiiiiieeiiee et 197
8.12.1 RAW Bypassing Algorithmccoocceeiiiiiiiiiiie e 197

8.12.2 RAW Detection AlOrithmcccooeiiiiiiiiiiiieiie e 198

9. Caches and CONETENCYccuiieveiiiiiiiisuiiissuiinseiiiseeissstessssesssssesssssessssssssssessssssssssssssssssssss 199
9.1 Cache OranizZationc..ccceeiouieeiiieeiieeaiieeeee e et e ettt e seeeesteeesnteessneeesnneeesneeenns 199
9.1.1 Virtually Indexed, Physically Tagged Caches (VIPT)cccccceevviieninennns 199

9.1.2 Bypassing the D-Cacheccccoeiiiiiiiiiiieeeece e 200

9.1.3 Physically-Indexed, Physically-Tagged Caches (PIPT)cccccccevennens 201

9.1.4 Second Level and Write Caches (L2-Cache, W-Cache)cccccvvereennns 203

9.1.5 L2-Cache Replacement POLiCYcccouveeiiiiiiiiieiiieece e 204

0.1.6 L2-Cache LOCKING ...cccuviieiiieiieeiiie ettt 205

9.2 Cache FIUSNINGoooiiiiiiiieie et 205
9.2.1 Address Aliasing FIushingccccoeiiiiiiiinii e 206

9.2.2 Committing Block Store FIushingcccoooiiiiiiiiiiiiieeeeee e 206

9.2.3 L2-Cache FIUShiNGooooiiiiiiiiiiiie e 207

9.3 Controlling P-Cacheocouiiiiiiiiiee e 208
9.4 Translation Lookaside Buffers (TLBS)ccoocvuiiiiiiiiiieiiiiieeeeeieee e 209
9.4.1 TLB FIUSHING ..eeiiiiiieiieeee et 209

9.42 TTE FOrmatccoooiiiiiiiiiii e e 210

9.43 Synchronous Fault Status Register (SFSR) Extensionscccccceevueennee 210

9.4.4 I/D Translation Storage Buffer Registerc.cccccvviiiiiiiiiiiiiiiireiene 210

9.4.5 TLB Data Access REeZISErc.ceeiuiieiiieiiiieiie e 210

9.4.6 TLB Diagnostic REISErcccceeoiiiiiiieiiiieiiieeiie e 211

viii

UltraSPARC llli Processor User’s Manual ¢ June 2003

Section V: Supervisor Programming

10. Interrupt HANAIINGcccoveiiiiiiveiiiiinneiiiiissneiicssssetisssssnnicssssseisssssssssssssssssssssssssssssssnssssns 215
10.1 Interrupt Vector DISPAtChlc.eeiiiiiiiiiiiiiieece ettt 216
10.2 Interrupt Vector RECEIVEccoviiiiiiiiciiieiiee ettt ettt e e e s 217
10.3 Interrupt Global REISIEISc.veiiiiiiiiiiieiiee ettt e e eree e s 218
10.4 Interrupt AST REZISTEIS ..ovviiiiiiiiiiieiiie ettt ettt e et e e e eraeessneeeenee s 218

10.4.1 Outgoing Interrupt Vector Data<7:0> RegiStercccevvvvevvvrercreeennnennn 218
10.4.2 Interrupt Vector Dispatch REZISIETccccovveieviiiieiiiieriiieeieeeieeeiee e 219
10.4.3 Interrupt Vector Dispatch Status RegISterccceevvievriieviieeeiiieeieeeenenn 220
10.4.4 Incoming Interrupt Vector Data<7:0>c.ccccoveevvieriiiieiieeeiieeeiee e 221
10.4.5 Interrupt Vector Receive RegISterccccevvvviieiiiieiiieciieeeeeee e 221
10.5 Software Interrupt Register (SOFTINT) ...ccoioviiiiiiieiiiecieeeeee e 222
10.5.1 Setting the Software Interrupt RegISterccccovvvvvieviiieeniiieeiieeieeeneenn 223
10.5.2 Clearing the Software Interrupt Registercccoevevievciiieriiieeiieeieeeenennn 223
Section VI: Performance Programming

11. Performance INStrumentationeeeeeeeenneinnneeinseicnsnicssnecssseesssscesssscessanesssanessssscsssns 227
11.1 Performance Control Register (PCR)c..coiiiiiiiiiiiniiiiiieeicecceeeeeee e 228
11.2 Performance Instrumentation Counter (PIC) Registercccoeoeieniiniiiniiennnen. 230

11.2.1 PIC Counter Overflow Trap Operationcccceeevereeervieeeeiiineereensneeeenns 231
11.3 Performance Instrumentation OPerationccccceeeeevireeeriiieeeeniieeeeeeireeeessennens 231
11.3.1 Gathering Data for More Than Two Eventsc.cccceeveiiniiiniienicnennen. 231
11.3.2 Gathering Data in Privileged and Non-Privileged Modescccccuuee. 231
11.3.3 Performance Instrumentation Implementationsccccceevvecuvireeesnneennn. 233
11.3.4 Performance Instrumentation ACCUIACYccccoueeriuirenieeanieeniieenieeeneeens 233
11.4 PIPEliNe COUNTETSoiiieiiiiieeiiiiiieeeeiiiee e et e e ettt e e e ereeeeeeatbeeeeseebaeeeeennraaeesannneens 233
11.4.1 Instruction Execution and Processor Clock Countsccccceeveveviceennnen. 233

Table of Contents

11.4.2 TIU EVENt COUNES ..coovvveeieiiiiiiiee ettt e e e e e e 234

11.4.3 TIU Dispatch Stall COUNtSc.ceeeuiieeiiieeiiieeiiee e 234

11.4.4 R-stage Stall COUNLSoeeveiieiiieeiiieeiie ettt seeeeseee e 236

11.4.5 Recirculation Stall COUNESeeeiuiieriiiieiiieeiiee e 236

11.5 Cache ACCESS COUNLETS ...eeeueieeiiieeiiieeiieeeeee et e ettt e e teeeeeeeesneeessneeesneeesneeeeenneeenns 237
11.5.1 Instruction Cache EVENtsccocoiiiiiiiiiiiiiiie e 237

11.5.2 Data Cache EVENtSccoeeouiiiiiiieiiieeiie et 238

11.5.3 Write Cache EVENLSoooiiiiiiiiieiiieeie et 238

11.5.4 Prefetch Cache EVENtScc.ooeiiiiiiiiiiiiiecieeee e 239

11.5.5 L2-Cache EVENLSooviiiiiiiiiieiiie ettt 239

11.5.6 Separating D-cache Stall Cycle Countscceeeeeeriieenieeriieeniieeeeeeene 240

11.6 Memory Controller COUNTETScccueieiiieeriiieeiieeeeee et e eieeeeteeeseeeeeneeeseeeesaee e 242
11.7 Miscellaneous COUNLELSeeeiuiiereieeriiieeiiee et eetee ettt e eaeeesteeesneeeseneeesneeesnneeenes 243
11.7.1 System Interface Events and Clock Cyclescccvvviiiiiiiiiiiiiiieeeieene 243

11.7.2 Software EVENTScooouiiiiiiieiiieeiit et 243

11.7.3 Floating-Point Operation EVentscccccceviieriiiiniiieiie e 244

11.8 PCR.SL and PCR.SU ENCOAINGSeeeriiiieiiieeiiieiiieesiee et 244

Section VII: Special Topics

12. ReSet ANd RED_SEALE ..u..creeueireeeiereeieeeneierenecereneserenssssssssssasssssassesssssesssssssssssssssssssssssssasssssanse 249
12.1 RED_state CharacteriStiCSccvierruireririeeririeeiieestieeseeessereesseeesseesnseeessneesseennes 249
12.2 RESEES ittt et 249
12.2.1 POWer-On ReESetcoocuiiiiiiiiiiiiiiiieiic e 250

12.2.2 SyStem RESET ..ceeiiiiiiiiiiiiiieee e 250

12.2.3 Externally Initiated Reset (XIR)coccooiiiriiniiiiiiiiinieiieciceeeee e 251

12.2.4 Watchdog Reset (WDR) and error_stateccoccceevvieerciieenieeniiieenieeene 251

12.2.5 Software-Initiated Reset (SIR)cc.ooveuiieiiiiiiiiieiieeeee e 251

12.3 RED_State Trap VECIOT ...ccoviutiiiiiiiiiiieiiiiiiee ettt ettt eeeieee e 252

UltraSPARC llli Processor User’s Manual ¢ June 2003

12.4 Initialization and Use of the Return Address Stackcccocveveiiiiiiieiienieen. 252
12.5 MACRINE StAES ...eueiieiiieeiiie ettt ettt tee et e ettt e e e et e et e et aeeenee e e s 253
Section VlIl: Appendix
Instruction Definitionscocivieiieniieniiniienneniieniienienienieenienieniensessessessssessesssessseses 261
Al A et 268
A2 Alignment Instructions (VIS I)ooiiiiiiiiii e 269
A3 Three-Dimensional Array Addressing Instructions (VIS T)ooooiiiiiiiiiiiniiinnen. 271
A4 Block Load and Block Store (VIS I) ..oiiiiiiiiiiiiiiiee et 274
A.S Byte Mask and Shuffle Instructions (VIS II)ccoceeiiiiiiiieeiiiieeeeeeeeeee e, 282
A.6 Branch on Integer Register with Prediction (BPT)ccocoeeviiiiiiiiiiiee 283
A7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) 285
A.8 Branch on Integer Condition Codes with Prediction (BPcc)ccovevvevievciviieeennnenn. 288
A9 Call and LINK ..oocoiriiiiiiiiiiiitecee et 290
A10 CompPare and SWAP ...ccceccviieeeiiiiiieeerieee ettt e e eeiiree e s eare e e estbaee e e ataeeeeeanttaaeesanaaeas 291
A1l DONE and RETRY ..ottt 294
A.12 Edge Handling Instructions (VIS I, VIS II) .coccoiiiiiiiiiiiiiii e 295
A.13 Floating-Point Add and Subtractcccooceiiiiiiiiiiiecee e 298
A.14 Floating-Point COMPATEcecuieiiiiiiieiieiieetieeie ettt ettt eseee e ens 300
A.15 Convert Floating-Point t0 INtEZETcceeiiiiiiiiiiiieieeieecee e 302
A.16 Convert Between Floating-Point Formatsccocceiiiiiiniiiiiiiiiiceniceeeee 304
A.17 Convert Integer to F1oating-Pointcccceevviiiiiiiiiiiieiiie e 306
A.18 Floating-Point MOVEccccoiiiiiiiiiiieitie ettt ettt st e e 308
A.19 Floating-Point Multiply and Dividecccoooiiiiiiiiiiiiiiieeeceeee e 310
A.20 Floating-Point SQUAre ROOtocoiiiiiiiiieiee e 312
A.21 Flush InStruction MEMOTYc.ccovviiiiiiieeiiieeiiieeereeeieeeereeeereeetreeetaeeeeraeesereeenenes 313
A.22 Flush Register WINAOWScoouiiiiiiiiiiiieiiesiieeie ettt 315
A.23 Tllegal INStrucCtion TIADcccveevcvieeirieeeiieeeiieeciee et e et e et e e be e e eebeeestreeeareeenraeeeens 316
A24 Jump and LiNKooooiiiiiiiiiiiiiiic et 317

Table of Contents

xi

Xii

A25
A26
A27
A28
A29
A30
A3l
A32
A33
A34
A35
A36
A37
A38
A39
A.40
A4l
A42
A43

A.44
A45
A.46

Load F1oating-POIntcooouiieiiiieiiieeiit ettt e 318

Load Floating-Point from Alternate Spacecccccceeveeieriiieeiiieeiiie e eeeee e 320
| e T B 1)<, USRS 322
Load Integer from Alternate SPaceccecoeeeiiiieiiieeiiieiiie et 324
Load Quadword, Atomic (VIS I) .ooooiiiiiiiie e 326
Load-Store Unsigned BYteccoociiiiiiiiiiiieiiieeeeeee et 329
Load-Store Unsigned Byte to Alternate Space ..cccooiiiieiiieiieece e 330
Logical Operate Instructions (VIS T) ...ccoooviiiiiiiiiiee e 332
L0gical OPETrationsccceeeouiieiiieeiiieeiie ettt et e ettt e et e e et e et e et e e sneeesnteeeaneeeenns 335
MEMOTY BATTIET ...eeiiiiiiiiiiieeiie ettt et e et e et e e e sneeeenneee e 337
Move Floating-Point Register on Condition (FMOVCC) ..cceevvviiiiiiieiiieiiieeieee 343
Move Floating-Point Register on Integer Register Condition (FMOVr) 349
Move Integer Register on Condition (MOVCC) ...ooocviveviiieiiiieiiieeieecee e 351
Move Integer Register on Register Condition (MOVT)ccoevviiiiiiieiiiieniieeieene 356
Multiply and Divide (64-Dit)c.eeeiuiieriiiieiie et 357
INO OPCIALION ...iiiiiieiiiiee ittt ettt e et e et e e et e e st e e ebeeeenseeesnseeenneeeneeean 358
Partial Store (VIS I) ettt e e et e e e e sare e e e e 359
Partitioned Add/Subtract Instructions (VIS T)coooiiiviiiiiiieieeeee e 361
Partitioned Multiply Instructions (VIS I) ...cceooeiiiioiiiiiieeeee e 363
A.43.1 FMULSX16 INSIUCtIONoovveeniiiiiiiiieiienieenicecceciecsc e 364
A.43.2 FMULSXIO6AU INStIUCtION ...cceeviiiiiiiienieiniiiiieeieeieenec e 365
A.43.3 FMULSXIOAL INStrUCION ...covvviuiiiiiiiiieieeniiceiecieeiecnee e 365
A.43.4 FMULSSUXI6 INSIUCTION ...eovviiiiiiiiiiieeniieniicnieeieeiecnee e 366
A.43.5 FMULSULXI1O INStrUCION ...eovieuiiiiieiienieeniieiieeieeieeniee e 367
A.43.6 FMULDSSUX16 INStructioncccccocueenieeneeniiiieeieeieenieereeieeniee e 367
A.43.77 FMULDSULXIO6 INStrUCLIONeevuviiuiieiieniieniiiiieeieeieenee e 368
Pixel Compare (VIS I) oottt 369
Pixel Component Distance (PDIST) (VIS) .ooooiiieiiiiiieeee e 371
Pixel Formatting (VIS 1) ..ooeoiiieieee e 372
A46.1 FPACKIO ..oiiiiiiiiiieeietee ettt s 373

UltraSPARC llli Processor User’s Manual ¢ June 2003

A 47
A48

A49
A.50
A5l
A52
A.53
A54
A.55
A.56
A.57
A58
A.59
A.60
A61
A.62
A.63
A.64
A.65
A.66
A.67
A.68
A.69
A.70

A46.2 FPACKB2 Lo e 375

A46.3 FPACKFEIX ..ottt ettt ettt st 376
A46.4 FEXPAND ...ooiiiiiiiie ettt ettt 377
A46.5 FPMERGEccooiiiiiiiiiiic ettt 378
Population COUNEc.oeiiiiiiiiiie ettt ettt e et e e e e sneee s 378
PrefetCh Data ...o..eoveiiiiiiiiiice e 379
A.48.1 Prefetch Instruction Variantscceccceceeeneenieeniiinieenieeneeneeenieeneeneenns 381
A.48.2 New Error Handling of PREFETCH,2 and Other Prefetches 382
Read Privileged REGIStErc.eeiiiiiiiiiiieiiie et 385
Read State REeGISIEroviiiiiiiiieiie et 388
RETURN .ottt ettt ettt et ettt et naee e 390
SAVE and RESTOREc.oooiiiiiiiiiiiiieecn et 392
SAVED and RESTOREDcocciiiiiiiiiiiiiiciccteteete et 394
Set Interval Arithmetic Mode (VIS II) ...oooiiiiiiiiiiiiiiiceeieee e 395
SETHI ettt ettt ettt st et en 397
SRITE ettt st e n 398
Short Floating-Point Load and Store (VIS I) ..oocevreiiieiiiieie e 400
SHUTDOWN (VIS 1) 1ttt 402
Software-Initiated RESEtc.cociiriiiiiiiiiiiiiici e 403
Store F1oating-POiNtocouiiiiiiiiiieeie et 404
Store Floating-Point into Alternate SPacecoccveviiiiiiieeniie e 406
SEOTE INEEZET .neeeeeiieiiiiee ettt ettt e ettt e st e e s ebbee e e e 408
Store Integer into AIternate SPACEccceevuiieiiieeiiieeie et 409
SUDITACE ...ttt ettt et et et eaneen 411
TaEEA Add .. 412
TaEEA SUDIIACE ...eeeieiiieeiiie ettt ettt et e et eenee s 413
Trap on Integer Condition Codes (TCC) .ovvririiiiriiiieiiieeiie e 415
Write Privileged REGISTETc..oiiiiiiiiiiiiiiie ettt 417
WIite State REGISTEToeeiiiieiiiiiiiie ettt 420
Deprecated INStIUCTIONSoeiviiiiiieeeiie ettt e eee s 423

Table of Contents xiii

A.70.1
A.70.2
A.70.3
A.70.4
A.70.5
A.70.6
A.70.7
A.70.8
A.70.9
A.70.10
A.70.11
A.70.12
A.70.13
A.70.14
A.70.15
A.70.16
A.70.17
A.70.18

Branch on Floating-Point Condition Codes (FBfcc) ...ooocvvveviiveniieenen. 423

Branch on Integer Condition Codes (BicC) ...ccvvvevvieeiiiieeiiiieniieecieeeeeene 425
Divide (64-bit / 32-DIt) ..ovveeriiriieiiiiiiieieeiiee e 428
Load Floating-Point Status Registercccocccveviiiiiiiiiiiienieeeeeee 431
Load Integer Doublewordccccueiiiiieiiiieniie et 433
Load Integer Doubleword from Alternate Spaceccccoceeveeeeneeeennnnnn. 434
MUltiply (32-Dit) coeeeeieiiie e 436
IMUIEIPLY SEEP 1eeieeeiiie et et 438
Read Y REZISTET ..ooieiiiiiieiiiee et 440
SEOTE BAITIET .uveiiiiiiiiiiieniieeiiet ettt 441
Store Floating-Point Status Register LOWercccovveeiiiieviieenieeenee. 442
Store Integer Doublewordccoooiieiiiiiiiie e 443
Store Integer Doubleword into Alternate Spacecccevvevevivieeneeennnne. 445
Swap Register with MEmMOTrYccocceieiiiiiiiieiiee e 446
Swap Register with Alternate Space Memoryccccceeeveeeriieeeneeennnne. 448
Tagged Add and Trap on OVerflowccceeveiieiiiiiiiieeeeeee e 449
Tagged Subtract and Trap on OVerflowccceeeeieiiiiiiiieniieeeeeee 450
WIite Y REGISTET .oouieieiiiieeiiee et 452

Section IX: Index

Xiv

UltraSPARC llli Processor User’s Manual ¢ June 2003

List of Figures

FIGURE 2-1

FIGURE 2-2

FIGURE 2-3

FIGURE 2-4

FIGURE 3-1

FIGURE 4-1

FIGURE 5-1

FIGURE 5-2

FIGURE 5-3

FIGURE 5-4

FIGURE 5-5

FIGURE 5-6

FIGURE 5-7

FIGURE 5-8

FIGURE 5-9

FIGURE 5-10

FIGURE 5-11

FIGURE 5-12

FIGURE 5-13

FIGURE 5-14

Four-Processor System with the UltraSPARC IIIi Processorc..cccocceevenenenencnencncnennenne 10
Two-Processor System with the UltraSPARC IIIi Processorcccocevenenenienencneneneneene 11
One-Processor System with the UltraSPARC IITi Processor —cccceoevererenienieneneeieeeenee 12
DDR Memory System ATCHITECIUIE ...c..co.eiiiiiiriiriieieienie ettt 14
UltraSPARC IIIi Processor ArChiteCtureccocevveieuinieieinieieeniereeneeeeseneeeneneeene s 18
Instruction Pipeline DIagram cccoooiiiiiiiiiieieee ettt 34
Signed Integer Byte Data FOrmatcccocoooiiiiiiiiiniiiic e 62
Signed Integer Halfword Data FOrmat —cccoovieiiiiiinie et 62
Signed Integer Word Data FOrmat —ccoooiiiiiiiiieeic et 62
Signed Integer Double Data FOrmat —.........cccoocieiiiiiiiiiiieniincicctceece e 62
Signed Extended Integer Data FOrmat —cccoooviiiiieiieiiieeeieeecesee e 63
Unsigned Integer Byte Data FOrmMatoocooiiiiiiiiiieic e 63
Unsigned Integer Halfword Data Format ..ot 63
Unsigned Integer Word Data FOrmMat —ccooiiiiiiiieiieicceeeeesee et 64
Unsigned Integer Double Data FOrmat —...........coooioiiiiiiiiiei e e 64
Unsigned Extended Integer Data FOrmat —cccoooeiiiiiiniininiiiiiceeecccnceeeece e 64
Tagged Word Data FOIMAt c.ocouiiiiieiieiii ettt re et e e e sseesnaeenseenseesnae e 65
Floating-Point Single-Precision Data FOrmatcccooiiiiiiiiiiiiieeeee e 66
Floating-Point Double-Precision Double Word Data Format —........c..ccccceeeniniiiinincncnienenn 67
Floating-Point Double-Precision Extended Word Data Format —cccooeiininencnencncee 67
List of Figures XV

Xvi

FIGURE 5-15

FIGURE 5-16

FIGURE 5-17

FIGURE 5-18

FIGURE 6-1

FIGURE 6-2

FIGURE 6-3

FIGURE 6-4

FIGURE 6-5

FIGURE 6-6

FIGURE 6-7

FIGURE 6-8

FIGURE 6-9

FIGURE 6-10

FIGURE 6-11

FIGURE 6-12

FIGURE 6-13

FIGURE 6-14

FIGURE 6-15

FIGURE 6-16

FIGURE 6-17

FIGURE 6-18

FIGURE 6-19

FIGURE 6-20

FIGURE 6-21

FIGURE 6-22

FIGURE 6-23

Floating-Point Quad-Precision Data FOrmat —...........ccccooiiiiiiiiiiiiiii e 68

Pixel Data Format with Band Sequential Ordering ShOWN ccoocvvvviiiieniiiiieieeieseeeeeeee 70
Fixed16 VIS Data FOIMAat cccoveiiiiniiieiiiieiceceeeteeetee ettt 71
Fixed32 VIS Data FOIMat cccoociiiiiiiiiiiiiiii ettt 71
Three Overlapping Windows and the Eight Global Registers —ccccocevenininininenencncnene. 77
Windowed I Registers for NW NDOWS = 8ooiiiiiiiee et e 79
Integer Unit r Registers and Floating-Point Unit Working Registers —..........ccoccevevvieiiniienennienns 84
State and Ancillary State REGISIEIS ...c.ecvierierieriesierie ettt ettt seeseeesnaesneeenaeeneeas 85
Privile@ed REZISIEIS .o..iiiiiiiiiieieeieeee ettt ettt ettt b e eeeas 87
ASI and Specially Accessed REISIEIS cceeiiiriiiiiiiiiie ittt 89
Y REQISLET oiiieiiiiiieiie ettt ettt ettt ettt e et sb e et e e s e e teesseeseesaeeseesseeseesbeereesbeeseesbeeaeenbeeaeenbeennas 90
Condition Codes REZISIET oouiiiiiieiiiiiiee ettt ettt eneas 91
Integer Condition Codes (CCR_i1 €C and CCR_XCC) .oooovoveveiiieicieccceeeeeeeeee e 91
Address Space Identifier REZISTET cccveeiiiiiieiieiieiie ettt ees 92
Floating-Point Registers State REGISIEr cocoiiiiiiiieiiieeee e e 93
Dispatch Control Register (ASR OX12) ..ooiiiiiiiiieiieiiee ettt 95
RDASR fOIMAt ..ottt e e 98
WRASR fOIMAE oottt ettt sttt ettt sttt sae b 98
GSR Format (ASR 0X13) oottt sttt 98
SOFTINT, SET_SOFTINT, and CLR_SOFTINT Register Formatsccccooceevinvieneenienienns 100
Timer State REZISIEIS ..ooiiiiiiiieiiitiiiee ettt ettt ettt b et e e e eneeas 101
Trap State Register FOIMAt cooiiiiiiiiiiieieie ettt 105
Trap Stack and Event EXamPpPle c.oooiiiiiiiiiiieieeeee et 106
Trap Base Address REZISIET oouiiiiiiiiiieeit ettt 107
Trap Vector Address FOrmat oooiiiiiiiiiiieie ettt 107
PSTATE FIEIAS .ottt 108
Trap Level REZISIET ..c.ooiiiiiiiiiiee ettt ettt b et eeeas 113

UltraSPARC llli Processor User's Manual * June 2003

FIGURE 6-24

FIGURE 6-25

FIGURE 6-26

FIGURE 6-27

FIGURE 6-28

FIGURE 6-29

FIGURE 6-30

FIGURE 6-31

FIGURE 6-32

FIGURE 6-33

FIGURE 7-1

FIGURE 7-2

FIGURE 7-3

FIGURE 7-4

FIGURE 7-5

FIGURE 9-1

FIGURE 11-1

FIGURE 11-2

FIGURE 11-3

FIGURE 11-4

FIGURE 11-5

FIGURE A-1

FIGURE A-2

FIGURE A-3

FIGURE A-4

FIGURE A-5

FIGURE A-6

Processor Interrupt Level REGISIET ..cc.eouiiiiiiiieiieiieetee et 113

WBTATE REEISTET oovivieiciietieeeeee ettt ettt ettt ea et ne s eaeeae s et et e s e s eneeaean 116
VErSion REGISIET ...oouiiiiiiiitiiie ettt ettt ettt et e it st e e e ene 116
FSRFIEIAS ettt ettt be b naens 118
Trap Enable Mask (TEM) Fields of FSR ocooiiiiiieceeeeeeeeeee e 124
Accrued Exception Bits (a€XC) Fields of FSR cccoiiiiiiieeeeeeeee e 124
Current Exception Bits (C€XC) Fields of FSR ..o 124
DCU Control Register Access Data Format (AST4516) ...ooveviieiiiiiiieeieeeeeeee e 128
VA Data Watchpoint Register Format —occooiiiiiiiiiii e 133
PA Data Watchpoint Register FOrmat —.........cccoooiiiiiiiiiiiiieeeeee e 133
Summary of Instruction Formats: Formats 1 and 2cccoovieeiiiiienieiecee e 172
Summary of Instruction Formats: Format 3 ..o 173
Summary of Instruction Formats: Format 4 ... 174
Big-Endian Addressing CONVENTION cecverieeiieriieieeiieieeiiesieeeiteseeeenaeenseenseesseesseenseessnessnens 178
Little-Endian Addressing CONVENTIONS cooueiuiriiiieieieniieieeiieiete sttt ene e enee 179
L2-Cache Flush ASTFOIMAtcccooiiiiiiiiiiiiiiictceee ettt 207
Performance Control REGISTET cooiiiiieiiieiieiieeie ettt sttt saaesaaeebeebeenaeens 228
Performance Instrumentation Counter RegIStercocoviiiiiiiieniiiiieeeee e 230
Operational Flow Diagram for Controlling Event Counters —.........ccccoeceeveerienieneenenieencenieenens 232
DiSPAtCh COUNLEIS .oieivieiieiiieiieeie et eteete et et e et e et e eseteesteesbeesateenseenseesssesnseesaesnseenseensaesnsaens 235
D-Cache Load Miss Stall REZIONS ooviiiiiiiiieiiiieeeie e e 241
Three-Dimensional Array Fixed-Point Address Format —...........cocoociiinininininicccicen 272
Three-Dimensional Array Blocked-Address Format (Ar ray8) ...ocoooveveveieieieeeeeeeeee 272
Three-Dimensional Array Blocked-Address Format (Ar r ay16)occooeveeieinenininceene 272
Three-Dimensional Array Blocked-Address Format (Ar r ay32) .ooooeieieieieieeeeee e 273
FMULSXIO0 OPEIAtION .eutieiiiiiiieiieniieiite et stte sttt e stte ettt ee st sbe e bt e stteeabeesbeessbeenbeenbeesaseenbeens 365
FMULSXIOAU OPETAtION .oveeeiiieiiieiieeiieeieerieesite st eieesite st et esieesatesateesteesatesnbeenseesaeesnseeseens 365

List of Figures xvii

Xviii

FIGURE A-7

FIGURE A-8

FIGURE A-9

FIGURE A-10

FIGURE A-11

FIGURE A-12

FIGURE A-13

FIGURE A-14

FIGURE A-15

FIGURE A-16

FMULBXLOAL OPEIAtION ..cuecveuiieiinieieiieiesisieieietenteteseetesestetesteteseesese st seeseseesenesbesesseseneeseneans 366

FIMULBSUX LB OPETration cuoovievieiieieeieiieeiete ettt ettt seee 366
FMULBLUXLE OPEration ccoecveeviiiviieiiiieeiete ettt ettt vt ete s ereeseesseessesesseeseeaeessesaeesseenas 367
FMULDBSUX L6 OPEIation ..c.ccieviiieieiieiieiieeiitesteieieseeet et s seesteseeeeeteeaesaessessenseseeseenessessenes 368
FMULDBULX 16 OPEIation ..c.ccieviieeieiieiieeieteeieeteieie et eteeteeseseeseessesseseesessessessesseseeseesessensenes 368
FPACKLE OPEIation ocieuiiiieiiiiienieiieiietiete ettt ettt ss et sseseeseesesse s essensessesseseesensenns 374
FPACKB2 OPEIAtION .oveuiieuiieiinieieiieieitetettetete ettt sttt ettt tese sttt eseeese st besesseneseseneens 375
FPACKFT X OPETAtION ...ocvicviviiiiiieeieeeeee ettt ettt ettt et eae s 376
FEXPAND OPETration cccviiviieiiiieiiecieieete ettt ettt ete et te s ete s e reessesseesseeseesaesseeseesseessesseens 377
FPMERGE OPEIation ...c.ocieeiiiiiiieiesieeieitettete sttt ettt ettt et et eteetesaessessenseseeneeneesensenes 378

UltraSPARC llli Processor User's Manual * June 2003

List of Tables

TABLE 4-1

TABLE 4-2

TABLE 4-3

TABLE 4-4

TABLE 4-5

TABLE 5-1

TABLE 5-2

TABLE 5-3

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 5-7

TABLE 6-1

TABLE 6-2

TABLE 6-3

TABLE 6-4

TABLE 6-5

TABLE 6-6

Processor PIPEliNe StAZES ...ooviiiiiiiiiiieiie ettt sttt 32
EXECUtiON PIPEIINES .oovieiiieiieiieciie ettt ettt et ettt st e et e e aeesrbeenseesaeesnneennnean 37
SPARC-V9 Conditional MOVES ..c..ccovuerieuieiiniinieieiieiinieieeeiestee ettt eae st sne e 48
EXECUtion PIPEIINES .oouviiiiiiiiiiieeiie ettt ettt sttt st et 48
UltraSPARC I1Ii Processor Instruction Latencies and Dispatching Propertiesccccceuenenee. 50
Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges ccccooeoeieincncnnnnn 60
Integer Data ALIZNMENT ooiuiiiiiiiiiiieie ettt ettt et e sttt et e sebesabeenbeesaeesaaeeas 61
Floating-Point Doubleword and Quadword AlIgNmentccccceeveerienierieesieeieneeseeieeee e 65
Floating-Point Single-Precision Format Definitionsc.ccccoeoieoieiieieneninenceeseeceeee 66
Floating-Point Double-Precision Format Definitioncccccocceiiiriiniiniienieieieieeienceeeen 67
Floating-Point Quad-Precision Format Definitions —cc.cocooveveniiiininiiiniencnecnencceeee 68
Pixel, Fixed16, and Fixed32 Data ALIgNMENtcccceeiieiieiiiininieieieeesie e 70
Integer Unit General-Purpose REZISIETS ...cccuiiiiiiiiiiiiiiiieiiesieeee ettt 75
32-bit Floating-Point Registers with Alasing ccccoevieiieiiiieiieiiecieeeeeee e 81
64-bit Floating-Point Registers with Aliasing c.ccooeviiiiiniiiieee e 81
128-bit Floating-Point Registers with ALASING ...oceevvieiiiriiieiiiieeieeteeee e 82
Floating-Point Register Number ENcoding cccoecieiiiiiiiiiiieiieiecceiecee e 82
State and Ancillary State REGISIErS ooieiiiiiiiiiieiee e 85

List of Tables Xix

XX

TABLE 6-7

TABLE 6-8

TABLE 6-9

TABLE 6-10

TABLE 6-11

TABLE 6-12

TABLE 6-13

TABLE 6-14

TABLE 6-15

TABLE 6-16

TABLE 6-17

TABLE 6-18

TABLE 6-19

TABLE 6-20

TABLE 6-21

TABLE 6-22

TABLE 6-23

TABLE 6-24

TABLE 6-25

TABLE 6-26

TABLE 6-27

TABLE 7-1

TABLE 7-3

TABLE 7-4

TABLE 7-5

TABLE 7-6

Privileged REGISTETS ...ooiiiiiieiiieiiietie ettt ettt ettt st et e b e st e beesbeesanee e
ASI and Specially Accessed REGISTETS ccueevieiiieriieriierieriieeie st ete e eteeteete bt seeesaeeseeeseee e
DCR BIt DESCIIPLON ueuiiiieiieiieiietieteieeei ettt ettt ettt ettt eaesae e enseseeseesessessenseneeseesenee
GSR OPCOACS ettt ettt ettt ettt e bt e sab e e abeesabe e bt e saeeenbeesabeenbeesseee e
GSR Bit DESCIIPHION 1.vivvieiieiititiieiiee ettt ettt ettt et ae et as s eneeae s nseae s
Register-window State REZISTEIS ...o.eoiiiiiiiiieieie et
SOFTINT Bit DESCIIPHONS ..eeutieiiiiiiieiieitieniteeie ettt ettt siee sttt esbeesibesabeenbeesbeesseeenteennes
TImer State REGISIEIS .ooviiiieiiieiieeiie ettt ettt et e et e st e et e ebeesteesnbeenseesseesssesnseenseeenes
Trap Stack Register Power-on and Normal Operation ccoceeeeieiienienenienenceeeeseeecencenes
PSTATE Global Register Selection EVENES ccooievirieieiiiieieiieiiieieresieic et
MM ENCOQINGS .eievieeiieiiieeiieeite et stee et estte et e stte ettt esteessbeeteeesseenseessseesseessseenseessseenseesssesnseenns
Register-Window State Privileged RegISters cccooeiiiiiiiiiieieceee e
Processor Implementation COAES cc.eivuieiiieiiiiieiie ettt ettt st et e s e
UltraSPARC I1Ii Processor Mask Version Codes —ccccovivieiniiiiniiiniieencieeseeeeeeen
Floating-Point Condition Codes (f ccn) Fields of FSR cooveiieiiiiieeeeeee e
Rounding Direction (RD) Field of FSR ..o
Floating-Point Trap Type (f t t) Field 0f FSR) ..ooioioiiiiiiiiiieeceeee e

Standard Conditions Under Which unfinished_FPop Trap Type
CAN OCCUL .o ettt e ee e ee e eae e e eanes

Setting Of FSRLUCEXC DItS .ooiiiiiiiiiiiieee ettt st
DCUCR Bit Field DESCIIPHONS ..icvieciieriieriieiiieieeitesiiesteeeeeteeteesseessaesseessaeenseenseessaesssessnennne
ASIs Affected by Watchpoint TIaPs ...ooeeeeriereiieieeeeeeie et
MOV and FMOVTE Test CONAIIONS ..veuvveeiieteieieiirietecetecseete ettt
Instruction Summary for the Integer Execution Environment —.........ccccocooiviiiniiininiicnne.
Instruction Summary for the Floating-point Execution Environment —ccccooceoiiininenennnne.
Instruction Summary for the VIS Execution Environment —.........ccccoeoeevieniiinieniienienieenieneene

Instruction Summary for Data CONETENCY ccceciiviiiiieiicii ettt

UltraSPARC llli Processor User's Manual * June 2003

TABLE 7-7

TABLE 7-8

TABLE 7-9

TABLE 7-10

TABLE 7-11

TABLE 8-1

TABLE 8-2

TABLE 8-3

TABLE 8-4

TABLE 8-5

TABLE 9-1

TABLE 9-2

TABLE 10-1

TABLE 10-2

TABLE 10-3

TABLE 10-4

TABLE 10-5

TABLE 10-6

TABLE 10-7

TABLE 10-8

TABLE 11-1

TABLE 11-2

TABLE 11-3

TABLE 11-4

TABLE 11-5

TABLE 11-6

TABLE 11-7

Instruction Summary for Register-window Managementccoceeveevienieneeneenienniesieseeeeen 170

Instruction Summary for Program Control Transfercccccocovvveviiinieiiciieececeeeee e 170
Instruction SuMmary Table oooiiiiiii e 171
Instruction Field INterpretation cooceeiiuiiiiiiiieniesie ettt 174
Processor Actions on Unimplemented INStrUCtIONS ooveevieieeieeienieeienceieeieeee e 176
MEMBAR SEMANICS .eitieiieiiiiieie ettt ettt ettt e et e et et e b e e st et e e beeneenbeeneenee 187

MEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong Ordering 189

MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong Ordering ..190

ASIs That Support SWAP, LDSTUB, and CAS ..o 191
Types of Software Prefetch INStrUCIONS ...oo.eeviiiiiiiiiieec e 193
L2-Cache Flush ASTFOIMAat cccooiiiiiiiiiiiiiiiicccee e 207
Explanation of P-cache control DitS cccooiiiiiiiiiiiieeecee e 209
BUSY and NACK Bits of Interrupt Vector Dispatch Register —cccceevevvienieniniienienciieee. 216
Outgoing Interrupt Vector Data Register Format —cccooievieiieiiiiieiececeeecesee e 219
Interrupt Vector Dispatch Register Format —oocooiiiiiiiiiiiieeeee e 219
Interrupt Dispatch Status Register FOrmat —oocoioiiiiiiiiiiiiiiieeeeeee e 220
Incoming Interrupt Vector Data Register Format —cccoocievieiieiiinieeiecececeeceeeee e 221
Interrupt Receive Register FOrmMat —coooiiiiiiiiiiiee e 221
SOFTINT Register FOrmat —c.coooiiiiiiiiiiii ittt st 222
SOFTE NT ASRS oottt ettt ettt 223
PCR BIt DESCIIPON ..cuiitieiiiiieiieiieieeteeteiett ettt ettt ettt eaesbe b eseeseeseeaesbenseneeseesesaennens 229
PIC Re@ISTEr FICLAS ..oiueieiiiiiiieiieeie ettt st e aee s 230
PIC Counter Overflow Processor Compatibility COmMpAariSOnccceeceevveecvereeneeriesveneeneennns 231
Instruction Execution Clock Cycles and Counts —coceviriiiiinieieieeese e 233
Counters for Collecting ITU StatiStiCS c.eevueeriieriieriieiiieniieiiesttest ettt ettt st 234
Counters for ITU Stalls ccooiiiiiiiiiiicce e 235
Counters for R-stage Stalls cooiiiiiiiieiieee et 236

List of Tables XXi

XXii

TABLE 11-8

TABLE 11-9

TABLE 11-10

TABLE 11-

—_

TABLE 11-

—

2

TABLE 11-

3

TABLE 11-

4

TABLE 11-

—

5

TABLE 11-

6

TABLE 11-

7

TABLE 11-

—

8

TABLE 11-

9

TABLE 12-1

TABLE A-1

TABLE A-2

TABLE A-3

TABLE A-4

TABLE A-5

TABLE A-6

TABLE A-7

TABLE A-8

TABLE A-9

TABLE A-10

TABLE A-11

TABLE A-12

TABLE A-13

TABLE A-14

TABLE A-15

TABLE A-16

Counters for RECITCUIAtION ooooiiiiiiiiiiie e e ettt e e e 236

Counters for Instruction Cache EVENts cccoociviiiiiiiiiiiiiiiicceeceeeeeeeeeeeeeenae 237
Counters for Data Cache EVENtS ccociiiiiiiiiniiciniiccneneeeeseceeieeeeeeee et 238
Counters for Write Cache EVENts ccoiiiiiiiiiiiiiiiccce e 238
Counters for Prefetch Cache EVENtS ccocooiiiiiiiiiiiiiiccccceeeee e 239
Counters for L2-cache EVENS ...cccoviiieiiiiiiciiinicceei ettt 239
Re_DC_missovhd Stall Cycle Counter Processor Compatibility —.........cccceveevienieneniienienneniee 240
Memory Controller COUNTETS occuieieieeieeieeieesieesieete et esttesttesaeesaeeteesseessaeenseenseenseesseesnneanns 242
Counters for System Interface StatiStics coceeiieoieriiirieeee e 243
Counters for SOftware StatiStICS c.coiiieriiiiiieietee e 243
Counters for Floating-Point Operation StatiStiCs ccceeceevieeiieriiesiierieniereesieeteeeeeeesneseenes 244
PI C. SL and PI C. SU Selection Bit Field Encodingcccoceevvivieveviniereiieeeieieeieeenns 244
Machine State After Reset and in RED_State oooiiiiiiiiiiiiiiieiieiieeeeee e 254
OPCOAE SUPETSCTIPES .eveevriereerireeieesieesreeteesteeseteesseesseessseeseesssessseessaesssessseesseesssessseessessssessseenes 262
INSEIUCHION ST .oeiiiiiiiiie ettt ettt ettt ettt a e ese bt eneeueene 262
Three-Dimensional r[rs2] Array X/Y DIMENSIONS .ocveecvievieeriieiieeieeieeieeeeseeseesteesseesseenseesseens 272
Edge Mask SPeCifiCAtiON ...c.cccveiiiiiieiieiieeieeiee st ettt et et e eve e e eessbeebeesseessneessaesaessnennns 297
Edge Mask Specification (Little-Endian)ccccoeceiiiieiiiiiiieieeieeieee e 297
Floating-Point to Integer unf i ni shed_FPop Exception Conditionsc.ccoceceevrirrevenenene. 304
Floating-Point/Floating-Point unf i ni shed_FPop Exception Conditions ccccceevenenee. 305
Integer/Floating-Point unf i ni shed_FPop Exception Conditionscccccevveveceirierenennnn. 307
MEMBAR MTBSK ENCOINES oooviieiiiiiiceeeeeeee ettt 338
MEMBAR CITBSK ENCOINGS .ooveieiiiiieiceceeeeeeeeeee ettt 338

MEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong Ordering 340

MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong Ordering ..341

Types of Software Prefetch INStrUCONS ...eocviiviiiiieiecie et 381
Error Handling of Prefetch REqUESES eioiieiieiicieceee et 383
Shift Count ENCOINGS ..eoviieiieiieiie ettt ettt e e et e st eebeetaestaeesaeessaensaesnnes 399
UDI V/UDI Vcc Overflow Detection and Value Returned —ccooeeinnecniniccnnncinennen 430

UltraSPARC llli Processor User's Manual * June 2003

TABLE A-17 SDI V/ SDI Vcc Overflow Detection and Value Returned ocoooovviiiiiiiiiiiecieeeeeeean 431

TABLE A-18 UMULcc / SMULcce Condition Code SEtHNGS ...oecveeieeieeiieieiieeie ettt 438

List of Tables xxiii

XXiv UltraSPARC llli Processor User's Manual * June 2003

Preface

Welcome to the UltraSPARC® I11i Processor User’s Manual. This book contains information
about the architecture and programming of the UltraSPARC IIli processor, one of Sun
Microsystems’ family of SPARC® V9-compliant processors.

Target Audience

This user’s manual is mainly targeted for programmers who write software for the
UltraSPARC I1Ii processor. This user’s manual contains a depository of information that is
useful to operating system programmers, application software programmers, logic designers
and third party vendors who are trying to understand the architecture and operation of the
UltraSPARC I11i processor. This manual is both a guide and a reference manual for low-level
programming of the processor.

A Brief History of SPARC

SPARC stands for Scalable Processor ARChitecture, which was first announced in 1987.
Unlike more traditional processor architectures, SPARC is an open standard freely available
through license from SPARC International, Inc. Any company that obtains a license can
manufacture and sell a SPARC-compliant processor.

By the early 1990s, SPARC processors were available from over a dozen different vendors,
and over 8,000 SPARC-compliant applications had been certified.

In 1994, SPARC International, Inc. published The SPARC Architecture Manual, Version 9,
which defined a powerful 64-bit enhancement to the SPARC architecture. SPARC V9
provided support for the following:

64-bit virtual addresses and 64-bit integer data

XXV

Fault tolerance
Fast trap handling and context switching
Big- and little-endian byte orders

UltraSPARC is the first family of SPARC V9-compliant processors available from Sun
Microsystems, Inc.

Prerequisites

This user’s manual is a companion to The SPARC Architecture Manual, Version 9. The reader
of this user’s manual should be familiar with the contents of The SPARC Architecture
Manual, Version 9, which is available from many technical bookstores or directly from its
copyright holder:

SPARC International, Inc.
2242 Camden Ave, Suite #105
San Jose, CA 95124

(408) 558-8111
http://www.sparc.org

The SPARC Architecture Manual, Version 9 provides a complete description of the

SPARC V9 architecture. Since SPARC V9 is an open architecture, many of the
implementation decisions have been left to the manufacturers of SPARC-compliant
processors. These “implementation dependencies” are introduced in The SPARC Architecture
Manual, Version 9.

XXVi

User’s Manual Overview

This manual is focused on the treatment of the UltraSPARC IIli processor. However, it
sometimes refers to the UltraSPARC III family of processors to indicate generality of a
certain feature. The term “UltraSPARC III family of processors” refers to processors that are
similar to the UltraSPARC IIIi processor.

This manual is divided into multiple sections. These sections are described next.

UltraSPARC llli Processor User's Manual * June 2003

Processor Introduction

The processor introduction section describes the high level features of the UltraSPARC IIli
processor. This section also discusses how the UltraSPARC IIIi processor is used in a system.

Architecture and Functions

This section discusses the details of the UltraSPARC IIIi architecture and the functions of
various processor units. An entire chapter is devoted to a discussion on the instruction
execution pipeline.

Execution Environment

This section describes the details necessary to understand the execution environment. Various
topics such as memory models, data formats, registers, and instruction types are discussed.

Memory and Cache

This section describes the details of memories and caches. Topics such as memory models,
memory sub-system, and caches are discussed.

Supervisor Programming

Supervisor software controls the processor and the instruction execution environment for
itself and application programs. Chapters are devoted to interrupt handling and error
handling.

Performance Programming

This section explores the opportunities to exploit the high-performance architecture of the
processor, that is, performance instrumentation.

Instruction Definitions Appendix

This section describes, in detail, each instruction for the UltraSPARC IIIi processor.

Preface XXVii

SPARC V9 Architecture

The SPARC Architecture Manual, Version 9 was used to implement the processor to insure
SPARC compatibility for user and application programs. The SPARC V9 manual provides
important theoretical information for operating system programmers who write memory
management software, compiler writers who write machine-specific optimizers, and anyone
who writes code to run on all SPARC V9-compatible machines. Book copies of the The
SPARC Architecture Manual, Version 9 are readily available at bookstores or from SPARC
International, Inc.

Software that is intended to be portable across all SPARC V9 processors should adhere to
The SPARC Architecture Manual, Version 9.

In this book, the word architecture refers to the machine details that are visible to an
assembly language programmer or to the compiler code generator. It does not, necessarily,
include details of the implementation that are not visible or easily observable by software.
Where such details are provided, the intent is to enable faster and better programs.

xxviii

Textual Usage

Fonts

Fonts are used as follows:

Italic sans serif font is used for exception and trap names. “The privileged_action
exception...” is an example of how this font is used, it is also used for assembly language
terms, emphasis, book titles, and the first instance of a word that is defined.

Couri er font is used for register fields (named bits), instruction fields, and read-only
register fields. “The r s1 field contains...” is an example of how this font is used. It is also
used for literals, instruction names, register names, and software examples.

UPPERCASE items are acronyms, instruction names, or writable register fields. Some
common acronyms are listed in Acronyms and Definitions. Note: Names of some
instructions contain both uppercase and lowercase letters.

Underbar characters join words in register, register field, exception, and trap names. Note:
Such words can be split across lines at the underbar without an intervening hyphen. “This
is true whenever the integer_condition_code field...” is an example of how the underbar
characters are used.

UltraSPARC llli Processor User's Manual * June 2003

Notational Conventions

The following notational conventions are used:

Square brackets, [], indicate a numbered register in a register file. For example, r [0]
translates to register 0.

Angle brackets, < >, indicate a bit number or colon-separated range of bit numbers within
a field. “Bits FSR<29:28> and FSR<12> are...” is an example of how the angle brackets
are used.

Curly braces, {}, indicate textual substitution. For example, the string
“PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and “ASI_PRIMARY_LITTLE.”

If the bar, |, is used with the curly braces, it represents multiple substitutions. For
example, the string “ASI_DMMU_TSB_{8KBJ|64KB|DIRECT}_PTR_REG” expands to
“ASI_DMMU_TSB_8KB_PTR_REG”, “ASI_DMMU_TSB_64KB_PTR_REG”, and
“ASI_DMMU_TSB_DIRECT_PTR_REG.”

The D symbol designates concatenation of bit vectors. A comma (,) on the left side of an
assignment separates quantities that are concatenated for the purpose of assignment. For
example, if X, Y, and Z are 1-bit vectors and the 2-bit vector T equals 11,, then

X, Y,Z) 0[] T

results in X=0,Y=1,and Z=1.

“A mod B” means “A modulus B,” where the calculated value is the remainder when A is
divided by B.

Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated.
Numbers in other bases are followed by a numeric subscript indicating their base (for
example, 1001,, FFFF 0000,¢). In some cases, numbers may be preceded by “0x” to indicate
hexadecimal (base-16) notation (for example, 0XFFFF.0000). Long binary and hexadecimal
numbers within the text have spaces or periods inserted every four characters to improve
readability.

The notation 7h’1F indicates a hexadecimal number of 1F ;4 with 7 binary bits of width.

Informational Notes

This guide provides several different types of information in notes, as follows:

Preface XXix

XXX

Programming Note — Programming notes contain incidental information about
programming the UltraSPARC Illi processor unless otherwise restricted to a particular
processor in the family.

Implementation Note — Implementation notes contain information that contains
implementation specific information of the UltraSPARC IIli processor compared to other
UltraSPARC processors.

Compatibility Note — Compatibility notes contain information relevant to the previous
SPARC V8 architecture.

UltraSPARC Note — UltraSPARC notes highlight the differences between the
UltraSPARC I and UltraSPARC II processors and the UltraSPARC III family of processors.
This note shows architectural and functional differences that may be generalized or
applicable to one particular processor in one of the families. Check the appropriate User’s
Manual or section in this User’s Manual to determine individual processor functionality as
needed.

Note — This highlights a useful note regarding important and informative processor
architecture or functional operation. This may be used for purposes not covered in one of the
other notes.

UltraSPARC llli Processor User's Manual * June 2003

Acronyms and Definitions

This chapter defines concepts and terminology common to all implementations of
SPARC V0.

address space identifier
AFAR

AFSR

aliased

application program

ASI

ASR
Ax

big-endian

BLD
BST

byte

clean window

coherence

See ASI
Asynchronous Fault Address Register

Asynchronous Fault Status Register

Two virtual addresses that refer to the same physical address

A program executed with the processor in non-privileged mode. Note: Statements
made in this specification regarding application programs may not be applicable to
programs (for example, debuggers) that have access to privileged processor state (for
example, as stored in a memory-image dump).

Address Space Identifier. An 8-bit value that identifies an address space. For each
instruction or data access, the integer unit appends an ASI to the address. See also
implicit ASI.

Ancillary State Register
Either the A0 or Al pipeline

An addressing convention. Within a multiple-byte integer, the byte with the smallest
address is the most significant; a byte’s significance decreases as its address increases.

Block Load
Block Store

Eight consecutive bits of data

A register window in which all of the registers contain zero, a valid address from the
current address space, or valid data from the current address space.

A set of protocols guaranteeing that all memory accesses are globally visible to all
caches on a shared-memory bus.

XXXi

XXXii

completed

consistency

context

copyback

CPI

cross-call

CSR

current window

D-cache
DCTI
DCU

demap

deprecated

DFT

DIMM

dispatch

doublet

doubleword

DQM

ECU

A memory transaction is completed when an idealized memory has executed the
transaction with respect to all processors. A load is considered completed when no
subsequent memory transaction can affect the value returned by the load. A store is
considered completed when no subsequent load can return the value that was
overwritten by the store.

See coherence

A set of translations that supports a particular address space. See also Memory
Management Unit (MMU).

The process of copying back a dirty cache line in response to a cache hit while
snooping.

Cycles Per Instruction. The number of clock cycles it takes to execute an instruction.

An interprocessor call in a multiprocessor system

Control Status Register

The block of 24 r registers that is currently in use. The Current Window Pointer (CVP)
register points to the current window.

Level-1 data memory cache
Delayed Control Transfer Instruction
Data Cache Unit. Includes controller and Tag and Data RAM arrays

To invalidate a mapping in the MMU

The term applied to an architectural feature (such as an instruction or register) for
which a SPARC V9 implementation provides support only for compatibility with
previous versions of the architecture. Use of a deprecated feature must generate correct
results but may compromise software performance. Deprecated features should not be
used in new SPARC V9 software and may not be supported in future versions of the
architecture.

Designed for Test

Dual In-line Memory Module. Provides a single or double bank of SDRAM devices
72 bits or 144 bits of data width.

To send a previously fetched instruction to one or more functional units for execution.
Typically, the instruction is dispatched from a reservation station or other buffer of
instructions waiting to be executed. See also issued.

Two bytes (16 bits) of data

An aligned octlet. Note: The definition of this term is architecture dependent and may
differ from that used in other processor architectures.

Data input/output Mask. Q stands for either input or output.

External or embedded Cache Unit controller

UltraSPARC llli Processor User’'s Manual « June 2003

EMU

exception

extended word

f register

fcenN

FFA or FGA or FP1
FGM or FP0

FGU

floating-point
exception

floating-point IEEE-754
exception

floating-point operate
(FPop) instructions

floating-point trap type

floating-point unit

FPRS
FPU
FRF
FSR

halfword

HBM

External Memory Unit. A combination of the ECU and the Memory Control Unit
(MCU).

A condition that makes it impossible for the processor to continue executing the
current instruction stream without software intervention. See also trap.

An aligned octlet, nominally containing integer data. Note: The definition of this term
is architecture dependent and may differ from that used in other processor
architectures.

A floating-point register. SPARC V9 includes single-, double-, and quad-precision
f registers.

One of the floating-point condition code fields f ccO, f ccl, fcc2, or f cc3.
Floating-Point/Graphics ALU pipeline
Floating-Point/Graphics Multiply pipeline

Floating Point and Graphics Unit (FPO and FP1)

An exception that occurs during the execution of a Floating-point operate (FPop)
instruction while the corresponding bit in FSR. TEMis set to one. The exceptions are
unfinished_FPop, unimplemented_FPop, sequence_error, hardware_error,
invalid_fp_register, or IEEE_754_exception.

A floating-point exception, as specified by IEEE Standard 754-1985. Listed within this
specification as /[EEE_754_exception.

Instructions that perform floating-point calculations, as defined by the FPop1l and
FPop2 opcodes. FPop instructions do not include FBf cc instructions or loads and
stores between memory and the floating-point unit.

The specific type of a floating-point exception, encoded in the FSR. ft t field.

A processing unit that contains the floating-point registers and performs floating-point
operations, as defined by this specification.

Floating Point Register State
Floating-Point Unit
Floating-Point Register File
Floating-Point Status Register

An aligned doublet. Note: The definition of this term is architecture dependent and
may differ from that used in other processor architectures.

Hierarchical Bus Mode

Acronyms and Definitions XXXiii

hexlet
HPE
I-cache
IEU
nu

implementation

implementation
dependent

implicit ASI

informative appendix

initiated
instruction field

instruction group
instruction set

architecture

integer unit

interrupt request

ISA

issued

XXXV

Sixteen bytes (128 bits) of data
Hardware Prefetch Enable
Level-2 Instruction memory cache
Instruction Execution Unit
Instruction Issue Unit

Hardware or software that conforms to all of the specifications of an instruction set
architecture (ISA).

An aspect of the architecture that can legitimately vary among implementations. In
many cases, the permitted range of variation is specified in the SPARC V9 standard.
When a range is specified, compliant implementations must not deviate from that
range.

The ASI that is supplied by the hardware on all instruction accesses and on data
accesses that do not contain an explicit ASI or a reference to the contents of the ASI
register.

An appendix containing information that is useful but not required to create an
implementation that conforms to the SPARC V9 specification. See also normative
appendix.

Synonym: issued
A bit field within an instruction word

One or more independent instructions that can be dispatched for simultaneous
execution.

See ISA

A processing unit that performs integer and control-flow operations and contains
general-purpose integer registers and processor state registers, as defined by this
specification.

A request for service presented to the processor by an external device

Instruction Set Architecture. A set that defines instructions, registers, instruction and
data memory, the effect of executed instructions on the registers and memory, and an
algorithm for controlling instruction execution. It does not define clock cycle times,
cycles per instruction, datapaths, etc.

(1) A memory transaction (load, store, or atomic load-store) is “issued” when a
processor has sent the transaction to the memory subsystem and the completion of the
request is out of the processor’s control. Synonym: initiated.

(2) An instruction (or sequence of instructions) is said to be issued when released from
the processor's in-order instruction fetch unit. Typically, instructions are issued to a

UltraSPARC llli Processor User’'s Manual * June 2003

1U
L2-cache

leaf procedure

little-endian

load

load-store

may

MCU

Memory Management
Unit

MMU

module

MOESI

must
NaN
NCPQ

next program counter

reservation station or other buffer of instructions waiting to be executed. (Other
conventions for this term exist, but this document attempts to use “issue” consistently
as defined here). See also dispatched.

Integer Unit
External or embedded unified, instruction/data, Level-2 memory cache

A procedure that is a leaf in the program’s call graph, that is, one that does not call (by
using CALL or JMPL) any other procedures.

An addressing convention. Within a multiple-byte integer, the byte with the smallest
address is the least significant; a byte’s significance increases as its address increases.

An instruction that reads (but does not write) memory or reads (but does not write)
location(s) in an alternate address space. Load includes loads into integer or
floating-point registers, block loads, Load Quadword Atomic, and alternate address
space variants of those instructions. See also load-store and store, the definitions of
which are mutually exclusive with load.

An instruction that explicitly both reads and writes memory or explicitly reads and
writes location(s) in an alternate address space. Load-store includes instructions such
as CASA, CASXA, LDSTUB, and the deprecated SWAP instruction. See also load and
store, the definitions of which are mutually exclusive with load-store.

A keyword indicating flexibility of choice with no implied preference. Note: “May”
indicates that an action or operation is allowed; “can” indicates that it is possible.

Memory Control Unit. Controls the SDRAM signals

See MMU

Memory Management Unit. The address translation hardware in the UltraSPARC IIIi
implementation that translates 64-bit virtual address into physical addresses. The
MMU is composed of the TLBs, ASRs, and ASI registers used to manage address
translation. See also context, physical address, and virtual address.

A master or slave device that attaches to the shared-memory bus

A cache-coherence protocol. Each of the letters stands for one of the states that a cache
line can be in, as follows: M, modified, dirty data with no outstanding shared copy; O,
owned, dirty data with outstanding shared copy(s); E, exclusive, clean data with no
outstanding shared copy; S, shared, clean data with outstanding shared copy(s); I,
invalid, invalid data.

Synonym: shall
Not a Number
Noncoherent Pending Queue

See nPC

Acronyms and Definitions XXXV

XXXVi

NFO

non-faulting load

non-privileged

non-privileged mode

normative appendix

nPC

NPT
NW NDOWS
OBP

octlet

opcode
optional
ORQ

PA

Page Table Entry

PC

PCR
physical address

PIC

Nonfault access only

A load operation that, in the absence of faults or in the presence of a recoverable fault,
completes correctly, and in the presence of a nonrecoverable fault returns (with the
assistance of system software) a known data value (nominally zero). See also
speculative load.

An adjective that describes:

(1) the state of the processor when PSTATE. PRI V = 0, that is, non-privileged mode;
(2) processor state information that is accessible to software while the processor is in
either privileged mode or non-privileged mode; for example, non-privileged registers,
non-privileged ASRs, or, in general, non-privileged state;

(3) an instruction that can be executed when the processor is in either privileged mode
or non-privileged mode.

The mode in which a processor is operating when PSTATE. PRI V = 0. See also
privileged.

An appendix containing specifications that must be met by an implementation
conforming to the SPARC V9 specification. See also informative appendix.

Next program counter. A register that contains the address of the next executed
instruction if a trap does not occur.

Non-Privileged Trap
The number of register windows present in a particular implementation
OpenBootTM PROM

Eight bytes (64 bits) of data. Not to be confused with “octet,” which has been
commonly used to describe eight bits of data. In this document, the term byte, rather
than octet, is used to describe eight bits of data.

A bit pattern that identifies a particular instruction
A feature not required for SPARC V9 compliance
Outgoing Request Queue

Physical Address. An address that maps real physical memory or I/O device space. See
also virtual address.

See PTE

Program Counter. A register that contains the address of the instruction currently being
executed by the IU.

Performance Control Register
See PA

Performance Instrumentation Counter

UltraSPARC llli Processor User’'s Manual * June 2003

PIO
PIPT
PIVT

POR

prefetchable

privileged

privileged mode

processor
program counter
PSO
PTA

PTE

QNaN
quadlet

quadword

I register
RD

RDPR

Programmed I/O

Physically Indexed, Physically Tagged
Physically Indexed, Virtually Tagged
Power-on Reset. The most aggressive reset.

(1) An attribute of a memory location that indicates to an MMU that PREFETCH
operations to that location may be applied.

(2) A memory location condition for which the system designer has determined that no
undesirable effects will occur if a PREFETCH operation to that location is allowed to
succeed. Typically, normal memory is prefetchable.

Non-prefetchable locations include those that, when read, change state or cause
external events to occur. For example, some I/O devices are designed with registers
that clear on read; others have registers that initiate operations when read. See also side
effect.

An adjective that describes:

(1) the state of the processor when PSTATE. PRI V = 1, that is, privileged mode;

(2) processor state that is only accessible to software while the processor is in
privileged mode; for example, privileged registers, privileged ASRs, or, in general,
privileged state;

(3) an instruction that can be executed only when the processor is in privileged mode.

The mode in which a processor is operating when PSTATE. PRI V = 1. See also
non-privileged.

The combination of the integer unit and the floating-point unit
See PC.

Partial Store Order

Pending Tag Array

Page Table Entry. Describes the virtual-to-physical translation and page attributes for a
specific page. A PTE generally means an entry in the page table or in the TLB;
however, it is sometimes used as an entry in the translation storage buffer (TSB). In
general, a PTE contains fewer fields than a TTE. See also TLB and TSB.

Quiet Not a Number
Four bytes (32 bits) of data

Aligned hexlet. Note: The definition of this term is architecture dependent and may be
different from that used in other processor architectures.

An integer register. Also called a general-purpose register or working register.
Rounding Direction

Read Privileged Register

Acronyms and Definitions XXXVii

XXXViii

RED_state

reserved

reset trap

restricted

RMO

rsi,rs2,rd

RTO
RTOR
RTS
RTSM
SAM
scrub

SDRAM

SFAR
SFSR

shall

Reset, Error, and Debug state. The processor state when PSTATE. RED=1. A
restricted execution environment used to process resets and traps that occur when
TL = MAXTL — 1.

Describes an instruction field, certain bit combinations within an instruction field, or a
register field that is reserved for definition by future versions of the architecture.

Reserved instruction fields shall read as zero, unless the implementation supports
extended instructions within the field. The behavior of SPARC V9 processors
when they encounter nonzero values in reserved instruction fields is undefined.

Reserved bit combinations within instruction fields are defined in Appendix A,
Instruction Definitions. In all cases, SPARC V9 processors shall decode and trap on
these reserved combinations.

Reserved register fields should always be written by software with values of those
fields previously read from that register or with zeroes; they should read as zero in
hardware. Software intended to run on future versions of SPARC V9 should not
assume that these fields will read as zero or any other particular value. Throughout
this specification, figures and tables illustrating registers and instruction encodings
indicate reserved fields and combinations with an em dash (—).

A vectored transfer of control to privileged software through a fixed-address reset trap
table. Reset traps cause entry into RED_st at e.

Describes an ASI that may be accessed only while the processor is operating in
privileged mode.

Relaxed Memory Order

The integer or floating-point register operands of an instruction. The source registers
are r S1 and r s2; the destination register is r d.

Read to Own

Read to Own Remote. A reissued RTO transaction.

Read to Share

Read to Share Mtag. An RTS to modify MTag transaction.
SPARC Architecture Manual, Version 9

Writes data from the W-cache to the L2-cache

Synchronous Dynamic Random Access Memory. May be prefaced with DDR, double
data rate SDRAM.

Synchronous Fault Address Register
Synchronous Fault Status Register

A keyword indicating a mandatory requirement. Designers shall implement all such
mandatory requirements to ensure interoperability with other SPARC V9-compliant
products. Synonym: must.

UltraSPARC llli Processor User's Manual * June 2003

should

SI AM

side effect

SIG
SIR
SNaN

snooping

SPE

speculative load

store

superscalar

supervisor software
TBA

TLB

TLB hit

TLB miss

A keyword indicating flexibility of choice with a strongly preferred implementation.
Synonym: it is recommended

Set Interval Arithmetic Mode instruction

The result of a memory location having additional actions beyond the reading or
writing of data. A side effect can occur when a memory operation on that location is
allowed to succeed. Locations with side effects include those that, when accessed,
change state or cause external events to occur. For example, some I/O devices contain
registers that clear on read; others have registers that initiate operations when read. See
also prefetchable.

Single-Instruction Group. Sometimes shortened to “single-group.”
Software-Initiated Reset
Signalling Not a Number

The process of maintaining coherency between caches in a shared-memory bus
architecture. All cache controllers monitor (snoop) the bus to determine whether they
have a copy of the shared cache block.

Software Prefetch Enable

A load operation that is issued by the processor speculatively, that is, before it is
known whether the load will be executed in the flow of the program. Speculative
accesses are used by hardware to speed program execution and are transparent to code.
An implementation, through a combination of hardware and system software, must
nullify speculative loads on memory locations that have side effects; otherwise, such
accesses produce unpredictable results. Contrast with non-faulting load, which is an
explicit load that always completes, even in the presence of recoverable faults.

An instruction that writes (but does not explicitly read) memory or writes (but does not
explicitly read) location(s) in an alternate address space. Store includes stores from
either integer or floating-point registers, block stores, partial store, and alternate
address space variants of those instructions. See also load and load-store, the
definitions of which are mutually exclusive with store.

An implementation that allows several instructions to be issued, executed, and
committed in one clock cycle.

Software that executes when the processor is in privileged mode
Trap Base Address

Translation Lookaside Buffer. A cache within an MMU that contains recent partial
translations. TLBs speed up closely following translations by often eliminating the
need to reread PTE from memory.

The desired translation is present in the on-chip TLB

The desired translation is not present in the on-chip TLB

Acronyms and Definitions XXXiX

x|

TPC

Translation Lookaside

Buffer

trap

TSB
TSO

TTE

UE

unassigned

undefined

unimplemented

unpredictable

unrestricted

user application
program

VA

victimize

VIPT

Trap-saved PC

See TLB

The action taken by the processor when it changes the instruction flow in response to
the presence of an exception, a TCC instruction, or an interrupt. The action is a
vectored transfer of control to supervisor software through a table, the address of
which is specified by the privileged TBA register. See also exception.

Translation Storage Buffer. A table of the address translations that is maintained by
software in system memory and that serves as a cache of the address translations.

Total Store Order

Translation Table Entry. Describes the virtual-to-physical translation and page
attributes for a specific page in the Page Table. In some cases, the term is explicitly
used for the entries in the TSB.

User process error

A valued (for example, an ASI number) semantics which are not architecturally
mandated and which may be determined independently by each implementation within
any given guidelines.

An aspect of the architecture deliberately left unspecified. Software should have no
expectation of, nor make any assumptions about, an undefined feature or behavior. Use
of such a feature can deliver unexpected results, may or may not cause a trap, can vary
among implementations, and can vary with time on a given implementation.

Notwithstanding any of the above, undefined aspects of the architecture shall not cause
security holes (such as allowing user software to access privileged state), put the
processor into supervisor mode or an unrecoverable state.

An architectural feature that is not directly executed in hardware because it is optional
or emulated in software.

Synonym: undefined

Describes an ASI that can be used regardless of the processor mode; that is, regardless
of the value of PSTATE. PRI V.

Synonym: application program

Virtual address. An address produced by a processor that maps all systemwide,
program-visible memory. Virtual addresses usually are translated by a combination of
hardware and software to physical addresses, which can be used to access physical
memory.

[Error handling]

Virtually Indexed, Physically Tagged

UltraSPARC llli Processor User's Manual * June 2003

virtual address See VA

VIS Visual Instruction Set. Performs partitioned integer arithmetic and other small integer
operations.

VIVT Virtually Indexed, Virtually Tagged (cache)
WAW Write After Write
WDR WatchDog trap-level Reset

word An aligned quadlet. Note: The definition of this term is architecture dependent and
may differ from that used in other processor architectures.

WRF Working Register File
writeback The process of writing a dirty cache line back to memory before it is refilled.
WRPR Write Privileged Register

XIR Externally Initiated Reset

Acronyms and Definitions xli

xlii UltraSPARC llli Processor User's Manual ¢ June 2003

sEcTiOoN 1

Processor Introduction

June 2003 Section | « Processor Introduction « 1

UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 1

Introducing the UltraSPARC 111
Processor

1.1

Overview

The UltraSPARC I11i processor is derived from Sun Microsystems high-end UltraSPARC III
processor, providing many of the same performance, reliability, and security features, but in
a highly integrated format that brings the power of the UltraSPARC architecture to cost-
efficient high-end desktop systems and inexpensive 1-4 way servers. It implements both the
full 64-bit, SPARC V9 architecture and version 2.0 of Sun Microsystems’ VIS™ instruction
set. The VIS instruction set provides a wide range of “Single Instruction, Multiple Data”
(SIMD) acceleration functions for working with 8-, 16-, and 32-bit data values, doing pixel
manipulation, 2D image processing, 3D graphics, data compression, and other specialized
performance-critical operations.

Major functional blocks included in the UltraSPARC IIIi processor are:

Integer execution unit

Floating-point execution unit

32 KB primary (Level 1 or L1) instruction cache

64 KB primary (L1) data cache

1 MB L2 unified cache (used for both instructions and data)
2 KB prefetch cache for floating-point data

2 KB write cache

Synchronous DRAM (SDRAM) memory controller

JBUS controller

In common with all other members of the UltraSPARC III family of processors, the
UltraSPARC I1Ii processor is a 4-way superscalar processor, meaning it attempts to fetch 4
instructions at a time from the L1 instruction cache, and (given the appropriate instruction
mix) is capable of sustaining an execution rate of 4 instructions per clock cycle. Each
instruction is processed through a 14-stage pipeline that starts with address generation and

1-3

ends with the final retirement of any valid execution result. A 16-entry instruction queue
decouples instruction fetch from instruction issue, working to buffer any discrepancies
between these two rates. Thus, if more instructions are fetched than can be issued repeatedly,
an empty instruction queue gradually will fill. Or, if the next instruction fetch misses in the
L1 cache, a filled instruction queue can hide this break in the flow of instructions through the
pipeline, by continuing to supply the execution units with instructions for the several clock
cycles needed to retrieve the missing block of instructions from the on-chip L2 cache.

To enhance throughput, while instructions enter and exit the instruction queue in strict
program order, they can complete executing out-of-order. For example, if a short latency
instruction (like an integer add) follows a long latency instruction (like an integer divide) in
the pipeline, the fast operation does not need to wait on the slow one to finish. Instructions
fetched together will enter the queue in parallel, but, within the constraints imposed by
program order, they may exit the queue in company with instructions fetched either earlier or
later (depending on the specific instruction mix and availability of the necessary functional
units).

The UltraSPARC Il1i processor is supported by Sun’s popular Solaris™ operating system,
providing access to the more than ten thousand applications that have been developed for the
SPARC/Solaris platform over the years. Comprehensive sets of programs are available for
many fields, including engineering, manufacturing, telecommunications, financial services,
health, retail, ecommerce, and a variety of other industry segments. Additional operating
systems available for use with UltraSPARC processors include Linux and leading real-time
operating systems. A robust set of tools for developing software also can be readily acquired,
either from Sun Microsystems or independent software vendors.

1.2

1-4

Features

The UltraSPARC IlI1i processor is richly featured, providing all of the following capabilities:
Binary compatibility with the entire base of SPARC application code.
Full 64-bit virtual address space.

64-bit internal operation, including 64-bit datapaths, 64-bit ALUs, and 64-bit address
arithmetic.

43-bit physical address space, supporting up to 8 Terabytes of memory.

Low latency and high bandwidth for memory operations, due in part to a memory
hierarchy that incorporates separate on-chip L1 instruction and data caches, a 1 MB on-
chip unified L2 cache, a prefetch cache, a write cache, and an on-chip SDRAM controller.

1 to 4-way glueless multiprocessing.

Introductory frequency above 1 GHz, scaling up over time, propelled by a 14-stage non-
stalling pipeline.

4-way superscalar instruction dispatch to nine separate execution units.

UltraSPARC llli Processor User's Manual * June 2003

High-performance JBUS system interface.
Sophisticated power management.

Extensive RAS protection, starting with error detection and correction (EDC) on the
primary and secondary caches.

Compared to the previous generation UltraSPARC IIi processor, the UltraSPARC IIIi
processor offers several useful new features, including version 2.0 of the VIS instruction set,
support for interval arithmetic, better prefetch capabilities, an extended interrupt scheme, and
4 times as much physical address space. It combines these advantages with far greater levels
of performance as well as greatly improved data reliability.

The UltraSPARC I1Ii processor brings all the advantages of full 64-bit computing to both
desktop systems and entry-level servers, together with up to 4-way glueless MP operation, in
a very cost-competitive form.

1.3

Summary

Detailed information about specific functional blocks and features of the UltraSPARC IIIi
processor can be found in the following chapters of this manual. This section attempts to
summarize the more significant elements of the UltraSPARC I1li processor, for the benefit of
readers seeking to quickly acquire a relatively comprehensive understanding of it.

Register Windows

In addition to the usual assortment of registers used for control purposes, status information,
condition codes, etc., the UltraSPARC architecture includes 160 64-bit integer registers, and
another set of 32 64-bit registers for use by the FPU and VIS instructions. The 160 integer
registers are organized into 8 overlapping register “windows” of 32-registers each. In each
register window, 8 registers are shared with the previous window, and are used to hold input
parameters from a calling routine; 8 registers are shared with the next window, and are used
to hold output parameters for use by a called routine; 8 registers are unshared, and are used
to hold local parameters; while 8 registers are global, and are used to hold values shared by
all routines. The 8 output registers for one window are the 8 input registers for the next
window. There are four sets of § global registers, designated for different uses, as
appropriate: normal, MMU, interrupt, and alternate. (8 x 8 in/out registers + 8 x 8 local
registers + 4 x 8 global registers = 160 integer registers.) Register windows are a distinctive
feature of the SPARC architecture, designed to provide a very fast means to handle context
switches, interrupts, and traps.

32 KB Primary Instruction Cache Memory (4-way set associative)

Holds 8K fixed-width 4-byte SPARC instructions for immediate access by the pipeline.
Instructions in this cache are protected against single bit errors by parity checking. If an error
is detected, the cache line with the erring byte is marked as invalid; as a consequence, the
next access to that line forces it to be refilled with valid instructions from the L2 cache.

Chapter 1 Introducing the UltraSPARC llli Processor 1-5

64 KB Primary Data Cache Memory (4-way set associative)

Holds data items for rapid loads to and stores from the register file. (In common with other
RISC architectures, all SPARC instructions operate register-to-register, accessing their
operands from the register file and return their results to it.) Uses the same parity checking/
line invalidation scheme for EDC as the instruction cache. Cache is write-through, so data in
the primary cache is always “clean.”

2 KB Prefetch Cache Memory (4-way set associative)

A special cache used to hold floating-point data that can be fetched well ahead of use. This
cache increases the effective size of the primary data cache when executing floating-point
programs, and provides specific hardware support for speculative loads, including both
software and hardware data prefetch operations.

2 KB Write Cache Memory (4-way set associative)

A special cache used to coalesce data being stored back to memory. By reducing the number
of separate store operations needed, effectively increases the memory bandwidth of the
processor.

Non-cacheable Store Compression

The UltraSPARC I1Ii processor uses a 16-byte buffer to merge adjacent non-cacheable stores
into a single external data transaction, greatly increasing store bandwidth to the graphics
frame buffer. In addition, a flow control signal is available through the Graphics Status
Register that allows software to interrogate a FIFO status signal on the graphics card, without
requiring completion of a non-cacheable read to the device. This prevents stalling due to
waiting for prior non-cacheable stores to be pushed to the device, and eliminates bubbles in
the store throughput due to the pipeline depth between the processor and the graphics device.

1 MB Unified Secondary Cache (4-way set associative)

This large, on-chip L2 cache buffers the impact of L1 cache misses by providing fast, local
access to a much larger pool of instructions and data than will fit into the several L1 caches.
The effect is to substantially reduce the overall latency of memory operations. The tags for
the L2 cache are protected by parity checking, while data in the cache is protected by full
ECC, providing single-bit error correction and double-bit error detection. The L2 cache uses
a write-back policy to reduce store traffic to main memory. Any uncorrectable double-bit
errors are marked on write-back, so they will not propagate to other processors in an MP
configuration.

JBUS Interface

A Sun-proprietary system interface new to the UltraSPARC IIli processor, developed to
provide a combination of the high performance expected of Sun systems with the low cost
demanded by the desktop and entry-level server marketplaces. A companion JIO chip is
available from Sun Microsystems. In addition to supporting the shared address/data JBus
itself, the companion chip also provides support for up to 2 industry-standard PCI buses, as
well as for Sun’s proprietary UPA64S graphics bus (in place of the secondary PCI bus).

UltraSPARC llli Processor User's Manual * June 2003

SDRAM Controller

Provides direct connectivity of the processor to main memory through a 2-channel DDR
SDRAM interface. Full ECC protection is provided on all stored memory data, and
transactions on the memory/address bus are protected by parity checking. In the interests of
simplicity, any system or DRAM-related, non-correctable errors are handled as deferred
traps.

Low Power Operating Modes

The UltraSPARC I1Ii processor features low-power modes. When signalled to conserve
power, the on-chip Clock Control Unit instantaneously switches the processor’s clock rate to
lower power modes.

Chapter 1 Introducing the UltraSPARC llli Processor 1-7

1-8

UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 2

UltraSPARC I1I1 Processor in a System

The UltraSPARC IlI1i processor can reside either on the system motherboard itself or in a
separate module attached to the motherboard. The UltraSPARC IIIi processor is intended to
operate with a special support bridge chip that provides I/O functions (called “JIO”). The
UltraSPARC I1Ii processor and its companion I/O chip can be used to scale systems from a
minimum 1-way desktop or blade configuration up to a 4-way stand-alone server.

2.1

2.1.1

System Configurations

The UltraSPARC Il1i processor is designed to operate efficiently in 1-way, 2-way, or 4-way
systems.

Four-Processor System

FIGURE 2-1 illustrates a typical configuration for a high-performance, 4-way, entry-level
server. This system incorporates 4 UltraSPARC IIIi processors and two companion JIO chips
(configured as master-slave) to provide maximum I/O bandwidth. In the system shown, JBUS
uses a “Bell Repeater”, a bit-sliced pipeline register chip to reduce loading on JBUS. A lower
cost 4-way system with half the bandwidth can be build using a single master JIO chip.

2-9

o —— — 1 o —— — 1 o —— 1 o —————1
= —— = —— S —— S ——
s ——F—— s ——F—— s ——F—— s ——F——
e e e e
DDR DDR DDR DDR
UltraSPARC llli UltraSPARC Illi UltraSPARC Illi UltraSPARC Illi
processor processor processor processor
JBUS #0 JBUS #1
JBUS #0 128-bit \1/ \1/ JBUS #1 128-bit
Optional
Bell Repeater JBUS #3 128-bit
Chip
JBUS Slot
JBUS #2 128-bit |
Gigabit 64-bit PCI JIO 1 Interrupt JIoo 64-bit PCI
Ethernet (Master:ID=1) (slave:ID=0)
PCI 64-bit _ PCI 64-bit/66 MHz PCI Slot
= I-chip
1394A
Acer 1535D+
Southbridge Host antroller SCSI Controller
PHY
PCl slots PCI Slot

FIGURE 2-1 Four-Processor System with the UltraSPARC IIli Processor

Note that, in the configuration shown, four possible JBUS segments, JBUS #0, JBUS #1,
JBUS #2 and an optional JBUS #3, propagate through the Bell Repeater. The Bell Repeater
is only needed when the JBUS is required to run at maximum frequency with more than three
loads, to reduce loading on the JBUS. The Bell Repeater forwards the signals from each of
the four segments of the JBUS on to the other three segments. Propagating JBUS signals
through the Bell Repeater introduces a one cycle delay, i.e., any signals the Bell Repeater
receives in one cycle. it forwards in the next. The Bell Repeater operates entirely
automatically, i.e., it requires no control signals.

2-10 UltraSPARC llli Processor User's Manual « June 2003

2.1.2

Two-Processor System

FIGURE 2-2 illustrates a typical configuration for inexpensive 2-way desktops or servers based
on the UltraSPARC IIIi processor. This system incorporates 2 UltraSPARC IIli processors
with two companion JIO chips. Since this configuration, like the 4-way system, may involve
placing 4 loads on the JBUS, it also requires addition of a Bell Repeater to achieve maximum
JBUS performance. In the 4-load configuration shown, however, no Bell Repeater is needed,
since the JBUS in this example has been designed to run lower than maximum frequency.

S S T
s ———— s ———
S Q"
DDR DDR
UltraSPARC Illi UltraSPARC lli
processor processor
JBUS 128-bit
Gigabit 64-bit PCI JIO 1 Interrupt Jioo 64-bit PCI
Ethernet (Master:ID=1) (slave:ID=0)
PCl 64-bit —] PCI 64-bit
= I-chip
1394A
Acer 1535D+
Southbridge Host CE”‘“’”” SCSI Controller
PHY
PCl slots PCI Slot

FIGURE 2-2 Two-Processor System with the UltraSPARC IIli Processor

Chapter 2

UltraSPARC llli Processor in a System

PCI Slot

2.1.3

2-12

One-Processor System

FIGURE 2-3 illustrates a typical configuration for a minimum-cost, 1-way system based on the
UltraSPARC IIIi processor. This system involves no Bell Repeater and only 1 JIO chip. To

reduce cost still further, note that the UltraSPARC I1li processor can be configured to use a
minimum memory of only two DIMMs on the DDR interface. In this sort of cost optimized
single processor configuration, PCI slots are only provided where PCI devices can be added
to a system.

2 DIMMs

UltraSPARC Illi
Processor

JBUS 128-bit

X Interrupt
I-chip JIO

PCI 64-bit

PCI Slot
PCI 64-bit

PClI slots

FIGURE 2-3 One-Processor System with the UltraSPARC IIli Processor

UltraSPARC llli Processor User's Manual « June 2003

2.2

JBUS Interface

The UltraSPARC III processor has a companion JIO chip that features a 183-pin interface to
connect to the JBUS. The JBUS is a 16-byte (128-bit), split transaction, shared address/data
bus.

2.3

Memory System

The memory system consists of the Memory Control Unit (MCU) in the processor, and two
channels of DDR Synchronous DRAM memory. Each channel supports either one or two
registered DIMMs, allowing systems to be configured with less memory (for lower cost) or
more memory (for higher performance). Each channel has an address/ control bus as well as
an 8-byte data bus (plus 1 byte for ECC check bits). Clock buffering with a PLL is provided
on the DIMMs.

Since both memory channels are controlled identically by the memory controller, DIMMs
always must be loaded in pairs. Each DIMM pair consists of two 72-bit DDR SDRAM
DIMMs. Since each DIMM could be dual sided (single/double), there are a maximum of four
data loads per memory channel.

The UltraSPARC IIli processor modules have a total of four DIMM slots. In order, these are
termed 1A, 1B, 2A, 2B. DIMMs 1A and 2A correspond to memory channel 1. DIMMs 1B
and 2B correspond to memory channel 2. DIMM pair #1 contains DIMMs 1A and 1B.
DIMM pair #2 contains DIMMs 2A and 2B. FIGURE 2-4 summarizes the high level
architecture of the UltraSPARC IIli memory system, including placement of the four
DIMMs.

Each cache line is split across the DIMMs in memory channel 1 and memory channel 2. In
FIGURE 2-4, DIMM 1A belongs to memory channel 1 and DIMM 1B belongs to memory
channel 2. Similarly, DIMM 2A belongs to memory channel 1 and DIMM 2B belongs to
memory channel 2.

In exactly the same way, each External Bank of memory is split across the two memory
channels. As shown in FIGURE 2-4, External Banks 0 and 1 are split across DIMM 1A and
DIMM 1B, and External Banks 2 and 3 are split across DIMM 2A and DIMM 2B.

Each External Bank contains four Internal Banks. The memory controller pipelines requests
to memory, making use of all 16 of the internal memory banks available (4 External Banks
times 4 Internal Banks each), when all DIMM slots are fully loaded.

Chapter 2 UltraSPARC llli Processor in a System 2-13

UltraSPARC Illi
Processor

External Bank 1
External Bank 3

External Bank 0
External Bank 2

Internal Banks

Internal Banks

c MEMORY CHANNEL1

EMEMORY CHANNEL 2 1t

External Bank 1
External Bank 3

External Bank 0
External Bank 2

Internal Banks

FIGURE 2-4 DDR Memory System Architecture

2.4

2-14

Power Management

The UltraSPARC I1li processor features two low power modes: a 1/2 speed mode and a 1/32

speed mode for clock operation.

UltraSPARC llli Processor User's Manual + June 2003

Internal Banks

sectioN II

Architecture and Functions

June 2003 Section Il < Architecture and Functions « 15

16

UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 3

UltraSPARC I1I1 Processor Architecture
Basics

The UltraSPARC Il1i processor is a high-performance, highly-integrated, 4-way superscalar
processor. In addition to wide parallel instruction dispatch to exploit instruction-level
parallelism in code, the processor is designed to offer high clock speeds. To reduce
instruction execution latencies, the processor incorporates on-chip level-1 instruction and
data caches, a 1 MB unified level-2 cache, a memory controller, and large, flexible memory
management units (MMUSs). The processor was designed specifically to work in inexpensive
desktop systems and entry-level servers, in configurations ranging from 1-4 processors.

The UltraSPARC I11i processor also offers a number of performance enhancements over
previous UltraSPARC processors. The processor incorporates multiple data prefetching
mechanisms to enable long latency load operations to be overlapped with earlier operations.
The processor offers an enhanced data memory management unit (D-MMU) with 3 separate
TLBs providing a total of 1040 entries, and flexible support for page sizes ranging from

8 KB up to 4 MB, enabling the processor to effectively map both small and large memory
systems.

3.1

Component Overview

The processor includes a high-performance, instruction fetch engine, called the instruction
issue unit, that is decoupled from the rest of the pipeline by a 16-entry instruction buffer.
Four instructions at a time are fetched from the level-1 instruction cache and queued for issue
in the instruction buffer. Up to 4 instructions in a clock cycle can be steered from this queue
into 6 execution buffers. Up to 6 instructions in a clock cycle can be dispatched from the 6
execution buffers into the 6 parallel execution units in UltraSPARC IIli processor: 2 integer
ALUSs, 1 branch unit, 1 load/store unit (also handles certain special operations, like integer
multiplication and division), 1 floating-point add/subtract unit, and 1 floating-point multiply/
divide unit. The two floating-point units also handle the specialized SIMD VIS instructions
for accelerating graphics, media, and network functions.

3-17

In addition to a 32 KB primary instruction cache, a 64 KB primary data cache, an instruction
fetch engine, a 16-entry instruction buffer, and the 6 parallel execution units, the processor
also integrates on-chip a 1 MB L2-cache, a 2 KB prefetch cache, a 2 KB write cache, an I/O
interface (to the JBUS), and a memory controller. FIGURE 3-1 shows a simplified block
diagram of the UltraSPARC IIIi processor.

FIGURE 3-1

UltraSPARC I1Ii Processor Architecture

Instruction Issue
Unit (11U)

Instruction Cache

Instruction Queue

Steering Logic

4 Instructions

v

Y

Floating Point
Unit (FGU)

FPRF

Integer Execution
Unit (IEV)

Fp multiply
Fp Add / Sub
Fp Divide

Graphics Unit

Dependency / Trap Logic

WARF| ALU pipes (0 & 1)

Load/Store/Special pipe

' A

A
\

Data Cache
Unit (DCU)

Data

Cache | Cache

Prefetch

Write
Cache

Store
Queue

t

A
Y

Local Memory

DRAM
<

Embedded Cache/Memory
Unit (ECU & MCU)

DRAM
Ctrlr

SRAM
Ctrir

L2$ Tags
+ Data

JBUS Interface
Unit (JBU)

Transaction
Ctrir

Snoop pipe
Ctrlr

System
Interconnect

-
132

3-18

UltraSPARC llli Processor User's Manual

» June 2003

3.1.1

Instruction Fetch and Buffering

The instruction issue unit in the UltraSPARC II1i processor is responsible for fetching,
queuing, and steering instructions as appropriate to one of the six parallel execution units
included in the UltraSPARC IIIi processor design. Up to four instructions are fetched and
decoded at a time. Assuming the fetch request hits in the level-1 instruction cache (and
certain other conditions are met, e.g., the instruction queue is not full), instruction fetching is
possible in every clock cycle. If a fetch request misses in the level-1 instruction cache, a fill
request is sent to the lower memory hierarchy for the 32-byte line containing the missing
instruction block.

The instruction cache uses a 32-byte line, containing 8 fixed-width 4-byte SPARC
instructions. The unified L2 cache uses a 64-byte line. If the instruction request hits in the
first half of an L2 cache line, the second half of that line is also fetched, and placed in a
special 32-byte Instruction Prefetch Buffer (IPB), accessed in parallel with the instruction
cache. This precaution avoids a potential L1 cache miss, in those cases where instruction
fetching does move on sequentially to use the next group of 8 instructions.

The UltraSPARC IlI1i processor instruction cache contains 1K lines, with a total capacity of
8,192 instructions. Cache lines are virtually indexed but physically tagged. The cache is 4-
way set-associative. It requires 2 cycles of latency to fetch an item, but access is pipelined, so
sequential requests have single cycle throughput, after the two cycle delay for the first item is
satisfied. Other cache features besides the usual data and tag arrays include a microtag,
predecode bits, a Load Prediction Bit (LPB), and a snoop tag array. The microtag uses 8 bits
of virtual address to enable fast way-selection of a potentially matching cache line, without
waiting for the physical address translation to complete. The predecode bits include
information about which pipeline each instruction will be issued to, and other information to
optimize execution. The LPB is used to dynamically learn those load instructions that
frequently see a read-after-write (RAW) hazard with preceding stores. The snoop tag is a
copy of the tags dedicated for snoops caused by either stores from the same, or different,
processors. The instruction cache in the UltraSPARC IIli processor is kept completely
coherent so the cache never needs to be flushed.

The instruction fetch engine is also dependent upon control transfer instructions such as
branches and jumps. The UltraSPARC IIIi processor uses a 16K-entry branch predictor to
predict the fetch direction of conditional branches. For branches that are either known to be
taken or predicted taken, the branch target must be determined. For PC relative branches, the
target of the branch is computed. This adds a one-cycle penalty to the branch taken case, but
avoids any penalties from target misprediction. For predicting the target of return instructions
an 8-entry Return Address Stack (RAS) is used. For other indirect branches (branches whose
targets are determined by a register value), the software can provide a branch target
prediction with a jump target preparation instruction.

The 16-entry instruction buffer decouples the front-end instruction fetch from the back-end

instruction execution, allowing these two parts of the pipeline to operate at different rates. If
more instructions are fetched than can be issued, an empty instruction buffer gradually fills

up. If instruction fetch is interrupted by a taken branch penalty or an instruction cache miss,
a full instruction buffer gradually drains, hiding some or all of the ensuing latency.

Chapter 3 UltraSPARC Illi Processor Architecture Basics 3-19

3.1.2

3.1.3

3-20

Execution Pipelines

The UltraSPARC I11i processor has six parallel execution units. Buffered instructions can be
issued to all six units in a single cycle, and sustained issue to any 4 of these units is possible.
The six executions are:

2 integer Arithmetic and Logic Units (ALU)

1 Branch pipeline

1 Load/store pipeline (also handles special instructions)

1 Floating-point multiply pipeline (also handles SIMD instructions)
1 Floating-point addition pipeline (also handles SIMD instructions)

The ALUs perform integer addition and subtraction, logic operations, and shifts. These units
have single-cycle latency and throughput. The branch pipeline handles all branch instructions
and can resolve one branch each cycle. Load/store operations are discussed in the next
section. The load/store pipeline also handles Integer multiplication and division. Integer
multiplication has a latency of 6 to 9 cycles depending on the size of the operands. Division
is also iterative and requires 40 to 70 cycles.

The floating-point units each have 4-cycles of latency, but are fully pipelined (one instruction
per cycle per pipeline). These pipelines handle double and single precision floating-point
operations and a set of SIMD instructions that operate on 8 or 16-bit fields. Floating-point
division and square root operations use the floating-point multiplication pipeline and are
iterative computations. Floating-point division requires 17 cycle for single precision, 20
cycles for double precision computations. Floating-point square root requires 23 cycles for
single precision, 29 cycles for double precision computations.

Load/Store Unit

A load or store instruction can be issued each cycle to the load/store pipeline. The load/store
unit consists of the load/store pipeline, a store queue, a data cache and a write cache.

Integer loads of unsigned words and double words have a 2-cycle latency. All other loads
have a 3-cycle latency. There is an 8-entry store queue to buffer stores. Stores reside in the
store queue from the time they are issued until they complete an update to the write cache.
The store queue can effectively isolate the processor from the latency of completing stores. If
the store queue fills up, the processor will block on a subsequent store.

The store queue allows successive separate stores to the same cache line to collect. For non-
catchable stores (for example, stores to a graphics frame buffer), this function can greatly
reduce the amount of store traffic generated, effectively raising the bandwidth to external
devices.

UltraSPARC llli Processor User's Manual « June 2003

3.1.3.1

The UltraSPARC IIIi processor supports store forwarding, the ability to pass data still in the
store queue directly to a quickly following load that attempts to access the same target
location in memory (a Read After Write or RAW hazard). Since 3 cycles of latency is
required for a load to communicate with the store queue, the LPB bit in the instruction cache
is used to force 2-cycle loads to issue as 3-cycle loads. If a 2-cycle load is not correctly
predicted to have a RAW hazard, the load must be re-issued.

The data cache holds 64 KB. Cache lines are virtually indexed but physically tagged. The
cache is 4-way set-associative. It requires 2 cycles of latency to fetch an item, but access is
pipelined, so sequential requests have single-cycle throughput. Like the instruction cache, the
data cache uses 8-bit microtags to do way-selection based on virtual addresses. The update
policy is write-through, no write-allocate. The line size is 32 bytes with no subblocking. The
data cache only needs to be flushed if an alias is created using virtual address bit 13. VA[13]
is the only virtual bit used to index the data cache.

The write cache is a write-back cache used to reduce the amount of store bandwidth required
to the L2-cache. It exploits both temporal and spatial locality in the store stream. The small
(2 KB) structure achieves a store bandwidth equivalent to a 64 KB write-back data cache
while maintaining TSO compatibility. The write cache is kept fully coherent with both the
processor pipeline and the system memory state. The write cache is 4-way set-associative
and has 64-byte lines. The write cache maintains dirty bits on a per byte basis.

Data Prefetching Support

The UltraSPARC I1li processor makes use of advanced data prefetching mechanisms in both
software and hardware. Software prefetching allows compilers (of Java JITs) to explicitly
expose the memory-level parallelism in programs and to schedule memory operations. There
are a number of variations of software prefetches. Software prefetches can specify if the data
should be brought into the processor for reading or for both reading and writing. Software
can also specify if the data should be installed into the L2-cache, for data that will be reused
frequently, or only brought into the prefetch cache.

Hardware prefetching is an automatic facility that looks for common data sequences, and
attempts to fetch ahead based on detected patterns.

Prefetch mechanisms are used to both hide load-miss activity and overlap load misses to
increase memory-level parallelism. Robust prefetch mechanisms that avoid as many load
misses as possible are especially important for the UltraSPARC IIIi processor since load
misses block program execution, i.e., on load misses, the processor waits for the load to
complete before executing any other instructions.

Specifically to benefit data-intensive floating-point programs, the UltraSPARC IIli processor
features a special prefetch cache. The prefetch cache is a small (2 KB) cache that is accessed
in parallel with the data cache for floating-point loads. In effect, it expands the size of the
data cache when executing floating-point programs, and can noticeably reduce load misses
with a correspondingly favorable impact on performance. Floating-point load misses,

Chapter 3 UltraSPARC Illi Processor Architecture Basics 3-21

3.14

3-22

hardware prefetches and software prefetches bring data into the prefetch cache. The prefetch
cache is 4-way set-associative and has 64-byte lines which are broken into two 32-byte
subblocks with separate valid bits. The prefetch cache is write invalidate.

Memory Management Units

There are separate Memory Management Units (MMUSs) for instruction and data address
translation. MMUs have two primary functions: memory protection, preventing processes
from accessing each other’s memory spaces, and address translation -- the conversion of
virtual addresses in the processor’s logical 64-bit address space into real addresses in the
system’s physical memory. The first time a virtual address is encountered, the processor traps
to software to walk a set of page tables in memory to locate the corresponding physical
address. Since the process of translating a virtual address into a physical address is slow, the
MMUs contain a set of Translation Lookaside Buffers (TLBs). These are specialized caches
used to store recently mapped pairs of virtual-physical addresses together with associated
page protection and usage information. Since TLB lookup is fast (unlike the initial
translation process itself), memory operations can proceed without interruption as long as
their virtual address “hits” in a TLB.

The instruction MMU contains two TLBs accessed in parallel. The first TLB is a 16-entry
fully-associative TLB. This small TLB is perfectly flexible, in the sense that it can hold
pages of various sizes (8K, 64K, 512 KB, or 4 MB), and pages can be either locked or
unlocked. The second TLB is a 128-entry, 2-way set-associative TLB. This large TLB is used
exclusively to hold unlocked pages of the “default” 8 KB size.

The data MMU of the UltraSPARC IlIIi processor is enhanced to provide more translation
entries and to provide more support for using large pages for translation. It contains three
TLBs accessed in parallel. The first TLB is a 16-entry, fully-associative TLB, identical in
nature to the small TLB in the instruction MMU. The other two TLBs are both 512-entry, 2-
way set-associative caches. Like the large TLB in the instruction MMU, these large data
TLBs only store entries for unlocked pages. Unlike the large TLB in the instruction MMU,
the large TLBs in the data MMU can be set to any of the four page sizes, although only
pages of the same size can accessed/filled at a time (but multiple pages of that size can be
handled at once). The two TLBs can be set to either both store pages of the same size, or
each store pages of different sizes.

Having the two large TLBs is very important for general use of large pages for translation, in
systems that need to map large physical memories. One of the TLBs can be set for large
pages (such as 4 MB pages) while the other can be set to the default page size (usually 8 KB
pages). With this configuration the processor provides robust support for large pages.

UltraSPARC llli Processor User's Manual « June 2003

3.1.5

3.1.6

3.1.7

Embedded Cache Unit (Level-2 Unified Cache)

The UltraSPARC I1li processor supports an on-chip 1 MB, 4-way set-associative Level 2
cache. A separate, 4-way set-associative cache is used to store tags for the L2 cache. Tags are
protected by parity checking, date is fully protected with error correcting code (ECC) that
allows all single-bit errors to be corrected and double-bit errors to be detected and marked to
prevent use.

JBUS Interface Unit

The UltraSPARC II1i processor communicates with the JIO chip through JBUS. All
transactions with the JBUS are routed through the JBUS interface unit. The outgoing control
logic arbitrates for issuing transactions and for driving data. The incoming control logic
enqueues all transactions issued on the bus and accumulates snoop results from internal
caches before driving data on the system bus. The error control logic handles error logging
and trap generation.

Memory Controller Unit

The Memory Control Unit (MCU) handles all data transfers between the system and the main
memory of the UltraSPARC IIIi processor. The MCU accepts read and write transactions
from the ECU and JBU. The local memory supports up to 16 GB of DDR 266 MHz
SDRAM. Data transfers between memory and the JBU are handled by the MCU. The local
memory consists of two DDR channels each of which are composed of two 72-bit DIMMs.
Nine bits of ECC are stored with each 16-bytes of data. The ECC is checked by the MCU
when data is read from memory. The MCU also handles the memory refresh and Low Power
operation of memory.

A major goal of the MCU is to aggressively reduce memory latencies. Methods to reduce
latency include the following:

Allowing reads to bypass writes while preserving the system bus order

Reads from the ECU are started speculatively before reaching the system bus

Holding internal SDRAM banks open to reduce the latency due to row access
strobe (RAS)

Chapter 3 UltraSPARC Illi Processor Architecture Basics 3-23

3.2

3.2.1

3.2.2

3.2.3

3.2.3.1

3-24

Processor Operating Modes

The UltraSPARC IIIi processor operates in various modes.

Privileged Mode

This mode is a “supervisor” mode. In this mode, the software is allowed to access both
privileged and non-privileged registers and address space identifiers (ASIs). There are certain
features of the processor that can be accessed only in privileged mode. Privileged mode
execution typically is used by the kernel and operating system.

Non-Privileged Mode

This mode is a “non-supervisor” operating mode, in which programs are allowed to access
only non-privileged registers and ASIs. If non-privileged software tries to access privileged
registers or ASIs, exceptions are generated and handled by the operating system. Non-
privileged mode execution is typically used by the application programmers.

Reset and RED_State

The UltraSPARC IlI1i processor can be reset using various mechanisms. This section deals
with the reset and RED_state for the UltraSPARC IIIi processor.

RED_state Characteristics

A processor enters RED_state in one of the following two ways:
First, by trapping when already at the maximum trap level.
Second, by setting PSTATE. RED.

When the processor enters RED_state, it will clear the DCU Control Register, including
enable bits for I-cache, D-cache, -MMU, D-MMU, and virtual and physical watchpoints.

UltraSPARC llli Processor User's Manual « June 2003

3.23.2

Note — Exiting RED_st at e by writing zero to PSTATE. RED in the delay slot of a JMPL
is not recommended. A non-cacheable instruction prefetch can be made to the JMPL target,
which may be in a cacheable memory area. This condition could result in a bus error on
some systems and cause an instruction_access_error trap. You can mask the trap by setting
the NCEEN bit in the ESTATE_ERR_EN register to zero, but this approach will mask all
noncorrectable error checking. Exiting RED_st at e with DONE or RETRY avoids the
problem.

Resets

Reset priorities from highest to lowest are power-on resets (POR, hard or soft), externally
initiated reset (XIR), watchdog reset (WDR), and software-initiated reset (SIR).

Power-on Reset (Hard Reset)

A Power-on Reset (POR) occurs when the J_POR_L pin is activated and stays asserted until
the processor is within its specified operating range. When the J_POR_L pin is active, all
other resets and traps are ignored. POR has a trap type of 1 at physical address offset 0x20.
Any pending external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown after
POR. The following bits must be initialized before the caches are enabled:

In the I-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

In the D-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

All L2-cache tags and data

The I-MMU and D-MMU TLBs must also be initialized. The P-cache valid bits must be
initialized before any floating-point loads are executed.

Caution — Executing a DONE or RETRY instruction when TSTATE is uninitialized after a
POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using W pr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is
not at the risk of damaging the chip.

Chapter 3 UltraSPARC Illi Processor Architecture Basics 3-25

3-26

System Reset (Soft Reset)

A system reset occurs when the J_RST_L pin is activated. When the J_RST_L pin is active,
all other resets and traps are ignored. System reset has a trap type of 1 at physical address
offset 0x20. Any pending external transactions are canceled.

Note — Memory refresh continues uninterrupted during a system reset. The system
interface, L2-cache configuration, and memory controller configuration are preserved across
a system reset.

Externally Initiated Reset (XIR)

An XIR is sent to the processor through the XIR transaction on the JBUS. It causes a
SPARC-V9 XIR, which has a trap type 3|4 at physical address offset 0x60. XIR has higher
priority than all other resets except Power-on Reset and System Reset.

XIR affects only one processor, rather than the entire system. Memory state, cache state, and
most Control Status Register state are unchanged. System coherency is not guaranteed to be
maintained through an XIR reset. The saved PC and nPC will only be approximate because
the trap is not precise with respect to pipeline state.

Watchdog Reset (WDR) and error_state
The processor enters er r or _st at e when a trap occurs at TL = MAXTL.

The processor automatically exits er r or _st at e using WDR. The processor signals itself
internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x40,4. WDR sets the processor in a state where it is prepared for diagnosis of
failures.

WDR affects only one processor, rather than the entire system. CWP updates due to window
traps that cause watchdog traps are the same as the no watchdog trap case.

Software-Initiated Reset (SIR)

An SIR is initiated by an S| R instruction within any processor. This per-processor reset has
a trap type 4 at physical address offset 0x80. SIR affects only one processor, rather than the
entire system.

UltraSPARC llli Processor User's Manual « June 2003

3.2.4

3.24.1

RED_state Trap Vector

When the UltraSPARC I1Ii processor processes a reset or trap that enters RED_st at e, it
takes a trap at an offset relative to the RED_st at e trap vector base address (RSTVaddr);
the base address is at virtual address FFFF FFFF FOOO 00004, which passes through to
physical address 7FF FOOO 0000 .

Error Handling

The UltraSPARC I11i processor provides extensive support for detecting and correcting
errors. Note that some errors may still be uncorrectable.

Error Classes in Severity
The classes of error in order of severity are as follows:

1. Hardware-corrected errors. Hardware tries to correct the error automatically. A trap is
generated to log the error conditions when the error is corrected to enable the actions for
preventive maintenance.

2. Software-correctable errors. Hardware does not correct the error automatically. Instead,
it invokes a trap requesting the recovery software to correct the error. Corrective actions
are expected from the recovery software. If recovery is successful, the system should
continue the operation.

3. Uncorrectable errors. By its nature the error is uncorrectable, and hardware invokes a
trap to signal the occurrence of the error to appropriate recovery software. Depending on
the condition under which the error occurs, the system may be able to recover from the
error and continue operation. If not, it may be able to isolate the error to a particular
process and terminate it. Otherwise, the software should shut down the system gracefully.

4. Fatal errors. By its nature, the error indicates either loss of system consistency or a
system interconnect protocol error. It is dangerous to continue operation in this situation
because of the impending threat of a failure to maintain data integrity. Therefore, upon the
detection of the error, the processor generates an error signaling sequence to its
interconnect, expecting to be halted/reset by the system. System actions induced by the
error signaling sequence are dependent on system implementation.

Chapter 3 UltraSPARC Illi Processor Architecture Basics 3-27

3.24.2

3243

3-28

Corrective Actions

Errors are handled by invocation of one of the following actions:

Reset-inducing error sequence. Any fatal error causes the error signaling sequence to
induce a system reset. Some errors asynchronous to instruction execution may generate
this error signaling sequence.

Precise traps. Most errors detected in the course of an instruction execution generate a
precise trap. If the error is hardware correctable, software just logs it. If the error is
software correctable, software corrects it before continuing execution. If the error is
uncorrectable, software takes appropriate action.

Deferred traps. Some uncorrectable errors requiring immediate attention generate a
deferred trap to request software intervention. The recovery software examines the
recorded error information to determine the extent of the damage caused by the error.
Depending on the observed effect, the system may need to be brought down, or it may
continue to run when the effect is isolated within the user program. In any event, the error
does not require immediate reset of the system.

Disrupting traps. An error asynchronous to instruction execution generates a disrupting
trap to request logging and clearing. The error may already be corrected by hardware and
may only require logging. If the error is software correctable, software corrects it before
continuing execution. If the error is uncorrectable, software takes appropriate action.

Errors Synchronous and Asynchronous to Instruction Execution

Some errors can be detected asynchronously to instruction execution. Other errors are
detected in the course of an instruction execution, that is, synchronous to instruction
execution. Separate error recording mechanisms are used for synchronous and asynchronous
erTors.

An error asynchronous to instruction execution is signaled by either a disruption or deferred
trap to the processor, or through an error signaling sequence to system hardware which
induces a system reset depending on the severity of the error. The errors signalled through a
disrupting trap do not directly correspond to an instruction. Traps may or may not be
recoverable. Errors signalled are meant to indicate either a loss of system consistency or a
protocol error on system interconnect.

An error detected in the course of an instruction execution is signalled through an error trap
to the instruction, with additional information recorded in hardware. The trap is either
precise or deferred. The program (process) affected by the error should be given a corrected
response, or if the error is uncorrectable, the process should be terminated appropriately.
Precise traps are used wherever possible.

UltraSPARC llli Processor User's Manual « June 2003

3.2.5

Debug and Diagnostics Mode

The UltraSPARC I1li processor provides interfaces for diagnostic access to most internal state
of the processor. This is important for diagnosing, and when possible recovering from failures.
There are several different diagnostic interfaces. All the diagnostic interfaces are accessible
only from software running in privileged mode or from an external system controller in a
server. All internal diagnostic and configuration registers are 8-bytes wide, and must be
accessed as 8-byte units with 8-byte aligned addresses.

There are a number of diagnostic registers that are mapped to internal ASI registers. These
registers are accessed by load and store alternate ASI instructions that specify certain
configurations of ASI numbers and virtual addresses. Diagnostic registers are provided for
recording various fault conditions as well as important information and state associated with
the fault to help diagnosis and possibly recover.

For diagnostic and error recovery in the large memories on chip, such as caches, each element
of these memory arrays can be individually read and written. Accesses are performed with load
and store alternate ASIs that use specific ASIs that point to the memory array. These accesses
can only be done by privileged software.

Special ASI numbers are used for diagnostic accesses to structures where the virtual address is
used to specify the portion of the structure to be read. Most structures can be directly read and
many structures can also be directly written or quickly cleared.

The UltraSPARC IIli processor also provides a serial JTAG interface that can be used by a
system controller for diagnostics. A system controller can perform a shadow scan where
various configuration and diagnostic information is scanned out of the processor without
interfering with the operation of the processor. The system controller can also use the JTAG
interface to scan in information to configure or control various aspects of the processor.

The JTAG interface also can be used to perform a full scan dump. When a full scan dump is
performed, most of the flops in the processor are scanned out through a scan chain. A full scan
dump is a destructive action and the processor must be reset after completion of the dump. The
full scan provides an important tool for diagnosis of serious failures.

For controlling diagnostics mode, there is a range of configuration registers, which can enable
and disable many features of the processor. The configuration registers are only accessible in
privileged mode. Some of the configuration registers are implemented as ASRs. These registers
are accessible from the RDASR/WRASR interface. Most of the configuration registers are
mapped as internal ASI registers. These registers are accessed by load and store alternate ASI
instructions that specify certain configurations of ASI numbers and virtual addresses.

Chapter 3 UltraSPARC Illi Processor Architecture Basics 3-29

3-30 UltraSPARC llli Processor User's Manual « June 2003

CHAPTER 4

Instruction Execution

This chapter focuses on the needs of compiler writers and others who are interested in
scheduling instructions to optimize program performance. The chapter discusses the
following topics:

Section 4.1, “Introduction”

Section 4.2, “Processor Pipeline”
Section 4.3, “Pipeline Recirculation”
Section 4.4, “Grouping Rules”
Section 4.5, “Conditional Moves”

Section 4.6, “Instruction Latencies and Dispatching Properties”

4.1

4.1.1

Introduction

The instruction at the memory location specified by the program counter (PC) is fetched and
then executed, annulled, or trapped. Instruction execution may change program-visible
processor and/or memory state. As a side effect of its execution, new values are assigned to
the PC and the next program counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it
impossible to complete normal execution. Such an exception may in turn generate a precise
trap. Other events may also cause traps: an exception caused by a previous instruction (a
deferred trap), an interrupt or asynchronous error (a disrupting trap), or a reset request (a
reset trap). If a trap occurs, control is vectored into a trap table.

NOP, Neutralized, and Helper Instructions

The distinction between NOP and neutralized instructions is subtle.

31

4.1.1.1

4.1.1.2

4.1.1.3

NOP Instruction

The architected NOP instruction is coded as a SETHI instruction with the destination register
%90. This instruction is groupable in the A0 or Al pipeline.

Neutralized Instruction

Some instructions have no visible effects on the software. They have been de-implemented or
assigned to not have an effect if the processor is in a certain mode. These instructions are
often referred to as NOP instructions, but they are not the same as the NOP instruction in that
they execute in the pipeline that is assigned to them. These are versions of instructions that
have no effect because they only access the %90 register and do not have any side effects.
Hence, these instructions are functionally neutral.

Helper Instructions

Helper instructions are generated by the hardware to help in the execution or re-execution of
an instruction. The hardware partitions a single instruction into multiple instructions that
flow through the pipeline, consecutively. They have no software visibility and are part of the
hardware function of the pipeline.

4.2

32

Processor Pipeline

The processor pipeline consists of fourteen stages plus an extra stage that is occasionally
used by the hardware. The pipeline stages are referred to by the following mnemonic
single-letter names and are shown in TABLE 4-1.

TABLE 4-1 Processor Pipeline Stages

Pipeline Stage Definition
A Address generation
P Preliminary Fetch
F Fetch instructions from I-cache
B Branch target computation
1 Instruction group formation
J J: grouping
R Register access (dispatch/dependency checking stage)

UltraSPARC llli Processor User's Manual « June 2003

TABLE 4-1 Processor Pipeline Stages (Continued)

Pipeline Stage Definition

Execute

Cache

Miss detect

Write

eXtend

Trap

AR -l AN

Done

Rather than executing the instructions in a single pipeline, several separate pipelines are each
dedicated to execution of a particular class of instructions. The execution pipelines start after
the R-stage of the pipeline. Some instructions take a cycle or two to execute, others take a
few cycles within the pipeline. As long as the execution fits within the fixed pipeline depth,
execution can in general be fully pipelined. Some instructions have extended execution times
that sometimes vary in duration depending on the state of the processor.

The following sections provide a stage-by-stage description of the pipeline. Chapter 3
“UltraSPARC IIIi Processor Architecture Basics” describes the functions of the various
execution units. This chapter explains how the pipeline operates the execution units to
process the instructions.

FIGURE 4-1 on page 34 illustrates each pipeline stage in detail and the relationship between
high level, large architectural structures.

Chapter 4 Instruction Execution 33

Program Counter
— Predicted Return Target

JPL Target
Branch Target i 'I%F%Zt A
Program Interrupts
N~
____________________________________ I
Branch X & m
___Pipeline | Instruction Cache I I = I
(0] 1
32 KB, 4-way, 32-byte line S F
Branch Target B

Instruction I
Enqueue Steering

Instruction Queue 4 X 4 I -
nstruction J
Dequeue Group Staging

““““““ et e R A
‘ - - Dependency R
Working Redister File 7R 3W Check
R T B D D e s g e A
.| FP/VIS Register d =
W File W<] Yy |[|S_| E
=] D-cach D~
‘l l ‘l < \AO / \A|1 / cache P-cache E o © g
[I |3 =—————=1 - - - |] o ll's=| - - -
r ! 64kB || 2kB [| 5|2 |[| 8
| 4-way FA ? (O o Cc
—_ A 2}
- 5 ' | |
N e -
(1,:3; \;, 5 E : / SignExtend/Align % > l.Mmiss M
IR R0 M e e - T
o s | S I
<18 = I
o | g = | o I w
L la o |5 |
N8 N T i =3 A AP S O |------
o & . @
| S X
I g
B e Y P L Pepp—
| s}
| n T
|
————————————————————————— + - ————— ¥ === - - - — F-———
w W W
Architecturhl Register File D
_________________________ L L A

! W-cache (2KB) |

FIGURE 4-1 Instruction Pipeline Diagram

34 UltraSPARC llli Processor User's Manual « June 2003

4.2.1

4.2.1.1

4.2.1.2

4.2.13

Instruction Dependencies

Instruction dependencies exist in the grouping, dispatching, and execution of instructions.

Grouping Dependencies

Up to four instructions can be grouped together for simultaneous dispatch. The number of
instructions that can be grouped together depends on the consecutive instructions that are
present in the instruction fetch stream, the availability of execution resources (execution
units), and the state of the system. Instructions are grouped together to provide superscalar
execution of multiple instruction dispatches per clock cycle.

Some instructions are single instruction group instructions. These are dispatched by
themselves one clock at a time as a single instruction in the group.

Note — Pipeline Recirculation: During recirculation, the recirculation invoking instruction
is often re-executed as a single group instruction and often with a helper instruction inserted
into the pipeline by the hardware. Even groupable instructions are retried in a single
instruction group. See Section 4.3 “Pipeline Recirculation” on page 41 for details.

Dispatch Dependencies

Instructions can be held at the R-stage for many different reasons, including:
Working register operand is not available
Functional Unit is not available
Store-load sequence is in progress (atomic operation)

When instructions are held at the dispatch stage, the upper pipeline continues to operate until
the instruction buffer is full. At that point, the upper pipeline stalls.

During recirculation, the recirculation invoking instruction is held at the dispatch stage until
its execution dependency is resolved.

Execution Dependencies

The pipeline assumes all load instructions will hit in a primary cache, allowing the pipeline

to operate at full speed. There are two occurences that will recirculate the pipeline:
D-cache Miss

Load requires data to be bypassed from an earlier store that has not completed and does
not meet the criteria for read-after-write data bypassing

Chapter 4 Instruction Execution 35

4.2.2

4.2.2.1

4222

4223

36

Instruction-Fetch Stages

The instruction-fetch pipeline stages A, P, F, and B are described below.

A-stage (Address Generation)

The address stage generates and selects the fetch address to be used by the Instruction Cache
(I-cache) in the next cycle. The address that can be selected in this stage for instruction
fetching comes from several sources including:

Sequential PC

Branch target (from B-stage)
Trap target

Interrupt

Predicted return target

Jmpl target

Resolved branch/Jmpl target from execution pipeline

P-stage (Preliminary Fetch)

The preliminary fetch stage starts fetching four instructions from the I-cache. Since the
I-cache has a two-cycle latency, the P-stage and the F-stage are both used to complete an
I-cache access. Although the I-cache has a two-cycle latency, it is pipelined and can access a
new set of up to four instructions every cycle. The address used to start an I-cache access is
generated in the previous cycle.

The P-stage also accesses the Branch Predictor (BP), which is a small, single-cycle access
SRAM whose output is latched at the end of the P-stage. The BP predicts the direction of all
conditional branches, based on the PC of the branch and the direction history of the most
recent conditional branches.

F-stage (Fetch)

The F-stage is used for the second half of the I-cache access. At the end of this stage, up to
four instructions from an I-cache line (32-bytes) are latched for decode. An I-cache fetch
group is not permitted to cross an I-cache line (32-byte boundary).

UltraSPARC llli Processor User's Manual « June 2003

4224

4.2.3

4.2.3.1

B-stage (Branch Target Computation)

The B-stage is the final stage of the instruction-fetch pipeline, A-P-F-B. In this stage, the
four fetched instructions are first available in a register. The processor analyzes the
instructions, looking for Delayed Control Transfer Instructions (DCTI) that can alter the path
of execution. It finds the first DCTI , if any, among the four instructions and computes (if PC
relative) or predicts (if register based) its target address. If this DCTI is predicted taken, the
target address is passed to the A-stage to begin fetching from that stream; if predicted not
taken, the target is passed on to the CTI queue for use in case of mispredict. Also in the
B-stage, the computation of the hit or miss status of the instruction fetch is performed, so
that the validity of the four instructions can be reported to the instruction queue.

In the case of an I-cache miss, a request is issued to the L2-cache and all the way out to
memory if needed to get the required line. The processor includes an optimization, where
along with the line being fetched, the subsequent line (32-bytes) is also returned and placed
into the instruction prefetch buffer. A subsequent miss that can get its instructions from the
instruction prefetch buffer will behave like a fast miss.

Instruction Issue and Queue Stages

The I-stage and J-stage correspond to the enqueueing and dequeuing of instructions from the
instruction queue. The R-stage is where instruction dependencies are resolved.

[-stage (Instruction Group Formation)

In the I-stage, the instructions fetched from the I-cache are entered as a group into the
instruction queue. The instruction queue is four instructions wide by four instruction groups
deep. The instruction may wait in the queue for an arbitrary period of time until all earlier
instructions are removed from the queue.

The instructions are grouped to use up to four of the execution pipelines, shown in TABLE 4-2.

TABLE 4-2 Execution Pipelines

Pipeline Description

A0 Integer ALU pipeline 0

Al Integer ALU pipeline 1

BR Branch pipeline

MS Memory/Special pipeline

FGM Floating-point/VIS multiply pipeline (with divide/square root pathway)
FGA Floating-point/VIS add ALU pipeline

Chapter 4 Instruction Execution 37

4232

4233

4234

4.2.4

4.24.1

38

J-stage (Instruction Group Staging)

In the J-stage, a group of instructions are dequeued from the instruction queue and prepared
for being sent to the R-stage. If the R-stage is expected to be empty at the end of the current
cycle, the group is sent to the R-stage.

R-stage (Dispatch and Register Access)

The integer working register file is accessed during the R-stage for the operands of the
instructions (up to three) that have been steered to the A0, Al, and MS pipelines. At the end
of the R-stage, results from previous instructions are bypassed in place of the register file
operands, if required.

Up to two floating-point or VIS instructions are sent to the Floating-Point/VIS Unit in this
stage.

The register and pipeline dependencies between the instructions in the group and the
instructions in the execution pipelines are calculated concurrently with the register file
access. If a dependency is found, the dependent instruction and any older instruction in the
group is held in the R-stage until the dependency is resolved.

S-stage (Normally Bypassed)

The S-stage provides a 1-entry buffer per pipeline in cases when the R-stage is not able to
take a new instruction.

Execution Pipeline

The execution pipeline contains the E, C, M, W, and X stages.

Integer Instruction Execution: E-stage (Execute)

The E-stage is the first stage of the execution pipelines. Different actions are performed in
each pipeline.

Integer instructions in the A0 and Al pipelines compute their results in the E-stage. The
instructions include most arithmetic, all shift, and all logical instructions. Their results are
available for bypassing to dependent instructions that are in the R-stage, resulting in
single-cycle execution for most integer instructions. The A0 and Al pipelines are the only
two sources of bypass results in the E-stage.

UltraSPARC llli Processor User's Manual « June 2003

4.2.4.2

4243

Other integer instructions are steered to the MS pipeline and, if necessary, are sent with their
operands to the special execution unit in this stage. They can start their execution during the
E-stage, but will not produce any results to be bypassed until the C-stage or the M-stage.

Load instructions steered to the MS pipeline start accessing the D-cache or P-cache during
the E-stage. The D-cache features Sum Addressed Memory (SAM) decode logic that
combines the arithmetic calculation for the virtual address with the row decode of the
memory array to reduce look-up time. The virtual address is computed in the E-stage for
translation lookaside buffer (TLB) access and possible access to the P-cache.

Floating-point and VIS instructions access the floating-point register file in the E-stage to
obtain their operands. At the end of the E-stage, the results from previous completing
floating-point/VIS instructions can be bypassed to the E-stage instructions.

Conditional branch instructions in the BR pipeline resolve their directions in the E-stage.
Based on their original predicted direction, a mispredict signal is computed and sent to the
A-stage for possible refetching of the correct instruction stream.

JMPL and RETURN instructions compute their target addresses in the E-stage of the MS
pipeline. The results are sent to the A-stage to start fetching instructions from the target
stream.

C-stage (Cache)

The D-cache delivers results for doubleword (64-bit) and unsigned word (32-bit) integer
loads in the C-stage. The D-TLB access is initiated in the C-stage and proceeds in parallel
with the D-cache access. For floating-point loads, the P-cache access is initiated in the
C-stage. The results of the D-TLB access and P-cache access are available in the M-stage.

Special instruction unit results are produced at the end of this stage and can be bypassed to
waiting dependent instructions in the R-stage—minimum two-cycle latency for SIU
instructions. The integer pipelines, A0 and Al, write their results back to the working
register file in the C-stage.

The C-stage is the first stage of execution for floating-point and VIS instructions in the FGA
and FGM pipelines.

M-stage (Miss)

D-cache misses are determined in the M-stage by a comparison of the physical address from
the D-TLB to the physical address in the D-cache tags. If the load requires additional
alignment or sign extension (such as signed word, all halfword, and all byte loads), it is
carried out in this stage, resulting in a three-cycle latency for those load operations. This
stage is used for the second execution cycle of floating-point and VIS instructions. Load data
is available to the floating-point pipelines in the M-stage.

Chapter 4 Instruction Execution 39

4244

4.2.4.5

4.2.5

4.2.5.1

4252

40

W-stage (Write)

In the W-stage, the MS integer pipeline results are written into the working register file. The
W-stage is also used as the third execution cycle for floating-point and VIS instructions. The
results of the D-cache miss are available in this stage and the requests are sent to the
L2-cache if needed.

X-stage (Extend)

The X-stage is the last execution stage for most floating-point operations (except divide and
square root) and for all VIS instructions. Floating-point results from this stage are available
for bypass to dependent instructions that will be entering the C-stage in the next cycle.

Trap and Done Stages

This section describes the stages that interrupt or complete instruction execution.

The results of operations are bypassed and sent to the working register file. If no traps are
generated, then they are successfully pipelined down to the architectural register file and
committed. If a trap or recirculation occurs, then the architectural register file (contains
committed data) is copied to the working register in preparation for the instructions to be
re-executed.

T-stage (Trap)

Traps, including floating-point and integer traps, are signalled in this stage. The trapping
instruction, and all instructions younger than the trapping instruction must invalidate their
results before reaching the D-stage to prevent their results from being erroneously written
into the architectural or floating-point register files.

D-stage (Done)

Integer results are written into the architectural register file in this stage. At this point, they
are fully committed and are visible to any traps generated from younger instructions in the
pipeline.

Floating-point results are written into the floating-point register file in this stage. These
results are visible to any traps generated from younger instructions.

UltraSPARC llli Processor User's Manual « June 2003

4.3

Pipeline Recirculation

When a dependency is encountered in or before the dispatch R-stage, then the pipeline is
stalled. Most dependencies, like register or FV dependencies are resolved in the R-stage.
When a dependency is encountered after the dispatch R-stage, then the pipeline is
recirculated. Recirculation involves resetting the PC back to the recirculation invoking
instruction. Instructions older than the dependent instruction continue to execute. The
offending instructions and all younger instructions are recirculated. The offending instruction
is retried and goes through the entire pipeline again.

Upon recirculation, the instruction responsible for the recirculation becomes a single-group
instruction that is held in the R-stage until the dependency is resolved.

Load Instruction Dependency

In the case of a load instruction miss in a primary cache, the pipeline recirculates and the
load instruction waits in the R-stage. When the data is returned in the D-cache fill buffer, the
load instruction is dispatched again and the data is provided to the load instruction from the
fill buffer. The pipeline logic inserts two helpers behind the load instruction to move the data
in the fill buffer to the D-cache. The instruction in the instruction fetch stream, after the load
instruction, follows the helpers and will re-group with younger instructions, if possible.

4.4

Grouping Rules

Grouping rules are made before going into R-stage. A group is a collection of instructions
with no resource constraints that will limit them from being executed in parallel.

Instruction grouping rules are necessary for the following reasons:
Maintain the instruction execution order
Each pipeline runs a subset of instructions

Resource dependencies, data dependencies, and multicycle instructions require helpers
(NOPs) to maintain the pipelines

Before continuing, the following terms that apply to instructions are defined as:
break-before: The instruction will always be the first instruction of a group.

break-after: The instruction will always be the last instruction of a group.

Chapter 4 Instruction Execution 41

4.4.1

4.4.2

42

single-instruction group (SIG): The instruction will not be issued with any other
instructions in the group. (SIG is sometimes shortened herein to “single-group.”)

instruction latency: The number of processor cycles after dispatching an instruction from
the R-stage that a following data-dependent instruction can dispatch from the R-stage.

blocking, multicycle: The instruction reserves one or more of the execution pipelines for
more than one cycle. The reserved pipelines are not available for other instructions to issue
into until the blocking, multicycle instruction completes.

Execution Order

Rule: Within the R-stage, some of the instructions can be dispatched and others cannot.
If an instruction is younger than an instruction that is not able to dispatch, then the
younger instruction will not be dispatched.

“Younger” and “older” refer to instruction order within the program. The instruction that
comes first in the program order is the older instruction.

Integer Register Dependencies to Instructions in the
MS Pipeline

Rule: If a source register operand of an instruction in the R-stage matches the
destination register of an instruction in the MS pipeline’s E-stage, then the instruction
in the R-stage may not proceed.

The MS pipeline has no E-stage bypass.

If an operand of an instruction in the R-stage matches the destination register of an
instruction in the MS pipeline’s C-stage, then the instruction in the R-stage may not proceed
if the instruction in the MS pipeline’s C-stage does not generate its data until the M-stage.
For example, LDSB does not have the load data until the M-stage, but LDX has its data in the
C-stage. Thus, LDX would not cause an interlock, but LDSB would.

Most instructions in the MS pipeline have their data by the M-stage, so there is no
dependency check on the MS pipeline’s M-stage destination register. In the case of
multicycle MS instructions, the data is always available by the M-stage as the last of the
instructions passes through the pipeline.

UltraSPARC llli Processor User's Manual « June 2003

4.4.2.1

4.4.3

Helpers

Sometimes an instruction, as part of its operation, requires multiple flows in the pipeline.
These extra flows after the initial instruction flow are called helper cycles. The only pipeline
that executes such instructions is the MS pipeline. If an instruction requires a helper, that
helper is generated in the R-stage. The help generation logic generates as many helpers as the
instruction requires.

Most of the time the logic determines the number of helpers by examining the opcode.
However, some recirculate cases run the recirculated instruction differently than the original
flow down the pipeline, and some instructions, like integer multiply and divide, require
variable numbers of helpers. Some helper counts are determined by I/O and memory
controllers and system devices. For example, the D-cache unit requires helpers as it
completes an atomic memory instruction.

Rule: Instructions requiring helpers are always break-after.

There can be no instruction in a group that is younger than an instruction that requires
helpers. Another way of saying this is “an instruction that requires helpers will be the
youngest in its group.” This rule preserves the in-order execution of the integer instructions.

Rule: Helpers block the pipeline.

Helpers block the pipeline from executing other instructions; thus, instructions with helpers
are blocking.

Rule: Helpers are always single-group.

A helper cycle is always alone in a group. No other instruction will ever be dispatched from
the R-stage if there is a helper cycle in the R-stage.

Integer Instructions Within a Group

Rule: Integer instructions within a group are not allowed to write the same destination
register.

By not writing the same destination register at the same time, the bypass logic is simplified
as well as the register file write-enable determination and potential Write After Write (WAW)
errors. The instructions are break-before second destination is written.

This rule applies only to integer instructions writing integer registers. Floating-point
instructions and floating-point loads (done in the integer A0, Al, and MS pipelines) can be
grouped so that two or more instructions in the same group can write the same floating-point
destination register. Instruction age is associated with each instruction. The write from an
older instruction is not visible, but the execution of the instruction might still cause a trap
and set condition codes.

There are no special rules concerning integer instructions that set condition codes and
integer branch instructions.

Chapter 4 Instruction Execution 43

4.4.4

4.4.5

4.45.1

44

Integer instructions that set condition codes can be grouped in any way with integer
branches. In fact, any number instructions that set condition codes are allowed in any order
relative to the branch, provided that they do not violate any other rules. No special rules
apply to this specific case. Integer instructions that set condition codes in the Al and A0
pipelines can compute a taken/untaken result in the E-stage, which is the same stage in which
the branch is evaluating the correctness of its prediction. The control logic guarantees that
the correct condition codes are used in the evaluation.

Same-Group Bypass

Rule: Same-group bypass is disallowed, except store instructions.

The group bypass rule states that no instruction can bypass its result to another instruction in
the same group. The one exception to this rule is sfore. A store instruction can get its store
data (r d), but not its address operands (r s1, r s2), from an instruction in the same group.

Floating-Point Unit Operand Dependencies

Latency and Destination Register Addresses

Floating-point operations have longer latencies than most integer instructions. Moreover,
floating-point square root and divide instructions have varying latencies depending on
whether the operands are single precision or double precision. All the floating-point
instruction latencies are four clock cycles (except for floating-point divide and square root
and PDI ST - PDI ST).

The operands for floating-point operations can either be single precision (32-bit) or double
precision (64-bit). Sixteen of the double precision registers are each made up of two single
precision registers. An operation using one of these double precision registers as a source
operand may be dependent on an earlier single precision operation producing part of the
register value. Similarly, an operation using one of the single precision registers as a source
operands may be dependent on an earlier double precision operation, a part of which may
produce the single precision register value.

UltraSPARC llli Processor User's Manual « June 2003

4.45.2

4453

4.45.4

Grouping Rules for Floating-Point Instructions

Rule: Floating-point divide/square root is busy.

The floating-point divide/square root unit is a non-pipelined unit. The Integer Execution Unit
sets a busy bit for each of the two stages of the divide/square root and depends on the FGU
to clear them. Only the first part of the divide/square root is considered to have a busy unit;
therefore, once the first part is complete, a new floating-point divide/square root operation
can be started.

Rule: Floating-point divide/square root needs a write slot in the FGM pipeline.

In the stage in which a divide/square root is moved from the first part to the last part,
instructions must not be issued to the FGM pipeline. This constraint provides the write slot in
the FGM pipeline so the divide/square root can write the floating-point register file.

Rule: Floating-point store is dependent on floating-point divide/square root.

The floating-point divide/square root unit has a latency longer than the normal pipeline. As a
result, if a floating-point store depends on the result of a floating-point divide/square root,
then the floating-point store instruction may not be dispatched until the floating-point
divide/square root instruction has completed.

Grouping Rules for VIS Instructions

Rule: Graphics Status Register (GSR) Write instructions are break-after.

The SI AM BMASK, and FALI GNADDR instructions write the GSR. The BSHUFFLE and
FALI GNDATA instructions read the GSR in their operation. Because of the GSR write
latency, a GSR reader cannot be in the same group as a GSR writer unless the GSR reader is
older than the GSR writer. The simplest solution to this dependency is to make all GSR write
instructions break-after.

Note — The WRGSR instruction is not included in this rule as a special case. The WRGSR
instruction is already break-after by virtue of being a WRASR instruction.

PDIST Special Cases

PDI ST-to-dependent-PDI ST is handled as a special case with one-cycle latency. PDI ST
latency to any other dependent operation is a four-cycle latency. In addition, a PDl ST cannot
be issued if there is ST, block store (BST), or partial store instruction in the M-stage of the
pipeline. PDI ST issue is delayed if there is a store type instruction two groups ahead of it.

Chapter 4 Instruction Execution 45

4.4.6

4.4.7

46

Grouping Rules for Register-Window Management
Instructions

Rule: Window changing instructions are single-group.

The window changing instructions SAVE, RESTORE, and RETURN are all single-group
instructions. These instructions are never grouped with any other instruction. This rule
greatly simplifies the tracking of register file addresses.

Rule: Window changing instructions force bubbles after.

The window changing instructions SAVE, RESTORE, and RETURN also force a subsequent
pipeline bubble. A bubble is distinct from a helper cycle in that there is nothing valid in the
pipeline within a bubble. During the bubble, control logic transfers the new window from the
Architectural Register File (ARF) to the Working Register File (WWRF).

Rule: FLUSHWis single-group.

To simplify the Integer Execution Unit’s handling of the register file window flush, the
FLUSHWiInstruction is single-group.

Rule: SAVED and RESTORED are single-group.

To simplify the Integer Execution Unit’s window tracking, SAVED and RESTORED are
single-group instructions.

Grouping Rules for Reads and Writes of the ASRs

Rule: Write ASR and Write PR instructions are single-group.
WRASR and WRPR are always the youngest instructions in a group. This case prevents

problems with an instruction being dependent on the result of the write, which occurs late in
the pipeline.

Rule: Write ASR and Write PR force seven bubbles after.

To guarantee that any instruction that starts in the R-stage is started with the most up-to-date
status registers, WRASR and WRPR force bubbles after they are dispatched. Thus, if a WRASR
or a WRPR instruction is in the pipeline anywhere from the E-stage to the T-stage, no
instructions are dispatched from the R-stage (bubbles are forced in).

Rule: Read ASR and Read PR force up to six bubbles before (break-before multicycle).

Many instructions can update the ASRs and PRs. Therefore, if an RDASR or RDPR
instruction is in the R-stage and any valid instruction is in the integer pipelines from the
E-stage to the X-stage, the UltraSPARC IIIi processor does not allow the RDASR and RDPR
instructions to be dispatched. Instead, all pipeline states must wait to write the ASRs and
privileged registers and then read them.

UltraSPARC llli Processor User's Manual « June 2003

4.4.8

Grouping Rules for Other Instructions

Rule: Block Load (BLD) and Block Store (BST) are single-group and multicycle.

For simplicity in the Integer Execution Unit and memory system, BLD and BST are
single-group instructions with helpers.

Rule: FLUSH is single-group and seven bubbles after.

To simplify the Instruction Issue Unit and Integer Execution Unit, the FLUSH instruction is
single-group. This makes instruction cancellation and issue easier. FLUSH is held in the
R-stage until the store queue and the pipeline from E-stage through D-stage is empty.
Rule: MEMBAR (#Sync, #Lookasi de, #St or eLoad, #Meni ssue) is single-group.

To simplify the Integer Execution Unit and memory system, VEMBAR is a single-group
instruction. MEMBAR will not dispatch until the memory system has completed necessary
transactions.

Rule: Software-initiated reset (S| R) is single-group.

For simplicity, Sl R is a single-group instruction.

Rule: Load FSR (LDFSR) is single-group and forces seven bubbles after.

For simplicity, LDFSR is a single-group instruction.

Rule: DONE and RETRY are single-group.
DONE and RETRY instructions are dispatched as a single-group.

Rule: DONE and RETRY force seven bubbles after.

DONE and RETRY are typically used to return from traps or interrupts and are known as trap
exit instructions.

It takes a few cycles to properly restore the pre-trap state and the working register file from
the architectural register file, so bubbles are forced after the trap exit instructions to provide
the cycles to do it all. A new instruction is not accepted until the trap exit instruction leaves
the pipeline (also known as D + 1).

Chapter 4 Instruction Execution 47

4.5

48

Conditional Moves

The compiler needs to have a detailed model of the implementation of the various
conditional moves so it can optimally schedule code. TABLE 4-3 describes the implementation
of the five classes of SPARC-V9 conditional moves in the pipeline. FADD and ADD
instructions (shaded rows) are also described as a reference for comparison with the
conditional move instructions.

TABLE 4-3 SPARC-V9 Conditional Moves

RD Busy

Instruction Latency Pipelines Used Cycles Groupable Dependency
FMOVi cc 3 cycles FGA and BR 1 Yes icc-0
FMOVf cc 3 cycles FGA and BR 1 Yes fcc-0
FMOVr 3 cycles FGA and MS 1 Yes N/A

FADD 4 cycles FGA 1 Yes N/A

ADD 1 cycle A0 or Al 1 Yes N/A
MOVcc 2 cycles MS and BR 1 Yes icc-0
MOVR 2 cycles MS and BR 1 Yes N/A

Where:

RD Latency — The number of processor cycles until the destination register is available for
bypassing to a dependent instruction.

Pipes Used — The pipeline that the instruction uses when it is issued. The pipelines are
shown in TABLE 4-2.

Busy Cycles — The number of cycles that the pipelines are not available for other
instructions to be issued. A value of one signifies a fully pipelined instruction.

Groupable — Whether instructions using pipelines, other than those used by the conditional
move, can be issued in the same cycle as the conditional move.

{i,f}CC Dependency — The number of cycles that a CC setting instruction must be
scheduled ahead of the conditional move in order to avoid incurring pipeline stall cycles.

UltraSPARC llli Processor User's Manual « June 2003

4.6

4.6.1

Instruction Latencies and Dispatching
Properties

In this section, a machine description is given in the form of a table (TABLE 4-5 on page 50)
dealing with dispatching properties and latencies of operations. The static or nominal
properties are modelled in the following terms (columns in TABLE 4-5 on page 50), which are
discussed below:

Latencies
Blocking properties in dispatching
Pipeline resources (A0, Al, FGA, FGM, MS, BR)

Break rules in grouping (before, after, single-group)

The pipeline assumes the primary cache will be accessed. The dynamic properties, such as
the effect of a cache miss and other conditions, are not described here.

Latency

In the Latency column of TABLE 4-5 on page 50, latencies are minimum cycles at which a
dependent operation (consumer) can be dispatched, relative to the producer operation,
without causing a dependency stall or instructions to hold back in the R-stage to execute.

Operations like ADDcc produce two results, one in the destination register and another in the
condition codes. For such operations, latencies are stated as a pair x,y, where x is for the
destination register dependence and y is for the condition code.

A zero latency implies that the producer and consumer operations may be grouped together
in a single group, as in { SUBcc, BE % cc}.

Operations like UMUL have different latencies, depending on operand values. These are given
as a range, min—max, for example, 6 — 8 in UMUL. Operations like LDFSR involve waiting for
a specified condition. Such cases are described by footnotes and a notation like 32+ for
CASA (meaning at least 32 cycles).

Cycles for branch operations (like BPcc) give the dispatching cycle of the retiring target
operation relative to the branch. A pair of numbers, for example 0, 8, is given, depending on
the outcome of a branch prediction, where 0 means a correct branch prediction and 8 means
a mispredicted case.

Special cases, such as FCVP(s,d), in which latencies depend on the type of consuming
operations, are described in footnotes (bracketed, for example, [1]).

Chapter 4 Instruction Execution 49

4.6.2

4.6.3

4.6.4

Blocking

The Blocking column of TABLE 4-5 gives the number of clock cycles that the dispatch unit
waits before issuing another group of instructions. Operations like FDI Vd (MS pipeline)
have limited blocking property; that is, the blocking is limited to the time before another
instruction that uses MS pipeline can be dispatched. Such cases are noted with footnotes. All
pipelines block instruction dispatch when an instruction is targeted to them, but they are not
ready for another instruction to be pipelined-in.

Pipeline

The Pipeline column of TABLE 4-5 specifies the resource usage. Operations like MOVcc
require more than one resource, as designated by the notation MS and BR. The operation
LDF can dispatch to either MS, A0, or Al as indicated.

Break and SIG

Grouping properties are given in columns Br eak and S| G (single-instruction group). In the
Break column an entry can be “Before,” meaning that this operation causes a break in a
group so that the operation starts a new group. Operations like RDCCR require dispatching to
be stalled until all operations in flight are completed (reach D-stage); in such cases, details
are provided in a footnote reference in the Break column.

Operations like ALl GNADDR must be the last in an instruction group, causing a break in the
group of type “After.”

Certain operations are not groupable and therefore are issued in single-instruction groups. A
break “before” and “after” are implied for non-groupable instructions.

TABLE 4-5 UltraSPARC IIli Processor Instruction Latencies and Dispatching Properties (1 of 6)
Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
ADD 1 A0 or Al
ADDcc 1,0([1] A0 or Al
ADDC 5 4 MS Yes
ADDCcc 6,5 [2] 5 MS Yes
ALI GNADDR 2 MS After
ALI GNADDRL 2 MS After
AND 1 A0 or Al

50

UltraSPARC llli Processor User's Manual « June 2003

TABLE 4-5 UltraSPARC IlIli Processor Instruction Latencies and Dispatching Properties (2 of 6)

Dispatch
Blocking

Instruction Latency After Pipeline Break SIG

ANDcc 1,0 [1] A0 or Al

ANDN 1 A0 or Al

ANDNcc 1,0[1] A0 or Al

ARRAY(8,16,32) 2 MS

Bi ccP 0, 8 [3] 0,5 [4] BP

BMVASK 2 MS After

BPcc 0, 8 [3] 0, 5 [4] BP

BPR 0, 8 [3] 0, 5 [4] BP and MS

BSHUFFLE 3 FGA Yes

CALL label 0-3 [5] BP and MS

CASA 32+ 31+ MS After

CASXA 32+ 31+ MS After

DONEP 7 Yes BP and MS Yes

EDGE(8,16,32){L} 5 4 MS Yes

EDGE(8,16,32)N 2 MS

EDGE(8,16,32)LN 2 MS

FABS(s,d) 3 FGA

FADD(s,d) 4 FGA

FALI GNDATA 3 FGA

FANDNOT1{ s} 3 FGA

FANDNOT2{ s} 3 FGA

FAND(s} 3 FGA

FBPf cc BP

FBf ccP BP

FCMP(s, d) 1,5 [6] FGA

FCWVPE(s, d) 1, 5[6] FGA

FCVPEQ(16,32) 4 MS and FGA

FCMPGT(16,32) 4 MS and FGA

FCVPLE(16,32) 4 MS and FGA

FCVMPNE(16,32) 4 MS and FGA

FDI Vd 20 (14) [6] 17 (11) [7] FGM

FDI Vs 17 (14) [6] 14 (11) [7] FGM

FEXPAND 3 FGA

Fi TQ(s,d) 4 FGA

Chapter 4

Instruction Execution

TABLE 4-5 UltraSPARC IlIli Processor Instruction Latencies and Dispatching Properties (3 of 6)

Dispatch
Blocking

Instruction Latency After Pipeline Break SIG

FLUSH 8 7 BP and MS Before [8] Yes

FLUSHW Yes MS Yes

FMOV(s,d) 3 FGA

FMOV(s,d) cc 3 FGA and BP

FMOV(s,d) r 3 FGA and MS

FMUL(s,d) 4 FGM

FMJL8(, SU, UL) x16 4 FGM

FMUL8x16(AL, AU) 4 FGM

FMJULD8(SU, UL) x16 4 FGM

FNAND{ s} 3 FGA

FNEQ(s,d) 3 FGA

FNOR(s} 3 FGA

FNOT(1, 2) { s} 3 FGA

FONE{ s} 3 FGA

FORNOT(1, 2){s} 3 FGA

FOR{ s} 3 FGA

FPACK(FI X, 16,32) 4 FGM

FPADD(16, 16s, 32, 32s) 3 FGA

FPMERGE 3 FGA

FPSUB(16, 16s, 32, 32s) 3 FGA

FsMJLd 4 FGM

FSQRTd 29 (14) [6] 26 (11) [7] FGM

FSQRTs 23 (14) [6] 20 (11) [7] FGM

FSRC(1, 2) {s} 3 FGA

F(s, d) TO(d, s) 4 FGA

F(s,d) TG 4 FGA

F(s, d) TOx 4 FGA

FSUB(s, d) 4 FGA

FXNCOR 3 FGA

FXOR{ s} 3 FGA

FXxTQ(s, d) 4 FGA

FZER((s} 3 FGA

| LLTRAP MS

JVPL reg, %07 0-4, 9-10 [9] 0-3, 8-9 MS and BP

52

UltraSPARC llli Processor User's Manual « June 2003

TABLE 4-5 UltraSPARC IlIli Processor Instruction Latencies and Dispatching Properties (4 of 6)
Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
JMPL % 7+8, %90 3-5, 10-12 [10] 2-4,9-11 MS and BP
JMPL %7+8, %90 0-4, 9 [11] 0-3, 8 MS and BP
LDDP 2 Yes MS After
LDDAP 2 Yes MS After
LDDF{ A} 3 MS, A0, or Al
LDF{ A} 3 MS, A0, or Al
LDFSRP [22] Yes MS Yes
LDSB{ A} 3 MS
LDSH{ A} 3 MS
LDSTUB{ A} 31+ 30+ MS After
LDSW A} 3 MS
LDUB{ A} 3 MS
LDUH{ A} 3 MS
LDUW A} 2 MS
LDX{ A} 2 MS
LDXFSR [22] Yes MS Yes
MEMBAR #LoadLoad [12] MS Yes
MEMVBAR #LoadSt or e [12] MS Yes
MEMBAR #Lookasi de [13] MS Yes
MEMVBAR #Mem ssue [13] MS Yes
MEMBAR #St or eLoad [13] MS Yes
MEMBAR #St or eSt or e [12] MS Yes
MEMBAR #Sync [14] MS Yes
MOVcc 2 MS and BP
MOVf cc 2 MS and BP
MOvr 2 MS
MJLScc 6,5 [2] 5 MS Yes
MULX 6-9 5-8 MS After
NOP na MS
OR 1 A0 or Al
ORcc 1,0[1] A0 or Al
ORN 1 A0 or Al
ORNcc 1,0([1] A0 or Al
PDI ST 4 FGM

Chapter 4

Instruction Execution

53

TABLE 4-5 UltraSPARC IlIli Processor Instruction Latencies and Dispatching Properties (5 of 6)

Dispatch

Blocking
Instruction Latency After Pipeline Break SIG
POPC emulated
PREFETCH{ A} MS
RDASI 4 MS Before [15]
RDASR 4 MS Before [15]
RDCCR 4 MS Before [15]
RDDCR®
RDFPRS 4 MS Before [15]
RDPC 4 MS Before [15]
RDPR 4 MS Before [15]
RDSOFTI NTP
RDTI CK 4 MS Before [15]
RDYP 4 MS Before [15]
RESTORE 2 1 MS Before [16] | Yes
RESTORED” MS Yes
RETRYP 2 Yes MS and BP After
RETURN 2,9 [17] 1,8 MS and BP Before [18] | Yes
SAVE 2 1 MS Before [19] | Yes
SAVED” 2 Yes MS Yes
SDl vV 39 38 MS After
SDI V{ cc} P 40, 39 [2] 39 MS After
SDI VX 71 70 MS After
SETHI 1 A0 or Al
SHUTDOWN [23] NOP MS NOP
SI AM Yes MS Yes
SIR Yes BP and MS Yes
SLL{ X} 1 A0 or Al
smuLP 6-7 5-6 MS After
SMuLccP 7-8, -6-7 [2] 6-8 MS After
SRA{ X} 1 A0 or Al
SRL{ X} 1 A0 or Al
STB{ A} MS
STBARP [20] MS Yes
STD{ A} P 2 MS Yes
STDF{ A} MS

54 UltraSPARC llli Processor User's Manual « June 2003

TABLE 4-5 UltraSPARC IlIli Processor Instruction Latencies and Dispatching Properties (6 of 6)
Dispatch
Blocking
Instruction Latency After Pipeline Break SIG
STF{ A} MS
STFSRP 9 MS Before [21] | Yes
ST(H, W X) { A} MS
STXFSR 9 MS Before [21] | Yes
SuUB 1 A0 or Al
SUBcc 1,0[1] A0 or Al
SUBC 5 4 MS Yes
SUBCcc 6,5 [2] 5 MS Yes
SWAP{ A} 31+ 30+ MS After
TADDcc 5 Yes MS Yes
TSUBcc 5 Yes MS Yes
Tcc BR and MS
uDl VP 40 39 MS After
uDl vecP 41, 40 [2] 40 MS After
uDIl VX 71 70 MS After
umuLP 6-8 5-7 MS After
UMJLccP 7-8, 6-7 [2] 6-8 MS After
V\RASI 16 BR and MS Yes
WRASR 7 BR and MS Yes
WRCCR 7 BR and MS Yes
VWRFPRS 7 BR and MS Yes
VRPRP 7 BR and MS Yes
VRYP 7 BR and MS Yes
XNOR 1 A0 or Al
XNORcC 1,0[1] A0 or Al
XOR 1 A0 or Al
XORcC 1,0[1] A0 or Al

These operations produce two results: destination register and condition code (% cc, % cc). The latency is one in the
former case and zero in the latter case. For example, SUBcc and BE % cc are grouped together (zero latency).

These operations produce two results: destination register and condition code (% cc, % cc). The latency is given as a
pair of numbers —m, n — for the register and condition code, respectively. When latencies vary in a range, such as in
UMJLcc, this range is indicated by pair— pair.

Latency is x, y for correct, incorrect branch prediction. It is measured as the difference in the dispatching cycle of the
retiring target instruction and that of the branch.

Chapter 4 Instruction Execution 55

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

56

Blocking cycles are x,y for correct, incorrect branch prediction. They are measured as the difference in the dispatching
cycle of instruction in the delay slot (or target, if annulled) that retires and that of the branch.

Native Cal | and Li nk with immediate target address (label).

Latency in parentheses applies when operands involve IEEE special values (NaN, | NF), including zero and illegal
values.

Blocking is limited to another FD operation in succession; otherwise, it is unblocking. Blocking cycles in parentheses
apply when operands involve special holding and illegal values.

Dispatching stall (7+ cycles) until all stores in flight retire.
0—4 if predicted true; 9-10 if mispredicted.

Latency is taken to be the difference in dispatching cycles from j nmpl to target operation, including the effect of an
operation in the delay slot. Blocking cycles thus may include cycles due to restore in the delay slot. In a given pair x,y,
x applies when predicted correctly and y when predicted incorrectly. Each x or y may be a range of values.

0-4 if predicted true; 9 if mispredicted.

This MEMBAR has NOP semantics, since the ordering specified is implicitly done by processor (memory model is TSO).
All operations in flight complete as in MEMBAR #Sync.

All operations in flight complete.

Issue stalls a minimum of 7 cycles until all operations in flight are done (get to D-stage).
Dispatching stalls until previous save in flight, if any, reaches D-stage.

2 if predicted correctly, 9 otherwise. Similarly for blocking cycles.

Dispatching stalls until previous restore in flight, if any, reaches D-stage.

Dispatching stalls until previous restore in flight, if any, reaches D-stage.

Same as MEMBAR #St or eSt or e, which is NOP.

Dispatching stalls until all FP operations in flight are done.

Wait for completion of all FP operations in flight.

The Shutdown instruction is not implemented. The instruction is neutralized and appears as a NOP to software (no
visible effects.

UltraSPARC llli Processor User's Manual « June 2003

sectionN 111

Execution Environment

June 2003 Section Ill « Execution Environment « 57

58

UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 5

Data Formats

The processor recognizes the following fundamental data types:
Signed integer: 8, 16, 32, and 64 bits
Unsigned integer: 8, 16, 32, and 64 bits
VIS Instruction data formats: pixel (32 bits), fixed16 (64 bits), and fixed32 (64 bits)
Floating-point: 32, 64, and 128 bits

The widths of the data types are as follows:
Byte: 8 bits
Halfword: 16 bits
Word: 32 bits
Tagged word: 32 bits (30-bit value plus 2-bit tag; deprecated)
Doubleword: 64 bits (deprecated in favor of Extended word)
Extended word: 64 bits
Quadword: 128 bits
The signed integer values are stored as two’s-complement numbers with a width

commensurate with their range. In tagged words, the least significant two bits are treated as
a tag; the remaining 30 bits are treated as a signed integer.

Names are assigned to individual subwords of the multiword data formats as described in the
following sections:

Signed Integer Double

Unsigned Integer Double

Floating-Point, Double-Precision

Floating-Point, Quad-Precision

59

5.1 Integer Data Formats

The processor supports the following integer data formats:
Signed integer
Unsigned integer

Tagged integer word

5.1.1 Integer Data Value Range

TABLE 5-1 describes the width and ranges of the signed, unsigned, and tagged integer data
formats.

TABLE 5-1 Signed Integer, Unsigned Integer, and Tagged Integer Format Ranges

Range

Data Type Width (bits) Lower Upper

Signed integer byte 8 =27 27 —1

Signed integer halfword 16 -2 215 =1
Signed integer word 32 —231 23—
Signed integer tagged word 32 —2% 229 — 1
Signed integer double word 64 —263 20—
Signed extended integer 64 —263 203 —1
Unsigned integer byte 8 0 28 —1
Unsigned integer halfword 16 0 216 — 1
Unsigned integer word 32 0 22—
Unsigned integer tagged word 32 0 230 —
Unsigned integer double word 64 0 204 — 1
Unsigned extended integer 64 0 204 —1

60 UltraSPARC llli Processor User's Manual * June 2003

5.1.2

Integer Data Alignment

TABLE 5-2 describes the memory and register alignment for integer data.

TABLE 5-2 Integer Data Alignment
Memory
Required Address | Register

Subformat Address (Big- Number Register
Type Width Subformat Field Alignment | endian) Alignment | Number
SB si gned_byt e_i nt eger <7:0>

B (byte) - - None n Any r
UB unsi gned_byt e_i nt eger <7:.0>
SH si gned_hal fwd_i nt eger <7:0>

H (halfword) - - 0 mod 2 n Any r
UH unsi gned_hal fwd_i nt eger <7:0>
SW si gned_wor d_i nt eger <7:0>

W (word) - - 0 mod 4 n Any r
Uw unsi gned_wor d_i nt eger <7:0>
SD-0 si gned_dbl _i nt eger <63:32>

- - 0 mod 8 n 0 mod 2 r

UD-0 unsi gned_dbl _i nt eger <63:32>

D (double word) - -
SD-1 si gned_dbl _i nt eger <31:0>

- - 4 mod 8 n+4 1 mod 2 r+1

UD-1 unsi gned_dbl _i nt eger <31:0>
SX si gned_ext _i nt eger <63:0>

X (extended word) - - 0 mod 8 n — r
UXx unsi gned_ext _i nt eger <63:0>

5.1.3

5.1.3.1

The data types are illustrated in the following subsections.

Signed

Figures in this section illustrate the following signed data types:

Integer Data Types

Signed integer byte

Signed integer halfword

Signed integer word

Signed integer doubleword

Signed extended integer

Signed Integer Byte

FIGURE 5-1 illustrates the signed integer byte data format.

Chapter 5

Data Formats

61

SB E

76
FIGURE 5-1 Signed Integer Byte Data Format
5.1.3.2 Signed Integer Halfword
FIGURE 5-2 illustrates the signed integer halfword data format.
SH 8
1514 0
FIGURE 5-2 Signed Integer Halfword Data Format
5.1.3.3 Signed Integer Word
FIGURE 5-3 illustrates the signed integer word data format.
SW S
3130 0
FIGURE 5-3 Signed Integer Word Data Format
5.1.3.4 Signed Integer Double
FIGURE 5-4 illustrates both components (SD-0 and SD-1) of the signed integer double data
format.
SD-0 |s signed_dbl_integer<62:32>
31 30 0
SD-1 signed_dbl_integer<31:0>
31 0

FIGURE 5-4 Signed Integer Double Data Format

62 UltraSPARC llli Processor User's Manual * June 2003

5.1.3.5

Signed Extended Integer

FIGURE 5-5 illustrates the signed extended integer (SX) data format.

SX |s

signed_ext_integer

63 62

5.14

5.14.1

5.14.2

FIGURE 5-5 Signed Extended Integer Data Format

Unsigned Integer Data Types

Figures in this section illustrate the following unsigned data types:
Unsigned integer byte
Unsigned integer halfword
Unsigned integer word
Unsigned integer doubleword

Unsigned extended integer

Unsigned Integer Byte

FIGURE 5-6 illustrates the unsigned integer byte data format.

FIGURE 5-6 Unsigned Integer Byte Data Format

Unsigned Integer Halfword

FIGURE 5-7 illustrates the unsigned integer halfword data format.

UH

FIGURE 5-7 Unsigned Integer Halfword Data Format

0
UB
0
15 0
63

Chapter 5 Data Formats

5.1.43

5.144

5.1.4.5

Unsigned Integer Word

FIGURE 5-8 illustrates the unsigned integer word data format.

Uw

31 0

FIGURE 5-8 Unsigned Integer Word Data Format

Unsigned Integer Double

FIGURE 5-9 illustrates both components (UD-0 and UD-1) of the unsigned integer double data
format.

UD-0 unsigned_dbl_integer<63:32>
31 0

UD-1 unsigned_dbl_integer<31:0>
31 0

FIGURE 5-9 Unsigned Integer Double Data Format

Unsigned Extended Integer

FIGURE 5-10 illustrates the unsigned extended integer (UX) data format.

UX

unsigned_ext_integer

63

5.1.5

64

FIGURE 5-10 Unsigned Extended Integer Data Format

Tagged Word

The Tagged word data format is similar to the unsigned word format except for a 2-bit field
in the two LSB positions. Bit 31 is the overflow bit.

FIGURE 5-11 illustrates the tagged word data format.

UltraSPARC llli Processor User's Manual * June 2003

T™™W of

tag

31

FIGURE 5-11 Tagged Word Data Format

5.2

5.2.1

522

Floating-Point Data Formats

21 0

Single-precision, double-precision, and quad-precision floating-point data types are described

below.

Single-precision floating-point (32-bit)
Double-precision floating-point (64-bit)
Quad-precision floating-point (128-bit)

Floating-Point Data Value Range

The value range for each format is included with the format and description of each format.

Floating-Point Data Alignment

TABLE 5-3 describes the address and memory alignment for floating-point data.

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment

Required Memory Register

Subformat Address Address Number Available

Name Subformat Field Alignment (Big-endian)* Alignment Registers

FS s: exp<7:0>: fracti on<22:0> 0O mod 4t n Any 10, 11,... /31
FD-0 s: exp<10:0>: f ract i on<51:32> 0mod 4 T n 0 mod 2 /0, 12,... f62
FD-1 fracti on<31:0> 0mod 4 n+4 1 mod 2 f1, 13,... f63
FX-0 O 0 mod 4 n 0 mod 4 10, f4,... f60
FX-1 | 0 mod 4 n 0 mod 4 2, /6.... /62
FQ-0 s: exp<l4:0>:fracti on<111:96> 0 mod 4% n 0 mod 4 10, 14,... f60
FQ-1 fracti on<95:64> 0 mod 41 n+4 1 mod 4 1 f5,... f61

Chapter 5

Data Formats

65

TABLE 5-3 Floating-Point Doubleword and Quadword Alignment (Continued)

Required Memory Register
Subformat Address Address Number Available
Name Subformat Field Alignment (Big-endian)* Alignment Registers
FQ-2 fracti on<63:32> 0 mod 4 n+8 2 mod 4 2, 16,... 162
FQ-3 fracti on<31:0> Omod 41 n+12 3 mod 4
FX O 0mod 4 T n 0 mod 4 13, f7.... /63

* The Memory Address in this table applies to big-endian memory accesses. Word and byte order are reversed when little-endian accesses are used.

T Although a floating-point doubleword is required only to be word-aligned in memory, it is recommended that it be doubleword-aligned (that is, the
address of its FD-0 word should be 0 mod 8 so that it can be accessed with doubleword loads/stores instead of multiple single word loads/stores).

e

Although a floating-point quadword is required only to be word-aligned in memory, it is recommended that it be quadword-aligned (that is, the
address of its FQ-0 word should be 0 mod 16).

523 Floating-Point, Single-Precision

FIGURE 5-12 illustrates the floating-point single-precision data format, and TABLE 5-4
describes the formats.

FS S| exp<7:0> fraction<22:0>

3130 2322 0

FIGURE 5-12 Floating-Point Single-Precision Data Format

TABLE 5-4 Floating-Point Single-Precision Format Definitions

s = sign (1-bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255) (-1 x 27127 x 1 f

Subnormal value (e = 0) (-1 x 27126 x 0 f

Zero (e =0) (-1)¥x0

Signalling NaN s =u; e =255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e =255 (max); f=.luu--uu

— 00 (negative infinity) s = 1; e =255 (max); f =.000--00

+ 00 (positive infinity) s =0; e = 255 (max); f = .000--00

66 UltraSPARC llli Processor User's Manual * June 2003

5.2.4 Floating-Point, Double-Precision

FIGURE 5-13 illustrates both components (FD-0 and FD-1) of the floating-point
double-precision data format when two 32-bit registers are used. FIGURE 5-14 illustrates a
double-precision data format using one 64-bit register.

TABLE 5-5 describes the data formats.

FD-O (s exp<10:0> fraction<51:32>

3130 2019 0
FD-1 fraction<31:0>

31 0

FIGURE 5-13 Floating-Point Double-Precision Double Word Data Format

FX |s exp<10:0> fraction<51:0>

63 62 52 51 0

FIGURE 5-14 Floating-Point Double-Precision Extended Word Data Format

TABLE 5-5 Floating-Point Double-Precision Format Definition

s = sign (1-bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047) (-1)s x 2671023 1 £

Subnormal value (e = 0) (-1)* x 271022 x o f

Zero (e =0) (-1)*x0

Signalling NaN s =u; e =2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e = 2047 (max); f=.luu--uu

— OO (negative infinity) s =1; e =2047 (max); f=.000--00

+ 00 (positive infinity) s =0; e = 2047 (max); f=.000--00

Chapter 5 Data Formats

67

5.2.5

68

Floating-Point, Quad-Precision

FIGURE 5-15 illustrates all four components (FQ-0 through FQ-3) of the floating-point
quad-precision data format, and TABLE 5-6 describes the formats.

Compatibility Note — Floating-point quad is not implemented in the processor.
Quad-precision operations are emulated in the OS kernel.

FQ-0 S exp<14:0> fraction<111:96>
31 30 16 15
FQ-1 fraction<95:64>
31
FQ-2 fraction<63:32>
31
FQ-3 fraction<31:0>
31

FIGURE 5-15 Floating-Point Quad-Precision Data Format

TABLE 5-6 Floating-Point Quad-Precision Format Definitions

s = sign (1-bit)

e = biased exponent (15 bits)
f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767)

(_l)s x 26—16383 x 1.f

Subnormal value (e = 0)

(_l)s X 2—16382 x 0.f

Zero (e =0)

(-1 %0

Signalling NaN

s =u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero.)

Quiet NaN

s =u; e =32767 (max); f = .luu--uu

— OO (negative infinity)

s =1; e =32767 (max); f =.000--00

+ ©0 (positive infinity)

s =0; e =32767 (max); f =.000--00

UltraSPARC llli Processor User's Manual * June 2003

5.3

VIS Execution Unit Data Formats

VIS instructions are optimized for short integer arithmetic, where the overhead of converting
to and from floating point is significant. Data components can be 8 or 16 bits; intermediate
results are 16 or 32 bits.

There are two VIS data formats:
Pixel Data
Fixed-point Data

Data Conversions

Conversion from pixel data to fixed data occurs through pixel multiplications. Conversion
from fixed data to pixel data is done with the pack instructions, which clip and truncate to an
8-bit unsigned value. Conversion from 32-bit fixed to 16-bit fixed is also supported with the
FPACKFI X instruction.

Rounding

Rounding can be performed by adding one to the round bit position. Complex calculations
needing more dynamic range or precision should be performed using floating-point data.

Range

The range of values that each format supports is described below.

Data Alignment

The data in memory is expected to be aligned according to TABLE 5-7. If the address does not
properly align, then an exception is generated and the load/store operation fails.

Chapter 5 Data Formats 69

TABLE 5-7 Pixel, Fixed16, and Fixed32 Data Alignment

Memory
VIS Data Required Address | Register
Format Address (big- Number Register
Type Width VIS Data Format Name Alignment | endian) Alignment | Number
Pixel 8 32 Pixel Data Format 0 mod 4 n r r
Fixed16 64 Fixed16 Data Format 0 mod 8 n 0 mod 2 r
Fixed32 64 Fixed32 Data Format 0 mod 8 n 0 mod 2 r

5.3.1

5.3.2

70

Pixel Data Format

The Fixed 8-bit data format consists of four unsigned 8-bit integers contained in a 32-bit
word (see FIGURE 5-16).

One common use is to represent intensity values for the color components of an image. For
example, R, G, B, and a are used as color components and are positioned as shown:

31 24 23 16 15 8 7 0
FIGURE 5-16 Pixel Data Format with Band Sequential Ordering Shown

The fixed 8-bit data format can represent two types of pixel data:

Band interleaved images, with the various color components of a point in the image
stored together

Band sequential images, with all of the values for one color component stored together

Fixed-Point Data Formats

The fixed 16-bit data format consists of four 16-bit signed fixed-point values contained in a
64-bit word. The fixed 32-bit format consists of two 32-bit signed fixed-point values
contained in a 64-bit word. Fixed-point data values provide an intermediate format with
enough precision and dynamic range for filtering and simple image computations on pixel
values.

UltraSPARC llli Processor User's Manual * June 2003

53.2.1 Fixed16 Data Format

Fixed data values provide an intermediate format with enough precision and dynamic range
for filtering and simple image computations on pixel values.

Perform rounding by adding one to the round bit position. Perform complex calculations
needing more dynamic range or precision by means of floating-point data.

The fixed 16-bit data format consists of four 16-bit, signed, fixed-point values contained in a
64-bit word. FIGURE 5-17 illustrates the Fixed16 VIS data format.

integer | fraction integer | fraction integer | fraction integer | fraction
63 48 47 32 31 16 15 0

FIGURE 5-17 Fixed16 VIS Data Format

5322 Fixed32 Data Format

The fixed 32-bit format consists of two 32-bit, signed, fixed-point values contained in a
64-bit word. FIGURE 5-18 illustrates the Fixed32 VIS data format.

integer | fraction integer fraction
63 32 31 0

FIGURE 5-18 Fixed32 VIS Data Format

Chapter 5 Data Formats 71

72

UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 6

Registers

6.1

The topics covered in this chapter are discussed in the following sections:

9995

Section 6.1, “Introduction

9995

Section 6.2, “Integer Unit General-Purpose r Registers

9999

Section 6.3, “Register Window Management

9995

Section 6.4, “Floating-Point General-Purpose Registers

CEEE]

Section 6.5, “Control and Status Register Summary

9999

Section 6.6, “State Registers

Section 6.7, “Ancillary State Registers: ASRs 16-25"”

9993

Section 6.8, “Privileged Registers

CEEL]

Section 6.9, “Special Access Register

Section 6.10, “ASI Mapped Registers™”

Introduction

The processor consists of many types of registers that serve various purposes and accessed in
many different ways.

There are separate working registers for the integer and floating-point units (FPUs). Both of
the these register sets have been expanded over the evolution of the SPARC processor. The
integer unit registers are shadowed using windowing and selection methods. The registers in
the floating-point register set (also used for VIS and block load store instructions) are
combined in specific ways to support data sizes up to 128 bits. All integer registers and the
upper floating-point registers are 64 bits wide.

73

6.1.1

The processor also has a vast array of control, status, state, and diagnostic registers that are
used to setup, control, and operate the processor. The two main operating modes of the
processor, privileged and non-privileged mode, have a profound effect on which of the
control and status registers are available to the software.

The majority of the control and status registers are 64 bits wide and are accessed using the
privileged register access instructions, state register access instructions, and load/store with
ASI access instructions. For convenience, some registers in this chapter are illustrated as
fewer than 64 bits wide. Any bits not shown are reserved for future extensions to the
architecture. Such reserved bits are read as zeroes and when written by software, should be
written with the values of those bits previously read from that register or with zeroes.

Integer Unit Working Registers (includes r and global)
Floating-point Unit Working Registers
Privileged Registers
State and Ancillary State Registers (includes ASRs)
Floating-point Status Register (FSR)
ASI Mapped Registers (CSRS)
Some of the figures and tables in this chapter are reproduced from The SPARC Architecture

Manual-Version 9 and other sources. Many diagrams and tables appear here for the first
time.

Document Notes

Contents of this chapter apply to non-privileged mode unless stated otherwise.

6.2

74

Integer Unit General-Purpose I Registers

An UltraSPARC IIIi processor contains 160 general-purpose 64-bit r registers. They are
windowed into 32 registers addressable by Integer Unit Instructions.

The r registers are partitioned into eight addressable global registers and 24 addressable

wi ndowed registers. There are four global register sets: normal, MMU, Interrupt, and
Alternate. The windowed registers point to eight working register sets that are windowed into
r [8] to r [31], as one full register set (eight | ocal s and eight i ns) and a half register set
(eight out s) belonging to the next higher state.

In summary, the r registers consist of eight i n registers, eight | ocal registers, eight out
registers, and the selected eight global registers.

UltraSPARC llli Processor User's Manual * June 2003

The current window pointer (CWP) register selects the i n/l ocal /out windowed registers.
SAVE and RESTORE instructions modify the CWP register.

The PSTATE. AG, PSTATE. | G and PSTATE. MG fields select the global register set.
Processor exceptions modify the PSTATE register fields to select the global register set.

PSTATE and CWP registers are accessible using privileged instructions.

At any moment, general-purpose registers appear in non-privileged mode as shown in

TABLE 6-1.

TABLE 6-1 Integer Unit General-Purpose Registers

Windowed I Register

Register Name|Address Source

in[7] r[31] Current Register Set

n[e] r[30] Current Register Set

in[5] r[29] Current Register Set

in[4] r 28] Current Register Set

in[3] r[27] Current Register Set

n[2] r[26] Current Register Set

in[1] r [25] Current Register Set

in[0] r[24] Current Register Set

local[7] r[23] Current Register Set

local[6] r[22] Current Register Set

Tocal[5] r[21] Current Register Set

local[4] r [20] Current Register Set

local[3] r[19] Current Register Set

local[2] r[18] Current Register Set

local[1] r[17] Current Register Set

Tocal[0] r [16] Current Register Set

out[7] r[15] Next higher level Register Set (see footnote 1)
out[6] r[14] Next higher level Register Set
out[5] r[13] Next higher Tevel Register Set
out[4] r[12] Next higher Tevel Register Set
out[3] r[11] Next higher level Register Set
out[2] r [10] Next higher level Register Set
out[1] r{9 Next higher Tevel Register Set
out[O] r18] Next higher Tevel Register Set
global[7] r[7] Global[7]

global[6] r[6] Global[6]

global[5] r[5] Global[5]

global[4] r14] Global 4]

global[3] r[3 Global[3]

global[2] r{2] Global[2]

global[1] r{1] Global[1]

global[0] rT0] Global[0] (value(r [O]) always 0)

1. The CALL instruction writes its own address into the r [15] register (out[7]).

Chapter 6

Registers

75

6.2.1

6.2.1.1

6.2.1.2

6.2.2

76

Windowed (in/local/out) r Registers

At any time, an integer unit instruction can access a 24-register window into the register sets.
A register window comprises of the eight i n and eight | ocal registers (a complete register
set) together with the eight i n registers (upper half of the next higher register set).

Predefined r Register Usages

Two of the r registers have a specific usage:
The value of r [0] is always zero; writes to it have no program-visible effect.

The CALL instruction writes its own address into register r [15] (out register 7).

128-bit Operand Considerations

LDD, LDDA, STD, and STDA instructions access 128-bit data associated with adjacent

I registers and require even-odd register alignment. An attempt to execute a LDD, LDDA,
STD, or STDA instruction that refers to a misaligned (odd) destination register number causes
an illegal_instruction trap.

Global r Register Sets

Registers r [0] —r [7] refer to a set of eight global registers (O—g7). At any time, one of
four sets of eight global register sets is selected and can be accessed as the current global
register set. The currently enabled set of global registers is selected by the Alternate Global
(AG), Interrupt Global (I G), and MMU Global (M) fields in the PSTATE register. See
Section 6.8.3 “Processor State (PSTATE) Privileged Register 6” on page 6-107 for a
description of the AG | G and MG fields.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

FIGURE 6-1 illustrates the current IU registers.

UltraSPARC llli Processor User's Manual * June 2003

RESTORE

Window (CWP - 1)

s T~
C s Current . SAVE
) 1[24] Integer Unit
Previous 23 General-Purpose
Register Set © locals o OgIStOrS
1[16] 1 Window (CWP) L
115] T
. outs ! . ins I
Current L) U] e '
, I | 23 |
Register Set I : locals I
1[16] Window (CWP + 1)
77777777 | L _
r[15] 131]
I : outs I . ins
Next I g I g
_ | I s
Register Set i 1) locals
77777777 lf S L r[16] o
r[15]
I I : outs
1 I | g
i i
7] [7 T
: globals | . globals | : globals
1] | 1] | 1]
o] 0 | o] 0 | 1 0] 0
63 O D el O 0

FIGURE 6-1 Three Overlapping Windows and the Eight Global Registers

Compatibility Note — Since the PSTATE register is writable only by privileged software,
existing non-privileged SPARC-V 8 software operates correctly on a processor if Supervisor
Software ensures that User Software sees a consistent set of global registers.

Chapter 6 Registers 77

6.2.2.1

In summary, the processor has eight windows or register sets (NWW NDOWS = 8). The total
number of r registers in the processor is 160: eight normal global registers, eight alternate
global registers, eight interrupt global registers, eight MMU global registers, plus the number
of register sets (eight) times 16 registers/set.

Overlapping Windows

Each window shares its ins with one adjacent window and its outs with another. The outs of
the CWP — 1 (modulo NW NDOWS5) window are addressable as the ins of the current window,
and the outs in the current window are the ins of the CWP + 1 (modulo NW NDOWS5) window.
The locals are unique to each window.

An outs register with address o, where 8 < 0 < 15, refers to exactly the same register as

(o + 16) does after the CWP is incremented by one (modulo NW NDOWS). Likewise, an in
register with address i, where 24 < i < 31, refers to exactly the same register as address

(i — 16) does after the CWP is decremented by one (modulo NW NDOWS). See FIGURE 6-1 and
FIGURE 6-2 for additional information.

Since CWP arithmetic is performed modulo NW NDOWS, the highest-numbered implemented
window (window 7) overlaps with window 0. The outs of window NW NDOWS — 1 are the ins

of window 0. Implemented windows are numbered contiguously from 0 through
NW NDOWS - 1.

6.3

78

Register Window Management

The current window in the windowed portion of r registers is given by the CWP register. The
CWP is decremented by the RESTORE instruction and incremented by the SAVE instruction.
Window overflow is detected by the CANSAVE register, and window underflow is detected by
the CANRESTORE register, both of which are controlled by privileged software. A window
overflow (underflow) condition causes a window spill (fill) trap.

UltraSPARC llli Processor User's Manual * June 2003

Programming Note — Because the windows overlap, the number of windows available to
software is one less than the number of implemented windows; that is, 7 (NWW NDOWS — 1).

CWP=0 /—‘\ -
(Current Window Pointer)

CANSAVE =4

wl ins

woO locals

RESTORE

w6 locals

CANRESTORE = 1 (Overlap)

w5 outs

\ OTHERWIN =1

CANSAVE + CANRESTORE + OTHERW N = NW NDOWS — 2

The current window (window 0) and the overlap window (window
5) account for the two windows in the right side of the equation.
The “overlap window” is the window that must remain unused
because its ins and outs overlap two other valid windows.

NW NDOWS = 8, CWP = 0, CANSAVE = 4, OTHERW N= 1, and
CANRESTORE = 1. If the procedure using window w0 executes a
RESTORE, then window w7 becomes the current window. If the
procedure using window w0 executes a SAVE, then window wl
becomes the current window.

FIGURE 6-2 Windowed r Registers for NW NDOWS = 8

Chapter 6 Registers 79

6.3.1

6.3.2

6.3.3

CALL and JMPL Instructions

Programming Note — Since the procedure call instructions (CALL and JMPL) do not
change the CWP, a procedure can be called without changing the window.

Circular Windowing

Programming Note — When the register file is full, the outs of the newest window are the
ins of the oldest window, which still contains valid data.

Clean Window with RESTORE and SAVE Instructions

Programming Note — The | ocal and out registers of a register window are guaranteed
to contain either zeroes or an old value that belongs to the current context upon reentering
the window through a SAVE instruction. If a program executes a RESTORE followed by a
SAVE, then the resulting window’s locals and outs may not be valid after the SAVE, since a
trap may have occurred between the RESTORE and the SAVE.

6.4

80

Floating-Point General-Purpose Registers

The floating-point register file contains addressable registers for the following:
Floating-point Instructions
VI S instructions
Bl ock load and st or e instructions

FSR load and store instructions

The registers have various widths and assigned addresses as follows:
32 32-bit (single-precision) floating-point registers, f [0], f [1], ... f [31]
32 64-bit (double-precision) floating-point registers, f [0], f [2], ... f [62]
16 128-bit (quad-precision) floating-point registers, f [0], f [4], ... f [60]

UltraSPARC llli Processor User's Manual * June 2003

The floating-point registers are arranged so that some of them overlap, that is, are aliased.
The layout and numbering of the floating-point registers is shown in TABLE 6-2, TABLE 6-3,
and TABLE 6-4. Unlike the windowed r registers, all of the floating-point registers are
accessible at any time. The floating-point registers can be read and written by FPop
(FPop1/FPop2 format) instructions, load/store single/double/quad floating-point
instructions, and block load and block store instructions.

TABLE 6-2 32-bit Floating-Point Registers with Aliasing

Operand Register Operand Register

and Field From Register and Field From Register
f31 | <31.0> f 31<31.0> f15 [<31:0> f 15<31.0>
f30 [<31.0> f 30<31:0> f14 | <31.0> f 14<31.0>
f29 [<31.0> f 29<31.0> f13 [<31.0> f 13<31.0>
f28 | <31.0> f 28<31.0> f12 | <31:.0> f 12<31.0>
f27 | <31.0> f 27<31.0> f11 [<31:.0> f11<31.0>
f26 | <31.0> f 26<31.0> f10 [<31:0> f 10<31.0>
f25 [<31.0> f 25<31.0> f9 [<31.0> f 9<31.0>
f24 | <31.0> f 24<31.0> f8 [<31.0> f 8<31:0>
f23 | <31.0> f 23<31.0> f7 | <31.0> f 7<31:0>
f22 | <31.0> f 22<31:0> f6 | <31:0> f 6<31:0>
f21 [<31.0> f21<31.0> f5 | <31.0> f 5<31:.0>
f20 |<31.0> f 20<31.0> f4 | <31.0> f 4<31:.0>
f19 |<31.0> f 19<31.0> f3 [<31:.0> f 3<31:0>
f18 | <31.0> f 18<31.0> f2 [<31:0> f 2<31:0>
fi7 [<31.0> f17<31.0> f1 | <31.0> f 1<31:.0>
f16 | <31.0> f 16<31.0> fO [<31:.0> f 0<31:0>

TABLE 6-3 64-bit Floating-Point Registers with Aliasing

Operand Register Operand Register

and Field From Register and Field From Register
162 | <63:0> f 62<63:0> 130 | <63:0> f 30<31:0>:f 31<31:0>
f60 [<63:0> f 60<63:0> f28 1 <63:0> f28<31.0>:f 29<31.0>
58 | <63:0> f 58<63:0> 26 | <63:0> f 26<31:0>:f 27<31.0>
56 | <63:0> f 56<63:0> 24 | <63:0> f 24<31:0>:f 25<31:0>
54 | <63:0> f 54<63.0> 22 | <63:0> f 22<31:0>:f 23<31.0>
f52 [<63:.0> f 52<63:0> f20 | <63:0> f20<31.0>:f 21<31.0>
f50 | <63:0> f 50<63:0> f18 | <63:0> f 18<31:0>:f 19<31.0>
48 | <63:0> f 48<63:0> 16 | <63:0> f 16<31:0>:f 17<31:.0>
146 | <63:0> t 46<63:0> 114 | <63:0> f 14<31:0>:f 15<31:0>
f44 | <63:.0> f 44<63.0> f12 | <63:0> f12<31.0>:f 13<31.0>
f42 | <63:.0> f 42<63:0> 10 | <63:0> f 10<31:0>:f 11<31:.0>
40 | <63:0> f 40<63:0> f8 | <63:0> f 8<31:0>:f 9<31:0>
138 | <63:0> f 38<63:0> 6 | <63:0> f 6<31:0>:f 7<31:0>
f36 | <63:0> f 36<63:0> f4 [<63:0> f 4<31:0>:f 5<31:0>
34 | <63:0> f 34<63:0> f2 | <63:.0> f 2<31:0>:f 3<31.0>
32 | <63:0> f 32<63:0> fO | <63:0> f 0<31:0>:f 1<31:0>

Chapter 6 Registers 81

TABLE 6-4 128-bit Floating-Point Registers with Aliasing

Operand Register
and Field

From Register

fe0 | <127:0>

t 60<63:0>:f 62<63:0>

f56 | <127:0>

f 56<63:0>:f 58<63:0>

52 | <127:0>

f 52<63:0>:f 54<63:0>

48 | <127:0>

f 48<63:0>:f 50<63:0>

f44 | <127.0>

f 44<63:0>:f 46<63:0>

f40 | <127:0>

f 40<63:0>:f 42<63:0>

36 | <127:0>

f 36<63:0>:f 38<63:0>

132 | <127:0>

f 32<63:0>:f 34<63:0>

128 | <127:0>

f 28<31:0>:f 29<31:0>:f 30<31:0>:f 31<31:0>

f24 | <127:0>

f 24<31.0>:f 25<31.0>:f 26<31:0>:f 27<31.0>

f20 | <127:0>

T 20<31:0>:f 21<31:0>:f 22<31:0>:f 23<31:0>

16 | <127:0>

f16<31:0>:f 17<31:0>:f 18<31:0>:f 19<31:0>

f12 | <127:0>

f 12<31:0>:f 13<31:0>:f 14<31:0>:f 15<31:0>

f8 [<127:0>

f 8<31:0>:f 9<31:0>:f 10<31:0>:f 11<31.0>

f4 | <127:0>

f 4<31:0>:f 5<31:0>:f 6<31:0>:f 7<31:0>

fO0 | <127:0>

f 0<31:0>:f 1<31:0>:f 2<31:0>:f 3<31:0>

6.4.1

Floating-Point Register Number Encoding

The floating-point register number encoding in the instruction field depends on the width of
register being addressed. The encoding for the 5-bit instruction field (labeled b<4>—b<0>,
where b<4> is the most significant bit of the register number), is given in TABLE 6-5.

TABLE 6-5 Floating-Point Register Number Encoding

Register Operand

Encoding in a 5-bit Register Field in

Type 6-bit Register Number, fn an Instruction, rd/rs

32-bit (single) 0 | b<4>| b<3>| b<2>| b<1>| b<0>| b<4>| b<3>| b<2>| b<1>| b<0>
64-bit (double) b<5>| b<4>| b<3>| b<2>| b<1>| 0 | b<4>| b<3>| b<2>| b<1>| b<5>
128-bit (quad) b<5>(b<4>| b<3>| b<2>| 0 0 | b<4>| b<3>| b<2>| 0 | b

Compatibility Note — In SPARC-VS8, bit 0 of 64- and 128-bit register numbers encoded in
instruction fields was required to be zero. Therefore, all SPARC-V 8 floating-point instructions
can run unchanged on an UltraSPARC I11i processor, using the encoding in TABLE 6-5.

82

UltraSPARC llli Processor User's Manual * June 2003

6.4.2

Double and Quad Floating-Point Operands

A 32-bit f register can hold one single-precision operand; a 64-bit (double-precision)
operand requires an aligned pair of f registers, and a 128-bit (quad-precision) operand
requires an aligned quadruple of f registers. At a given time, the floating-point registers can
hold a maximum of 32 single-precision, 16 double-precision, or 8 quad-precision values in
the lower half of the floating-point register file, plus an additional 16 double-precision or

8 quad-precision values in the upper half, or mixtures of the three sizes.

See FIGURE 6-3, TABLE 6-2, TABLE 6-3, and TABLE 6-4 for illustrative formats.

Programming Note — Data to be loaded into a floating-point double or quad register that
is not doubleword aligned in memory must be loaded into the lower 16 double registers

(8 quad registers) by means of single-precision LDF instructions. If desired, the data can then
be copied into the upper 16 double registers (8 quad registers).

An attempt to execute an instruction that refers to a misaligned floating-point register
operand (that is, a quad-precision operand in a register whose 6-bit register number is not
0 mod 4) shall cause a fp_exception_other trap, with FSR. ftt =6 (invalid_fp_register).

Given the encoding in TABLE 6-5, it is impossible to specify a double-precision register with
a misaligned register number.

Note — The processor does not implement quad-precision operations in hardware. All
floating-point quad (including load and store) operations trap to the OS kernel and are
emulated. Since the processor does not implement quad floating-point arithmetic operations
in hardware, the fp_exception_other trap with FSR. ftt =6 (invalid_fp_register) does not
occur in processors.

6.5

Control and Status Register Summary

This section presents a summary of control and status registers.

Chapter 6 Registers 83

84

NWINDOWS
Register Sets

63 0
63 0

63 0
63 0

63 0
=
63 0 _
=
63 0
—
63 0

63 0 4

Circulates

Integer Unit
General-Purpose

r Registers

Ins <a—— Er[31:24]

Locals <e—— E1[23:16]

Outs -e—— E 1[15:8] 5
= 1[7:0] = é4
Register Window | r[7:0] Selected by
PSTATE.AG, IG, MG
RESTORE

63

0

63

0

UltraSPARC llli Processor User's Manual * June 2003

WORD (32): f0, f1,... f31
. . . DOUBLEWORD(32): f0, f2,... 62
Floating-point Unit QUADWORD (16): f0, f4,... 60
General-Purpose
Registers o2 | [_fo0 |
63 0 63 0
[158 | f56 |
Floating-point Numbers 63 0 63 % DOUBLEWD
VIS Data Numbers [54 | 152 |~ Example
Block Copy Function 63 0 63 0 58
FSR Register Access [50] 1 48] Example
63 0 |63 0 48
Note: There are no odd |63 146 Ol |53 144 oI
numbered registers above f31.) | 70] QUADWD
WORDSs cannot be loaded 63 0 63 0 Example
into f32 through 62. s | 16 | 40
63 0 63 0
[34 | 32 |
63 0 63 0
SAVE
30 1 30 | f29 [| fs [
31 0 31 0 31 0 31 0
27 1 f26 [] f25 [| fa 1
31 0 31 0 31 0 31 0
QUADWD
3 1 f22 | | f21 [| 20 1 Example
31 0 31 [31 0 31 0
flo 1 18| | f7 | | 6 L1
31 0 31 0 31 0 31 0 DOUBLEWD
fis [1 f14 [| 13 [| 21 Example
31 0 31) 31 [31 0 12
f11 1 10| | 109 [| fo8 [__1 Example
31 0 31 0 31 0 X 0 06
for [___1 06 [| fo5 | | fo4a L1
31 0 31 0 31 0 31 0 WORD
f02 1 |;|
03 3T 0 |31 ol 0 |31 oI f00 Example
fo1
FIGURE 6-3 Integer Unit r Registers and Floating-Point Unit Working Registers

6.5.1

State and Ancillary State Register Summary

rsl
R/IW
Value
State P m—
Registers CCR O rw 2
ASI RW 3
RD 0 - .
WR TIck BNNNNSNNINXNY Rw 4 Non-Privileged Read OK, if TICK.NPT =0
(to/from PC Ies:sl RW >
IU Working FPRS [1 RW 6
Registers) PCR — VT
47 0
PIC BNSSSNNSNT RW - 1750 Non-Privileged Read OK, if PCR.PRIV = 0
DCR Iw:OI RW 18y
GSR [1 RW 19
63 0
Set_Softint w 20
= ® b ASRs
Clr_Softint Im:0| W 2159
Softnt Im:OI RW 22y
TICK CMP [] RW 23y
STICK %SXXXXXXO] RW 244 Non-Privileged Read OK, if STICK.NPT =0
STICK_CMP [y RW 25y /
FIGURE 6-4 State and Ancillary State Registers
TABLE 6-6 State and Ancillary State Registers
State Register
Number Access
(base 10 used) | Restriction R/W | Abbreviation Description Reference Section | Notes
D . 32-bit Multiply/Divide
0 None RW Y™ Register (deprecated)
Reserved
None RW CCR Condition Code
None RwW AS Address Space ldentifier Section 6.6.3
TICK register for Processor Section 6.7.4 1
4 Depends R TICK Timer, also accessible as a
privileged register
5 None R PC Program Counter Section 6.6.5
6 None RW FPRS Floating-Point Registers State
ASR7-15 Reserved Reserved for future use, do not
reference by software.
Chapter 6 Registers 85

TABLE 6-6 State and Ancillary State Registers (Continued)
State Register
Number Access
(base 10 used) | Restriction R/W | Abbreviation Description Reference Section | Notes
ASR 16 Privileged RW PCR Performance Instrumentation | Chapter 11 2
“Performance 3
ASR 17 Depends RW PIC |nstrumentation”
ASR 18 Privileged RW DCR Dispatch Control Register Section 6.7.1
ASR 19 None RW GSR Graphics (VIS) Status Register | Section 6.7.2
ASR 20 Privileged w SET_SOFTINT | Software Interrupts Section 6.7.3
ASR 21 Privileged w CLR_SOFTINT
ASR 22 Privileged RW SOFTINT_REG
ASR 23 Privileged RW TICK_CMP Processor and System Timer Section 6.7.4
ASR 24 Depends RW STICK Registers 4
ASR 25 Privileged RW STICK_CMP
ASR 26 - 31 Reserved Reserved for future use, do not

reference by software.

1. Writes are lways privileged; reads are privileged if TI CK. NPT = 1. Otherwise, reads are non-privileged.
2. If PCR. NC=0, accessis always privileged. If PCR. NC# 0 and PCR. PRI V = 0, access is non-privileged; otherwise, accessis privileged.
3. All accesses are privileged if PCR. PRI V = 1; otherwise, all accesses are non-privileged.

4. Writes are lways privileged; reads are privileged if STI CK. NPT = 1. Otherwise, reads are non-privileged.

86

UltraSPARC llli Processor User's Manual * June 2003

6.5.2 Privileged Register Summary

rs/rd
Privileged W Index
I'eg TPC] RW 0
Registers 53 o
TNPC] RW 1
63
TSTATE o Rw 2
RDPR 39 0 w
WRPR m - 3
(to/from Tk] R 4
IU Working TBA [RW 5
Registers) 63 0 TSTATE
PSTATE F RW 6
0
TL RW 7
20
PIL g RW 8
cwp moRW 9 0 - FH H
i CCR
CANSAVE RW 10 AS| PSTATE CWP
4 0
CANRESTORE RW 115
4 0
CLEANWIN RW 124
40
OTHERWIN RW 134,
40
WSTATE B Rw 14y
Reserved R 15-30y,
63 0
VER] R 31
63 5 10

FIGURE 6-5 Privileged Registers

Chapter 6 Registers

87

TABLE 6-7 Privileged Registers
Privileged
Register Number Access Reference
(base 10 used) Restriction | R/W | Abbreviation Description Section Notes
0 Privileged | RW | TPC Trap stage program counter
1 Privileged | RW | TNPC Trap state next program counter
— « i : prog Section 6.8.1

2 Privileged | RW | TSTATE Trap state register

3 Privileged | RW [TT Trap type register

4 Privileged | RW TI CK Proces.sor TICK timer re_glster, also | Section 6.7.4
accessible as a state register

5 Privileged | RW | TBA Trap base address register Section 6.8.2

6 Privileged | RW | PSTATE Processor state register Section 6.8.3

7 Privileged | RW | TL Trap level register Section 6.8.4

8 Privileged | RW | PI L Processor Interrupt Level register Section 6.8.5

9 Privileged | RW | CWP Current window pointer

10 Privileged | RW | CANSAVE Savable register sets

11 Privileged | RW | CANRESTORE | Restorable register sets Section 6.8.6

12 Privileged | RW | CLEANW N Clean register sets

13 Privileged | RW OTHERW N Ot_her_reglster sets susceptible to
spill/fill

14 Privileged | RW WSTATE W|nt!ow state_reglster for trapsdue | Section 6.8.7
to spills and fills

15-30 Privileged Reserved
31 Privileged R | VER Processor version register Section 6.8.8
88 UltraSPARC llli Processor User’'s Manual « June 2003

6.5.3 ASI and Specially Accessed Register Summary

Status Registers
(ASI mapped)

RW ASI VA

Value
DCUCR [_———"1 Rw 4555 0045
VA Watchpoint |6350:Z| RW 5815 3816
PA Watchpoint Im: RW 5816 4015

Special Access Registers

FSR I;}I STFSR, STXFSR
LDFSR, LDXFSR

FIGURE 6-6 ASI and Specialy Accessed Registers

TABLE6-8 ASI and Specially Accessed Registers

Reference

Type Abbreviation Description Section
ASI DCUCR Data Cache Unit Control Section 6.10.1

Register
ASI 58,6 | PA WATCHPOINT Watchpoint for physical

addresses .

- . Section 6.10.2
VA WATCHPOINT Watchpoint for virtual

addresses
LD/ST Load/Store FSR Access the Floating-point
floating- Status Register
point
Opcode

Chapter 6 Registers

6.6

6.6.1

State Registers

The state registers provide control and status to the Integer Execution Unit.

The type and accessibility of the registers (privileged vs. non-privileged mode) are
summarized in FIGURE 6-4.

The SPARC-V9 architecture provides for up to 31 state registers, 24 of which are classified
as ancillary state registers (ASRs), numbered from 7 through 31. The eight State Registers,
0 through 7, are defined by SPARC-V9.

32-bit Multiply/Divide (YP) State Register 0

The Y register is deprecated; it is provided only for compatibility with previous versions of
the architecture. It should not be used in new SPARC-V9 software. It is recommended that
all instructions that reference the Y register (that is, SMJLD, SI\/ULCCD, UI\/ULD, UI\/ULCCD,

MULSccP sDi VP, sDi VeeP, ubl VP, ubl VeeP, RDYP, and WRYP) be avoided.

The low-order 32 bits of the Y register, illustrated in FIGURE 6-7, contain the more significant
word of the 64-bit product of an integer multiplication, as a result of either a 32-bit integer
multiply (SMJL D smuLccP, uMuLP, UI\/ULCCD) instruction or an integer multiply step
(MJLScc) instruction. The Y register also holds the more significant word of the 64-bit
dividend for a 32-bit integer divide (SDI VP, SDI VecP, uDI VP, UDI VecP) instruction.

— product<63:32> or dividend<63:32>32

63

6.6.2

90

32 31 0

FIGURE 6-7 Y Register

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as zero.
The Y register is read and written with the RDYP and WRYP instructions, respectively.

Integer Unit Condition Codes State Register 2 (CCR)

The Condition Codes Register (CCR), shown in FIGURE 6-8, holds the integer condition
codes.

The CCR s accessible using Read and Write State Register instructions (RDCCR and WRCCR)
in non-privileged or privileged mode.

UltraSPARC llli Processor User's Manual * June 2003

6.6.2.1

CCR Xce icc

7 4 3 0

FIGURE 6-8 Condition Codes Register

CCR Condition Code Fields (xcc and i cc)

All instructions that set integer condition codes set both the Xxcc and i cc fields. The xcc
condition codes indicate the result of an operation when viewed as a 64-bit operation. The
i cc condition codes indicate the result of an operation when viewed as a 32-bit operation.
For example, if an operation results in the 64-bit value 0000 0000 FFFF FFFFg, the 32-bit
result is negative (i CC.N is set to one) but the 64-bit result is nonnegative (XCC.N is set to
Zero).

Each of the 4-bit condition code fields is composed of four 1-bit subfields, as shown in
FIGURE 6-9.

XCC: 7 6 5 4 64-bit Interpretation
icc: 3 2 1 0 32-bit Interpretation

FIGURE 6-9 Integer Condition Codes (CCR_i cc and CCR_xcc)

The n bits indicate whether the two’s-complement ALU result was negative for the last
instruction that modified the integer condition codes; 1 = negative, 0 = nonnegative.

The z bits indicate whether the ALU result was zero for the last instruction that modified the
integer condition codes; 1 = zero, 0 = nonzero.

The v bits signify whether the ALU result was within the range of (was representable in)
64-bit (xcc) or 32-bit (i cc) two’s-complement notation for the last instruction that modified
the integer condition codes; 1 = overflow, 0 = no overflow.

The ¢ bits indicate whether a two’s complement carry (or borrow) occurred during the last
instruction that modified the integer condition codes. Carry is set on addition if there is a
carry out of bit 63 (xcc) or bit 31 (i cc). Carry is set on subtraction if there is a borrow into
bit 63 (xcc) or bit 31 (i cc); 1 = carry, 0 = no carry.

Chapter 6 Registers 91

6.6.3

92

Condition Codes

These bits are modified by the arithmetic and logical instructions, the names of which end
with the letters “cc” (for example, ANDcc) and by the WRCCR instruction. They can be
modified by a DONE or RETRY instruction, which replaces these bits with the CCR field of
the TSTATE register. The BPcc and Tcc instructions may cause a transfer of control based
on the values of these bits. The MOVcC instruction can conditionally move the contents of an
integer register based on the state of these bits. The FMOVccC instruction can conditionally
move the contents of a floating-point register according to the state of these bits.

CCR _extended _integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes, which indicate the results of an integer
operation, with both of the operands and the result considered to be 64 bits wide.

CCR _integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer
operation, with both of the operands and the result considered to be 32 bits wide. In addition
to the BPcc and Tcc instructions, the Bi cC instruction may also cause a transfer of control
based on the values of these bits.

Address Space Identifier (ASI) Register ASR 3

The ASI Register, shown in FIGURE 6-10, specifies the ASI to be used for load and store
alternate instructions that use the “r s1 + si mml3” addressing form.

Non-privileged (user-mode) software may write any value into the ASI register; however,
values with bit 7 = 0 select restricted ASIs. When a non-privileged instruction makes an
access that uses an ASI with bit 7 =0, a privileged_action exception is generated.

ASI

FIGURE 6-10 Address Space |dentifier Register

UltraSPARC llli Processor User's Manual * June 2003

6.6.4

6.6.5

6.6.6

TICK Register (TICK) ASR4

See Section 6.7.4 “Timer State Registers: ASRs 4, 23, 24, 25” on page 6-101 for more
details.

Program Counters State Register 5

The program counter (PC) contains the address of the instruction currently being executed.
The next program counter (NPC) holds the address of the next instruction to be executed if a
trap does not occur. The low-order two bits of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer
instruction is known as the delay instruction. This delay instruction is executed (unless the
control transfer instruction annuls it) before control is transferred to the target. During
execution of the delay instruction, the NPC points to the target of the control transfer
instruction, and the PC points to the delay instruction. See Chapter 7 “Instruction Types” for
more details.

The PC is used implicitly as a destination register by CALL, Bi cc, BPcc, BPr, FBf cc,
FBPf cc, JMPL, and RETURN instructions. It can be read directly by a RDPC instruction.

Floating-Point Registers State (FPRS) Register 6

The Floating-Point Registers State (FPRS) Register, shown in FIGURE 6-11, holds control
information for the floating-point register file. Mode and status information about the
Floating-point Unit is presented in Section 6.9.1 “Floating-Point Status Register (FSR)” on
page 6-117.

This register is readable and writable using the read and write state register instructions
RDFPRS and WRFPRS when the processor is in non-privileged or privileged mode.

FPRS FEF|DU | DL

2 1 0

FIGURE 6-11 Floating-Point Registers State Register

Chapter 6 Registers 93

6.6.6.1

6.6.6.2

6.6.6.3

FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If this bit is set but the PSTATE. PEF bit
is not set, then executing a floating-point instruction causes a fp_disabled trap; that is, both
FPRS. FEF and PSTATE. PEF must be set to enable floating-point operations. If it is
disabled, executing a floating-point instruction causes a fp_disabled trap.

FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f 32—f 62. It
is set whenever any of the upper floating-point registers is modified. The processor may set
the bit whenever a floating-point instruction is issued, even though that instruction never
completes and no output register is modified. The dirty bit may be set by instructions that the
processor executes but does not complete due to wrong branch prediction. The DU bit is
cleared only by software.

FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f 0—f 31. It is set
whenever any of the lower floating-point registers is modified. The processor may set the bit
whenever a floating-point instruction is issued, even though that instruction never completes
and no output register is modified. The DL bit is cleared only by software.

6.7

94

Ancillary State Registers: ASRs 16-25

The SPARC-V9 architecture provides for optional ancillary state registers (ASRs) in addition
to the six state registers defined for all SPARC-V9 processors and already described.

An ASR is read and written with the RDASR and WRASR instructions, respectively. Access to
a particular ASR may be privileged or non-privileged. A RDASR or WRASR instruction is
privileged if the accessed register is privileged.

All the state and ancillary state registers are summarized in TABLE 6-6. Some of the registers
descriptions are presented below.

Note — PCR (ASR 16) and Pl C (ASR 17) are discussed in detail in Chapter 11
“Performance Instrumentation.”

UltraSPARC llli Processor User's Manual * June 2003

6.7.1

Dispatch Control Register (DCR) ASR 18

The DCR provides control over the dispatch unit and branch prediction logic. The DCR also
provides factory test equipment with access to internal logic states using the OBSDATA bus
interface.

The DCR is a read/write register. Unused bits are read as zero and should be written only
with zero or values previously read from them. The DCR is a privileged register; attempted
access by non-privileged (user) code causes a privileged_opcode trap. POR value is
XXxxX.xx0x,.

The DCR is illustrated in FIGURE 6-12 and described in TABLE 6-9.

—_— ‘DPE‘ OBS ‘ BPE‘ RPE‘ si ‘ IPE‘IFPOE‘ Ms |
63 12 11 6 5 4 3 2 1 0

FIGURE 6-12 Dispatch Control Register (ASR 0x12)

TABLE6-9 DCR Bit Description

Bit Field Type Description

63:13 - Reserved

12 DPE Data Cache Parity Error Enable. If cleared, no parity checking at the Data
Cache SRAM arrays (Data, Physical Tag, and Snoop Tag arrays) will be
done. It also implies no dcache_parity_error trap (TT 0x071) will ever be
generated. However, parity bits are still generated and written to the D-cache
Parity SRAM. Therefore, when DPE is set, valid D-cache lines will
automatically have correct parity bits.

13:6 OBSDATA These bits are used to select the set of signals driven on the OBSDATA<9:0>
pins of the processor for factory test purposes.

Branch and Return Control

5 BPE Branch Prediction Enable. When BPE = 1, conditiona branches are

predicted through internal hardware. When BPE = 0, al branches are
predicted not taken. After Power-On Reset initidization, this bit is set to
zero. This bit is also automatically set to zero on any trap causing

RED st at e entry (but not cleared when privileged code enters

RED st at e by setting the RED bit in PSTATE).

Chapter 6 Registers 95

TABLE 6-9

DCR Bit Description (Continued)

Bit

Field

Type

Description

RPE

Return Address Prediction Enable. When RPE = 0, the return address
prediction stack is disabled. Even when encountering a JIMPL instruction,
instruction fetch will continue on a sequential path until the return addressis
generated and a mispredict is signalled. When RPE = 1, the processor may
attempt to predict the target address of JMPL instructions and prefetch
subsequent instructions accordingly.

After Power-On Reset initialization, this bit is set to zero. This bit is also
automatically set to zero on any trap causing a RED_st at e entry (but left
unchanged when privileged code enters RED_st at e by setting

PSTATE. RED).

Instruction Dispatch Control

3

S|

Single Issue Disable. When SI = 0, only one instruction will be outstanding
at atime. Superscalar instruction dispatch is disabled, and only one
instruction is executed at atime. When SI = 1, normal pipelining is enabled.
The processor can issue new instructions prior to the completion of
previously issued instructions.

After Power-On Reset initidization, this bit is set to zero. This bit is also
automatically set to zero on any trap causing RED_st at e entry (but left
unchanged when privileged code enters RED_st at e by setting
PSTATE.RED).

| PE

Instruction Cache Parity Error Enable. If cleared, no parity checking at the
Instruction Cache SRAM arrays (Data, Physical Tag, and Snoop Tag arrays)
will be done. It also implies no Icache Parity error trap (TT 0x072) will
ever be generated. However, parity bits are still generated and written to the
I-cache Parity SRAM. Therefore, when | PE is set, valid I-cache lines will
automatically have correct parity bits.

| FPCE

Interrupt Floating-Point Operation Enable. The IFPOE bit enables system
software to take interrupts on floating-point instructions. When set, the
processor forces a fp_disabled trap when an interrupt occurs on
floating-point code.

Multiscalar dispatch enable. When MS = 0, the processor operates in scalar
mode, issuing and executing one instruction at atime. Pipelined operation is
still controlled by the SI' bit. MS = 1 enables superscalar (normal)
instruction issue.

After Power-On Reset initialization, this bit is set to zero. The bit is also
automatically set to zero on any trap causing RED_st at e entry (but left
unchanged when privileged code enters RED_st at e by setting

PSTATE. RED).

96

Interrupt Floating-Point Operation Enable (Bit 1)

The | FPCE bit enables system software to take interrupts on floating-point instructions. This
enable bit is cleared by hardware at power-on. System software must set the bit as needed.
When this hit is enabled, the UltraSPARC I11i processor forces an fp_disabled trap when an

UltraSPARC llli Processor User's Manual * June 2003

6.7.2

interrupt occurs on FP-only code. The trap handler is then responsible for checking whether
the floating-pint isindeed disabled. If it is not, the trap handler then enables interrupts to take
the pending interrupt.

Note — This behavior deviates from SPARC-V9 trap priorities in that interrupts are of lower

priorities than the other two types of floating-point exceptions (fp_exception_ieee 754,

fp_exception_other).

This mechanism is triggered for an floating-point instruction only if none of the

approximately twelve preceding instructions across the two integer, load/store, and branch
pipelines are valid, under the assumption that they are better suited to take the interrupt

(only one trap entry/exit).
Upon entry, the handler must check both TSTATE. PEF and FPRS. FEF bits. If

TSTATE. PEF =1 and FPRF. FEF = 1, the handler has been entered because of an
interrupt, either interrupt_vector or interrupt_level. In such a case:

The fp_disabled handler should enable interrupts (that is, set PSTATE. | E = 1), then

issue an integer instruction (for example, add %g0, %g0, %g0). An interrupt is
triggered on this instruction.

The processor then enters the appropriate interrupt handler (PSTATE. | E is turned off
here) for the type of interrupt.
At the end of the handler, the interrupted instruction is a RETRY after returning from
the interrupt. The add %g0, %90, %g0 is a RETRY.

The fp_disabled handler then returns to the original process with a RETRY.
The “interrupted” FPop is then retried (taking a fp_exception_ieee 754 or
fp_exception_other at this time if needed).

Graphics Status Register (GSR) ASR 19

The GSR is used with the VIS Instruction Set.

The GSR is accessible in non-privileged mode. It can be read and written using the RDASR
and VRASR state register instructions.

TABLE 6-10 GSR Opcodes

Opcode Op3 Reg Field Operation

RDASR 101000 rsl == 0x13 Read GSR

WRASR 110000 rd == 0x13 Write GSR
Chapter 6 Registers

97

10 rd

op3 rsl i=0 —

3130 29

25 24 19 18 14 13 12 0

FIGURE 6-13 RDASR format

10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
3130 29 25 24 19 18 14 13 12 5 4 0

FIGURE 6-14 WRASR format

Suggested Assembly Language Syntax
rd Ygsr, regy

wr regrg;, reg_or_imm, %gsr

Accesses to this register cause an fp_disabled trap if PSTATE.PEF or FPRS. FEF are zero.

The format of the GSR is:

MASK

IM | IRND | GFx_sTALll — SCALE ALIGN

63

98

32 31 28 27 26 25 24 23 8 7 3 2 0

FIGURE 6-15 GSR Format (ASR 0x13)

TABLE 6-11 GSR Bit Description

Bit Field Description

63:32 MASK<31:0> [This field specifies the mask used by the BSHUFFLE instruction. The field
contents are set by the BMASK instruction.

31:28 Reserved

27 M Interval Mode: When I M= 1, the values in FSR. RD and FSR. NS are
ignored; the processor operates as if FSR. NS = 0 and rounds floating-point
results according to GSR. | RND.

UltraSPARC llli Processor User's Manual * June 2003

6.7.3

TABLE 6-11

GSR Bit Description (Continued)

Bit

Field

Description

26:25

I RND<1:0>

IEEE Std 754-1985 rounding direction to use in Interval Mode (GSR. | M
=1), asfollows:

IRND Round toward

0 Nearest (even if tie)
1 0
2 + o
3

— 00

When GSR. | M= 1, the value in GSR. | RND overrides the value in FSR. RD.

24

GFX_STALL

Thisfield is for the flow control signa from the graphics devices that
indicates the status of their input command queues, that could be read by user
software without having a load go to the bus. (read-only)

This has a big benefit in keeping a sustained pipeline of stores from the
processor to the graphics devices, since you don’t have to wait for stores to
drain, in order to get the load to complete.

This pin is inverted polarity compared to the external pin (i.e,, 0 = stall, 1 =
do not stall)

23:8

Reserved

7.3

SCALE<4:0>

Shift count in the range 0-31, used by the PACK instructions for formatting.

2.0

ALT G\N<2:0>

Least three significant bits of the address computed by the Tast executed
AL| GNADDRESS or ALI GNADDRESS_LI| TTLE instruction.

Software Interrupt State Registers:
ASRs 20, 21, and 22

Three registers are used to control software interrupts: SOFTI NT, SET_SOFTI NT, and
CLR_SOFTI NT. Bits written to the SOFTI NT register will cause traps to the level the trap is
enabled. The SOFTI NT register can be written to directly using ASR 22, or indirectly using
the SET_SOFTI NT and CLR_SOFTI NT registers as described in this section.

Chapter 6

Registers 99

All three registers are accessible only in privileged mode. The SOFTI NT register is accessed
using the RD and WR state register access instructions. The SET_SCOFTI NT and
CLR_SCOFTI NT registers are written using the R state register access instruction. See
TABLE 6-12 and FIGURE 6-16 for more details.

TABLE 6-12 Register-window State Registers

Soft Interrupt Register ASR # Name and Description Privileged Access Instructions
Software Interrupt Register RDSOFTI NI T
SOFTI NT 22
VRSOFTI NT
SET_SOFTI NT 20 Sets Software Interrupt register bits. WRSOFTI NI T_SET
CLR_SOFTI NT 21 Clears Software Interrupt register bits. | WRSOFTI NI T_CLR
SOFTI NT | _ | IM| INT_LEVEL | ITM|
63 17 16 15 1 0
SET_SOFTI NT | Reads zero, writes ignored. Sets bits in SOFTINT. |
63 17 16 0
CLR_SOFTI NT | Reads zero, writes ignored. | Clears bits in SOFTINT. |
63 17 16 0

FIGURE 6-16 SOFTI NT, SET_SOFTI NT, and CLR_SOFTI NT Register Formats

SOFTINT Regjister

The operating system uses the SOFTI NT to schedule interrupts. The field definitions are
described in TABLE 6-13.

TABLE 6-13 SOFTI NT Bit Descriptions

Bit Field Description
16 SM When the STI CK_COMPARE. | NT_DI S bit is zero (system tick compare is enabled) and
(STI CK_I NT) |its STI CK_CMPR field matches the value in the STI CK register, then the SMfield in
SOFTINT is set to one and a Level-14 interrupt is generated. See Section 6.7.4 “Timer
State Registers: ASRs 4, 23, 24, 25" on page 6-101 for details.

15:1 I NT_LEVEL When a bit is set within this field (bits 15:1), an interrupt Is caused at the corresponding
interrupt level. Note that | NT_LEVEL<15> is shared by Level-15 interrupt and PI C
overflow interrupt.

0 ™ When the TI CK_COVMPARE.I NT_DI S hit is zero (that is, tick compare is enabled) and its

(TICK_INT) |TI CK_CWMPR field matches the value in the TI CK register, then the TMfield in the
SOFTINT register is set to one and a Level-14 interrupt is generated. See Section
“TICK_COMPARE Register” on page 6-102 for details.

100

UltraSPARC llli Processor User's Manual * June 2003

6.7.4

SET_SOFTINT Register

The SET_SOFTI NT register is written to set bits in the SOFTI NT register to set a bit in that
register. When a bit in the SET_SOFTI NT register is set to a one, the corresponding bit in
the SOFTI NT is set.

CLR _SOFTINT Register

The CLR_SOFTI NT register is written in privileged mode using the VAR write state register
instruction to clear bits in the SOFTI NT register. When a bit in the CLR_SOFTI NT register
is set to a one, the corresponding bit in the SOFTI NT register is cleared.

Timer State Registers: ASRs 4, 23, 24, 25

The processor has two timers. The Tl CK timer is driven by the processor clock. The STI CK
timer is driven by the system clock. Four registers are used to implement the timer and
support the timer interrupts. Timer state registers are described in TABLE 6-14.

TABLE 6-14 Timer State Registers

Soft Interrupt
Register ASR # (base 10) | Name and Description Access Instructions
TI CK 4 TICK register Depends
TI CK_COVPARE 23 TICK Compare register State Register Instructions in privileged mode
STI CK 24 STICK register Depends
STI CK_COVPARE 25 STICK Compare register | State Register Instructions in privileged mode
TICK NPT COUNTER

63 62 0
TICK_COMPARE INT_DIS TICK_CMPR

63 62 0
STICK NPT COUNTER

63 62 0
STICK_COMPARE INT_DIS TICK_CMPR

63 62 0

FIGURE 6-17 Timer State Registers

Chapter 6 Registers 101

102

TICK Register

The TI CK register is a 63-bit counter that counts processor clock cycles.

In privileged mode, the Tl CK register is always readable using either the RDPR (privileged
read) or RDTI CK (state register read) instructions. The T CK register is always write-able in
privileged mode using the WRPR (privileged write) instruction; there is no WRTI CK (state
register write) instruction.

The TI CK. NPT bit (bit 63) selects the non-privileged mode readability. If TI CK. NPT =0,
then the TI CK register is readable in non-privileged mode using the RDT| CK state register
read instruction. When Tl CK. NPT = 1, an attempt by software to read the Tl CK register in
non-privileged mode causes a privileged_action exception. Software operating in
non-privileged mode can never write to the Tl CK register.

The TI CK. NPT is set to one by a Power-On Reset trap. The value of TI CK. COUNTER is
reset after a Power-On Reset trap.

After the Tl CK register is written, reading the Tl CK register returns a value incremented (by
one or more) from the last value written, rather than from some previous value of the counter.
The number of counts between a write and a subsequent read does not accurately reflect the
number of processor cycles between the write and the read. Software may rely only on
read-to-read counts of the Tl CK register for accurate timing, not on write-to-read counts.

Note — The Tl CK register is unaffected by any reset other than a Power-On Reset.

Programming Note — Tl CK. NPT may be used by a secure operating system to control
access by user software to high-accuracy timing information. The operation of the timer
might be emulated by the trap handler, which could read TI CK. count er and change the
value to lower its accuracy.

TICK_COMPARE Register

The TI CK_COMPARE register causes the processor to generate a trap when the Tl CK
register reaches the value in the TI CK_COMPARE register and the | NT_DI S bit is zero. If
the | NT_DI S bit is one, then no interrupt is generated.

When the Tl CK_CMPR field exactly matches the TI CK. COUNTER field and | NT_DI S=0,
then a TI CK_| NT is posted in the SOFTI NT register. This has the effect of posting a
Level-14 interrupt to the processor when the processor has Pl L register value less than
fourteen and PSTATE.| E register field 1.

UltraSPARC llli Processor User's Manual * June 2003

Programming Note — The Level-14 interrupt handler must check the SOFTI NT<14>, TM
(TI CK_I NT) , and SM(STI CK_I NT) fields of the SOFTI NT register to determine the
source or sources of the Level-14 interrupt.

In privileged mode, the TI CK_COMPARE register is always accessible using the state register
read and write instructions. The TI CK_COMPARE register is not accessible in non-privileged
mode. Non-privileged accesses to this register causes a privileged_opcode trap.

STICK Register

The STI CK register is a 63-bit counter that increments at a rate determined by the system
clock.

The STI CK register is always accessible in privileged mode using the RDSTI CK and
WRSTI CK state register instructions.

The STI CK. NPT bit (bit 63) selects the non-privileged mode readability. If

STI CK. NPT = 0, then the STI CK register is readable in non-privileged mode using the
RDSTI CK state register read instruction. When STI CK. NPT = 1, an attempt by software to
read the STI CK register in non-privileged mode causes a privileged_action exception.
Software operating in non-privileged mode can never write to the STl CK register.

The STI CK. NPT bit is set to one by a Power-On Reset trap. The value of
STl CK. COUNTER is cleared after a Power-On Reset trap.

After the STI CK register is written, reading the STI CK register returns a value incremented
(by one or more) from the last value written, rather than from some previous value of the
counter.

Note — The STI CK register is unaffected by any reset other than a Power-On Reset.

STICK_COMPARE Regjister

The STI CK_COMPARE register causes the processor to generate a trap when the STI CK
register reaches the value in the STI CK_COMPARE register and the | NT_DI S bit is zero. If
the | NT_DI S bit is one, then no interrupt is generated.

The STI CK_COMPARE is only accessible in privileged mode. Accesses to this register in
non-privileged mode causes a privileged_opcode trap.

Chapter 6 Registers 103

When STI CK_CMPR field exactly matches STI CK. COUNTER field and | NT_DI S =0, then
a Tl CK_I NT is posted in the SOFTI NT register. This has the effect of posting a Level-14
interrupt to the processor when the processor has Pl L register value less than fourteen and
PSTATE.I E register field 1.

Programming Note — The Level-14 interrupt handler must check SOFTI NT<14>,
T1 CK_I NT, and STI CK_I NT to determine the source of the Level-14 interrupt.

After a Power-On Reset trap, the | NT_DI S bit is set to one (disabling system tick compare
interrupts), and the STI CK_CMPR value is set to zero.

6.8

6.8.1

6.8.1.1

104

Privileged Registers

The privileged registers are described in this section. The privileged registers are visible only
to software running in privileged mode (PSTATE. PRI V = 1). Privileged registers are written
with the WRPR instruction and read with the RDPR instruction.

Refer to FIGURE 6-5 on page 6-87 for more details.

Trap Stack Privileged Registers 0 through 3

The four trap stack registers (TPC, TNPC, TSTATE, and TT) form a group of registers that
are shadowed for each of the five trap levels. Each instance of the registers save the state of
key integer unit parameters at each trap level. FIGURE 6-18 shows the format for this register
group. This figure is followed by a description of each register. FIGURE 6-19 shows how the
register stack responds to an event example.

The group of trap stack registers contain state information from the previous trap level. The
registers include values from the program counter (PC), the next program counter (nPC), the
trap state (TSTATE) register (a group of fields comprising the contents of the CCR, ASI ,
CWP, and PSTATE registers), and the trap type (TT) register containing the value of the trap
that caused entry into the current trap level.

Common Attributes

There are MAXTL = 5 instances of the trap control registers, but only one group is accessible
at any time. The current value in the TL register determines which instance of the trap
control registers are accessible.

UltraSPARC llli Processor User's Manual * June 2003

All trap control registers are accessible in privileged mode. An attempt to read or write any
of these registers in non-privileged mode causes a privileged_opcode exception.

An attempt to read or write any of these registers when TL = 0 causes an illegal_instruction
exception.

TPC PC from trap while in trap level 00
63 21 0

TNPC nPC from trap while in trap level 00
53 21 0
TSTATE CCR ASI PSTATE CWP
39 3231 24 2320 19 87 32 0

TT Trap Type
3 0

FIGURE 6-18 Trap State Register Format

Trap Program Counter

The Trap Program Counter (TPC) contains the PC from the previous trap level.

Trap Next Program Counter

The Trap Next Program Counter (TNPC) register is the NnPC from the previous trap level.

Trap State Register

The Trap State (TSTATE) Register contains the state from the previous trap level, comprising
the contents of the CCR, ASI , CWP, and PSTATE registers from the previous trap level.

Trap Type

The Trap Type (TT) register normally contains the trap type of the trap that caused entry to
the current trap level.

Chapter 6 Registers 105

Trap Stack Operation

The trap stack and an event example are illustrated in FIGURE 6-19.

1) Processorisat TL=1

3) Current PC, nPC, etc. written into TL = 1 group
4) TL incremented to 2

5) Processor returns from Trap

6) TL = 1 group is written to PC, nPC, etc.

Trap Stack

FIGURE 6-19 Trap Stack and Event Example

6.8.1.2
Event Example
2) Processor traps
6.8.1.3

Effects of Reset and Normal Operation

The effects of reset on each register are shown in TABLE 6-15. During normal operation, the
trap stack register values defined for the trap levels above the current one are undefined.

TABLE 6-15 Trap Stack Register Power-on and Normal Operation

T Control During Normal Operation,
rap tontro for n greater than the
Register After Power-On Reset current trap level (n > TL)
TPC TPCO] = TPC[n] is undefined
TPC[1] to TPC[5] are undefined
TNPC TPCO] = TNPC[n] is undefined
TNPC[1] to TNPC[5] are undefined
TPCO] = TSTATE[nN] is undefined
TSTATE TSTATE[1] to TSTATE[5] are undefined
TPC[0] = Reset Trap Type TT[n] is undefined
TT TT[1] to TT[4] are undefined
TT[5] = 00116

106

UltraSPARC llli Processor User's Manual * June 2003

6.8.2

Trap Base Address (TBA) Privileged Register 5

The TBA register, shown in FIGURE 6-20, provides the upper 49 bits of the address used to

select the trap vector for a trap. The TBA register is accessible using read and write

privileged register instructions. The lower 15 bits of the TBA always read as zero, and writes

to them are ignored.

Trap Base Address 000 0000 0000 0000
63 15 14 0
FIGURE 6-20 Trap Base Address Register
The full address for a trap vector is specified by the contents in the TBA, TL, and TT[TL]
registers at the time the trap is taken, as shown in FIGURE 6-21.
TBA<63:15> TL>0 TT;. |00000
63 15 14 13 4 0

6.8.3

FIGURE 6-21 Trap Vector Address Format

TL>0 hit

The “TL > 0” bit is zero if TL = 0 when the trap was taken, and one if TL > 0 when the trap
was taken. This implies that there are two trap tables: one for traps from TL = 0 and one for

traps from TL > 0.

TTy, field

The TTy field is written with the contents of the TT register representing the new trap level

that is being taken.

Processor State (PSTATE) Privileged Register 6

The PSTATE register, shown in FIGURE 6-22, holds the current state of the processor. There
is only one instance of the PSTATE register. The PSTATE register is copied to a 12-bit field

in the TSTATE register of the trap stac

Chapter 6

k.

Registers

107

PSTATE| IG |MG | CLE| TLE MM RED|PEF | AM |PRIV| IE | AG

11 10 9 8 7 6 5 4 3 2 1 0

FIGURE 6-22 PSTATE Fields

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to
the next instruction executed. The privileged RDPR and WRPR instructions are used to read
and write all the bits in the PSTATE, respectively.

Subsections on page 108 through page 110 describe the fields contained in the PSTATE
register.

6.8.3.1 Global Register Set Selection - IG, MG, AG bits

The UltraSPARC I1Ii processor provides Interrupt and MMU Global Register sets in addition
to the two global register sets (normal and alternate) specified by SPARC-V9. The currently
active set of global registers is specified by the AG | G and MG bits and are set and cleared
according to the events listed in TABLE 6-16.

Note — The | G MG, and AG fields are saved on the trap stack along with the rest of the
PSTATE Register.

TABLE 6-16 PSTATE Global Register Selection Events

PSTATE settings

Event Globals selected for use AG IG MG
DONE, RETRY [1] Global Registersencoded | O 0 0
in TSTATE register

(Previous Global Registers
before most recent trap)

fast_instruction_access MMU_miss, MMU Global registers 0 0 1
fast_data access MMU_miss,
fast_data_access protection,
data_access_exception,
instruction_access_exception

interrupt_vector_trap Interrupt Global registers | 0 1 0
Reserved [2] 0 1

Write to privileged register (WPR) that Any Global Register X X X

modifies AG, |G, or MG bitsin PSTATE

register

108 UltraSPARC llli Processor User's Manual * June 2003

TABLE 6-16 PSTATE Global Register Selection Events

PSTATE settings
Event Globals selected for use AG IG MG
Any trap other than those listed above Alternate Global registers | 1 0 0
Reserved Reserved 1 0 1
Reserved Reserved 1 1 0
Reserved Reserved 1 1 1

1. Since PSTATE is preserved in the TSTATE register when atrap occurs, the previous va ue of these bits are normally
restored upon return from atrap (via DONE or RETRY instruction).

2. A WRPRto PSTATE, using areserved combination of AG, | G and MG bit values, causes an illegal_instruction ex-
ception.

Executing a DONE or RETRY instruction restores the previous {AG, | G MG} state before the
trap is taken. Programmers can also set or clear these three bits by writing to the PSTATE
register with a WRPR instruction.

Note — Attempting to use the “wr pr %pst at e” instruction to set a reserved encoding for
I G, MG, and AG (more than one of these bits set) resultsin an illegal_instruction exception.
However, the processor does not check for a reserved encoding when writing directly to the
TSTATE register. Hence, executing a DONE or RETRY with an invalid AG, | G, MG bit
combination may result in an undefined behavior of the processor.

Compatibility Note — The UltraSPARC I11i processor support two more sets (privileged
only) of eight 64-bit global registers compared to the UltraSPARC Il family: interrupt
globals and MMU globals. These additional registers are called the trap globals. Two 1-bit
fields, PSTATE. | Gand PSTATE. MG, were added to the PSTATE register to select which
set of global registers to use.

PSTATE interrupt_globals (1G)

When PSTATE. | G= 1, the processor interprets integer register numbers in the range 0 — 7 as
referring to the interrupt global register set. See the Note on page 109. When an
interrupt_vector trap (trap type = 60,¢) is taken, the processor sets | Gand clears AG and MG,

PSTATE_MMU_globals (MG)

When PSTATE. MG= 1, the processor interprets integer register numbers in the range 0 — 7
as referring to the MMU global register set.

Chapter 6 Registers 109

6.8.3.2

6.8.3.3

110

The processor sets PSTATE. MG and clears PSTATE. | Gand PSTATE. AG when any of the
following traps are taken:

fast_instruction_access MMU_miss trap (trap type = 6416—671¢)
fast_data_access MMU_miss trap (trap type = 684—6B¢)
fast_data_access _protection trap (trap type = 6C4—6F¢)
data_access_exception trap (trap type = 30;¢)
instruction_access_exception trap (trap type = 08;4)

PSTATE _alternate_globals (AG)

When PSTATE. AG= 1, the processor interprets integer register numbers in the range 0 — 7
as referring to the alternate global register set.

If an exception is taken and it does not set another global bit, then the processor defaults to
the Alternate Global register set by setting PSTATE. AG and clearing PSTATE. | Gand
PSTATE. MG,

PSTATE_current_little_endian (CLE)

When PSTATE. CLE = 1, all data reads and writes using an implicit ASI are performed in

little-endian byte order with an ASI of ASI _PRI MARY_LI TTLE. When PSTATE. CLE =0,
all data reads and writes using an implicit ASI are performed in big-endian byte order with
an AS| of ASI _PRI MARY. Instruction accesses are always big-endian.

PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the
PSTATE. TLE bit is copied into PSTATE. CLE in the new PSTATE register. This behavior
allows system software to have a different implicit byte ordering than the current process.
Thus, if PSTATE. TLE is set to one, data accesses using an implicit ASI in the trap handler
are little-endian. The original state of PSTATE. CLE is restored when the original PSTATE
register is restored from the trap stack.

UltraSPARC llli Processor User's Manual * June 2003

6.8.3.4

6.8.3.5

6.8.3.6

PSTATE_mem_model (MM)

The processor supports Total Store Order (TSO) only. The 2-bit field in the PSTATE. MMis
hardwired to 00 indicating TSO mode. See TABLE 6-17 for MM Encodings.

TABLE 6-17 MM Encodings

MM Value SPARC-V9

00 Total Store Order (TSO)
01 Reserved

10 Reserved

11 Reserved

Total Store Order (TSO) — Loads are ordered with respect to earlier loads. Stores are

ordered with respect to earlier loads and stores. Thus, loads can bypass earlier stores but
cannot bypass earlier loads; stores cannot bypass earlier loads and stores. Programs that
execute correctly in either PSO or RMO will execute correctly in the TSO model.

PSTATE_RED_state (RED)

PSTATE. RED (Reset, Error, and Debug state) is set whenever the UltraSPARC I11i
processor takes a RED state disrupting or nondisrupting trap. The IU sets PSTATE. RED
when any hardware reset occurs. It also sets PSTATE. RED when a trap is taken while

TL = (MAXTL - 1). Software can exit RED_st at e by executing a DONE or RETRY
instruction, which restores the stacked copy of PSTATE and clears PSTATE. RED if it was
zero in the stacked copy.

Note — Software can also exit the RED_st at e by writing a zero to PSTATE. RED with a
VARPR instruction. However, this method is not recommended due to potential side-effects
and unpredictable behavior.

PSTATE_enable_floating-point (PEF)

When set to one, the PSTATE. PEF bit enables the FPU, which allows privileged software to
manage the FPU. For the FPU to be usable, both PSTATE. PEF and FPRS. FEF must be set.
Otherwise, any floating-point instruction that tries to reference the FPU causes a fp_disabled
trap.

Chapter 6 Registers 111

6.8.3.7

6.8.3.8

6.8.3.9

6.8.4

112

PSTATE_address_mask (AM)

When PSTATE. AM= 1, the high-order 32 bits of any virtual addresses for instruction and
data are cleared to zero in the following cases:

Before data addresses are sent out of the processor

Before addresses are sent to the MMU

For instruction accesses to all caches

Before being stored to a general-purpose register for CALL, JMPL, and RDPC instructions
Before being stored to TPC[n] and TNPC[n] when a trap occurs

When an ASI _PHYS_* ASI is used in a load or store instruction, the setting of
PSTATE. AMis ignored and the full 64-bit address is used. (See ASI 14,
ASI _PHYS_USE_EC, for an example).

When PSTATE. AM= 1, the processor writes the full 64-bit program counter value (upper 32
bits are forced to be zero) to the destination register of a CALL, JMPL, or RDPC instruction.

When PSTATE. AM= 1 and a trap occurs, the processor writes the full 64-bit program
counter value to TPC[TL] .

When PSTATE. AM=1 and a synchronous exception occurs, the processor writes the full
64-bit address to the Data Synchronous Fault Address Register.

When PSTATE. AM= 1 and an asynchronous exception occurs, the processor writes the full
64-bit address to the Data Asynchronous Fault Address Register.

The PSTATE. AMbit must be set when 32-bit software is executed.

PSTATE_privileged_mode (PRIV)

When PSTATE. PRI V = 1, the processor is in privileged mode. This bit is controlled by
events in the processor and can be explicitly set.

PSTATE_interrupt_enable (IE)

When PSTATE. | E = 1, the processor can accept interrupts.

Trap Level (TL) Privileged Register 7

The trap level register, shown in FIGURE 6-23, specifies the current trap level. TL = 0 is the
normal (nontrap) level of operation. TL > 0 implies that one or more traps are being
processed. The maximum valid value that the TL register may contain is MAXTL =5, which
is always equal to the number of supported trap levels beyond Level-0.

UltraSPARC llli Processor User's Manual * June 2003

6.8.5

6.8.6

TL TL

2 0

FIGURE 6-23 Trap Level Register

Programming Note — Writing to the TL register with a value greater than MAXTL (five
for the UltraSPARC I1Ii processor) causes the value MAXTL to be written.

Writing the TL register with a wrpr % | instruction does not alter any other processor state;
that is, it is not equivalent to taking or returning from a trap.

Processor Interrupt Level (PIL) Privileged Register 8

The processor interrupt level (Pl L), illustrated in FIGURE 6-24, is the interrupt level above
which the processor will accept an interrupt. Interrupt priorities are mapped so that interrupt
Level-2 has greater priority than interrupt Level-1, and so on.

PIL PIL
3 n

FIGURE 6-24 Processor Interrupt Level Register

Compatibility Note — On SPARC-V8 processors, the Level-15 interrupt is considered to
be nonmaskable, so it has different semantics from other interrupt levels. SPARC-V9
processors do not treat Level-15 interrupts differently from other interrupt levels.

Register-Window State Privileged Registers 9
through 13

The state of the register window is determined by a set of privileged registers that are read
and written by privileged mode software using the RDPR and WRPR instructions, respectively.
In addition, these privileged registers are modified by instructions related to register
windowing and are used to generate traps that allow supervisor software to spill, fill, and
clean the register window sets. TABLE 6-18 describes the register-window state privileged
registers.

Chapter 6 Registers 113

Register-window management is described in a separate chapter.

TABLE 6-18 Register-Window State Privileged Registers

Value
Register-window State Registers Range Description
Current Window Pointer State Register 9: The CWP register is a counter that identifies
the current window into the set of integer registers.
CWP Oto7
2
Savable Window Sets State Register 10: The CANSAVE register contains the
number of register sets following CWP that are not in use and
CANSAVE 0106 | are available to be allocated by a SAVE instruction without
> generating a window spill exception.
Restorable Window Sets State Register 11: The CANRESTORE register contains the
number of register sets preceding CWP that are in use by the
CANRESTORE Oto7 _current program and can be_ restoregl (by th_e RESTO_QE
> instruction) without generating a window fill exception.
Clean Window Sets State Register 12: The CLEANW N register contains the
number of windows that can be used by the SAVE instruction
CLEANWIN 0to 6 |without causing a clean_window exception.
2
State Register 13: The OTHERW N register contains the
Other Window Sets count of register sets that will be spilled/filled by a separate
set of trap vectors based on the contents of WSTATE_OTHER.
0to 7 If OTHERW N is zero, register sets are spilled/filled by use of

OTHERWIN

trap vectors based on the contents of WSTATE_NORMAL.
The OTHERW N register can be used to split the register sets
among different address spaces and handle spill/fill traps
efficiently by use of separate spill/fill vectors.

Note — The CWP, CANSAVE, CANRESTORE, OTHERW N, and CLEANW N registers contain
values in the range O to 7 or O to 6 as indicated in TABLE 6-18. The effect of writing a value
greater than indicated to any of these registers is undefined. The values programmed into
these registers must combine into a consistent set of numbers that will work.

Note — The most significant 61 bits of all these registers are set to zero. When any are
written, the most significant 61 bits are ignored.

114

UltraSPARC llli Processor User's Manual * June 2003

6.8.7

Compatibility Note — The following differences between SPARC-V8 and SPARC-V9 are
visible only to privileged software; they are invisible to non-privileged software.

1. In SPARC-V9, SAVE increments CWWP and RESTORE decrements CWP. In SPARC-V8, the
opposite is true: SAVE decrements PSR. CWP and RESTORE increments PSR. CWP.

2. PSR. CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by
atrap caused by a window fill or spill exception.

Clean Windows (CLEANWIN) Register Note

The CLEANW N register counts the number of register window sets that are “clean” with
respect to the current program, that is, register sets that contain only zeroes, valid addresses,
or valid data from that program. Registers in these windows need not be cleaned before they
can be used. The count includes the register sets that can be restored (the value in the
CANRESTORE register) and the register sets following CWP that can be used without
cleaning. When a clean window is requested (by a SAVE instruction) and none is available, a
clean_window exception occurs to cause the next window to be cleaned.

Programming Note — CLEANW N must never be set to a value greater than six. Setting
CLEANW N greater than six would violate the register window state definition. Notice that
the hardware does not enforce this restriction; it is up to Supervisor software to keep the
window state consistent.

Window State (WSTATE) Privileged Register 14

The WSTATE register, shown in FIGURE 6-25, specifies bits that are inserted into T Ty <4:2>
on traps caused by window spill and fill exceptions.

This register is read/write by using the RDPR and VWRPR privileged instructions.

These bits are used to select one of eight different window spill and fill handlers. If
OTHERW N = 0 at the time a trap is taken because of a window spill or window fill
exception, then the WSTATE. NORMAL bits are inserted into TT[TL] field of the Trap Vector
Address. Otherwise, the WSTATE. OTHER bits are inserted into TT[TL] .

Chapter 6 Registers 115

WSTATE OTHER NORMAL

5 3 2 0

FIGURE 6-25 WSTATE Register

6.8.8 Version (VER) Privileged Register 31

The version register, shown in FIGURE 6-26, specifies the fixed parameters pertaining to a
particular processor implementation and mask set.

The VER register is read-only, readable by the RDPR privileged instruction.

manufacturer = 003E ¢ impl mask 0000 0000 | maxtl =5 [000| maxwin =7

63 48 47 32 31 24 23 16 15 87 5 4 0

FIGURE 6-26 Version Register

VER. manuf field

The VER. manuf field contains Sun’s 16-bit manufacturer code, 003E 4, which is Sun’s
JEDEC semiconductor manufacturer code.

VER. i npl field

The VER. i npl field uniquely identifies the processor implementation or class of software-
compatible implementations of the architecture. TABLE 6-19 shows the processor
implementation codes.

TABLE 6-19 Processor Implementation Codes

Processor VER. i npl
UltraSPARC | 0010;¢4
UltraSPARC I 001144
UltraSPARC |l 001244
UltraSPARC lle 00134
UltraSPARC Il 0015:¢

116 UltraSPARC llli Processor User's Manual * June 2003

VER. mask field

The VER. mask specifies the current mask set revision and is chosen by the implementor. It
generally increases numerically with successive releases of the processor but does not
necessarily increase by one for consecutive releases. TABLE 6-20 shows the UltraSPARC I11i
Processor Mask Version.

TABLE 6-20 UltraSPARC IIIi Processor Mask Version Codes

Mask Version VER. mask
TO_1x 4h1
TO 2.x 4h2

VER. maxt | field

The VER. maxt | value, 5, is the maximum number of trap levels supported by the
processor.

VER. maxwi n field

The VER. maxwi n value, 7, is the maximum number of Integer Unit register windows that
access the NW NDOWS = 8 window register sets.

6.9

6.9.1

Special Access Register

Floating-Point Status Register (FSR)

The FSRregister fields, illustrated in FIGURE 6-26, contain FPU mode and status information.
State information about the FPU is presented in section Section 6.6.6 “Floating-Point
Registers State (FPRS) Register 6” on page 6-93.

The FSR is accessible using special load and store opcodes. They work in privileged and
non-privileged mode. The lower 32 bits of the FSR are read and written by the STFSRP and
LDFSRP floating-point instructions; all 64 bits of the FSR are read and written by the
STXFSR and LDXFSR floating-point instructions, respectively. FIGURE 6-27 illustrates the
FSR fields.

The ver, ftt, and reserved (“—) fields are not modified by LDFSR or LDXFSR, they
are read-only fields.

Chapter 6 Registers 117

—_ fcc3 | feec2 | fecl

63 38 37 36 35 34 33 32
RD | — TEM NS — ver ftt 0 [—] fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

6.9.1.1

118

FIGURE 6-27 FSR Fields

Reserved Bits

Bits 6338, 29-28, 21-20, and 12 are reserved. When read by a STXFSR instruction, these
bits will read as zero. Software should issue LDXFSR instructions only with zero values in
these bits, unless the values of these bits are exactly those derived from a previous STXFSR.

The subsections on pages page 118 through page 126 describe the remaining fields in the
FSR.

FSR_fp_condition_codes (fcc0, fccl, fcc2, feel)

The four sets of floating-point condition code fields are labeled f ccO, f cc1, f cc2, and
fcc3.

Compatibility Note — f ccO defined in SPARC-V9 isthe same as f cc defined in
SPARC-VS8.

The f ccO field consists of bits 11 and 10 of the FSR, f cc1 consists of bits 33 and 32,

f cc2 consists of bits 35 and 34, and f cc3 consists of bits 37 and 36. Execution of a
floating-point compare instruction (FCMP or FCMPE) updates one of the f ccn fields in the
FSR, as selected by the instruction. The f ccn fields can be read and written by STXFSR and
LDXFSR instructions, respectively. The f ccO field can also be read and written by STFSR
and LDFSR, respectively. FBf cc and FBPf cc instructions base their control transfers on
these fields. The MOVcc and FMOVc e instructions can conditionally copy a register, based on
the state of these fields.

UltraSPARC llli Processor User's Manual * June 2003

6.9.1.2

6.9.1.3

In TABLE 6-21, f,.;; and f,,, correspond to the single, double, or quad values in the floating-
point registers specified by a floating-point compare instruction’s r s1 and r s2 fields. The
question mark (?) indicates an unordered relation, which is true if either f,,; or f,> is a
signalling NaN or a quiet NaN. If FCVP or FCVPE generates an fp_exception_ieee 754
exception, then f ccn is unchanged. TABLE 6-21 shows the floating-point condition codes.

TABLE 6-21 Floating-Point Condition Codes (f ccn) Fields of FSR

Content of fccn Indicated Relation

0 fra =fre2

1 fra <frs

2 fra1> e

3 frs1 ? frsp (Unordered)

FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to
IEEE Std 754-1985. TABLE 6-22 shows the rounding direction fields.

TABLE 6-22 Rounding Direction (RD) Field of FSR

RD Round Toward

0 Nearest (even, if tie)
1 0

2 + 0

3 — 00

If GSR. | M= 1, then the value of FSR. RD is ignored and floating-point results are instead
rounded according to GSR. | RND.

FSR_nonstandard_fp (NS)

The NS bit allows the processor to flush a subnormal floating-point value to zero. If a
floating-point add/subtract operation results in a subnormal value and FSR. NS = 1, the value
is replaced by a floating-point zero value of the same sign. This replacement is usually
performed in hardware. However, for the following cases when a subnormal value is
generated in the course of the instruction and FSR. NS = 1, an fp_exception_other exception
with FSR. ftt =2 (unfinished_FPop) is taken and trap handler software is expected to
replace the subnormal value with a zero value of the appropriate sign:

f add of numbers with opposite signs

Chapter 6 Registers 119

6.9.14

6.9.1.5

120

f sub of numbers with the same signs
f dt os

The effects of FSR. NS =1 are as follows:

If a floating-point source operand is subnormal, it is replaced by a floating-point zero
value of the same sign (instead of causing an exception).

If a floating-point operation generates a subnormal value, the value is replaced with a
floating-point zero value of the same sign.

This is implemented by performing the replacement in hardware, and sometimes cause a
fp_exception_other exception with FSR. f tt =2 (unfinished_FPop) so that trap handler
software can perform the replacement.

If GSR. | M= 1, then the value of FSR. NS is ignored and the processor operates as if
FSR. NS =0.

FSR_version (ver)
Version number 7 is reserved to indicate that no hardware floating-point controller is present.

The ver field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

FSR_floating-point_trap_type (ftt)

When a floating-point exception trap occurs, ft t (bits 16 through 14 of the FSR) identifies
the cause of the exception, the “floating-point trap type.” Several conditions can cause a
floating-point exception trap. After a floating-point exception occurs, the f t t field encodes
the type of the floating-point exception until a STFSR or FPop is executed.

The f tt field can be read by the LDFSR and LDXFSR instructions. The STFSR and STXFSR
instructions do not affect f t t because this field is read-only.

Privileged software that handles floating-point traps must execute a STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR clears the f t t bit after the store
completes without error. If the store generates an error and does not complete, f t t remains
unchanged.

UltraSPARC llli Processor User's Manual * June 2003

Programming Note — Neither LDFSR nor LDXFSR can be used for the purpose of
clearing f t t , since both leave f t t unchanged. However, executing a non-trapping FPop
such as “f novs % 0, % O prior to returning to non-privileged mode will zero ft t . The
ftt remains valid until the next FPOp instruction completes execution.

The ftt field encodes the floating-point trap type according to TABLE 6-23. Note: The value
“7” is reserved for future expansion.

TABLE 6-23 Floating-Point Trap Type (f t t) Field of FSR)

ftt Trap Type Trap Vector

0 None No trap taken

1 |EEE_754_exception fp_exception_ieee 754

2 unfinished_FPop fp_exception_other

3 unimplemented FPop fp_exception_other

4 sequence_error Reserved, Unimplemented
5 hardware_error Reserved, Unimplemented
6 nvalid_fp_register Reserved, Unimplemented
7 Reserved Reserved, Unimplemented

IEEE_754 exception, unfinished_FPop, and unimplemented_FPop will likely arise
occasionally in the normal course of computation and must be recoverable by system
software.

When a floating-point trap occurs, the following results are observed by user software:
1. The value of aexc is unchanged. See Section 6.9.1.6 for details of aexc.

2. The value of cexc is unchanged, except for an IEEE_754_exception, where a bit
corresponding to the trapping exception is set. The unfinished_FPop,
unimplemented_FPop, sequence_error, and invalid_fp_register floating-point trap types
do not affect cexc. See Section 6.9.1.6 for details of cexc.

3. The source and destination registers are unchanged.
4. The value of f ccnis unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is
signalled, either immediately from an |IEEE_754 exception or after recovery from an
unfinished_FPop or unimplemented_FPop. In either case, cexc as seen by the trap handler
reflects the exception causing the trap.

In the cases of fp_exception_other exceptions with unfinished_FPop or unimplemented_FPop
trap types that do not subsequently generate IEEE traps, the recovery software should define
cexc, aexc, and the destination registers or f cCsS, as appropriate.

Chapter 6 Registers 121

122

ftt = IEEE_754 exception.

The |IEEE_754_exception floating-point trap type indicates

the occurrence of a floating-point exception conforming to IEEE Std 754-1985. The
exception type is encoded in the cexc field.

The aexc and f ccs fields and the destination f register are not affected by an

IEEE_754 exception trap.

ftt = unfinished_FPop. The unfinished FPop floating-point trap type indicates that the

processor was unable to generate correct results or that exceptions as defined by
IEEE Std 754-1985 have occurred. Where exceptions have occurred, the cexc field is

unchanged.

The conditions under which a fp_exception_other exception with floating-point trap type of

unfinished_FPop can occur are implementation dependent. The recommended set of

conditions is shown in TABLE 6-24. An implementation may cause fp_exception_other with

unfinished_FPop under a different (but specified) set of conditions.

TABLE 6-24 Standard Conditions Under Which unfinished_FPop Trap Type

Can Occur
1 subnormal (SBN) 2 subnormal (SBN)
FPU operand operands Result/Non-SBN Operand
Operation IM =1 or NS=0 IM=10r NS=0 IM=10or NS=0
fadds Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS=x)
NaN (either operand)
fsubs Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS=x)
NaN (either operand)
faddd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS=x)
NaN (either operand)
fsubd Unfinished trap Unfinished trap fi fv, fu, sbn (IM = NS=x)
NaN (either operand)
fmuls Unfinished trap if Unfinished trap if -25<Er<=1
- result not zero - result not zero
fdivs Unfinished trap Unfinished trap -25<Er<=1
fsmuld Unfinished trap Unfinished trap None
fmuld Unfinished trap if Unfinished trap if 54<Er<=1
- result not zero - result not zero
fdivd Unfinished trap Unfinished trap 54 <Er<=1
fsorts Unfinished trap N/A None
fsgrtd Unfinished trap N/A None
fstoi Unfinished trap N/A - 281 <= res < 281 |nfinity, NaN
fdtoi Unfinished trap N/A - 281 <= res < 231 |nfinity, NaN
fstox Unfinished trap N/A [result| >= -252, Infinity, NaN
fdtox Unfinished trap N/A [result| >= -2%2, Infinity, NaN

UltraSPARC llli Processor User's Manual * June 2003

TABLE 6-24 Standard Conditions Under Which unfinished_FPop Trap Type
Can Occur (Continued)

1 subnormal (SBN) 2 subnormal (SBN)

FPU operand operands Result/Non-SBN Operand
Operation IM =1 or NS=0 IM=10or NS=0 IM=10or NS=0
fitos N/A N/A - 222 < operand < 2%
fxtos N/A N/A - 222 < operand < 222
fitod N/A N/A None
fxtod N/A N/A - 251 < operand < 251
fstod Unfinished trap N/A NaN
fdtos Unfinished trap N/A fi fv, fu, sbn (IM = NS=x), NaN
Note:
Er — Biased Exponent of the result before rounding

Ei ~ Biased Exponent of input operand

fi — Invalid(Infinity — Infinity, Infinity*0, 0/0, Infinity/Infinity)

fv « OverflowEr >= 2047(DP) or 255(SP) but not exact infinity

fu « Underflow0 < result| < 271922(DP) or 27125(Sp)

sbnormal (sbn): [number| = 21922 * (significand x 2°°2) (DP) or 2126 * (significand x 2°%3) (SP)

{-54 < Er < 1 (DP) or -25 < Er < 1 (SP)}

6.9.1.6

ftt = unimplemented FPop. The unimplemented FPop floating-point trap type indicates
that the processor decoded an FPop that it does not implement. In this case, the cexc field
is unchanged.

All quad FPops variations set f t t = unimplemented_FPop.

Floating-Point Exceptions Control and Status

There are three FSR register fields used to control and status the events associated with
floating-point exceptions.

FSR trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions
that can be indicated in the current_exception field (cexc). See FIGURE 6-28 for an
illustration. If a floating-point operate instruction generates one or more exceptions and the
TEMbit corresponding to any of the exceptions is one, then this condition causes a
fp_exception_ieee_754 trap. A TEMbit value of zero prevents the corresponding exception
type from generating a trap.

Chapter 6 Registers 123

124

NVM | OFM | UFM | DZM | NXM

27 26 25 24 23

FIGURE 6-28 Trap Enable Mask (TEM Fields of FSR

FSR accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE-754 floating-point exceptions as long as floating-point
exception traps are disabled through the TEMfield. See FIGURE 6-29 for an illustration. After
an FPop completes with f tt = 0, the TEMand cexc fields are logically ANDed together. If
the result is nonzero, aexc is left unchanged and a fp_exception_ieee 754 trap is generated;
otherwise, the new cexc field is ORed into the aexc field and no trap is generated. Thus,
while (and only while) traps are masked, exceptions are accumulated in the aexc field.

This field is also written with the appropriate value when an LDFSR or LDXFSR instruction
is executed.

nva | ofa ufa | dza | nxa

9 8 7 6 5

FIGURE 6-29 Accrued Exception Bits (aexc) Fields of FSR

FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE-754 floating-point exceptions were
generated by the most recently executed FPop instruction. The absence of an exception
causes the corresponding bit to be cleared. See FIGURE 6-30 for an illustration.

nvc | ofc ufc | dzc | nxc

4 3 2 1 0

FIGURE 6-30 Current Exception Bits (cexc) Fields of FSR

Note — If the FPop traps and software emulate or finish the instruction, the system software
in the trap handler is responsible for creating a correct FSR. cexc value before returning to
a non-privileged program.

UltraSPARC llli Processor User's Manual * June 2003

The cexc bits are set as described in Section 6.9.1.7, “Floating-Point Exception Fields”,” by
the execution of an FPop that either does not cause a trap or causes a fp_exception_ieee 754
exception with FSR. ftt = |EEE_754 _exception. An |IEEE_754 exception that traps shall
cause exactly one bit in FSR. cexc to be set, corresponding to the detected IEEE Std 754
exception.

Floating-point operations which cause an overflow or underflow condition may also cause an
“inexact” condition. For overflow and underflow conditions, FSR. cexc bits are set and
trapping occurs as follows:

An IEEE 754 overflow condition (of) occurs:

If OFM=0 and NXM= 0, the cexc. of ¢ and cexc. nxc bits are both set to one, the
other three bits of cexc are set to zero, and a fp_exception_ieee 754 trap does not
occeur.

If OFM= 0 and NXM= 1,the cexc. nxc hit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee 754 trap does occur.

If OFM= 1, thecexc. of c bit is set to one, the other four bits of cexc are set to zero,
and a fp_exception_ieee 754 trap does occur.

An IEEE 754 underflow condition (uf) occurs:

If UFM=0 and NXM= 0, the cexc. uf ¢ and cexc. nxc bits are both set to one, the
other three bits of cexc are set to zero, and a fp_exception_ieee 754 trap does not
occeur.

If UFM= 0 and NXM= 1, the cexc. nxc bit is set to one, the other four bits of cexc
are set to zero, and a fp_exception_ieee 754 trap does occur.

If UFM= 1, the cexc. uf c bit is set to one, the other four bits of cexc are set to zero,
and a fp_exception_ieee 754 trap does occur.

The behavior is summarized in TABLE 6-25 (where “x” indicates “don’t care”):

TABLE 6-25 Setting of FSR.cexc bits

Exception(s) Current

Detected Trap Enable Exception

in f.p. Mask bits _ bits (in

operation (in FSR. TEM fp_exception_ FSR. cexc)

ieee 754

of | uf | nx | OFM | UFM | NXM | Trap Occurs? | ofc | ufc | nxc | Notes
-l - - X X X No 0 0 0

- |- 1 X X 0 No 0 0 1

-1 1] 1 X 0 0 No 0 1 1 D
11 -11 0 X 0 No 1 0 1 2
Notes:

(1) When the underflow trap is disabled (UFM = 0), underflow is always accompanied by

(2) Overflow is always accompanied by inexact.

inexact.

Chapter 6 Registers 125

6.9.1.7

126

TABLE 6-25 Setting of FSR.cexc bits (Continued)

Exception(s) Current

Detected Trap Enable Exception

in f.p. Mask bits) bits (in
operation (in FSR. TEM fp_exception_ FSR. cexc)
ieee 754

of [uf | nx [OFM | UFM | NXM | Trap Occurs? | ofc | ufc | nxc | Notes
- -1 1 X X 1 Yes 0 0 1

-1 1] 1 X 0 1 Yes 0 0 1

-1 1] - X 1 X Yes 0 1 0

-1 1)1 X 1 X Yes 0 0 0
1(-11 1 X X Yes 1 0 0 (4]
1(-11 0 X 1 Yes 0 0 1 2

Notes:

(1) When the underflow trap is disabled (UFM = 0), underflow is always accompanied by
inexact.
(2) Overflow is dways accompanied by inexact.

If the execution of an FPop causes a trap other than fp_exception_ieee 754, FSR. cexc is
left unchanged.

Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following
definitions of the floating-point exception conditions (per IEEE Std 754-1985):

FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, 0.0 + 0.0 and o — oo
are invalid; 1 = invalid operand(s), 0 = valid operand(s).

FSR _overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magnitude
than the destination format’s largest finite number; 1 = overflow, 0 = no overflow.

UltraSPARC llli Processor User's Manual * June 2003

FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest
normalized number in the indicated format; 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:
If UFM= 0, underflow occurs if a nonzero result is tiny and a loss of accuracy occurs.

If UFM= 1, underflow occurs if a nonzero result is tiny.

SPARC-V9 alows underflow to be detected either before or after rounding. The
UltraSPARC Il1i processor detects underflow before rounding.

FSR_division-by-zero (dzc, dza)

X + 0.0, where X is subnormal or normalized; 1 = division by zero, 0 = no division by zero.

Note — 0.0 + 0.0 does not set the dzc or dza bits.

FSR inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result;
1 = inexact result, 0 = exact result.

Programming Note — Software must be capable of simulating the operation of the FPU
in order to properly handle the unimplemented_FPop, unfinished_FPop, and

IEEE_754 exception floating-point trap types. Thus, a user application program always sees
a FSR that is fully compliant with IEEE Std 754-1985.

6.10

6.10.1

ASI Mapped Registers

In this section, the Data Cache Unit Control Register and Data Watchpoint registers (virtual
address data watchpoint and physical address data watchpoint) are described.

Data Cache Unit Control Register (DCUCR)

ASI 45,4 (ASI _DCU_CONTROL_REG STER), VA= 0,

Chapter 6 Registers 127

128

The DCUCR contains fields that control several memory-related hardware functions. The

functions include instruction, prefetch, write and data caches, MMUs, and watchpoint

setting.

After a Power-On Reset (POR), all fields of DCUCR are set to zero. After a WDR, XI R, or
SI R all fields of DCUCR defined in this section are set to zero.

The DCUCR is illustrated in FIGURE 6-31 and described in TABLE 6-26. In the table, the field
definitions and bits are grouped by function rather than by a strict bit sequence.

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved cP|cv|ME| RE|PE

T T T T
PM

VM

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

46: RE (RAW bypass)
45: PE (prefetch enable)

HPE | sPE|SL |WE
49: CP (physically cacheable) —IT\ /L _]
48: CV (virtually cacheable) 41_' WE (W(;'tle C§Che)
47: ME (merge enable) 42: SL (2nd load steer)
43: SPE (sw prefetch)

44: HPE (hw prefetch)

VM
1 I

—
om| M| pc|ic Reserved DM
i i i L i i i i i i

DC

IC

31, 31:25: VM (Datawatch)
24: PR (PA watch, read)
23: PW (PA watch, rwrite)
22: VR (VA watch, read)
21: VW (VA watch, write)

J 3: DM (D-MMU enable) J

2: IM (I-MMU enable)
1: DC (D-cache enable)
0: IC (I-cache enable)

FIGURE 6-31 DCU Control Register Access Data Format (ASI 454¢)

TABLE 6-26 DCUCR Bit Field Descriptions (1 of 4)

Bits Field Type | Description Note
63:50, Reserved RW
20:4
MMU Control
49 CcP RW | Cacheability of PA. CP determines the physical cacheability of memory | 1
accesses when the I-MMU or D-MMU s disabled (I M= 0 or DM= 0).
The TTE.E (side-effect) bit is set to the complement of CP when MMUs
are enabled; 1 = cacheable, 0 = non-cacheable.

UltraSPARC llli Processor User's Manual * June 2003

TABLE 6-26 DCUCR Bit Field Descriptions (2 of 4)

Bits Field Type | Description Note

48 cv RW | Cacheability of VA. CV determines the virtual cacheability of memory
accesses when the D-MMU is disabled (DM = 0);
1 = cacheable, 0 = non-cacheable.

3 DM D-MMU Enable. If DM= 0, the D-MMU is disabled (pass-through mode).
Note: When the MMU/TLB is disabled, a virtual address is passed
through as a physical address.

2 M I-MMU Enable. If | M= 0, the I-MMU is disabled (pass-through mode).

Store Queue Control

47 MVE RW | Non-cacheable Sore Merging Enable. If cleared, no merging of
non-cacheable, non-side-effect store data will occur. Each non-cacheable
store will generate a system bus transaction.

46 RE RAW Bypass Enable. If cleared, no bypassing of data from the store
gueue to a dependent load instruction will occur. All load instructions
will have their RAW predict field cleared.

Prefetch Control 2

45 PE Prefetch Cache Enable. If prefetch is disabled by clearing the PE bit, all
references to the P-cache are handled as P-cache misses. If cleared, the
P-cache does not generate any hardware prefetch requests to the
L2-cache. Software prefetch instructions are not affected by this bit.

44 HPE Prefetch Cache Hardware Prefetch Enable. 3

43 SPE Software Prefetch Enable. Clear to disable prefetch instructions. When
disabled, software prefetch instructions do no generate a request to the
L2-cache or the system interface. They will continue to be issued to the
pipeline, where they will be treated as NOPs.

Second Load Control

42 SL Second Load Steering Enable. If cleared, all load type instructions will be
steered to the M'S pipeline and no floating-point load type instructions
will be issued to the AO or A1 pipelines.

I-cache, D-cache, and W-cache Control

41 V\E Write Cache Enable. If zero, all W-cache references will be handled as
W-cache misses. Each store queue entry will perform a RMW transaction
to the L2-cache, and the W-cache will be maintained in a clean state.
Software is required to flush the W-cache (force it to a clean state) before
setting this bit to zero.

Chapter 6 Registers 129

130

TABLE 6-26 DCUCR Bit Field Descriptions (3 of 4)

Bits

Field

Type

Description

Note

DC

Data Cache Enable. The DCis used to enable/disable the operation of the
data cache closest to the processor (D-cache); DC = 1 enables the
D-cache and DC = 0 disables it. When DC = 0, memory accesses (loads,
stores, atomic load-stores) are satisfied by caches lower in the cache
hierarchy.

When the D-cache is disabled, its contents are not updated. When the
D-cache is reenabled, any D-cache lines still marked as “valid” may be
inconsistent with the state of memory or other caches. In that case,
software must handle any inconsistencies by flushing the inconsistent
lines from the D-cache.

Instruction Cache Enable. The | Cis used to enable/disable the operation
of the instruction cache closest to the processor (I-cache); | C=1 enables
the I-cache and | C= 0 disables it. When | C = 0, instruction fetches are
satisfied by caches lower in the cache hierarchy.

When the I-cache is disabled, its contents are not updated. When the
I-cache is reenabled, any I-cache lines still marked as “valid” may be
inconsistent with the state of memory or other caches. In that case,
software must handle any inconsistencies by invalidating the inconsistent
lines in the I-cache.

Watchpo

int Control

40:33

PM&T7:0>

DCU Physical Address Data Watchpoint Mask. The Physical Address
Data Watchpoint Register contains the physical address of a 64-bit word
to be watched. The 8-bit Physical Address Data Watch Point Mask
controls which byte(s) within the 64-bit word should be watched. If all
eight bits are cleared, the physical watchpoint is disabled. If the
watchpoint is enabled and a data reference overlaps any of the watched
bytes in the watchpoint mask, then a physical watchpoint trap is
generated. Watchpoint behavior for a Partial Store instruction may differ.

Please see the VMfield description in the table.

UltraSPARC llli Processor User's Manual * June 2003

TABLE 6-26 DCUCR Bit Field Descriptions (4 of 4)

Bits

Field

Type

Description

Note

32:25

VIKT7:0>

DCU Mirtual Address Data Watchpoint Mask. The Virtual Address Data
Watchpoint Register contains the virtual address of a 64-bit word to be
watched. This 8-bit mask controls which byte(s) within the 64-bit word
should be watched. If al eight bits are cleared, then the virtual
watchpoint is disabled. If watchpoint is enabled and a data reference
overlaps any of the watched bytes in the watchpoint mask, then a virtual
watchpoint trap is generated.

VA/PA data watchpoint byte mask examples are shown below.

. Least Significant 3 Bits of
Watchpoint Mask Address of Bytes Watched
(PMand VM 7654 3210

00,6 Watchpoint disabled
01,6 0000 0001
326 0011 0010
FFis 1111 1111

4

24, 23

PR, PW

DCU Physical Address Data Watchpoint Enable. If PR (PW is one, then
adata read (write) that matches the range of addresses in the Physical
Watchpoint Register causes a watchpoint trap. If both PR and PWare set,
a watchpoint trap will occur on either a read or write access.

22,21

VR VW

DCU Virtual Address Data Watchpoint Enable. If VR (VW is one, then a
data read (write) that matches the range of addresses in the Virtual
Watchpoint Register causes a watchpoint trap. If both VR and VWare set,
a watchpoint trap will occur on either a read or write access.

1. The CP and CV bits of DCUCR must be changed with care. It isrecommended that a MEMBAR #SyNC be executed before and after
CP or CV is changed. Also, software must manage cache states to be consistent before and after CP or CV is changed.
2. Prefetch is enabled in the UltraSPARC I1i processor. Both hardware prefetch and software prefetch for data to the P-cache are valid only
for floating-point load instructions and are not valid for integer load instructions.
3. Both Hardware prefetch and second load unit may not be enabled at the same time. Enabling both may cause incorrect program behavior.
4. Watchpoint exceptions on Partial Store instruction occur conservatively. The DCUCR. VMmasks are only checked for nonzero vaue
(watchpoint disabled). The byte store mask (r[rs2]) in the Partial Storeinstruction isignored, and a watchpoint exception can occur even if
the mask is zero (that is, no store will take place).

Chapter 6

Registers

131

6.10.2

132

Data Watchpoint Registers

The UltraSPARC I11i processor implements “break before” watchpoint traps. When the
address of a data access matches a preset physical or virtual watchpoint address, instruction
execution is stopped immediately before the watched memory location is accessed.

TABLE 6-27 lists ASIs that are affected by the two watchpoint traps.

TABLE 6-27 ASIs Affected by Watchpoint Traps

Data Watchpoint If Watchpoint If

ASI Type ASI Range MMU Matching VA Matching PA
Translating ASls 04161146, 18161916, 24156— | On Y Y

2Cg, Off N Y

7016=7116, 7816=7916, 8016~

FFi6
Bypa$ ASls 1416_1516‘ 1016 _lD16 — N
NOn-tranSlaIing ASIs 3016_6':16' 7216_7716’ 7A16_ — N

TF1g

For 128-bit (quad) atomic load and 64-byte block load and store instructions, a watchpoint
trap is generated only if the watchpoint overlaps the lowest-address eight bytes of the access.

To avoid trapping infinitely, software should emulate the instruction that caused the trap and
return from the trap by using a DONE instruction or turn off the watchpoint before returning
from a watchpoint trap handler.

Two 64-bit data watchpoint registers provide the means to monitor data accesses during
program execution. When Virtual/Physical Data Watchpoint is enabled, the virtual/physical
addresses of all data references are compared against the content of the corresponding
watchpoint register. If a match occurs, a VA_watchpoint or PA_watchpoint trap is signalled
before the data reference instruction is completed. The virtual address watchpoint trap has
higher priority than the physical address watchpoint trap.

Separate 8-bit byte masks allow watchpoints to be set for a range of addresses. Each zero bit
in the byte mask causes the comparison to ignore the corresponding byte in the address.
These watchpoint byte masks and the watchpoint enable bits reside in the DCUCR.

Virtual Address Data Watchpoint Register
ASI 58167 VA = 3816
Name: VA Data Watchpoint Register

FIGURE 6-32 illustrates the Virtual Address Watchpoint Register. DB_VA is the most
significant 61 bits of the 64-bit virtual data watchpoint address.

UltraSPARC llli Processor User's Manual * June 2003

DB_VA ‘ — |
63 32 0

FIGURE 6-32 VA Data Watchpoint Register Format

Physical Address Data Watchpoint Register
ASI 5816’ VA:4016
Name: PA Data Watchpoint Register

FIGURE 6-33 illustrates the PA Data Watchpoint Register. DB_PA is the most significant 61
bits of the physical data watchpoint address. The width of an UltraSPARC IIli processor
physical address is 43 bits.

DB_PA ‘ — |
63 32 0

FIGURE 6-33 PA Data Watchpoint Register Format

Compatibility Note — The UltraSPARC I1li processor supports a 43-bit physical address
space. Software is responsible for writing a zero-extended 64-bit address into the PA Dat a
WAt chpoi nt register.

Data Watchpoint Reliability

The processor supports watchpoint comparison on the MS (memory) pipeline; any
second-issue (Ax pipeline) floating-point loads will not trigger a watchpoint. For reliable use
of the watchpoint mechanism, the second floating-point load feature must be disabled using
DCUCR SL.

Chapter 6 Registers 133

134 UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 7

Instruction Types

Instructions are accessed by the processor from memory and are executed, annulled, or

trapped. Instructions are discussed in seven general categories. The processor instructions are

described in the following sections:

Learning the Instructions
Section 7.1, “Introduction”
Section 7.2, “Memory Addressing for Load and Store Instructions”
Section 7.3, “Integer Execution Environment”
Section 7.4, “Floating-Point Execution Environment”
Section 7.5, “VIS Execution Environment”
Section 7.6, “Data Coherency Instructions”
Section 7.7, “Register Window Management Instructions”
Section 7.8, “Program Control Transfer Instructions”

Section 7.9, “Prefetch Instructions”

Reference Sections

Section 7.10, “Instruction Summary Table by Category”

Section 7.10.5, “Integer Execution Environment Instructions”
Section 7.10.6, “Floating-Point Execution Environment Instructions”
Section 7.10.7, “VIS Execution Environment Instructions”

Section 7.10.8, “Data Coherency Instructions”

Section 7.10.9, “Register-window Management Instructions”
Section 7.10.10, “Program Control Transfer Instructions”

Section 7.10.11, “Data Prefetch Instructions”

135

Section 7.11, “Instruction Formats and Fields”
Section 7.12, “Reserved Opcodes and Instruction Fields”

Section 7.13, “Big/Little-Endian Addressing”

7.1

Introduction

The processor’s RISC architecture is defined primarily by the SPARC-V9 architecture. The
UltraSPARC II processors were the first to extend the SPARC-V9 architecture with new
instructions and additional logic units. The UltraSPARC IIli processor further extends this
instruction execution environment.

The UltraSPARC I11i processor provides backward compatibility for SPARC application
programs. Upgraded system software is required. Noteworthy enhancements to the processor
include greater capability in the execution units to improve instruction scheduling, new VIS
instructions to reduce the length of code sequences, and data prefetch instructions to provide
the compiler with ways to improve cache hit rates.

Our compiler and other software development tools take advantage of the new instruction
features to increase parallel execution, reduce code size, and achieve shorter instruction
execution latencies.

7.2

136

Memory Addressing for Load and Store
Instructions

SPARC-V09 uses big-endian byte order by default; the address of a quadword, doubleword,
word, or halfword is the address of its most significant byte. Increasing the address means
decreasing the significance of the unit being accessed. All instruction accesses are performed
using big-endian byte order. SPARC-V9 also can support little-endian byte order for data
accesses only; the address of a quadword, doubleword, word, or halfword is the address of its
least significant byte. Increasing the address means increasing the significance of the unit
being accessed.

UltraSPARC llli Processor User's Manual * June 2003

7.2.1

7.2.2

7.2.3

Integer Unit Memory Alignment Requirements

Halfword accesses are aligned on 2-byte boundaries; word accesses (which include
instruction fetches) are aligned on 4-byte boundaries; extended-word and doubleword
accesses are aligned on 8-byte boundaries. An improperly aligned address in a load, store, or
load-store instruction causes a trap to occur, with possible exceptions.

Programming Note — By settingi =1 and r s1 =0, you can access any location in the
lowest or highest 4 KB of an address space without using a register to hold part of the
address.

FP/VIS Memory Alignment Requirements

Extended word and doubleword (64-bit) accesses must be aligned on 8-byte boundaries,
quadword accesses must be aligned on 16-byte boundaries, and block load (BLD) and block
store (BST) accesses must be aligned on 64-byte boundaries.

All references are 32, 64, or 128 bits. They must be naturally aligned to their data width in
memory except for double-precision floating-point (FP) values, which may be aligned on
word boundaries. However, if so aligned, doubleword loads/stores may not be used to access
them, resulting in less efficient and nonatomic accesses.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, with the following exceptions:

An LDDF or LDDFA instruction accessing an address that is word aligned but not
doubleword aligned causes an LDDF_mem_address_not_aligned exception.

An STDF or STDFA instruction accessing an address that is word aligned but not
doubleword aligned causes an STDF_mem_address_not_aligned exception.

Byte Order Addressing Conventions (Endianess)

The processor uses big-endian byte order for all instruction accesses and, by default, for data
accesses. It is possible to access data in little-endian format by using load and store alternate
instructions that support little-endian data structures. It is also possible to change the default
byte order for implicit data accesses.

See Section 7.13, “Big/Little-Endian Addressing” for details.

Chapter 7 Instruction Types 137

7.2.4 Address Space Identifiers (ASIs)

Versions of load/store instructions, the load and store alternate instructions, can specify an
8-bit address space identifier (ASI) to go along with the load/store data instruction.

The load and store alternate instructions have the following three sources of ASIs:
Explicit immediate of instruction
ASI Register reference
Hardcode to the instruction
Supervisor software (privileged mode) uses ASIs to access special, protected registers, such

as MMU, cache control, and processor state registers, and other processor- or system-
dependent values.

ASIs are also used to modify the function of many instructions. This overloading of
load/store instructions provide partial store, block load/store, and atomic memory access
operations.

Implicit ASI Value

Load and store instructions provide an implicit ASI value of ASI _PRI MARY,

ASI _PRI MARY_LI TTLE, ASI _NUCLEUS, or ASI _NUCLEUS_LI TTLE. Load and store
alternate instructions provide an explicit ASI, specified by the i mm_asi instruction field
when i =0, or the contents of the ASI register when i = 1.

Privileged and Non-Privileged ASIs

ASIs 004 through 7F ¢ are restricted; only privileged software is allowed to access them. An
attempt to access a restricted ASI by non-privileged software results in a privileged_action
exception. ASIs 804 through FF 4 are unrestricted; software is allowed to access them
whether the processor is operating in privileged or non-privileged mode.

Compatibility Note — The SPARC-V9 architecture provides the basic framework and
defines the required ASIs for the processor. Other ASIs are defined (and sometimes re-
defined) for a specific processor or family of processors as allowed by the SPARC-V9
architecture.

Implementation Note — The processor decodes all eight bits of each ASI specifier. In
addition, the processors redefine certain ASIs as appropriate for a specific processor.

138 UltraSPARC llli Processor User's Manual * June 2003

7.2.5

Maintaining Data Coherency

The processor’s memory architecture requires some software intervention to provide data
coherency during program execution. These requirements are discussed in Chapter 8
“Memory Models” using the FLUSH and MEMBAR instructions described in Section 7.6,
“Data Coherency Instructions.”

The two types of data coherency instructions are needed to flush the cache for self-modifying
code and to write data buffers out to memory.

7.3

7.3.1

7.3.1.1

Integer Execution Environment

IU Data Access Instructions

Load, store, and atomic instructions are the only instructions that access memory. All the U
data access instructions, except the compare and store (CASx) use either two I registers or
SIMM13, a signed 13-bit immediate value, to calculate a 64-bit, byte-aligned memory
address. Compare and Swap uses a single r register to specify a 64-bit memory address.
Floating-point register load and store instructions are discussed in Section 7.4.2, “FPU/VIS
Data Access Instructions.”

The processor appends an ASI to the 64-bit address used with all the data access instructions.

Note — In addition to the large physical main memory, the processor has many memory
mapped control, status, and diagnostic registers that are accessed using load and store
instructions with an appropriate ASI value.

The destination field of the data access instruction specifies an r or f (single, double/
extended, or quadword) register that supplies the data for a store or that receives the data
from a load.

Load and Store Instructions

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and
doubleword (64-bit) accesses. Some versions of integer load instructions perform sign
extension on 8-, 16-, and 32-bit values as they are loaded into a 64-bit destination register.

Chapter 7 Instruction Types 139

7.3.1.2

7.3.1.3

140

Move Instruction

There is no explicit integer move instruction. A move instruction can be easily synthesized
by adding, subtracting or OR-ing a zero with a register and pointing the result to another
register. The zero can come as a register input (such as % O that has a value zero in
SPARC-V9) or as an immediate input to the instruction.

Conditional Move Instructions

Based on Integer (icc/xcc) and Floating-Point (fcc) Condition Codes

This subsection describes two instructions that copy the contents of one register to another
register within the same register file: one instruction for moving within the integer register
file and another for moving within the floating-point register file.

MOVcc Instruction

If a specified i cc/xcc or f cc condition is satisfied, then the MOVCC instruction copies the
contents of any integer to a destination integer register.

FMOVcc Instruction

If a specified i cc/xcc or f cc condition is satisfied, then the FMOVCC instruction copies the
contents of any floating-point register to a destination floating-point register.

(A similar set of conditional move instructions are based on an integer register value. These
conditional move instructions are described in Section 7.4, “Floating-Point Execution
Environment.”)

The condition code to test is specified in the instruction and may be any of the conditions
allowed in conditional delayed control transfer instructions. This condition is tested against
1 of the 6 sets of condition codes (i cc, xcc, fccO,fccl, fcc2,andf cc3), as specified
by the instruction.

For example:

frovdg % cc2, 9% 20, % 22

moves the contents of the double-precision floating-point register % 20 to register % 22 if
floating-point condition code number 2 (f cC2) indicates a greater-than relation

(FSR. f cc2 =2). If f cc2 does not indicate a greater-than relation (FSR. f cc2 # 2), then
the move is not performed.

The MOVcc and FMOVcC instructions can be used to eliminate some branches in programs.
In most situations, branches will take more clock cycles than the MOVcc or FMOVcc
instructions.

For example, the following C statement:

UltraSPARC llli Processor User's Manual * June 2003

if (A>B) X =1; else X = 0;
can be coded as

cnp %0, %2 ' (A >B)
or %90, 0, %3 I set X =0
novg %%cc, %90,1, %3 ! overwite Xwith 1if A>B

which eliminates the need for a branch.

Based on Integer Register Value

There are separate versions for the IU and floating-point unit (FPU) register files:

MOVr Instruction

If the contents of an integer register satisfy a specified condition, then the MOVr instruction
copies the contents of any integer register to a destination integer register.

FMOVr Instruction

If the contents of an integer register satisfy a specified condition, then the FMOVr instruction
copies the contents of any floating-point register to a destination floating-point register.

The conditions to test are enumerated in TABLE 7-1.

TABLE 7-1 MOVr and FMOVr Test Conditions

Condition Symbol Description

NZ z 0 Nonzero

V4 =0 Zero

LZ <0 Less than zero

LEZ <0 Less than or equal to zero
GZ >0 Greater than zero

GEZ >0 Greater than or equal to zero

Any of the integer registers may be tested for one of the conditions, and the result used to
control the move. For example,

nmovrnz %2, %4, %6

moves integer register 9% 4 to integer register % 6 if integer register % 2 contains a nonzero
value.

MOVr and FMOVr can be used to eliminate some branches in programs or to emulate
multiple unsigned condition codes by using an integer register to hold the result of a
comparison.

Chapter 7 Instruction Types 141

7.3.1.4

142

Atomic Instructions

CASA/CASXA, SWAP, and LDSTUB are special atomic memory access instructions that
concurrent processes use for synchronization and memory updates.

The SWAP and LDSTUB instructions can optionally access alternate space. (The CASA
instruction always accesses alternate memory spaces.) If the ASI specified for any alternate
form of these instructions is a privileged ASI (value 80), then the processor must be in
privileged mode to access it.

Atomic Quad Load Instruction (LDDA with ASI xx)

The atomic quad load instruction supplies an indivisible quadword (16-byte) load that is
important in system software programs.

Compare and Swap Atomic Instruction (CASA)

Anr register specifies the value that is compared with the value in memory at the computed
address. CASA accesses words, and CASXA accesses doublewords.

If the values are equal (memory location and r register), then the destination field specifies
the r register that is to be exchanged atomically with the addressed memory location.

If the values are unequal, then the destination field specifies the r register that was to receive
the value at the addressed memory location; in this case, the addressed memory location
remains unchanged.

Swap Atomic Instruction (S WAPP)

The destination register identifies the r register to be exchanged atomically with the
calculated memory location. SWAP accesses words.

Load-Store Unsigned Byte (LDSTUB)

The LDSTUB instruction reads a byte from memory and writes ones to the location read.
LDSTUB accesses bytes.

UltraSPARC llli Processor User's Manual * June 2003

7.3.2

7.3.2.1

7.3.2.2

IU Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that
compute a result of a function of two source operands. They either write the result into the
destination register r [r d] or discard it. One of the source operands is always r [r s1] . The
other source operand depends on the i bit in the instruction. If i = 0, then the operand is
r{rs2].1Ifi =1, then the operand is the immediate constant Si mml0, si mmlL1, or

si ml3 sign-extended to 64 bits.

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and
shift operations. One exception is the SETHI instruction that can be used in combination with
another arithmetic or logical instruction to create a 32-bit constant in an r register.

Condition Codes

Most integer arithmetic instructions have two versions: one sets the integer condition codes
(i cc and Xcc) as a side-effect; the other does not affect the condition codes.

Integer Add and Subtract Instructions

Sixty-four bit arithmetic is performed on two r registers to generate a 64-bit result. The i cc
and Xcc condition codes can be optionally set.

Tagged Integer Add and Subtract Instructions

The tagged arithmetic instructions assume that the least-significant two bits of each operand
are a data-type tag. These instructions set the integer condition code (i cc) and extended
integer condition code (xcc) overflow bits on 32-bit (i cC) or 64-bit (xcC) arithmetic
overflow.

The tagged instructions are described in Appendix A “Instruction Definitions.”

If either of the two operands has a nonzero tag or if 32-bit arithmetic overflow occurs, tag
overflow is detected. If tag overflow occurs, then TADDcc and TSUBcc set the CCR. i cc. V
bit; if 64-bit arithmetic overflow occurs, then they set the CCR. xcc. V bit.

The xcc overflow bit is not affected by the tag bits.

The trapping versions (TADDcc TV, TSUBccTV) are deprecated. See Section A.70.16,
“Tagged Add and Trap on Overflow” and Section A.70.17, “Tagged Subtract and Trap on
Overflow” for details.

Chapter 7 Instruction Types 143

7.3.2.3

7.3.2.4

7.3.2.5

7.3.3

7.33.1

7.3.4

144

Integer Multiply and Divide Instructions

The integer multiply instruction performs a 64 x 64 — 64-bit operation; the integer divide
instructions perform 64 + 64 — 64-bit operations. For compatibility with SPARC-VS,

32 x 32 - 64-bit multiply instructions, 64 + 32 — 32-bit divide instructions, and the
multiply step instruction are provided. Division by zero causes a division_by_zero exception.

Some versions of the 32-bit multiply and divide instructions set the condition codes.

Set High 22 Bits of Low Word

The “set high 22 bits of low word of an r register” instruction (SETHI) writes a 22-bit
constant from the instruction into bits 31 through 10 of the destination register. It clears the
low-order 10 bits and high-order 32 bits, and it does not affect the condition codes. It is
primarily used to construct constants in registers.

Integer Shift Instructions

Shift logical instructions (SLL, SRL) shift an r register left or right by an immediate
constant in the instruction or by the amount pre-loaded in an r register.

IU Logic Instructions

ADD, ANDN, OR, ORN, XOR, XNOR Instructions

These are standard logic operations that work on all 64 bits of the register. The instructions
can optionally set the integer condition codes (i cc/ xcc).

IU Compare Instructions

A special comparison instruction for integer values is not needed since it is easily
synthesized with the “subtract and set condition codes” (SUBcC) instruction.

UltraSPARC llli Processor User's Manual * June 2003

7.3.5

7.3.5.1

7.3.5.2

7.3.5.3

7.3.5.4

7.3.5.5

IU Miscellaneous Instructions

Interval Arithmetic Mode Instruction (SI AM) (VIS II)

The Set Interval Arithmetic Mode (SI AM) instruction sets the interval arithmetic mode fields
in the graphics status register (GSR).

Align Address Instruction

The ALI GNADDR instruction takes two r registers and adds them together. The three least
significant bits are forced to zero.

The ALI GNADDRL instruction supports little-endian data structures by taking the two
I registers, adding them together, and placing the two’s-complement of the three least
significant bits of the result and storing them in the 3-bit GSR. ALI GN field.

Population of Ones Count

A population opcode is defined but not implemented in hardware; instead, a trap is generated.

Privileged Register Access Instructions

The privileged register access instructions read and write another group of state and status
registers called privileged registers. These registers are visible only to privileged software.
The read privileged register instruction moves the privileged register contents into an

I register. The write privileged register instruction moves the contents of an r register into
the selected privileged register.

State Register Access Instructions

The state register instructions access program-visible state and status registers. The read state
register instruction moves the state register contents into an r register. The write state
register instruction moves the contents of an r register into the selected state register.

Some state registers can only be accessed in privileged mode, others in either privileged or
non-privileged mode. Some registers have access bits to restrict their availability as desired
by the privileged software.

Chapter 7 Instruction Types 145

7.4

7.4.1

146

Floating-Point Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for floating-
point and fixed-point data formats and the execution pipelines for floating-point and VIS
instructions.

This execution unit is a single unit that may be referred to any one of the following,
depending on the textual context:

Floating-point Unit (FPU)

Floating-point and Graphics Unit (FGU)

VIS Execution Unit (VIS)

FPU/VIS

Note — The instructions associated with the FPU/VIS execution unit are divided between
floating-point and VIS execution environments, but otherwise use the same hardware
pipelines.

Floating-Point Operate Instructions

Floating-point operate (FPop) instructions perform all floating-point calculations; they are
register-to-register instructions that operate on the floating-point registers. Like arithmetic,
logical, and shift instructions, FPops compute a result that is a function of one or two source
operands. Specific floating-point operations are selected by a subfield of the FPop1/FPop2
instruction formats.

FPops are generally triadic-register-address instructions. They compute a result that is a
function of one or two source operands and place the result in one or more destination
f registers, with two exceptions:

Floating-point convert operations, which use one source and one destination operand
Floating-point compare operations, which do not write to an f register but update one of
the f ccn fields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes and
does not include branches based on the floating-point condition codes (FBf ccPand
FBPf cc) or the load/store floating-point instructions.

If PSTATE. PEF = 0 or FPRS. FEF = 0, then any instruction, including an FPop instruction,
that attempts to access a FPU register generates a fp_disabled exception.

UltraSPARC llli Processor User's Manual * June 2003

7.4.2

7.4.2.1

7.4.2.2

All FPop instructions clear the f t t field and set the cexc field unless they generate an
exception. Floating-point compare instructions also write one of the f ccn fields. All FPop
instructions that can generate IEEE exceptions set the cexc and aexc fields unless they
generate an exception. FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr (s,d,q), and
FNEG(s,d,q) cannot generate IEEE exceptions; therefore, they clear cexc and leave aexc
unchanged.

Note — The processor may indicate that a floating-point instruction did not produce a
correct IEEE Standard 754-1985 result by generating a fp_exception_other exception with
FSR. f tt = unfinished_FPop or unimplemented FPop. In this case, privileged software must
emulate any functionality not present in the hardware.

The processor does not implement quad-precision floating-point operations in hardware.
Instead, these operations cause a fp_exception_other trap with
FSR. ftt =unimplemented_FPop, and the system software emulates quad operations.

FPU/VIS Data Access Instructions

Floating-point load and store instructions support word, doubleword, and quadword memory
accesses.

There are no move instructions to move data directly between the integer and floating-point
register files.

Load Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to
alternate address spaces. Data loaded into a register that is not 64 bits is filled with zeroes in
the high-order bits.

Store Instructions

Byte, halfword, word, and double/extended word data widths are supported with access to
alternate address spaces.

Chapter 7 Instruction Types 147

7.4.2.3

7.4.2.4

7.4.3

7.4.3.1

7.43.2

7.4.3.3

7.4.3.4

148

Block Load and Store Instructions

Block load and store access eight consecutive doublewords. The LDDFA instruction is used
with the various ASIs to specify a type of block transaction. The LDDFA instruction is
specified with ASIs 70, 71, 78, 79, FO, F1, F8, F9, E0, and E1 to select between primary and
secondary D-MMU contexts, little- and big-endian, privileged and non-privileged, and a set
of block commit store ASIs.

Conditional Move Instructions

The FP/VIS conditional move instructions are described with the IU conditional move
instructions, Section 7.3.1.3.

Floating-Point Arithmetic Instructions

Single-precision and double-precision FP is executed in hardware. Quad precision (128-bit)
instructions are recognized by the processor and trapped so they can be emulated in software.

Absolute Value and Negate Instructions

These instructions modify the sign of the floating-point operand.

Add and Subtract Instructions

These instructions use standard IEEE operation.

Multiply Instructions

These instructions use standard IEEE operation with some exceptions.

Square Root and Divide Instructions
The square root and divide instructions begin their execution in the FGM pipeline and block

new instructions from entering until the result is nearly ready to leave the pipeline and be
written to the register file.

UltraSPARC llli Processor User's Manual * June 2003

7.4.4

7.44.1

7.4.4.2

7.4.4.3

7.4.5

7.4.6

7.4.6.1

7.4.6.2

Floating-Point Conversion Instructions

The following FP conversions are supported. Conversions do not generate f cc condition
codes.

Floating-Point to Integer

All floating-point precision to word and double/extended word integer conversions are
supported.

Integer to Floating-Point

Word and double/extended word integer to all floating-point precision number conversions
are supported.

Floating-Point to Floating-Point

All floating-point precision to all floating-point precision number conversions are supported.

Floating-Point Compare Instructions

The same precision operands are compared and the f cc condition codes are set.

Floating-Point Miscellaneous Instructions

Load and Store FSR Register

The FSR register is accessed by load and store instructions into and out of the floating-point
register file.

Data Alignment Instruction

The data alignment instruction FALI GNDATA concatenates two registers (16 bytes) and
stores a contiguous block of eight of these bytes starting at the offset stored in the
GSR. ALI GN field.

Chapter 7 Instruction Types 149

7.5

7.5.1

7.5.1.1

7.5.1.2

150

VIS Execution Environment

The floating-point and VIS execution unit includes the floating-point register file for floating-
point and fixed-point data formats and the execution pipelines for floating-point and VIS
instructions.

This execution unit is a single unit that may be referred to any one of the following,
depending on the textual context:

Floating-point Unit (FPU)

Floating-point and Graphics Unit (FGU)

VIS Execution Unit (VIS)

FPU/VIS

Note — The instructions associated with the FPU/VIS execution unit are divided between
floating-point and VIS execution environments, but otherwise use the same hardware
pipelines.

VIS Pixel Data Instructions

Array Instruction

These instructions convert three-dimensional (3D) fixed-point addresses to a blocked-byte
address.

Byte Mask and Shuffle Instructions

Byte Mask instruction adds two integer registers and stores the result in the integer register.
The least significant 32 bits of the result are stored in a special field.

Byte Shuffle concatenates the two 64-bit floating-point registers to form a 16-byte value.
Bytes in the concatenated value are numbered from most significant to least significant, with
the most significant byte being byte 0.

UltraSPARC llli Processor User's Manual * June 2003

7.5.1.3

7.5.1.4

7.5.1.5

7.5.1.6

7.5.2

7.5.2.1

Edge Handling Instructions

These instructions handle the boundary conditions for parallel pixel scan line loops, where
the address of the next pixel to render and the address of the last pixel in the scan line are
provided.

Pixel Packing Instructions

These instructions convert multiple values in a source register to a lower-precision fixed or
pixel format and store the resulting values in the destination register. Input values are clipped
to the dynamic range of the output format. Packing applies a scale factor to allow flexible
positioning of the binary point.

Expand and Merge Instructions

Expand takes four 8-bit unsigned integers, converts each integer to a 16-bit fixed-point value,
and stores the four resulting 16-bit values in a 64-bit floating-point register.

Merge interleaves four corresponding 8-bit unsigned values to produce a 64-bit value in the
64-bit floating-point destination register. This instruction converts from packed to planar
representation when it is applied twice in succession.

Pixel Distance Instruction

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers. The
corresponding 8-bit values in the source registers are subtracted. The sum of the absolute
value of each difference is added to the integer in the 64-bit floating-point destination
register. The result is stored in the destination register. Typically, this instruction is used for
motion estimation in video compression algorithms.

VIS Fixed-Point 16-bit and 32-bit Data Instructions

Partitioned Add and Subtract Instructions

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds
or subtracts between the corresponding fixed-point values contained in the source operands.

The single-precision versions of these instructions perform two 16-bit or one 32-bit
partitioned add(s) or subtract(s); only the low 32 bits of the destination register are affected.

Chapter 7 Instruction Types 151

7.5.2.2

7.52.3

7.5.3

7.53.1

7.53.2

7.5.3.3

Partitioned Multiply Instructions

These instructions multiply signed and unsigned registers of different sizes and place the
results in different types of destination registers.

Pixel Compare Instruction

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers
are compared. The 4-bit or 2-bit results are stored in the least significant bits in the integer
destination register. Signed comparisons are used.

VIS Logic Instructions

Fill with Ones and Zeroes Instruction

These instructions perform a zero fill or a one fill.

Source Copy

These instructions perform a source copy.

AND, OR, NAND, NOR, and XNOR Instructions

These instructions perform the logical operations.

7.6

152

Data Coherency Instructions

The processor implements a Total Store Ordering (TSO) that provides the majority of data
coherency support in hardware. Two instructions are used with this model to synchronize the
data for memory operations to insure the latest data is accessed for load instructions and
DMA activity.

Chapter 8 “Memory Models” discusses TSO in detail.

UltraSPARC llli Processor User's Manual * June 2003

7.6.1

7.6.2

7.6.3

FLUSH Instruction Cache Instruction

The FLUSH instruction is used to flush the caches out to main memory. The MEVMBAR
instruction is used to flush the various data buffers in the processor out to data coherent
domain.

Self-modifying code (storable in the unified L2-cache) requires the use of the FLUSH
instruction.

Note — The FLUSHWinstruction flushes the Window-registers and is not related to the
FLUSH command for the I-cache.

MEMBAR (Memory Synchronization) Instruction

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order
and completion of memory references. Ordering MEMBAR instructions induce a partial
ordering between sets of loads and stores and future loads and stores. Sequencing NEMBAR
instructions exert explicit control over completion of loads and stores (or other instructions).
Both barrier forms are encoded in a single instruction, with subfunctions bit-encoded in an
immediate field.

Store Barrier Instruction

Note — STBAR" is also supported, but this instruction is deprecated and should not be used
in newly developed software.

7.7

Register Window Management Instructions

Register window instructions manage the register windows. SAVE and RESTORE are non-
privileged and cause a register window to be pushed or popped. FLUSHWis non-privileged
and causes all of the windows except the current one to be flushed to memory. SAVED and
RESTORED are used by privileged software to end a window spill or fill trap handler.

The instructions that manage register windows include SAVE, RESTORE, SAVEDP,
RESTORE®, and FLUSHW

Chapter 7 Instruction Types 153

SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window
by incrementing the CWP register.

RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP
register.

SAVEDY Instruction

The SAVED instruction is used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE.

RESTOREDY Instruction

The RESTORED instruction is used by a fill trap handler to indicate that a window has been
filled successfully. It increments CANRESTORE.

Flush Register Windows Instruction

The FLUSHWinstruction cleans register windows of the data from other processes to insure a
secure execution environment.

7.8

154

Program Control Transfer Instructions

Control transfer instructions (CTIs) include PC-relative branches and calls, register-indirect
jumps, and conditional traps. Most of the CTIs are delayed; that is, the instruction
immediately following a CTI in logical sequence is dispatched before the control transfer to
the target address is completed. Note that the next instruction in logical sequence may not be
the instruction following the CTI in memory.

The instruction following a delayed CTI is called a delay instruction. A bit in a delayed CTI
(the annul bif) can cause the delay instruction to be annulled (that is, to have no effect) if the
branch is not taken (or in the “branch always” case if the branch is taken).

UltraSPARC llli Processor User's Manual * June 2003

7.8.1

Compatibility Note — SPARC V8 specified that the delay instruction was always fetched,
even if annulled, and an annulled instruction could not cause any traps. SPARC-V9 does not
require the delay instruction to be fetched if it is annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and
return (RETURN) instructions use a register-indirect target address. They compute their target
addresses either as the sum of two r registers or as the sum of an r register and a 13-bit
signed immediate value. The “branch on condition codes without prediction” instruction
provides a displacement of +8 MB; the “branch on condition codes with prediction”
instruction provides a displacement of £1 MB; the “branch on register contents” instruction
provides a displacement of +128 KB; and the CALL instruction’s 30-bit word displacement
allows a control transfer to any address within +2 GB (£231 bytes).

Note — The return from privileged trap instructions (DONE and RETRY) get their target
address from the appropriate TPC or TNPC register.

Control Transfer Instructions (CTIs)

The following are the basic CTI types:
Conditional branch (Bi ccP, BPcc, BPr, FBf ccP, FBPf cc)
Unconditional branch
Call and link (CALL)
Jump and link (JMPL, RETURN)
Return from trap (DO\IEP, RETRYP)
Trap (Tcc, | LLTRAP)
No Operation (NOP, SI R when in non-privileged mode)

A CTI functions by changing the value of the next program counter (NPC) or by changing
the value of both the program counter (PC) and the nPC. When only the next program
counter, NPC, is changed, the effect of the transfer of control is delayed by one instruction.
Most control transfers are of the delayed variety. The instruction following a delayed CTI is
said to be in the delay slot of the CTI. Some CTI (branches) can be optionally annul, that is,
not execute, the instruction in the delay slot, depending upon whether the transfer is taken or
not taken. Annulled instructions have no effect upon the program-visible state, nor can they
cause a trap.

Chapter 7 Instruction Types 155

156

Programming Note — The annul bit increases the likelihood that a compiler can find a
useful instruction to fill the delay slot after a branch, thereby reducing the number of
instructions executed by a program. For example, the annul bit can be used to move an
instruction from within a loop to fill the delay slot of the branch that closes the loop.

Likewise, the annul bit can be used to move an instruction from either the “else” or “then”
branch of an “if-then-else” program block to the delay slot of the branch that selects between
them. Since a full set of conditions is provided, a compiler can arrange the code (possibly
reversing the sense of the condition) so that an instruction from either the “else” branch or
the “then” branch can be moved to the delay slot.

Use of annulled branches provided some benefit in older, single-issue SPARC
implementations. The UltraSPARC IIIi processor is a superscalar SPARC implementation in
which the only benefit of annulled branches might be a slight reduction in code size.
Therefore, the use of annulled branch instructions is no longer encouraged.

TABLE 7-2 defines the value of the PC and the value of the nPC after execution of each
instruction. Conditional branches have two forms: branches that test a condition (including
branch-on-register), represented in the table by Bcc (same as Bi cc), and branches that are
unconditional, that is, always or never taken, represented in the table by B. The effect of an
annulled branch is shown in the table through explicit transfers of control, rather than
fetching and annulling the instruction.

UltraSPARC llli Processor User's Manual * June 2003

TABLE 7-2 Control Transfer Characteristics

Instruction Group Address Form Delayed | Taken Annul Bit | New PC New nPC
Non-CTIs — — — — nPC nPC+4
Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC+4
Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC+ 4 nPC+ 38

B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC+4

B PC-relative Yes Yes 1 EA EA+4

B PC-relative Yes No 1 nPC+ 4 nPC+ 8
CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-indirect Yes — — nPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] +4
RETRY Trap state No — — TPC[TL] TNPC[TL]
Tcc Trap vector No Yes — EA EA+4
Tcc Trap vector No No — nPC nPC+ 4

Chapter 7

The effective address (EA) in TABLE 7-2 specifies the target of the control transfer instruction.
The EA is computed in different ways, depending on the particular instruction:

PC-relative effective address — A PC-relative EA is computed by sign extending the
instruction’s immediate field to 64 bits, left-shifting the word displacement by two bits to
create a byte displacement, and adding the result to the contents of the PC.

Register-indirect effective address — A register-indirect EA computes its target address
as either r[rs1] +r[rs2] ifi =0, orr[rsl] +sign_ext(simil3) ifi =1.

Trap vector effective address — A trap vector EA first computes the software trap
number as the least significant 7 bits of r [rs1] +r[rs2] if

i =0, or as the least significant 7 bits of r [r S1] + sw_trap# ifi = 1. The trap level,
TL, is incremented. The hardware trap type is computed as 256 + sw_trap# and stored in
TT[TL] . The EA is generated by concatenation of the contents of the TBA register, the
“TL > 0” bit, and the contents of TT[TL] .

Trap state effective address — A trap state EA is not computed but is taken directly from
either TPC[TL] or TNPC[TL] .

Instruction Types 157

7.8.1.1

7.8.1.2

7.8.1.3

158

Compatibility Note — SPARC-V8 specified that the delay instruction was always fetched,
even if annulled, and that an annulled instruction could not cause any traps. SPARC-V9 does
not require the delay instruction to be fetched if it is annulled.

SPARC V8 left undefined the result of executing a delayed conditional branch that had a
delayed control transfer in its delay slot. For this reason, programmers should avoid such
constructs when backward compatibility is an issue.

Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is
zero, the instruction in the delay slot is always executed. If the annul bit is one, the
instruction in the delay slot is not executed unless the conditional branch is taken.

Note — The annul behavior of a taken conditional branch is different from that of an
unconditional branch.

Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is
“always”; it never transfers control if its specified condition is “never.” If the annul bit is
zero, then the instruction in the delay slot is always executed. If the annul bit is one, then the
instruction in the delay slot is never executed.

Note — The annul behavior of an unconditional branch is different from that of a taken
conditional branch.

CALL/JMPL and RETURN Instructions

CALL

The CALL instruction writes the contents of the PC, which points to the CALL instruction
itself, into r [15] (out register 7) and then causes a delayed transfer of control to a PC-
relative effective address. The value written into r [15] is visible to the instruction in the
delay slot.

UltraSPARC llli Processor User's Manual * June 2003

7.8.1.4

7.8.1.5

When PSTATE. AM= 1, the value of the high-order 32 bits is transmitted to r [15] by the
CALL instruction.

Jump and Link

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction
itself, into r [r d] and then causes a register-indirect delayed transfer of control to the
address given by “r[rsl] + r[rs2]”or “r[rsl] + asigned immediate value.” The
value written into r [r d] is visible to the instruction in the delay slot.

When PSTATE. AM= 1, the value of the high-order 32 bits transmitted to r [r d] by the
JMPL instruction is zero.

RETURN

The RETURN instruction is used to return from a trap handler executing in non-privileged
mode. RETURN combines the control-transfer characteristics of a JMPL instruction with r [0]
specified as the destination register and the register-window semantics of a RESTORE
instruction.

DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap.
These instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to re-execute it. DONE returns
to the instruction pointed to by the value of NPC associated with the instruction that caused
the trap, that is, the next logical instruction in the program. DONE presumes that the trap
handler did whatever was requested by the program and that execution should continue.

Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by its cond field matches the
current state of the condition code register specified by its cc field; otherwise, it executes as
a NOP. If the trap is taken, it increments the TL register, computes a trap type that is stored
in TT[TL], and transfers to a computed address in the trap table pointed to by TBA.

A Tcc instruction can specify 1 of 128 software trap types. When a Tcc is taken, 256 plus
the seven least significant bits of the sum of the Tcc’s source operands is written to TT[TL].
The only visible difference between a software trap generated by a TccC instruction and a
hardware trap is the trap number in the TT register.

Chapter 7 Instruction Types 159

7.8.1.6

7.8.1.7

Programming Note — Tcc can be used to implement breakpointing, tracing, and calls to
supervisor software. TCC can also be used for runtime checks, such as out-of-range array
index checks or integer overflow checks.

ILLTRAP

The | LLTRAP instruction causes an illegal_instruction exception.

NOP

A NOR instruction occupies the entire (single) instruction group and performs no visible
work.
There are other instructions that also result in an operation that has no visible effect:

SI R instruction executed in non-privileged mode

SHUTDOWN instruction executed in privileged mode

There are other instructions that appear to be a NOP as long as they do not affect the
condition codes.

7.9

Prefetch Instructions

The prefetch instruction is used to request that data be fetched from memory and put into the
cache(s) if not already there for use in the floating-point and VIS execution environment. A
subsequent load, if properly scheduled, can expect the data to more likely be in the cache,
reducing the number of times the pipeline must recycle and thus improving performance.

The destination field of a PREFETCH instruction (f cn) is used to encode the prefetch type.
The PREFETCHA instruction supports accesses to alternate space.

PREFETCH accesses at least 64 bytes.

7.10

160

Instruction Summary Table by Category

A summary of instructions are categorized in TABLE 7-3.

UltraSPARC llli Processor User's Manual * June 2003

7.10.1

7.10.2

7.10.3

7.10.4

Instruction Superscripts

| NSTRUCTI ONP - Instruction must execute in privileged mode.

I NSTRUCTI ON - Instruction can execute in privileged or non-privileged mode.

Instruction Mnemonics Expansion

I NSTRUCT!I ON{_A} - means INSTRUCTION, INSTRUCTION_A

I NSTRUCTI ON_(A,B,C) - means INSTRUCTION_A, INSTRUCTION_B, and
I NSTRUCTI ON_C

Instruction Grouping Rules

il

Instruction grouping rules are explained in detail in Chapter 4 “Instruction Execution.’

Execution Latency

All instructions execute within the pipeline except the following:
FSQRT (floating-point square root)
FPDI Vx (floating-point divide)
The latency of these instructions depend on the precision of the floating-point values. Some

instructions execute early in the pipeline and have special bypass abilities. The details of the
execution latencies are explained in Chapter 4 “Instruction Execution.”

Table Organization

The Instruction Summary Table has the following main sections:

Integer Execution Environment (TABLE 7-3)
Data access, Arithmetic, Logic, Compare, Miscellaneous instructions

Floating-point Execution Environment (TABLE 7-4)
FP/VIS data access, FP arithmetic/logic/compare/miscellaneous

VIS Execution Environment (TABLE 7-5)
VIS pixel and fixed-point arithmetic/logic

Data Coherency Instructions (TABLE 7-6)

Register-window Management Instructions (TABLE 7-7)

Chapter 7 Instruction Types 161

Program Control Transfer Instructions (TABLE 7-8)
Prefetch Instructions (TABLE 7-9)

Shaded areas indicate instructions that are completely deprecated (entire row) or always
privileged (cell holding instruction name). Deprecated and privilege status is identified with
aPlor? superscript, respectively.

162 UltraSPARC llli Processor User's Manual * June 2003

7.10.5 Integer Execution Environment Instructions

TABLE 7-3 Instruction Summary for the Integer Execution Environment (1 of 3)

Instruction | Description ‘ Notes
Integer Execution Environment
IU Data Access Instructions ASI Load
B= byte; H= halfword; W=word; (hex)
LDDP Load integer double word No
LDDAD: PASI Load integer double word from alternate space
LDDAPASI Atomic quad load 24, 2C
LDS(B,H,W) Load signed extended byte, halfword, or word: |No
Memory — IU register
LDX Load extended (double) word No
LDXAPASI Load extended (double) word from alternate
space
LDS(B,H,W)APAS! Load signed extended byte, halfword, or word
from alternate space
LDSTUB Load-store (atomic) unsigned byte: No
Memory — IU register & Compare logic;
IU register — Memory (conditional)
LDSTUBAPASI Load-store (atomic) unsigned byte (see
LDSTUB) in alternate space
LDU(B,H,W) Load unsigned byte, halfword, word: Memory
— IU register
LDU®B,H,w)APASI Load unsigned byte, halfword, word from
alternate space
ST(B,H,W,DP,X) Store byte, halfword, word, double, or
extended word:
IU register - Memory
ST(B,H.W,DP X)APAS! Store byte, halfword, word, double, or
extended word in alternate space
MOVce Conditional move based on icc/fcc: 1
U register — IU register
MOVr Conditional move based on U register value: 2
IU register — IU register
CASAPAST cASXAPASI Atomic Compare and Swap word/double word 3,4,5
in alternate space:
Memory — Compare logic
Memory « (conditional) Working register
SWAPP{AP- PASI} Atomically swap optionally with alternate
space:
IU register - Memory
Chapter 7 Instruction Types 163

164

TABLE 7-3

Instruction Summary for the Integer Execution Environment (2 of 3)

Instruction

| Description

‘ Notes

IU Arithmetic Instructions

S= signed; U= unsigned; X= 64-bit (otherwise 32)

ADD({cc} Integer add

ADDC{cc} Integer add with carry

SUB({cc} Integer subtract, optionally setting i cc/xcc

SUBC{cc} Integer subtract with carry, optionally setting
icc/xce

MULX Signed or unsigned 64-bit multiply

(S.UMUL{cc}P Signed/unsigned integer multiply optionally
setting icc/xcc

UDIVX Unsigned 64-bit integer divide

SDIVX Signed 64-bit integer divide

(8.U)DIV{cc}P Signed/unsigned 32-bit integer divide,
optionally setting icc/xcc

SETHI Modify highest 22 bits of low word in IU
register:
Immediate — IU register (partial)

SLL{X} Shift left logical (32/64-bit)

SRL{X} Shift right logical (32/64-bit)

SRA{X} Shift right arithmetic (32/64-bit)

TADDcc{TVP} Tagged add and modify i cc, optionally trap
on overflow

TSUBcc{TVP} Tagged subtract and modify icc, optionally trap

on overflow

IU Logic Instructions

AND{cc} Logical AND, optionally setting i cc/xcc
ANDN({cc} Logical AND-not, optionally setting i cc/xcc
OR{cc} Logical OR, optionally setting i cc/xcc
ORN{cc} Logical OR-not, optionally setting i cc/xcc
XOR{cc} Logical XOR, optionally setting i cc/xcc
XNOR({cc} Logical XNOR, optionally setting i cc/xcc

IU Miscellaneous Instructions

SIAM

ALIGNADDRESS{_LITTLE}

Calculates aligned address

POPC

Defined to count the number of ones in
register, unimplemented (causes an illegal
instruction execution which traps to software
for emulation)

UltraSPARC llli Processor User's Manual * June 2003

TABLE 7-3 Instruction Summary for the Integer Execution Environment (3 of 3)
Instruction Description Notes
RDPR? Read privileged register
WRPRP Write privileged register
RDASRPASR Read ancillary state register (ASR) - see below.

Privileged mode required for privileged ASRs.

RDYP, RDCCR, RDASI, RDPC, RDFPRS,
RDPCRP, RDPICPPCRPRIV RpDCRP RDGSR,
RDSOFTINTF, RDTICKPNPT RDSTICKPNPT,
RDTICK_CMPRP RDSTICK_CMPR”

Read state and ancillary state registers:

- If PCR. PRI V field is one, then PIC register
access requires privileged mode.

- If {T1 CK|STI CK}.NPT field is zero, then
Tl CK/STI CK register reads require privileged
mode.

WRASRPASR

Write ancillary state register (ASR); Privileged
mode required for privileged ASRs.

WRYP, WRCCR, WRASI, WRFPRS, WRPCR?,
WRPICPPER-PRIV \wRDCRP, WRGSR,
WRSOFTINT?,

WRSOFTINT_CLR?, WRSOFTINT_SET",
WRSTICKPNPT WRTICK_CMPRP,
WRSTICK_CMPRP

Read state and ancillary state registers:

- If PCR. PRI V field is one, then Pl C register
access requires privileged mode.

- If STI CK. NPT field is zero, then STI CK
register writes require privileged mode.

N =

alternate space identifier (ASI).
3. The “r” refers to value in r registers.

4. The cc refers to settings of the integer condition codes.

. A simple register-to-register move is accomplished by using the OR instruction with r [0] .

. Load (LD) and store (ST) instructions are provided with many size formats (byte, word, double word, etc.) and most can be specified with an

5. The conditional move instructions (integer and floating-point) are influenced by the condition codes of either execution unit to facilitate moves
in one type of execution unit based on the condition codes of the other or of those within the execution unit.

Chapter 7

Instruction Types

165

7.10.6

166

Floating-Point Execution Environment Instructions

TABLE 7-4 Instruction Summary for the Floating-point Execution Environment
Reference
Instruction Description Pages Notes
FP/VIS Data Access Instruction ASI Load
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped) (hex)
LD{D}F Load word (or double word): No
Memory — FPU register
LD{D}FAPASI Load word (or double word) from
alternate space:
Memory — FPU register
LDDFA Block load 64 bytes:
Memory — FPU registers
LDDFA Load short:
Memory — FPU register
LDQF Load quadword: No
Memory — FPU register
LDQFAPASI Load quadword from alternate space: No
Memory — FPU register
ST(F,DE,QF) Store word, double, or quad word to No
memory:
FPU register — Memory
ST(F,DE,QF)APASI Store word, double, or quad word to
memory using alternate memory space.
STDFA Block store 64 bytes: uses ASIs 70, 71, 78, 79,
F0, F1, F8, F9,
EO0, El
STDFA Short FP store: uses ASIs D(0:3)¢,
D(8:B);5
STDFA Partial store FPU: uses ASIs C(0:5);,
C(8:D)j5
FMOV(s,d,q) FPU - FPU register No
FMOV(s,d,q)cc Conditional move, IU or FPU condition |No
codes:
FPU - FPU register
FMOV(s,d,q)r Conditional move, IU or FPU register No
value: FPU - FPU register
FP Arithmetic Instructions
s= 32-bit; d= 64-bit; q= 128-bit (q is trapped)
FABS(s,d,q) FP absolute value
FNEG(s,d,q) Change FP sign
FADD(s,d,q) FP add
FSUB(s,d,q) FP subtract
UltraSPARC llli Processor User’'s Manual « June 2003

TABLE 7-4 Instruction Summary for the Floating-point Execution Environment (Continued)

Reference
Instruction Description Pages Notes
FMUL(s,d,q) FP multiply
FdMULq FP multiple doubles to quadword
FsMULd FP multiple singles to doubleword
FDIV(s,d,q) FP division
FSQRT¢s,d,q) FP square root

FP Conversion Instructions

s= 32-bit; d= 64-bit; qg= 128-bit (q is trapped); i= integer word; x= double

(or extended) word

F(s,d,q)TOi Floating-point to integer word
F(s,d,q)TOx Floating-point to integer double word
F(s,d,q)TO(s,d,q) Floating-point to floating-point
FiTO(s,d,q) Integer word to floating-point
FxTO(s,d,q) Integer double (or extended) word to

floating-point

FP Compare Instructions

FCMP(s,d,q)

FP compare of like precision, sets fcc
condition codes

FCMPE(s,d,q)

Same as FCVP, but an exception is
generated if unordered

FP Miscellaneous Instructions

LDFSRP

Load FSR into FP reg file:
FSR — FPU register (lower 32-bit)

LDXFSR Load FSR into FP reg file:
FSR — FPU register (64-bit)
STFSRP Store FSR register:
FPU (lower 32-bit) — FSR register
STXFSR Store FSR register:
FPU - FSR register
FALIGNDATA Concatenates two 64-bit registers into one

based on GSR.ALI GN

Chapter 7

Instruction Types

167

7.10.7 VIS Execution Environment Instructions

TABLE 7-5 Instruction Summary for the VIS Execution Environment

168

Instruction

Description

Reference
Pages

Notes

VIS Data Access Instructions

Refer to Section 7.10.6, “Floating-Point Execution Environment Instructions” of the Instruction Summary Table.

VIS Pixel Data Instructions

L= little-endian; N= fcc not modified; S= 32-bit (otherwise 64-bit);

ARRAY (8,16,32)

3D-array addressing

BMASK

Writes the GSR. MASK field

BSHUFFLE

Permute bytes as specified by GSR. MASK
field.

EDGE(8,16,32)

Edge handling instructions

(L,N,LN)
FEXPAND Pixel data expansion
FPMERGE Pixel merge
FPACK(16,32,FIX) Pixel packing

PDIST Pixel component distance

VIS Fixed-point 16/32-bit Data Instructions

FPADD(16,32){S} Fixed-point add, 16- or 32-bit operands,
32/64-bit register

FPSUB(16,32){S} Fixed-point subtract, 16- or 32-bit
operands, 32/64-bit register

FMULS8x16 8x16 partitioned multiply

FMULS8x16(AU,AL) 8x16 Upper/Lower a partitioned multiply

FMULS(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FMULDS(SU,SL)x16 8x16 Upper/Lower partitioned multiply

FCMP(GT,LE,NE,EQ)(16,32)

Fixed-point compare (also known as
“pixel compare”)

VIS Logic Instructions
S= 32-bit (otherwise 64-bit)

FSRC(1,2){S}

Copy source

FONE{S} Fill with ones (32/64-bit)
FZERO{S} Fill with zeroes (32/64-bit)
FAND{S} Logical AND (32/64-bit)

FANDNOT(1,2){S}

Logical AND with a src inverted (32/64-
bit)

FOR{S} Logical OR (32/64-bit)
FNAND{S} Logical NAND (32/64-bit)
FNOR{S} Logical NOR (32/64-bit)

UltraSPARC llli Processor User's Manual * June 2003

TABLE 7-5

Instruction Summary for the VIS Execution Environment (Continued)

Instruction

Description

Reference
Pages

Notes

FORNOT(1,2){S}

Logical OR with a source inverted (32/

64-bit)

FNOT(1,2){S} Logical inversion of source bits (32/64-
bit)

FXNOR{S} Logical XNOR (32/64-bit)

FXOR{S} Logical XOR (32/64-bit)

Chapter 7

Instruction Types

169

7.10.8 Data Coherency Instructions

TABLE 7-6 Instruction Summary for Data Coherency

Reference
Instruction Description Pages Notes
Data Coherency Instructions
FLUSH Flush I-cache
MEMBAR Memory barrier
STBARP Store barrier
7.10.9 Register-window Management Instructions
TABLE 7-7 Instruction Summary for Register-window Management
Reference
Instruction Description Pages Notes
Register-Window Management Instructions
SAVE Save caller’s window
SAVEDP Window has been saved
RESTORE Restore caller’s window
RESTOREDFP Window has been restored
FLUSHW Flush register windows
7.10.10 Program Control Transfer Instructions
TABLE 7-8 Instruction Summary for Program Control Transfer
Reference
Instruction Description Pages Notes

Program Control Transfer Instructions
icc/xcc= integer condition codes (32/64-bit); fcc= FP condition codes

BiccP Conditional branch on icc/xcc

BPcc Conditional branch on icc/xcc with
branch prediction

BPr Conditional branch on IU reg value with
branch prediction

CALL Call and link

DONEP Return from Trap

170 UltraSPARC llli Processor User's Manual * June 2003

TABLE 7-8 Instruction Summary for Program Control Transfer (Continued)

Reference
Instruction Description Pages Notes
FBfecP? Conditional branch on fcc
FBPfcc Conditional branch on fcc with branch
prediction
ILLTRAP Causes illegal_instruction trap
JMPL Jump and link
NOP No operation
RETRY? Return from trap entry
RETURN Return (jump and link)
SHUTDOWN? Intended for Low Power, but is a NOP in
the processor
SIRPNOP Software initiated reset: a NOP when
executed in non-privileged mode
Tcc Trap on i cc/xcc
7.10.11 Data Prefetch Instructions
TABLE 7-9 Instruction Summary Table
Reference
Instruction Description Pages Notes

Prefetch Instructions

PREFETCH Instructs processor to fetch data

PREFETCHAPAS! Instructs processor to fetch data from
alternate memory space

7.11 Instruction Formats and Fields

Instructions are encoded in four major 32-bit formats and several minor formats, as shown in
FIGURE 7-1, FIGURE 7-2, and FIGURE 7-3.

Chapter 7 Instruction Types 171

Format 1 (op = 1): CALL

op disp30

31 30 29

Format 2 (op = 0): SETH| and Branches (Bi cc, BPcc, BPr, FBf cc, FBPf cc)

op rd op2 imm22

op |a cond op2 disp22

op |a cond op2 cclecO| p disp19

op [a]0]| rcond op2 d16hi| p rs1 d16lo
31 30 29 28 25 24 22 21 20 19 18 14 13

FIGURE 7-1 Summary of Instruction Formats: Formats 1 and 2

172 UltraSPARC llli Processor User's Manual * June 2003

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr , MEMBAR, Prefetch, Load, and Store

op rd op3 rs1 i=0| — rs2
op rd op3 rs1 i=1 simm13
op fen op3 rs1 i=0 — rs2
op fen op3 rs1 i=1 simm13
op — op3 rs1 i=0) — rs2
op — op3 rs1 i=1 simm13
op rd op3 rs1 i=0| rcond — rs2
op rd op3 rs1 i=1| rcond simm10
op rd op3 rs1 i=1 — rs2
op rd op3 rs1 i=1 — cmask mmask
op rd op3 rs1 i=0 imm_asi rs2
op impl-dep op3 impl-dep
op rd op3 rs1 i=0| x — rs2
op rd op3 rs1 i=1[x=0 — shent32
op rd op3 rs1 i=1|x=1 — shcnt6é4
op rd op3 — opf rs2
op 000 [cci|ceO op3 rs1 opf rs2
op rd op3 rs1 opf rs2
op rd op3 rs1 —
op fen op3 —
op fen op3 _
31 30 29 25 24 19 18 14 13 12 11 10 9 76 5 4 3 0

FIGURE 7-2 Summary of Instruction Formats: Format 3

Chapter 7 Instruction Types 173

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op rd op3 rs1 i=0[cc1[cco] — rs2

op rd op3 rs1 i=1|cc1|ccO| simm11

op rd op3 cc2) cond i=0[cc1|ccO| — rs2
op rd op3 cc2 cond i=1{cc1|ccO| simm11

op rd op3 rs1 i=1[ccfccO — ccOsw_trap#
op rd op3 rs1 0 rcond opf_low rs2

op rd op3 0 cond opf_cc opf_low rs2

31 30 29 25 24 19 18 17 14 13 12 11 10 9 7 6 5 4 0

FIGURE 7-3 Summary of Instruction Formats: Format 4

The instruction fields are interpreted as described in TABLE 7-10.

TABLE 7-10 Instruction Field Interpretation (7 of 3)

Field

Description

The a bit annuls the execution of the following instruction if the branch is conditional and not
taken, or if it is unconditional and taken.

cc2, ccl, ccO

cc2, ccl, and ccO specify the condition codes (i cc, xcc, fccO,fccl, fcc2, fce3)tobe
used in the following instructions:

» Branch on Floating-Point Condition Codes with Prediction Instructions (FBPf cc)

* Branch on Integer Condition Codes with Prediction (BPcc)

» Floating-Point Compare Instructions (FCMP and FCMPE)

* Move Integer Register If Condition Is Satisfied (MOVcc)

* Move Floating-Point Register If Condition Is Satisfied (FMOVcc)

* Trap on Integer Condition Codes (Tcc)

In instructions such as Tcc that do not contain the cc2 bit, the missing cC2 bit takes on a
default value.

cmask This 3-bit field specifies sequencing constraints on the order of memory references and the
processing of instructions before and after a MEMBAR instruction.

cond This 4-bit field selects the condition tested by a branch instruction.

di6hi, diélo These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-relative
displacement for a branch-on-register-contents with prediction (BPr) instruction.

di spl9 This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an integer

branch-with-prediction (BPcc) instruction or a floating-point branch-with-prediction (FBPf cc)
instruction.

174

UltraSPARC llli Processor User's Manual * June 2003

TABLE 7-10 Instruction Field Interpretation (2 of 3)

Field Description

di sp22, disp30 These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative displacements for a
branch or call, respectively.

fcn This 5-bit field provides additional opcode bits to encode the DONE, RETRY, and PREFETCH(A)
instructions.

i The i bit selects the second operand for integer arithmetic and load/store instructions. If i =0,
then the operand is r [r s2] . If i =1, then the operand is si mmLO, si mml1, or si N3,
depending on the instruction, sign-extended to 64 bits.

i m2 This 22-bit field is a constant that SETHI places in bits 31:10 of a destination register.

i mm_asi This 8-bit field is the ASI in instructions that access alternate space.

mrask This 4-bit field imposes order constraints on memory references appearing before and after a
MEMBAR instruction.

op, op2 These 2-bit and 3-bit fields encode the three major formats and the Format 2 instructions.

op3 This 6-bit field (together with one bit from op) encodes the Format 3 instructions.

opf This 9-bit field encodes the operation for a floating-point operate (FPop) instruction.

opf_cc Specifies the condition codes to be used in FMOVcc instructions. See field ccO, cc1, and cc2
for details.

opf _| ow This 6-bit field encodes the specific operation for a Move Floating-Point Register if condition is
satisfied (FMOVcc) or Move Floating-Point Register if contents of integer register match
condition (FMOVr) instruction.

p This 1-bit field encodes static prediction for BPcc and FBPf cc instructions; branch prediction
bit (p) encodings are shown below.

P Branch Prediction
0 Predict that branch will not be taken
1 Predict that branch will be taken

rcond This 3-bit field selects the register-contents condition to test for a move, based on register
contents (MOVr or FMOVT) instruction or a Branch on Register Contents with Prediction (BPr)
instruction.

rd This 5-bit field is the address of the destination (or source) r or f register(s) for a load,
arithmetic, or store instruction.

rsl This 5-bit field is the address of the first r or f register(s) source operand.

rs2 This 5-bit field is the address of the second r or f register(s) source operand with i = 0.

shent 32 This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt 64 This 6-bit field provides the shift count for 64-bit shift instructions.

si mmLOo This 10-bit field is an immediate value that is sign-extended to 64 bits and used as the second
ALU operand for a MOVr instruction when i =1.

si mmll This 11-bit field is an immediate value that is sign-extended to 64 bits and used as the second
ALU operand for a MOVcc instruction when i = 1.

si mml3 This 13-bit field is an immediate value that is sign-extended to 64 bits and used as the second

ALU operand for an integer arithmetic instruction or for a load/store instruction when i = 1.

Chapter 7

Instruction Types 175

TABLE 7-10 Instruction Field Interpretation (3 of 3)

Field Description

Sw_t rap# This 7-bit field is an immediate value that is used as the second ALU operand for a Trap on
Condition Code instruction.

X The X bit selects whether a 32-bit or 64-bit shift will be performed.

7.12

7.12.1

176

Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned causes a trap,

specifically:

Attempting to execute a reserved FPop (floating-point opcode) causes a
fp_exception_other exception (with FSR. f t t = unimplemented_FPop).

Attempting to execute any other reserved opcode causes an illegal_instruction exception.

Attempting to execute an FPop with a nonzero value in a reserved instruction field causes
a fp_exception_other exception (with FSR ftt = Lmimplemented_FPop).1

Attempting to execute a Tcc instruction with a nonzero value in a reserved instruction
field causes an illegal_instruction exception.

Attempting to execute any other instruction with a nonzero value in a reserved instruction
field causes an illegal_instruction exception.1

Summary of Unimplemented Instructions

Certain SPARC-V9 instructions are not implemented in hardware in the processor. Executing
any of these instructions results in the behavior described in TABLE 7-11.

TABLE 7-11

Processor Actions on Unimplemented Instructions

Instructions

Trap Taken

Processor-specific Behavior

Operating System Response

Quad FPops (including
FAMULQ)

fp_exception_other

FSR. ftt = unimplemented_FPop

Emulates Instruction

POPC illegal_instruction None Emulates Instruction
RDPR FQ illegal_instruction None Skips Instruction and Returns
LDQF illegal_instruction None Emulates Instruction
STQF illegal_instruction None Emulates Instruction

1. Although it is recommended that this exception is generated, a JPS1 implementation may ignore the contents of reserved
instruction fields (in instructions other than Tcc).

UltraSPARC llli Processor User's Manual * June 2003

If a trap does not occur and the instruction is not a control transfer, the next program
counter (NPC) is copied into the PC, and the nPC is incremented by four (ignoring overflow,
if any). If the instruction is a control transfer instruction, the NPC is copied into the PC and
the target address is written to NPC. Thus, the two program counters provide for a delayed-
branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address
space identifier (ASI) to the 64-bit memory address. Load/store alternate instructions (see
Section 7.2.4, “Address Space Identifiers (ASIs)”) can provide an arbitrary ASI with their
data addresses or can use the ASI value currently contained in the ASI register.

7.13

7.13.1

Big/Little-Endian Addressing

The processor uses big-endian byte order for all instruction accesses and, by default, for data
accesses.

It is possible to access data in little-endian format by using selected ASIs.

It is also possible to change the default byte order for implicit data accesses.

Big-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a
byte’s significance decreases as its address increases. The big-endian addressing conventions
are illustrated in FIGURE 7-4 and described below the figure.

Chapter 7 Instruction Types 177

Byte

Halfword

Word

Doubleword/
Extended word

Quadword

Address
Address<0> = 0 1

| 15 8|7 0|
Address<1:0> = 00 01 10 11

[31 24]23 16]15 8]7 o]
Address<2:0> = 000 001 010 011

[63 56] 55 48[47 4039 32]
Address<2:0> = 100 101 110 111

[31 00] 00 00[15 00] 7 0]
Address<3:0> = 0000 0001 0010 0011

[127 120] 119 112111 104]103 96|
Address<3:0> = 0100 0101 0110 0111

[95 88] 87 80[79 72[71 64]
Address<3:0> = 1000 1001 1010 1011

[63 56] 55 48[47 4039 32]
Address<3:0> = 1100 1101 1110 1111

[31 24]23 16]15 8] 7 0]

FIGURE 7-4 Big-Endian Addressing Convention

big-endian byte

big-endian halfword

big-endian word

big-endian doubleword

178

or extended word

A load/store byte instruction accesses the addressed byte in both big-endian and little-
endian modes.

For a load/store halfword instruction, 2 bytes are accessed. The most significant byte
(bits 15-8) is accessed at the address specified in the instruction; the least significant
byte (bits 7-0) is accessed at the address + 1.

For a load/store word instruction, 4 bytes are accessed. The most significant byte
(bits 31-24) is accessed at the address specified in the instruction; the least significant
byte (bits 7-0) is accessed at the address + 3.

For a load/store extended or floating-point load/store double instruction, 8 bytes are
accessed. The most significant byte (bits 63—56) is accessed at the address specified in
the instruction; the least significant byte (bits 7-0) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two big-endian
words are accessed. The word at the address specified in the instruction corresponds to
the even register specified in the instruction; the word at address + 4 corresponds to the
following odd-numbered register.

UltraSPARC llli Processor User's Manual * June 2003

big-endian quadword For a load/store quadword instruction, 16 bytes are accessed. The most significant byte
(bits 127—120) is accessed at the address specified in the instruction; the least

significant byte (bits 7—0) is accessed at the address + 15.

7.13.2

Little-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a
byte’s significance increases as its address increases. The little-endian addressing
conventions are illustrated in FIGURE 7-5 and defined below the figure.

Byte

Halfword

Word

Doubleword/
Extended word

Quadword

Address
Address<0> = 0 1

|7 0[15 8|
Address<1:0> = 00 01 10 11

|7 0|15 8|23 1631 24|
Address<2:0> = 000 001 010 011

|7 0[15 8|23 16|31 24|
Address<2:0> = 100 101 110 111

[39 32[47 40] 55 48] 63 56
Address<3:0> = 0000 0001 0010 0011

|7 0[15 8|23 16|31 24|
Address<3:0> = 0100 0101 0110 0111

[39 32[47 40] 55 48]63 56]
Address<3:0> = 1000 1001 1010 1011

|7 64|79 72| 87 8095 88|
Address<3:0> = 1100 1101 1110 1111

| 103 96 111 104] 119 112[127 120

FIGURE 7-5 Little-Endian Addressing Conventions

little-endian byte

endian modes.

little-endian halfword

A load/store byte instruction accesses the addressed byte in both big-endian and little-

For a load/store halfword instruction, 2 bytes are accessed. The least significant byte

(bits 7-0) is accessed at the address specified in the instruction; the most significant
byte (bits 15-8) is accessed at the address + 1.

Chapter 7

Instruction Types

179

little-endian word

little-endian doubleword
or extended word

little-endian quadword

180

For a load/store word instruction, 4 bytes are accessed. The least significant byte
(bits 7-0) is accessed at the address specified in the instruction; the most significant
byte (bits 31-24) is accessed at the address + 3.

For a load/store extended or floating-point load/store double instruction, 8 bytes are
accessed. The least significant byte (bits 7-0) is accessed at the address specified in the
instruction; the most significant byte (bits 63—56) is accessed at the address + 7.

For the deprecated integer load/store double instructions (LDD/STD), two little-endian
words are accessed. The word at the address specified in the instruction corresponds to
the even register in the instruction; the word at the address specified in the instruction
plus four corresponds to the following odd-numbered register. With respect to little-
endian memory, an LDD (STD) instruction behaves as if it is composed of two 32-bit
loads (stores), each of which is byte-swapped independently before being written into
each destination register (memory word).

For a load/store quadword instruction, 16 bytes are accessed. The least significant byte
(bits 7-0) is accessed at the address specified in the instruction; the most significant
byte (bits 127—120) is accessed at the address + 15.

UltraSPARC llli Processor User's Manual * June 2003

secTioN 1V

Memory and Cache

June 2003 Section IV « Memory and Cache « 181

182 UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 8

Memory Models

The SPARC-V9 architecture is a model that specifies the behavior observable by software on
SPARC-V9 systems. Therefore, access to memory can be implemented in any manner, as
long as the behavior observed by software conforms to that of the models described in the
following:

Chapter 8 of The SPARC Architecture Manual, Version 9

Appendix D of The SPARC Architecture Manual, Version 9
The SPARC-V9 architecture defines three different memory models: Total Store Order
(TSO), Partial Store Order (PSO), and Relaxed Memory Order (RMO). The UltraSPARC I1Ii
processor implements TSO, the strongest of the memory models defined by SPARC-V9. By

implementing TSO, software written for any memory model (TSO, PSO, and RMO) executes
correctly on the UltraSPARC IIli processor.

This chapter departs from the organization of the memory models described in The SPARC
Architecture Manual, Version 9. It describes the characteristics of the memory models for the
UltraSPARC IIIi processor in sections organized as follows:

TSO Behavior

Memory Location Identification
Memory Accesses and Cacheability
Memory Synchronization

Atomic Operations

Non-Faulting Load

Prefetch Instructions

Block Loads and Stores

I/0 and Accesses with Side-Effects
Internal ASls

Store Compression

Read After Write (RAW) Bypassing

183

8.1

TSO Behavior

The UltraSPARC II1i processor implements the TSO memory model. The current memory
model is indicated in the PSTATE. MMfield and is set to TSO (PSTATE. MM= 0) .

In some cases, the UltraSPARC IIIi processor implements stronger ordering than the TSO
requirements. The significant cases are listed below:

A MEMBAR #Lookasi de is not needed between a store and a subsequent load to the
same non-cacheable address.

Accesses with the TTE. E bit set, such as those that have side-effects, are al strongly
ordered with respect to one another.

An L2-cache or W-cache update is delayed on a store hit until all previous stores reach
global visibility. For example, a cacheable store following a non-cacheable store will not
appear globally visible until the non-cacheable store has become globally visible; there is
an implicit MEMBAR #Mem ssue between them.

8.2

Memory Location Identification

A memory location is identified by an 8-bit address space identifier (ASI) and a 64-bit
(virtual) address. The 8-bit ASI can be obtained from an ASI register or included in a
memory access instruction. The ASI distinguishes among and provides an attribute to
different 64-bit address spaces. For example, the ASI is used by the MMU and memory
access hardware for control of virtual-to-physical address translations, access to
implementation-dependent control and data registers, and access protection. Attempts by
non-privileged software (PSTATE. PRI V = 0) to access restricted ASIs (ASI<7> = 0) cause a
privileged_action exception.

8.3

184

Memory Accesses and Cacheability

Memory is logically divided into real memory (cached) and I/O memory (non-cached with
and without side-effects) spaces. Real memory spaces can be accessed without side-effects.
For example, a read from real memory space returns the information most recently written.
In addition, an access to real memory space does not result in program-visible side-effects. In
contrast, a read from I/O space may not return the most recently written information and may
result in program-visible side-effects.

UltraSPARC llli Processor User's Manual * June 2003

8.3.1

8.3.11

8.3.1.2

Coherence Domains

The two types of memory operations supported in the UltraSPARC IIli processor are
cacheable and non-cacheable accesses, as indicated by the page translation (TTE. CP,
TTE. CV) of the MMU or by an ASI override.

SPARC-V9 does not specify memory ordering between cacheable and non-cacheable
accesses. The UltraSPARC IIli processor maintains TSO ordering between memory
references regardless of their cacheability.

Cacheable Accesses

Accesses within the coherence domain are called cacheable accesses. They have the
following properties:

Data reside in real memory locations.
Accesses observe supported cache coherency protocol(s).
The unit of coherence is 64 bytes.

Non-Cacheable and Side-Effect Accesses

Accesses outside of the coherence domain are called non-cacheable accesses. Some of these
memory-mapped locations may have side-effects when accessed. They have the following
properties:

Data might not reside in real memory locations. Accesses may result in programmer-
visible side-effects. An example is memory-mapped /O control registers, such as thosein
a UART.

Accesses do not observe supported cache coherency protocol(s).
The smallest unit in each transaction is a single byte.

Non-cacheable accesses with the TTE. E bit set (those having side-effects) are all strongly
ordered with respect to other non-cacheable accesses with the E bit set. In addition, store
compression is disabled for these accesses. Speculative loads with the E bit set cause a
data_access_exception trap (with SFSR. FT = 2, speculative load to page marked with

E bit).

Note — TTE. E bit comes from the page translation of the MMU or an ASI override.

Chapter 8 Memory Models 185

8.3.2

8.3.3

186

Non-cacheable accesses with the TTE. E bit cleared (non-side-effect accesses) are processor
consistent and obey TSO memory ordering. In particular, processor consistency ensures that
a non-cacheable load that references the same location as a previous non-cacheable store will
load the data of the previous store. Store compression is supported. See Section 8.11, “Store
Compression” for details.

Note — Side-effect, asindicated in TTE. E, does not imply non-cacheability.

Global Visibility

A memory access is considered globally visible when the transaction request is issued on
JBUS.

Memory Ordering

To ensure the correct ordering between cacheable and non-cacheable domains, explicit
memory synchronization is needed in the form of MEMBAR instructions. CODE EXAMPLE 8-1
illustrates the issues involved in mixing cacheable and non-cacheable accesses.

CODE EXAMPLE 8-1 Memory Ordering and MEMBAR Examples

Assune that all accesses go to non-side-effect nenory |ocations.
Process A:
Wiile (1)
{
Store D1:data produced
1 MEMBAR #StoreStore (needed in PSO RMO for SPARC- V9 conpliance)
Store Fl:set flag
Wiile F1 is set (spin on flag)
Load F1
2 MEMBAR #LoadlLoad, #LoadStore (needed in RMO for SPARC V9
conpl i ance)

Load D2
}
Process B:
Wiile (1)
{

Wiile F1 is cleared (spin on flag)
Load F1

UltraSPARC llli Processor User's Manual * June 2003

CODE EXAMPLE 8-1 Memory Ordering and MEMBAR Examples (Continued)

2 MEMBAR #LoadlLoad, #LoadStore (needed in RMO for SPARC V9

conpl i ance)
Load D1
Store D2

1 MEMBAR #StoreStore (needed in PSO RMO for SPARC V9 conpliance)
Store Fl:clear flag

8.4

Memory Synchronization

Normal loads and stores by an UltraSPARC IIli processor are performed in order. TSO
defines how other processors may see the ordering of the loads and stores of a particular
processor. Memory synchronizations are used to force the ordering that other processors see
beyond the rules of TSO.

In some cases, memory synchronizations are required for deterministic behavior, even with
respect to the program’s own operations. This applies to memory operations outside of
normal cacheable loads and stores.

The UltraSPARC I1Ii processor achieves memory synchronization through MEMBAR and
FLUSH. It provides MEMBAR (STBAR in SPARC-V8) and FLUSH instructions for explicit
control of memory ordering in program execution. MEMBAR has several variations. All
MEMBARs are implemented in one of two ways in the UltraSPARC Illi processor:

AsaNOP
With MEMBAR #Sync semantics

Since the processor always executes with TSO memory ordering semantics, three of the
ordering MEMBARs are implemented as NOPs. TABLE 8-1 lists the MEMBAR implementations.

TABLE8-1 MEMBAR Semantics

MEMBAR Semantics

#LoadLoad NOP. All loads wait for completion of all previous loads.

#LoadSt ore NOP. All stores wait for completion of all previous loads.
#Lookasi de #Sync. Wait until store buffer is empty.

#StoreStore, NOP. All stores wait for completion of all previous stores.

STBAR

#St or eLoad #Sync. All loads wait for completion of al previous stores.

#Memnl ssue #Sync. Wait until al outstanding memory accesses complete.
#Sync #Sync. Wait for al outstanding instructions and all deferred errors.

Chapter 8 Memory Models 187

8.4.1

8.4.2

188

MEMBAR #Sync

MEMBAR #Sync forces all outstanding instructions and all deferred errors to be completed
before any instructions after the MEMBAR are issued.

MEMBAR Rules

TABLE 8-2 and TABLE 8-3 summarize the cases where the programmer must insert a MEMBAR
to ensure ordering between two memory operations on the UltraSPARC IIli processor. Use
TABLE 8-2 and TABLE 8-3 for ordering purposes only. Be sure not to confuse memory
operation ordering with processor consistency or deterministic operation; MEMBARs are
required for deterministic operation of certain ASI register updates.

Caution — The MEMBAR requirements for the UltraSPARC I11i processor are less stringent
than the requirements of SPARC-V9. To ensure code portability across systems, use the
stronger of the MEMBAR reguirements of SPARC-V9.

Read the tables as follows: Read from row to column; the first memory operation in program
order in a row is followed by the memory operation found in the column. Two symbols are
used as table entries:
— No intervening operation is required because Fireplane-compliant systems
automatically order R before C.

M — MEMBAR #Sync or MEMBAR #Memnl ssue or MEMBAR #St or eLoad

For VA<12:5> of a column operation not matching with VA<2:5> of a row operation while a
strong ordering is desired, the MEMBAR rules summarized in TABLE 8-2 reflect the
UltraSPARC I1Ii processor hardware implementation.

UltraSPARC llli Processor User's Manual * June 2003

MEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong

Ordering

TABLE 8-2

ouTesolsq = (¥ |2 |2 |2 |2 |22 |2 |2 |2 |2 |=|=
oupeog S |*|=|s|=|=|s|=|=|s|=|=|=5|=
JWwo9 aloisq R IR I S I I I I B O I T S
aloisq |2 |* |2 |*F |2 |2 |2 |2 |2 2|2 |2 |2 |=2
peoig | S |®* |=|=|s|=|=|s|=|= |5 |3 |=|=
m U ouTouo)s || | ® | | w IH % X |5 |5 |5 |2 |=
R
m auTouTpeoy | ¥ |F | |F | ¥ | F |5 * 5|52 |Z |2 =2
)
c o ouTeloys || | | I ® B % % |55 |5 (3=
IS
=
38 aTouTpeo) | || = | | | % % |5 |5 |52 |Z |2 =
e
Jlwole H* HH* H* HH* H* HH* H* H* HH* S > > = =
NN N N E R E R E R E RN E S
ISV [euJd1Ul 0} 8101S
|3 (% | [% |(# % (% |S|sS|s|=|=
21018
T NN A R E R E R E N R E RN
ISV [euldiul woly peoj
| ¥ H# |3 | £
peo| = = S (= (= |=|=|=2
N
< 9
M <
g| |8 =
OE] R |a]elefe] | |E
an“ 5 = ol ol ol & 8lg|g
S o %) %) c
€2 = = 1.2 5 5 < < 5|2 o .m_ o'
T oo m o o = | = =
Es B8 5|5|6|8|s|8|s|c|S|g|o|g
c8l2|2|B|B|B|2 8|2 |8 |S|c|la|B|o

189

Memory Models

Chapter 8

When VA<12:5> of a column operation matches VA<12:5> of a row operation, the MEMBAR
rules summarized in TABLE 8-3 reflect the UltraSPARC IIIi processor hardware
implementation.

TaBLE8-3 IVEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering
To Column Operation C:
7 _
< 7]
= <
c S =
5 =
E g ® o 2 E
c £ o | < | o I3}
| o | o o 15 c
o [e] o c 3] c | c |
= ° 2 CI | CI I o 2 o 'cl 2
From Row o o o I E |o I o o I S S IS S
. © ®© [} o (e} © [e] ®© (e} E ‘&)‘ ‘L_f). E ‘&)‘
Operation R: o =] 17 17 T |2 17 o 17) a o) a
load # # # # # | # # # # # # # # #
load from internal ASI # # # # # | # # # # # # # # #
store # # # # # | # # # # | M # # # #
store to internal AS| # M # # # | # # # # M # # M M
atomic # # # # # | # # # # # # # # #
load nc_e # # # # # | # # # # # # # # #
store nc_e # # # # # | # # # # | M # # | M #
load_nc_ne # # # # # | # | # || x| # | # | # | #|#
store_nc_ne # # # # # | # # # # | M # # | M #
bload # # # # # | # # # # # # # # #
bstore # # # # # | # # # # | M # # # #
bstore_commit M # M # M [M M M M M M # M M
bload nc # # # # # | # | # | B | x| # | # | # | B | #
bstore_nc # # # # # | # # # # # # # | M #

8.4.3 FLUSH

FLUSH behaves like a MEMBAR with further restrictions. MEMBAR blocks execution of
subsequent instructions until all memory operations and errors are resolved. FLUSH is
similar with further behavior in that all instruction fetch and instruction buffering operations
are also blocked.

190 UltraSPARC llli Processor User's Manual * June 2003

8.5 Atomic Operations

SPARC-V9 provides three atomic instructions to support mutual exclusion, including:

SWAP — Atomically exchanges the lower 32 bits in an integer register with a word in
memory. This instruction is issued only after store buffers are empty. Subsequent loads
interlock on earlier SWAPs.

If apage is marked as virtually non-cacheable but physically cacheable (TTE. CV =0 and
TTE. CP = 1), alocation is done to the L2-cache and W-cache only. This includes all of
the atomic-access instructions.

LDSTUB — Behaves like a SWAP except that it loads a byte from memory into an integer
register and atomically writes all 1's (FF;) into the addressed byte.

Compare and Swap (CAS(X) A) — Combines a load, compare, and store into a single
atomic instruction. It compares the value in an integer register to a value in memory. If
they are equal, the value in memory is swapped with the contents of a second integer
register. If they are not equal, the value in memory is still swapped with the contents of
the second integer register, but is not stored. The L2-cache will still go into M-state, even
if there is no store.

All of these operations are carried out atomically; in other words, no other memory
operation can be applied to the addressed memory location until the entire compare-and-
swap sequence is completed.

These instructions behave like both a load and store access, but the operation is carried out
indivisibly. These instructions can be used only in the cacheable domain (not in non-
cacheable I/O addresses).

These atomic instructions can be used with the ASIs listed in TABLE 8-4. Access with a
restricted AST in unprivileged mode (PSTATE. PRI V = 0) results in a privileged_action trap.
Atomic accesses with non-cacheable addresses cause a data_access_exception trap (with
SFSR. FT = 4, atomic to page marked non-cacheable). Atomic accesses with unsupported
ASIs cause a data_access exception trap (with SFSR. FT = 8, illegal ASI value or virtual
address).

TABLE8-4 ASIs That Support SWAP, LDSTUB, and CAS

ASI Name Access

ASI _NUCLEUS (LITTLE) Restricted
ASI _AS | F_USER_PRI MARY (LI TTLE) Restricted
ASI _AS | F_USER_SECONDARY (LI TTLE) Restricted
AS| _PRI MARY (LITTLE) Unrestricted
ASI _SECONDARY (LI TTLE) Unrestricted
AS| _PHYS USE EC (LI TTLE) Restricted

Chapter 8 Memory Models 191

Note — Atomic accesses with non-faulting ASls are not allowed, because the latter have the
load-only attribute.

8.6

192

Non-Faulting Load

A non-faulting load behaves like a normal load, with the following exceptions:

It does not alow side-effect access. An access with the TTE. E bit set causes a
data_access_exception trap (with SFSR. FT = 2, speculative load to page marked E bit).

It can be applied to a page with the TTE. NFO (non-fault access only) bit set; other types
of accesses cause a data_access _exception trap (with SFSR. FT = 10,4, normal access to
page marked NFO).

These loads are issued with ASI _PRI MARY_NO FAULT{ _LI TTLE} or
AS| _SECONDARY_NO FAULT{_LI TTLE}. A store with a NO_FAULT ASI causes a
data_access_exception trap (with SFSR. FT = 8, illegal RW).

When a non-faulting load encounters a TLB miss, the operating system should attempt to
translate the page. If the translation results in an error, then zero is returned and the load
completes silently.

Typically, optimizers use non-faulting loads to move loads across conditional control
structures that guard their use. This technique potentially increases the distance between a
load of data and the first use of that data, in order to hide latency. The technique allows more
flexibility in code scheduling and improves performance in certain algorithms by removing
address checking from the critical code path.

For example, when following a linked list, non-faulting loads allow the null pointer to be
accessed safely in a speculative, read-ahead fashion; the page at virtual address 0,4 can safely
be accessed with no penalty. The NFObit in the MMU marks pages that are mapped for safe
access by non-faulting loads, but that can still cause a trap by other, normal accesses.

Thus, programmers can trap on wild pointer references—many programmers count on an
exception being generated when accessing address 0,4 to debug code—while benefiting from
the acceleration of non-faulting access in debugged library routines.

UltraSPARC llli Processor User's Manual * June 2003

8.7

Prefetch Instructions

The UltraSPARC II1i processor implements all SPARC-V9 prefetch instructions except for

prefetch page. All prefetches check the L2-cache before issuing a system request for the

requested data. Prefetch instructions are a performance feature. Prefetch instructions do not

change the underlying memory model and do not have any effect from an architectural

standpoint.

TABLE 8-5 describes prefetch instructions.

TABLE 8-5 Types of Software Prefetch Instructions
fcn
Value Prefetch (64 bytes of Instruction Request Exclusive
(hex) Instruction Type data) into: Strength Ownership
00 Prefetch read many | P-cache and Weak No
L2-cache
01 Prefetch read once P-cache only Weak No
02 Prefetch write many | L2-cache only Weak Yes
03 Prefetch write once! | L2-cache only Weak No
04 Reserved Undefined
05 - Reserved Undefined
OF
10 Prefetch invalidate Invalidates aP-cache N/A
line, no datais
prefetched.
11 - Reserved Undefined
13
14 Same asf cn = 00 Weak? No
15 Sameasfcn =01 Weak? No
16 Sameasfcn =02 Weak? Yes
17 Same asfcn =03 Weak? No
18 - Reserved Undefined
1F

1. Although the name is “ prefetch write once,” the actual use is prefetch to L2-cache for afuture read.

2. These wesak instructions may be implemented as strong in future implementations.

Chapter 8

Memory Models

193

8.8

Block Loads and Stores

Block load and store instructions work like normal floating-point load and store instructions,
except that the data size (granularity) is 64 bytes per transfer.

Block loads and stores do not obey TSO. They do not even obey the processor’s consistency
rules without the correct use of MEMBAR. Section A.4 “Block Load and Block Store (VIS I)”
on page A-274 discusses block loads and stores in detail.

8.9

194

/O and Accesses with Side-Effects

I/O locations might not behave with memory semantics. Loads and stores could have side-
effects; for example, a read access could clear a register or pop an entry off a FIFO. A write
access could set a register address port so that the next access to that address will read or
write a particular internal register. Such devices are considered order sensitive. Also, such
devices may only allow accesses of a fixed size, so store merging of adjacent stores or stores
within a 16-byte region would cause an error.

The UltraSPARC IIli MMU includes an attribute bit in each page translation, TTE. E, which
when set signifies that this page has side-effects. Accesses other than block loads or stores to
pages that have this bit set exhibit the following behavior:

Non-cacheable accesses are strongly ordered with respect to each other.

Non-cacheable loads with the E bit set will not be issued to the system until al previous
control transfers are resolved.

Non-cacheable store compression is disabled for E bit accesses.
Exactly those E bit accesses implied by the program are made in program order.

Non-faulting loads are not allowed and cause a data_access_exception (with
SFSR. FT = 2, speculative load to page marked E bit).

For portability across SPARC-V9 processors, a MEMBAR may be needed between side-
effect and non-side-effect accesses while in PSO and RMO modes, as well as in some
cases of TSO.

UltraSPARC llli Processor User's Manual * June 2003

8.9.1

8.9.2

Instruction Prefetch to Side-Effect Locations

The processor does instruction prefetching and follows branches that it predicts are taken.
Addresses mapped by the I-MMU can be accessed even though they are not actually
executed by the program. Normally, locations with side-effects or that generate timeouts or
bus errors are not mapped by the -lMMU; therefore, prefetching will not cause problems.

When running with the -MMU disabled, software must avoid placing data in the path of a
control transfer instruction target or sequentially following a trap or conditional branch
instruction. Data can be placed sequentially following the delay slot of a BA, BPA (p =1),
CALL, or JMPL instruction. Instructions should not be placed closer than 256 bytes to
locations with side-effects.

Instruction Prefetch Exiting Red State

Exiting RED_st at e by writing zero to PSTATE. RED in the delay slot of a JMPL
instruction is not recommended. A non-cacheable instruction prefetch may be made to the
JMPL target, which may be in a cacheable memory area. This situation can result in a bus
error on some systems and can cause an instruction access error trap. Programmers can mask
the trap by setting the NCEEN bit in the L2-cache Error Enable Register to zero, but doing so
will mask all non-correctable error checking. Exiting RED_st at e with DONE, RETRY, or
with the destination of the JMPL non-cacheable will avoid the problem.

8.10

Internal ASIs

ASIs in the ranges 30,,—6F 4 and 72,,—7F 4 are used for accessing internal states. Stores to
these ASIs do not follow the normal memory-model ordering rules. Correct operation can be
assured by adhering to the following requirements:

A MEMBAR #Sync is needed after a store to an internal ASI other than MMU ASIs before
the point that side-effects must be visible. This MEMBAR must precede the next load or
non-internal store. To avoid data corruption, the MEMBAR must also occur before the delay
slot of a delayed control transfer instruction of any type.

Alternatively, a MEMBAR #Sync could be inserted at the beginning of any vulnerable trap
handler. “Vulnerable” trap handlers are those which contain one or more LDXAs from any
internal ASI (ASls 0x30-0x6F, 0x72-0x77, and Ox7A-0x7F). However, this may cause an
unacceptable performance reduction in some trap handlers, so this is not the preferred
aternative.

Chapter 8 Memory Models 195

A FLUSH, DONE, or RETRY is needed after a store to an internal I-MMU ASI (ASI 50,6~
5246, 54165F45), an I-cache AS| (66,—6F¢), or the | C bit in the DCU Control Register,
prior to the point that side-effects must be visible. A store to D-MMU registers other than
the context ASIs can use a MEMBAR #Sync. To avoid data corruption, the MEMBAR must
also occur before the delay slot of a delayed control transfer instruction of any type.

If the store isto an I-MMU state register (ASI = 5044, virtual address = 18,¢), then the
FLUSH, DONE, or RETRY must immediately follow the store. Furthermore, one of the
following must be true, to prevent an intervening I-TLB miss from causing stale data to be
stored:

The code must be locked down in the I-TLB, or

The store and the subsequent FLUSH, DONE, or RETRY should be kept on the same

8 KB page of instruction memory.

8.11

196

Store Compression

Consecutive non-side-effect, non-cacheable stores can be combined into aligned 16-byte
entries in the store buffer to improve store bandwidth. Cacheable stores will naturally
coalesce in the W-cache rather than be compressed in the store buffer. Non-cacheable stores
can be compressed only with adjacent non-cacheable stores. To maintain strong ordering for
I/0 accesses, stores with the side-effect attribute (E bit set) cannot be combined with any
other stores.

A 16-byte non-cacheable merge buffer is used to coalesce adjacent non-cacheable stores.
Non-cacheable stores will continue to coalesce into the 16-byte buffer until one of the
following conditions occurs:

The data is pulled from the non-cacheable merge buffer by the target device.

The store overwrites a previously written entry (a valid bit is kept for each of the
16 bytes).

Caution — This behavior is unique to the UltraSPARC I11i processor and differs from
previous UltraSPARC processor implementations.

The store is not within the current address range of the merge buffer (within the 16-byte
aligned merge region).

The store is a cacheable store.
The store is to a side-effect page.
MEMBAR #Sync

UltraSPARC llli Processor User's Manual * June 2003

8.12 Read After Write (RAW) Bypassing

Load data can be bypassed from previous stores before they become globally visible (data for
load from the store queue). This is specifically allowed by the TSO memory model. Data for
all types of loads cannot be bypassed from all types of stores.

All types of load instructions can get data from the store queue, except the following load
instructions:

Signed loads (I dsb, | dsh, | dsw)

Atomics

Load double to integer register file (I dd)

Quad loads to integer register file

Load from FSR register

Block loads

Short floating-point loads

Loads from internal ASls

All types of store instructions can give data to a load, except the following store instructions:
Floating-point partial stores
Store double from integer register file (st d)
Store part of atomic
Short FP stores
Stores to pages with side-effect bit set
Stores to non-cacheable pages

8.12.1 RAW Bypassing Algorithm

The algorithm used in the UltraSPARC IIIi processor for RAW bypassing is as follows:

i f ((Load/store accessthe same physical address) and
(Load/store endianness is the same) and
(Load/store size is the same) and

(Load data can get its data from store queue) and
(Store data in store can give its data to aload) and
(Load hitsin either D-cache or P-cache)
)
t hen
Load will get its data from store queue

Chapter 8 Memory Models 197

8.12.2

198

el se
Load will get its data from the memory system
endi f

RAW Detection Algorithm

When data for a load cannot be bypassed from previous stores before they become globally
visible (store data is not yet retired from the store queue), the load is recirculated after the
RAW hazard is removed. The following conditions can cause this recirculation:

Load data can be bypassed from more than one store in the store queue.

The load’s VA<12:0> overlaps a store’s VA<12:0> and store data cannot be bypassed from
the store queue.

The load’'s VA<12:5> matches a store’'s VA<12:5> and the load misses the D-cache.

Load is from side-effect page (page attribute E = 1) when the store queue contains one or
more stores to side-effect pages.

UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 9

Caches and Coherency

This chapter describes the use of caches and TLBs, and contains the following sections:
Cache Organization
Cache Flushing
Controlling P-Cache
Translation Lookaside Buffers (TLBs)

9.1

9.1.1

9.1.1.1

Cache Organization

Virtually Indexed, Physically Tagged Caches (VIPT)

The D-cache is Virtually Indexed, Physically Tagged (VIPT). Virtual addresses are used to
index into the cache tag and data arrays while accessing the D-MMU (that is, D-TLBs). The
resulting tag is compared against the translated physical address to determine a cache hit.

A side-effect inherent in a virtual-indexed cache is address aliasing. This issue is addressed
in Section 9.2.1 “Address Aliasing Flushing” on page 206.

Data Cache (D-Cache)

The Data Cache is a write-through, non-allocating on a write miss, 64 KB, pseudo-4-way
associative cache with a 32-byte line.

Data accesses bypass the data cache when:

The Data Cache enable (DC) bit in the Data Cache Unit Control Register (DCUCR) is
clear, or

199

9.1.2

9.1.2.1

200

The D-MMU Enable (DCUCR. DM bit and the virtual cacheability (DCUCR. CV) bit are
clear, or

The access is mapped by the D-MMU as non-virtual-cacheable

Note — A non-virtual-cacheable access may access data in the Data Cache from an earlier
cacheable access to the same physical block, unless the Data Cache is disabled. Software
must flush the Data Cache when changing a physical page from cacheable to non-cacheable
(see Section 9.2 “Cache Flushing” on page 205).

Bypassing the D-Cache

D-cache can return stale data if CP == 1, CV == 0 is used to bypass the cache, after use of
CP==1 and CV==1, for loads and stores to a particular address.

D-cache should be flushed, after mixing use of any CP/CV settings for a physical address,
including cacheable (DRAM) and non-cacheable (I/O) physical addresses.

The term “virtually non-cacheable” refers to the “non-D-cacheable” CP == 1, CV == 0 case,
as opposed to the more common use of “non-cacheable” to describe I/O or graphics related
physical addresses.

CP ==1, CV == 1: Cacheable, Virtually-cacheable

CP == 1, CV == 0: Cacheable, Virtually-non-cacheable (ASI _PHYS_USE_EC has this
effect)

CP==0, CV == 1: P-cacheable
CP == 0, CV == 0: Non-cacheable

Only two indexes in the D-cache need to be flushed for each 32-byte aligned physical
address:

{VA[13] == 0,PA[12:5]} and
{VA[13] == 1,PA[12:5]}

Special Case 1

When performing a load with a physical address, using ASI = 0x14 (ASI _PHYS_USE_EC),
causing CP == 1 and CV == 0, and the address hits in the D-cache, the following describes
how the data comes from D-cache instead of L2-cache:

If CP == 0 and CV == 0, which indicates a “non-cacheable” access, and the address is in the
D-cache, data can be returned from the D-cache.

The address should be flushed from the D-cache before changing its mapping.

UltraSPARC llli Processor User's Manual * June 2003

9.12.2

9.1.3

9.13.1

Similarly, if CP == 1, and CV == 0, and the data is in the D-cache, data may be returned
from the D-cache. However, there are corner cases where it may not be the case.

For instance, with ASI _PHYS_USE_EC, the physical PA[13] is used to index the D-cache,
where VA[13] would ordinarily be used. Therefore, the data might not be correctly returned
if the real data was in VA[13] == 0, but PA[13] == 1. Ordinarily the rest of the PA bits will
have a difference, therefore, it will miss in the D-cache, and go to the L2-cache correctly.
This takes advantage of knowing that a valid PA can only exist in one VA[13] mapping at a
time in the D-cache.

This depends on how the addresses were mapped earlier, when the line was installed in the
D-cache.

This ASI _PHYS_USE_EC load hitting on the D-cache behavior is not defined or tested, so
software should not rely on it.

Special Case 2

When performing a store with a physical address, using ASI=0x14 (ASI _PHYS_USE_EC),
causing CP ==1 and CV == 0, and the address hits in the D-cache, the following describes
how the D-cache gets updated:

The software should make sure the physical address is not in the D-cache, before accessing
that address using CP == 1, CV == 0, whether by a TLB mapping, or using one of the special
ASIs.

Physically-Indexed, Physically-Tagged Caches (PIPT)

Instruction Cache (I-Cache)

The Instruction Cache is a 32KB pseudo 4-way, set-associative, write-invalidate cache with
32-byte lines. Instruction fetches bypass the Instruction Cache when:

The Instruction Cache enable (DCUCR. | C) is clear, or

The I-MMU enable (DCUCR. | M) bit and the physical cacheability (DCUCR. CP) bit are
clear, or

The processor is in RED_st at e, or
The fetch is mapped by the -MMU as nonphysical-cacheable.

The Instruction Cache snoops stores from other processors or DMA transfers, as well as
stores in the same processor and block commit store.

Chapter 9 Caches and Coherency 201

9.13.2

202

The FLUSH instruction is not required to maintain coherency. Stores and block store commits
invalidate the Instruction Cache, but do not flush instructions that have already been
prefetched into the pipeline. A FLUSH, DONE, or RETRY instruction can be used to flush
the pipeline.

If a program changes I-cache mode to I-cache-ON from I-cache-OFF, then the next
instruction fetching always causes an I-cache miss even if it is supposed to hit. This rule
applies even when the DONE instruction turns on the I-cache by changing its status from
RED st at e to normal mode. For example,

(in RED_st at e)

set X 0x37e0000000007, %gl, %g2
st xa %92, [¥g0] 0x45 /1 Turn on |-cache when
processor

/'l returns normal node.
done /1 Escape from RED state.
(back to normal mode)

nop /1 1st instruction; this always causes an |-cache
m ss.

Prefetch Cache (P-Cache)

The P-cache is a write-invalidate, 2 KB, 4-way associative cache with a 64-byte line and two
32-byte sub-blocks. It is physically-indexed and physically-tagged and never contains
modified data. The P-cache only needs to be flushed for error handling.

The “PREFETCH fcn=16" instruction can be used to invalidate, or flush a P-cache entry, and
to prefetch non-cacheable data, after the data is loaded into registers from the P-cache.

The cache line size is 64 bytes with 32-byte subblocks. The P-cache is globally invalidated
on context changes and MMU updates, individual lines are invalidated on store hits.
The P-cache is globally invalidated if any of the following conditions occur:

Context registers are written.

Demap operation in the D-MMU

D-MMU is turned on or off.

Individual lines are invalidated on any of the following conditions:
A store hits
An external snoop hit
Use of software prefetch invalidate function. (PREFETCH with f cn = 16)

UltraSPARC llli Processor User's Manual * June 2003

9.14

The P-cache is used for software prefetch instructions as well as a autonomous hardware
prefetch from the L2-cache. This cache never needs to be flushed (not even for address
aliases).

Second Level and Write Caches (L2-Cache, W-Cache)

The on-chip L2-cache! and the W-cache—are physically-indexed, physically-tagged (PIPT).
These caches have no references to virtual address and context information. The operating
system needs no knowledge of such caches after initialization, except for stable storage
management and error handling.

The L2-Cache is a 1 MB unified, write-back, write-allocate, 4-way set associative cache with
64-byte lines. The L2-cache does not include the contents of the Instruction Cache, Prefetch
Cache and Data Cache. The replacement policy is pseudo-random. The L2-cache cannot be
disabled by software.

It is necessary to flush the L2-cache for stable storage.

Instruction fetches bypass the L2-cache when the following occurs:

I-MMU is disabled AND when the CP bit in the Data Cache Unit Control Register is not
set.

The processor is in RED_st at e.
Access is mapped by the I-MMU as nonphysical cacheable.

Data accesses bypass the L2-cache if the D-MMU enable bit in the DCU Control Register is
clear, or if the access is mapped by the D-MMU as non-physical-cacheable (unless
ASI _PHYS_USE_EC s used).

The system must provide a non-cacheable, scratch memory for booting code use until the
MMUs are enabled.

Block loads and block stores, which load or store a 64-byte block of data from memory to
the floating-point register file, do not allocate into the L2-cache, in order to avoid pollution.
Prefetch Read Once instructions, which load a 64-byte block of data into the P-cache, do not
allocate into the L2-cache.

The W-cache is a 2 KB, 4-way associative, with 64 bytes per line and 32-byte sub-blocks.
The W-cache is included in the L2-cache, and flushing the L2-cache ensures that the
W-cache has also been flushed.

1. L2-cache and Embedded Cache (E-cache) are used interchangeably.

Chapter 9 Caches and Coherency 203

9.1.5 L2-Cache Replacement Policy

The selection is more complicated when some of the ways are blocked using EC_bl ock.
That is not shown here. The victim way is determined by a 5-bit Linear Feedback Shift
Register (LFSR,) which is described in the following code. Note that the code reflects the
algorithm when all 4 ways are active.

CODE EXAMPLE 9-1 reflects the cache replacement algorithm when all four ways of the
L2-cache are active.

CODE EXAMPLE 9-1 L2-Cache Replacement Policy

nodul e | fsr (rand_out, event_in, reset, clk);
output [3:0] rand_out ;

i nput event _in;

i nput reset;
i nput cl k;

wire [4:0] Ifsr_reg;
dffe #(5) ff_Ifsr (Ifsr_reg, Ifsr_in, ~reset, event_in, clk);

/1 01010 is the non-reachable state for this inplenentation
wire [4:0] Ifsr_in = {~lfsr_reg[0],

I fsr_reg[0] ~ Ifsr_reg[4],

| fsr_reg[3],

Ifsr_reg[0] ~ Ifsr_reg[2],

| fsr_reg[0] ™ Ifsr_reg[1]};

/1 update on reads that miss the L2-cache

assign event_in = ec_|It_cs_r_dl & ~ec_It_we_r_dl1 &
~lt_ec_hit_mss_dl

dffire #(5) f _Ifsr (Ifsr_reg, Ifsr_in, reset, event_in, clk);
assign rand_out ={ Ifsr_reg[1l] & |fsr_reg[0],
Ifsr_reg[1] & ~Ifsr_reg[O0],

~lfsr_reg[1] & Ifsr_reg[O0],
~lfsr_reg[1] & ~Ifsr_reg[0]};

endnodul e

204 UltraSPARC llli Processor User's Manual * June 2003

9.1.6

L2-Cache Locking

Networking applications get performance boost if the interrupt code is in the L2-cache.
Therefore, software can have guaranteed latency to certain critical data and instructions. The
UltraSPARC I1Ii processor supports way blocking, that is, software can enable/disable a way
to take part in replacement strategy. Software could initialize a way with L2-cache diagnostic
writes and then prohibit this way from the replacement algorithm.

Software flushes a particular line in L2-cache even if it is locked, if it desires to do so by
issuing the ASI _ECACHE_FLUSH instruction.

Note — If software blocks all four ways of the L2-cache, then the ECU will behave as if
only way 0 is blocked.

9.2

Cache Flushing

Data in the write-invalidate or write-through caches can be flushed by invalidating the entry
in the cache. Modified data in the L2-cache and W-cache must be written back to memory
when flushed.

Cache flushing is required in the following cases:

A D-cache flush is needed when a physical page is changed from (virtually) cacheable to
(virtually) non-cacheable, or an illegal address aliasing is created (see Section 9.2.1
“Address Aliasing Flushing” on page 206). This is done using ASI 0x42,

ASI _DCACHE_| NVALI DATE, which specifies a physical address to flush, like for a
system bus snoop.

L2-cache flush is needed for stable storage. This is done with either a

ASI _ECACHE_FLUSH or a store with ASI _BLK_COMM T. Flushing the L2-cache will
flush the corresponding blocks from the W-cache. See Section 9.2.2 “Committing Block
Store Flushing” on page 206.

L2-cache, D-cache, prefetch cache, and I-cache flushes may be required when an ECC
error occurs on a read from the memory or the L2-cache. When an ECC error occurs,
invalid data may be written into one of the caches and the cache lines must be flushed to
prevent further corruption of data.

Note — When flushing a single 64-byte line, with a given PA, there are sixteen locations that
must be flushed in the D-cache. This is because it has 32-byte lines (two places), one VA
index bit (two places), and the PA can simultaneously exist in all four ways of a set (four
places).

Chapter 9 Caches and Coherency 205

9.2.1

9.2.2

206

Address Aliasing Flushing

A side-effect inherent in a virtual-indexed cache is illegal address aliasing. Aliasing occurs
when multiple virtual addresses map to the same physical address.

Caution — Since the D-cache is indexed with the virtual address bits and is larger than the
minimum page size, it is possible for the different aliased virtual addresses to end up in
different cache blocks. Such aliases are illegal because updates to one cache block will not
be reflected in aliased cache blocks. (There are corner cases where the same cache block can
end up in different ways, within the same set (index); the hardware will update all ways
within a set that have the line.)

Normally, software avoids illegal aliasing by forcing aliases to have the same address bits
(virtual color) up to an alias boundary. The minimum alias boundary is 16 KB.

When the alias boundary is violated, software must flush the D-cache if the page was
virtually cacheable. In this case, only one mapping of the physical page can be allowed in the
D-MMU at a time.

Alternatively, software can turn off the virtual caching of illegally aliased pages. This allows
multiple mapping of the alias to be in the D-MMU and avoids flushing the D-cache each time
a different mapping is referenced.

Note — A change in virtual color when allocating a free page does not require a D-cache
flush, because the D-cache is write through.

Committing Block Store Flushing

Stable storage must be implemented by software cache flush. Examples of stable storage are
battery-backed memory and a transaction log. Data which is present and modified in the
L2-cache or the W-cache must be written back to the stable storage.

Two ASIs (ASI _BLK_COVM T_PRI MARY and ASI _BLK_COVM T_SECONDARY)
perform these write backs efficiently when software can ensure exclusive write access to the
block being flushed. These ASIs write back the data from the floating-point registers to
memory and invalidate the entry in the cache. The data in the floating-point registers must
first be loaded by a block load instruction. A MEMBAR #Sync instruction can be used to
ensure that the flush is complete.

UltraSPARC llli Processor User's Manual * June 2003

9.2.3

L2-Cache Flushing

L2-cache flushing may also be accomplished by ASI loads (ASI _ECACHE_FLUSH). This is
done by reading a range of addresses that map to the corresponding cache line in a particular
way being flushed, forcing out modified entries in the local cache. The load ASI physical
address will be the same as its virtual address, and will cause a miss if the line it is intended
to replace is in a valid state (M/O/E/S) in the L2-cache. If the line is modified (M/O), the
data will also be forced out to memory. The hardware will guarantee a read miss to the way
accessed by the ASI even if there is a hit in any of the other ways. The fetched line will be
installed in the Invalid state (I) in the L2-cache.

Note — Diagnostic ASI accesses to the L2-cache can be used to invalidate a line, but they
are not an alternative to above type of flushing. Modified data in the L2-cache will not be
written back to memory using these Diagnostic ASI accesses (these are destructive flushes).

L2-cache flush operation is performed by accessing ASI 0x4E (ASI _ECACHE_FLUSH).
This ASI can be accessed only by a privileged instruction. A privileged action trap if
PSTATE. PRI V not set. The L2-cache flush ASI format is illustrated in FIGURE 9-1 and
described in TABLE 9-1.

- | — | — |ecwali] — [ec_ac_apoR _
63 41 40 36 35 34 33 32 31 30 18 17 6 5 0
FIGURE 9-1 L2-Cache Flush ASI Format
TABLE 9-1 L2-Cache Flush ASI Format
Bit Field Description
63:43 — Reserved. Set to 0.
42:41 — Reserved. Set to 0. Makes sure that the victimizing read is treated as a
cacheable space.
40:36 — Reserved
35:34 — Reserved.
33:32 EC_WAY L2 Way Selection
31 — Reserved. Set to 1.
30:18 — Reserved. Set to 0.
17:6 EC_TAG_ADDR [Index into the L2-cache
5:0 — Reserved. Set to 0.

A load using the L2-cache Flush ASI can be used to flush a L2-cache line with
EC_TAG_ADDR supplying the index and EC_WAY providing the required way.

Chapter 9 Caches and Coherency 207

The loads will not generate a miss in L2-cache if there is no dirty data in the associated
set/way. However, they will cause a miss if there is dirty data to be flushed (the W-cache data
will be merged with L2-cache data if needed). The returned data for this load miss will be
installed in an invalid state. A store to this ASI will execute like a NOP.

Clean (S or E) lines are invalidated immediately. There is no JBUS read.

The VA<42:0> is used directly to create the PA<42:0> used for the read that goes out to
JBUS (as an RDS).

PA<33:0> is used for the DRAM at each memory controller. PA<33:32> is used for the Chip
Select decode, and not all encodings may point to a DIMM in a system. Therefore, it is not
possible to create an address that will definitely read from a DRAM.

The read will receive AFSR.JETO if a nonexistent port is used in the address, causing a fatal
error (system reset).

The read will not receive AFSRTO if the DRAM does not exist on a valid port. Flush
completes normally. Unknown data is installed in the invalid state.

It is possible to log UE/FRU/RUE or CE/FRC/RCE due to the DRAM read, if DRAM exists
at the address created by hardware. (A read is done to create a displacement flush.) If this
happens, the processor traps like a normal read that triggered these errors.

In a multiprocessor system, the target address must point to your own ID, because as a
destination, the UltraSPARC IIIi processor cannot tolerate having to return multiple read
error packets to different masters around the same time (the system will hang). By pointing
to your own ID, a JBUS read error packet is not used. However, note that the address does
not need to point to valid DRAM.

It is possible that the JBUS read address may actually be in another processor’s cache. The
data will be correctly returned from that cache. Since a JBUS RDS is used, any write
permission will be removed at that cache (M to O). If the line was E, it will be reduced to S
state in other caches. It is possible that such a cache read could cause an L2-cache error to be
logged by that other processor.

Note — Since the I-cache, D-cache, and P-cache are non-inclusive, flushing the L2-cache
has no affect on them, and they may need to be flushed separately. The W-cache is inclusive,
and gets flushed with the L2-cache, if necessary.

9.3

208

Controlling P-Cache

This section clarifies the use of DCUCR.PE, DCUCR HPE, and DCUCR.SPE bits.

UltraSPARC llli Processor User's Manual * June 2003

Note — Block loads do not cause installs into the P-cache. They are also not allowed to hit
on the P-cache and, therefore, never triggers hardware prefetch.

Non-cacheable address space never installs in P-cache or L2-cache, unless a software
prefetch is done specifically to the non-cacheable address (should be followed by a prefetch
invalidate to that address, after using the data).

TABLE 9-2 Explanation of P-cache control bits

FP load miss

Hardware Software (32B) installed FP loads checked
DCUCR. DCUCR. DCUCR. Prefetch Prefetch in the for P-Cache
PE HPE SPE Enabled? Enabled? P-Cache? hit/miss?
0 X X no no no no
1 0 0 no no no yes
1 0 1 no yes no yes
1 1 0 yes no yes yes
1 1 1 yes yes yes yes

9.4

9.4.1

Translation Lookaside Buffers (TLBs)

The Instruction TLB has a 16-entry, fully-associative TLB to hold entries for 64 KB, 512 KB,
4 MB pages, and all locked pages of any size, and a 128-entry, 2-way associative TLB is used
for the unlocked 8 KB pages.

The Data TLB has a 16-entry, fully-associative TLB to hold entries for unlocked 8 KB,
64 KB, 512 KB, 4 MB pages, and all locked pages, and two 512-entry, 2-way associative
TLBs used for unlocked 8 KB, 64 KB, 512 KB, or 4 MB pages.

TLB Flushing

A demap-all operation that removes all unlocked TTEs has been added to both the I-TLBs
and D-TLBs.

Chapter 9 Caches and Coherency 209

9.4.2

9.4.3

9.4.4

9.4.5

210

TTE Format

The UltraSPARC I11i processor now has the additional elements in the TTE format:

Physical Address field was expanded from 28 bits (PA<40:13>, TTE<40:13>) to 30 bits
(PA<42:13>, TTE<42:13>)

A snoop bit was added to mark a page as outside the coherence domain (TTE<47>)

Synchronous Fault Status Register (SFSR) Extensions

One status bit has been added to the I/D-TLB SFSRs:

NF — Set to indicate the faulting operation was a speculative load instruction

A new fault type was added to the FT field of the SFSR to indicate an I/D-TLB miss.

I/D Translation Storage Buffer Register

Three new register extensions of the I/D-TSB register have been added to the

UltraSPARC I1Ii processor. These registers allow a different TSB virtual address base to be
used for each of the three virtual address spaces (Primary, Secondary, Nucleus) in the D-TLB
and two virtual address spaces (Primary, Nucleus) in the I-TLB. On an

I/D-TLB miss it selects which TSB Extension Register to use to form the TSB base address
based on the virtual space accessed by the faulting instruction.

TLB Data Access Register

The access address for the TLB Data Access Register has been expanded to enable access to
three TLBs each with up to 512 entries.

Warning — Under some circumstances a diagnostic read from the fully associative TLBs
(ASI _DTLB_DATA_ACCESS_REG (ASI =0x5D) and ASI _| TLB_DATA ACCESS_REG
(ASI = 0x55) will return wrong data. Software should read the fully associative TLB Entry
twice, back-to-back. The second access will return correct data.

UltraSPARC llli Processor User's Manual * June 2003

945.1

9452

9.4.6

Special Case for Data TLBs

If after any memory access instruction that misses TLB is followed by a read (LDXA from
ASI _DTLB_DATA_ACCESS_REG, that is, ASI = 0x5d) access from fully associative TLBs
and the accessed TTE has page size set to 64KB/512KB/4MB then data returned from TLB

will be wrong.

Special Case for Instruction TLBs

If after any instruction that misses instruction TLB is followed by a read (LDXA from

ASI _| TLB_DATA_ACCESS_REG, that is, ASI =0x55) access from fully associative TLBs
and the accessed TTE has page size set to 64KB/512KB/4MB then data returned from TLB
will be wrong.

TLB Diagnostic Register

This is a new register to replace the function of the diagnostic bits in the TTE.

Chapter 9 Caches and Coherency 211

212 UltraSPARC llli Processor User's Manual * June 2003

SECTION V

Supervisor Programming

June 2003 Section V « Supervisor Programming « 213

214 UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 1 0

Interrupt Handling

Processors and 1/0 devices can interrupt a selected processor by assembling and sending an
interrupt packet consisting of eight 64-bit words of interrupt vector data. The contents of
these data are defined by software convention. Thus, hardware interrupts and cross-calls can
have the same hardware mechanism for interrupt delivery and can share a common software
interface for processing.

The interrupt requesting/receiving mechanism is a two-step process: the sending of an
interrupt request on a vector data register to the target and the scheduling of the received
interrupt request on the target upon receipt.

An interrupt request packet is sent by processors or I/O devices through the interrupt vector
dispatch mechanism and is received by the specified target through the interrupt vector
receive mechanism. Upon receipt of an interrupt request packet, a special trap is invoked on
the target processor. The trap handler software invoked in the target processor then schedules
the interrupt request to itself by posting the interrupt into SOFTI NT register at the desired
interrupt level.

Note that the processor may not send an interrupt request packet to itself through the
interrupt dispatch mechanism. Separate sets of dispatch (outgoing) and receive (incoming)
interrupt data registers allow simultaneous interrupt dispatching and receiving.
Different aspects of interrupt handling are described in the following sections:

Interrupt Vector Dispatch

Interrupt Vector Receive

Interrupt Global Registers

Interrupt ASI Registers

Software Interrupt Register (SOFTINT)

215

10.1

216

Interrupt Vector Dispatch

To dispatch an interrupt or cross-call, a processor or I/O device first writes to the outgoing
Interrupt Vector Data Registers according to an established software convention, described
below. A subsequent write to the Interrupt Vector Dispatch Register triggers the interrupt
delivery. The status of the interrupt dispatch can be read by polling the

ASI _I NTR_DI SPATCH_STATUS BUSY and NACK bits. A MEMBAR #Sync should be used
before polling begins to ensure that earlier stores are completed. CODE EXAMPLE 10-1 shows
the pseudo-code sequence that sends an interrupt.

BUSY and NACK bits of the Interrupt Vector Dispatch Status Register, listed in TABLE 10-1,
indicate the status of the interrupt dispatched.

TABLE 10-1 BUSY and NACK Bits of Interrupt Vector Dispatch Register

BUSY NACK Status

0 0 Interrupt dispatch successful
1 0 Interrupt dispatch pending

0 1 Interrupt dispatch failed

The ASI _I NTR_DI SPATCH_STATUS Register contains four pairs of BUSY/NACK bit pairs
enabling interrupts to be pipelined. Specifying a unique pair of BUSY/NACK bits used for
each interrupt when writing, the Interrupt Dispatch Register enables up to four interrupts to
be outstanding at one time.

Note — The processor may not send an interrupt vector to itself through outgoing interrupt
vector data registers. Doing so causes undefined interrupt vector data to be returned.

CODE EXAMPLE 10-1 Code Sequence for Interrupt Dispatch

Read state of ASI_I NTR DI SPATCH STATUS; Error if BUSY
<no pendi ng interrupt dispatch packet>
Repeat

Begi n atom ¢ sequence(PSTATE.|IE ~ 0)

Store to |V data reg 0 at ASI_INTR W VA=0x40 (optional)
at ASI _INTR_W VA=0x48 (optional)
at ASI _I NTR_.W VA=0x50 (optional)
at ASI _I NTR_ W VA=0x58 (optional)
at ASI _|INTR_W VA=0x60 (optional)
at ASI _I NTR_.W VA=0x68 (optional)
at ASI _I NTR_W VA=0x80 (optional)

Store to IV data reg
Store to |V data reg
Store to IV data reg
Store to IV data reg
Store to |V data reg
Store to IV data reg

o O WDN PP

UltraSPARC llli Processor User's Manual * June 2003

CODE EXAMPLE 10-1 Code Sequence for Interrupt Dispatch (Continued)

Store to IV data reg 7 at ASI_INTR W VA=0x88 (optional)
Store to |V dispatch at ASI_I NTR_ W VA<63: 29>=0,
VA<28: 24>=BUSY/ NACK bit #, VA<23: 14>=| TI D,
VA<13: 0>=0x70 initiates interrupt delivery
Menbar #Sync (wait for stores to finish)
Pol | state of ASI_I NTR DI SPATCH STATUS (BUSY, NACK)
Loop if BUSY

End atoni c sequence(PSTATE. |E ~ 1)

DONE i f ! NACK

(Retry after random del ay i f NACKED)
Until DONE

Note — To avoid deadlocks, enable interrupts for some period before retrying the atomic
sequence. Alternatively, implement the atomic sequence with locks without disabling
interrupts.

10.2 Interrupt Vector Receive

When an interrupt is received, all eight Interrupt Data Registers are updated, regardless of
which are being used by software. This update is done in conjunction with the setting of the
BUSY bit in the ASI _| NTR_RECEI VE register. At this point, the processor inhibits further
interrupt packets from the system bus. If interrupts are enabled (PSTATE. | E = 1), then an
interrupt trap (trap type 60,¢4) is generated. Software reads the ASI _| NTR_RECEI VE
register and Incoming Interrupt Data Registers to determine the entry point of the appropriate
trap handler. All of the external interrupt packets are processed at the highest interrupt
priority level and are then reprioritized as lower-priority interrupts in the software handler.
CODE EXAMPLE 10-2 illustrates interrupt receive handling.

CODE EXAMPLE 10-2 Code Sequence for an Interrupt Receive

Read state of ASI_I NTR RECEIVE, Error if !BUSY

at ASI_SDB INTR_R, VA=0x40 (optional)
at ASI_SDB INTR_R, VA=0x48 (optional)
at ASI _SDB | NTR_R, VA=0x50 (optional)
at ASI_SDB INTR_R, VA=0x58 (optional)
at ASI_SDB INTR_R, VA=0x60 (optional)
at ASI _SDB | NTR_R, VA=0x68 (optional)

Read from |V data reg
Read from |V data reg
Read from |V data reg
Read from |V data reg
Read from |V data reg
Read from |V data reg

a pd» W N = O

Chapter 10 Interrupt Handling 217

CODE EXAMPLE 10-2 Code Sequence for an Interrupt Receive (Continued)

Read from |V data reg 6 at ASI_SDB INTR R, VA=0x80 (optional)
Read from |V data reg 7 at ASI_SDB_INTR_ R, VA=0x88 (optional)
Det ermi ne the appropriate handl er

Handl e interrupt or reprioritize this trap and

set the SOFTINT register
Store zero to ASI _| NTR_RECEI VE to clear the BUSY bit

10.3

Interrupt Global Registers

A separate set of global registers is implemented to expedite interrupt processing. As
described in Section 10.2, “Interrupt Vector Receive”, the processor takes an interrupt trap
after receiving an interrupt packet. Software uses a number of scratch registers while
determining the appropriate handler and constructing the interrupt state.

A separate set of eight Interrupt Global Registers (IGRs) replaces the eight
programmer-visible global registers during interrupt processing. After an interrupt trap is
dispatched, the hardware selects the interrupt global registers by setting the PSTATE. | G
field. The previous value of PSTATE is restored from the trap stack by a DONE or RETRY
instruction on exit from the interrupt handler.

10.4

10.4.1

218

Interrupt ASI Registers

MEMBAR #Sync is generally needed after stores to interrupt ASI registers, which avoids
unnecessary effects caused by possible prefetches to the locations with side effect.

Outgoing Interrupt Vector Data<7:0> Register

ASI _I NTR_DATAO_W(data 0): ASI = 77,4, VA<63:0> =40,
ASI _I NTR_DATA1_W(data 1): ASI = 77,5, VA<63:0> =48,
ASI _| NTR_DATA2_W(data 2): ASI = 77,4, VA<63:0> = 50,
ASI _| NTR_DATA3_W(data 3): ASI = 77,4, VA<63:0> =58,
ASI _| NTR_DATA4_W(data 4): ASI = 77,4, VA<63:0> =60,
AS| _| NTR_DATA5_W(data 5): ASI = 77,4, VA<63:0> =68,
AS| _| NTR_DATA6_W(data 6): ASI = 77,4, VA<63:0> =80,
AS| _| NTR_DATA7_W(data 7): ASI = 77,4, VA<63:0> =88,

UltraSPARC llli Processor User's Manual * June 2003

10.4.2

Name: ASI _| NTR_DATA_ W Outgoing Interrupt Vector Data Registers (Privileged, Write-
only)

TABLE 10-2 describes the register field of the eight Outgoing Interrupt Vector Data Registers.

TABLE 10-2 Outgoing Interrupt Vector Data Register Format

Bits Field Type Description
63:0 Dat a w Interrupt data

A write to these eight registers modifies the outgoing Interrupt Dispatch Data Registers.

Non-privileged access to this register causes a privileged_action trap. An attempt to read this
register causes a data_access_exception trap.

Interrupt Vector Dispatch Register

ASI 7716

VA<63:19>=0
VA<18:14> = Target Processor ID
VA<13:0> =704

Name: ASI _| NTR_W(Interrupt dispatch, Privileged, Write-only)

TABLE 10-3 describes the fields of the Interrupt Vector Dispatch Register.

TABLE 10-3 Interrupt Vector Dispatch Register Format

Bits

Field Type Description

VA<18:14>

I TID w Interrupt Target ID. Specifies the interrupt target processor using the BUSY/

NACK bit pair BN, along with the contents of the eight Interrupt Vector Data
Registers. VA<15:14> specifies which of the BUSY/ NACK bit pairs to use for
the interrupt (the lower two bits of Agent/Target ID are direct mapped to BN#).
0x0 in this field selects BUSY/ NACK bits
ASI _| NTR_DI SPATCH_STATUS<1:0>.

0x1 in this field selects BUSY/ NACK bits
ASI| _| NTR_DI SPATCH_STATUS<3:2>.

0x2 in this field selects BUSY/ NACK bits
ASI| _| NTR_DI SPATCH_STATUS<5:4>.

0x3 in this field selects BUSY/ NACK bits
ASI| _| NTR_DI SPATCH_STATUS<7:6>.

If there are more than four processors in the system, software must take care of
aliasing caused by direct mapping of the lower two bits of AGENT IDs.

Chapter 10 Interrupt Handling 219

10.4.3

A write to this ASI triggers an interrupt vector dispatch to the target processor identified with
Interrupt Target ID (I TI D), using BUSY/ NACK bit pair BN along with the contents of the
eight Interrupt Vector Data Registers. Note that the write acts as a trigger; however, the data
for the write is ignored.

A read from the Interrupt Vector Dispatch Register causes a data_access_exception trap.
Non-privileged access to this register causes a privileged_action trap.

Interrupt Vector Dispatch Status Register

ASI 485
VA<63:0>=0
Name: ASI _| NTR_DI SPATCH_STATUS (Privileged, Read-only)

TABLE 10-4 describes the fields of the Interrupt Vector Dispatch Status Register.

TABLE 10-4 Interrupt Dispatch Status Register Format

Bits Field Type Description

<63:8> - - Reserved, read as 0.

1,3,5,7 NACK R Set if interrupt dispatch has failed. Cleared at the start of every interrupt dispatch
attempt; set when a dispatch has failed.

0,2,4,6 BUSY R Set when there is an outstanding dispatch.

220

In the UltraSPARC IIIi processor, four BUSY/NACK pairs are implemented in the Interrupt
Vector Dispatch Status Register.

The status of up to four outgoing interrupts can be read from

ASI _| NTR_DI SPATCH_STATUS BUSY/NACK bits. This register contains up to 4 pairs of
BUSY/NACK bit pairs: the pairs at <1:0>, <3:2>, <5:4>, and <7:6> are referred to as pair 0,
pair 1, pair 2, and pair 3, respectively.

The VA<15:14> field of the Interrupt Dispatch Register specifies which BUSY/NACK bit pair
will be used for the interrupt.

Writes to this ASI cause a data_access_exception trap. Non-privileged access to this register
causes a privileged_action trap.

UltraSPARC llli Processor User's Manual * June 2003

10.4.4

Incoming Interrupt Vector Data<7:0>

ASI _I NTR_R (data 0): ASI = 7F,4, VA<63:0> =40,
ASI _| NTR_R (data 1) ASI = 7F16’ VA<63:0> = 4816
AS| _| NTR_R (data 2): ASI=7F,4, VA<63:0> = 50,4
ASI _I NTR_R (data 3): ASI = 7F,4, VA<63:0> =58,
ASI _I NTR_R (data 4): ASI = 7F 4, VA<63:0> = 60,
ASI _I NTR_R (data 5): ASI = 7F 4, VA<63:0> =68,
AS| _I NTR_R (data 6): ASI = 7F,4, VA<63:0> =804
ASI _I NTR_R (data 7): ASI=7F,4, VA<63:0> =884

Name: ASI _| NTR_R (Privileged, Read-only)

TABLE 10-5 describes the register field of the eight Incoming Interrupt Vector Data Registers.

TABLE 10-5 Incoming Interrupt Vector Data Register Format

Bits

Field Type Description

63:0

Dat a R Interrupt data

A read from these registers returns incoming interrupt information from the incoming
Interrupt Receive Data Registers.

Non-privileged access to this register causes a privileged_action trap.

10.4.5 Interrupt Vector Receive Register
ASI 4944
VA<63:0>=0
Name: AS| _| NTR_RECEI VE (Privileged)
TABLE 10-6 describes the fields of the Interrupt Receive Register.
TABLE 10-6 Interrupt Receive Register Format
Bits Field Type Description
63:6 -- R Reserved. Read as 0.
5 BUSY RW Set when an interrupt vector is received. The BUSY bit must be cleared by software
writing zero.
4:0 SOURCE R Source ID of Interrupter. Accurate when BUSY is set. Source ID is the AID field of
the interrupting agent.
Chapter 10 Interrupt Handling 221

The status of an incoming interrupt can be read from ASI _| NTR_RECEI VE. The BUSY bit
is cleared by writing zero to this register. BUSY bit is also cleared during Power-on Reset.

Non-privileged access to the Interrupt Vector Receive Register causes a privileged_action
trap.

10.5 Software Interrupt Register (SOFTI NT)

To schedule interrupt vectors for processing at a later time, each processor can send itself
signals by setting bits in the SOFTI NT register.

The SOFTI NT register (ASR 16,¢), described in TABLE 10-7, is used for communication from
nucleus (TL > 0) code to kernel (TL = 0) code. Interrupt packets and other service requests
can be scheduled in queues or mailboxes in memory by the nucleus, which then sets

SOFTI NT<r> to cause an interrupt at level <n>.

TABLE 10-7 SOFTINT Register Format

Bits Field Description RW
<16> STICK_INT System Timer interrupt. RW

When the STI CK_CMPR | NT_DI S field is cleared (that is,
STI CK interrupt is enabled) and the 63-bit

STI CK_Conpar e Register’s STI CK_CMPR field matches
the STICK Register’s counter field, the STI CK_I NT field is
set and a software interrupt is generated.

<15:1> | SOFTINT<I15:1> | When set, bits<15:1> cause interrupts with each bit RW
corresponding to levels IRL<15:1>, respectively.
<0> TICK_INT Timer interrupt. RW

When TICK_CMPR’s INT_DIS field is cleared (that is,
TICK interrupt is enabled) and the 63-bit TI CK_Conpar e
Register’s TI CK_CMPR field matches the Tl CK Register’s
counter field, the TI CK_I NT field is set and a software
interrupt is generated.

Non-privileged access to this register causes a privileged_opcode trap.

222 UltraSPARC llli Processor User's Manual * June 2003

10.5.1

10.5.2

Setting the Software Interrupt Register

Setting SOFTI NT<n> is done by a write to the SET_SOFTI NT register (ASR 14¢), with
bit n corresponding to the interrupt level set. The value written to the SET_SOFTI NT
register is effectively ORed into the SOFTI NT register. This approach allows the interrupt
handler to set one or more bits in the SOFTI NT register with a single instruction.

Read accesses to the SET_SOFTI NT register cause an illegal_instruction trap. Non-privileged
accesses to this register cause a privileged_opcode trap.

When the nucleus returns, if (PSTATE. | E = 1) and (n > PI L), then the processor will
receive the highest-priority interrupt IRL<n> of the asserted bits in SOFTI NT<16:0>. The
processor then takes a trap for the interrupt request, and the nucleus sets the return state to
the interrupt handler at that Pl L and returns to TL = 0. In this manner, the nucleus can
schedule services at various priorities and process them according to their priority.

Clearing the Software Interrupt Register

When all interrupts scheduled for service at level n have been serviced, the kernel writes to
the CLEAR_SOFTI NT register (ASR 154) with bit z set, to clear that interrupt. The
complement of the value written to the CLEAR_SOFTI NT register is effectively ANDed
with the SOFTI NT register. This approach allows the interrupt handler to clear one or more
bits in the SOFTI NT register with a single instruction.

Read accesses to the CLEAR_SOFTI NT register cause an illegal_instruction trap. Non-
privileged write accesses to this register cause a privileged_opcode trap.

The timer interrupt TI CK_I NT and system timer interrupt STI CK_I NT are equivalent to
SOFTI NT<14> and have the same effect.

Note — To avoid a race condition between the kernel clearing an interrupt and the nucleus
setting it, the kernel should examine the queue for any valid entries again after clearing the
interrupt bit.

TABLE 10-8 summarizes the SOFTI NT ASRs.

TABLE 10-8 SOFTI| NT ASRs

ASR Value ASR Name Type Description

1416 SET_SOFTI NT w Sets bit(s) in Soft Interrupt Register.
154 CLEAR_SOFTINT | W Clears bit(s) in Soft Interrupt Register.
1616 SOFTI NT RW Per-processor Soft Interrupt Register.

Chapter 10 Interrupt Handling 223

224 UltraSPARC llli Processor User's Manual * June 2003

secTiON VI

Performance Programming

June 2003 Section VI « Performance Programming « 225

226 UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 11

Performance Instrumentation

Performance instrumentation consists of processor event counters that can be used to gather
statistics during program execution. Approximately 70 events can be monitored, two at a
time, to gain information about the performance of the processor. Cache miss counts and stall
times, for example, can be measured using two, 32-bit Performance Instrumentation Counters
(PI Gs). Some event counting can be synthesized from the event counters available to provide
additional program execution statistics.

The counters can be monitored during program execution to gather on-going statistics or
reconfigure during steady-state program execution to gather statistics for more than two
events.

The Performance Control Register (PCR) is used to select the events to monitor and provide
control for counting in privileged and/or non-privileged modes.

Each of the two 32-bit performance instrumentation counters (Pl C), PI CL, and Pl CU, can
accumulate over four billion events before wrapping. Event logging counts can be extended
by periodically reading contents of the performance instrumentation counters to detect and
avoid an overflow. An interrupt can be enabled on a counter overflow. Additional event or
stall cycle statistics can be collected by reading the Pl C counts between repeated program
executions.
This chapter describes the performance instrumentation features in the following sections:

Section 11.1, “Performance Control Register (PCR)”

Section 11.2, “Performance Instrumentation Counter (PIC) Register”

Section 11.3, “Performance Instrumentation Operation”

Section 11.4, “Pipeline Counters”

Section 11.5, “Cache Access Counters”

Section 11.6, “Memory Controller Counters”

Section 11.7, “Miscellaneous Counters”

Section 11.8, “PCR.SL and PCR.SU Encodings”

227

Supervisor/User Mode

Access to the PCR is restricted to supervisor software. User software accessing the PCR
causes a privileged_opcode trap.

Supervisor software controls user accessibility to the Pl C counters through the PCR. PRI V
field. When PCR. PRI V =1 (supervisor access only), an attempt by user software to access
the Pl Cregister causes a privileged_action trap. By default, PCR. PRI V= 0. In this default
state, the Pl C register is accessible to user software.

In Supervisor/User configuration, the mode in which the counters are enabled to count is
controlled by setting the PCR. UT (User Trace) and PCR. ST (System Trace) bits.

11.1 Performance Control Register (PCR)

The 64-bit PCR and PI C are accessed through read/write Ancillary State Register (ASR)
instructions (RDASR/MRASR). PCR and PI C are located at ASRs 16 (10,4) and 17 (11),
respectively.

Two events can simultaneously be measured by setting the Pl C_SL and Pl C_SU fields. The
counters can be enabled separately for Supervisor and User mode using UT and ST fields.
The selected statistics are reflected during subsequent accesses to the Pl Cs.

The PCR is a read/write register used to control the counting of performance monitoring
events. FIGURE 11-1 shows the details of the PCR and TABLE 11-1 describes the various fields
of the PCR. Counts are collected in the Pl C register (see Section 11.2 “Performance
Instrumentation Counter (PIC) Register” on page 230”).

PCR - Performance Control Register ASR Reqgister

The PCR selects the events and controls the operating modes of the Performance Instrumentation
Counters (PICs).

ASR 1649 64-bit Read/Write Privileged Mode, otherwise Reset:
privileged_action trap. 0x0000.0000

FIGURE 11-1 Performance Control Register

228 UltraSPARC llli Processor User's Manual * June 2003

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 4140 39 38 37 36 35 34 33 32

arch reserved mP reserved
1 L 1 L 1 L 1 1 1 1 1 1 L 1 1 1 L 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

arch reserved
i i i L

——
mP reserved SU SL

L i i i L i i i i
arch reserved J mP reserved J\
UT (user trace)

ST (supervisor trace)
PRIV (privileged)

TABLE 11-1 PCR Bit Description

Bit Field Description

16:11 SuU Selects 1 of up to 64 counters accessible in the upper half (bits <63:32>) of
the PI C register.

9:4 SL Selects 1 of up to 64 counters accessible in the lower half (bits <31:0>) of
the PI Cregister.

2 ur User Trace Enable.

If set to one, counts events in non-privileged mode (User).
1 ST System Trace Enable.
If set to one, counts events in privileged mode (Supervisor).
Notes:
If both PCR. UT and PCR. ST are set to one, all selected events are counted.
If both PCR. UT and PCR. ST are zero, counting is disabled.
PCR. UT and PCR. ST are global fields which apply to both Pl C pairs.

0 PRI V Privileged. If PCR. PRI V =1, a non-privileged (PSTATE. PRI V = 0)
attempt to access Pl C (viaa RDPI C or WRPI C instruction) will result in a
privileged_action exception.

63:48 — Reserved by SPARC architecture.

31:27 Read zero, Write zero, or Write value read previously.

10

47:32 — Unused in the UltraSPARC Il1i processor.

26:17 Read zero, Write zero, or Write value read previously.

3

Chapter 11

Performance Instrumentation 229

11.2 Performance Instrumentation Counter (PIC)
Register

The difference between the values read from the Pl C on two reads reflects the number of
events that occurred between register reads. Software can only rely on read-to-read Pl C
accesses to get an accurate count and not a write-to-read of the Pl C counters. Every time the
select values (PCR.SU or PCR.SL) are changed, the Pl C register is reset and starts counting
from zero. If there is a context switch, it is the responsibility of software to save the previous
PCR and PI C values. FIGURE 11-2 shows the details of the Pl C and TABLE 11-2 describes the
various fields of the PI C.

PIC - Performance Instrumentation Counter register ASR Register

The PIC register provides access to the counter values for the two events being monitored.

ASR 1749 64-bit Read/Write Accessibility depends on Reset:
Note: Writes are PCRPRIV hit: 0x0000.0000
designed for 0 = accessible in any mode
diagnostic and test | 1 = accessible in Supervisor Mode,
purposes. otherwise privileged_action trap

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 4140 39 38 37 36 35 34 33 32
— T T T T T T L e S E s e S e E e B e e L
PICU

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

PICL

FIGURE 11-2 Performance Instrumentation Counter Register

TABLE 11-2 PIC Register Fields

Bit Field Description

63:32 Pl CU 32-hit field representing the count of an event selected by the SU field of
the Performance Control Register (PCR)

31.0 PI CL 32-hit field representing the count of an event selected by the SL field of
the Performance Control Register (PCR)

230 UltraSPARC llli Processor User's Manual * June 2003

11.2.1

PIC Counter Overflow Trap Operation

When a PIC counter overflows, an interrupt is generated as described in TABLE 11-3.

TABLE 11-3 PIC Counter Overflow Processor Compatibility Comparison

Function Description

On overflow, a counter wraps to zero, SOFTI NT register bit 15 is set to one, and an
interrupt_level_15 trap (a disrupting trap). The counter overflow trap is triggered on
the transition from value FFFF FFFFg to value 0.

The point at which the interrupt is delivered may be several instructions after the
instruction responsible for the overflow event. This situation is known as a “skid.”

PIC Counter
Overflow

11.3

11.3.1

11.3.2

Performance Instrumentation Operation

shows how an operating system might use the performance instrumentation features to
provide event monitoring services. Setup the PCR register as desired to select two events and
in which modes data should be collected. The monitoring must consider the real effects of
the computer that includes calls to the system and interrupts. When used, the PCR register is
considered part of a process state and must be saved and restored when switching process
contexts.

Multiple data collection times can be done while the program executes to show on-going
statistics.

Gathering Data for More Than Two Events

When more than two events need to be monitored, the program, program sequence, or
program loop need to be run again with the new events enabled. It is not possible to monitor
more than two events at any given time.

Gathering Data in Privileged and Non-Privileged
Modes

The PCR has mode bits to enable the counters in privileged mode, non-privileged mode, or to
count when in either mode. The mode setting affects both counters.

Chapter 11 Performance Instrumentation 231

FOR ILLUSTRATIVE
PURPOSES ONLY

v v
set up PCR context switch to B
hi_select_value -~ PCR.SU PCR - [savePCR]
low_select_value - PCR.SL
0.1] - PCRUT PIC - [savePIC]
[0,1] -~ PCR.ST PIC - r[rd]
[0,1] -~ PCR.PRIV
0 - PIC L
PIC - r[rd]
> <€ switch to context B
A
T
accumulate stat |
in PIC L
back to context A
' v
PIC — rrd] context switch to A
[savePCR] - PCR
[savePIC] - PIC
PIC - r[rd]
Yes L]
No
No Yes

FIGURE 11-3 Operational Flow Diagram for Controlling Event Counters

232 UltraSPARC llli Processor User's Manual * June 2003

11.3.3

11.3.4

Performance Instrumentation Implementations

Counting events and cycle stalls are sometimes complex because of the dynamic conditions
and cancelled activities.

Performance Instrumentation Accuracy

The performance instrumentation counters are designed to provide reasonable accuracy
especially when used to count hundreds or thousands of events or stall cycles or when
comparing the PIC counts that have recorded a similar number of events or stall cycles.
Accuracy is most challenging when trying to associate an event to an instruction and when
comparing PIC counts with one count rarely occurring.

When using the overflow trap, it is sometimes difficult to pinpoint the instruction that is
responsible for the overflow because of the way the pipeline is designed. A delay of several
instructions is possible before the overflow is able to stop the current instruction flow and
fetch the trap vector. This delay is referred to as skid and can occur for dozens of clock
cycles. The skid for the load miss detection case is small. The skid value cannot be measured
and its length depends on what event or stall cycle is being measured and what other
instructions are in the pipeline.

11.4

11.4.1

Pipeline Counters

Instruction Execution and Processor Clock Counts

The instruction execution count monitors are described in TABLE 11-4 for clock and
instruction execution counts.

TABLE 11-4 Instruction Execution Clock Cycles and Counts

Counter Description

Cycl e_cnt [PICL 00.0000 and PI CU 00.0000]

Counts clock cycles. This counter increments the same as the SPARC-V9
TI CK register, except that cycle counting is controlled by the PCR. UT and
PCR. ST fields.

Instr_cnt [PICL 00.0001 and PICU 00.0001]
Counts the number of instructions completed. Annulled, mispredicted, or
trapped instructions are not counted.

Chapter 11 Performance Instrumentation 233

Synthesized Clocks Per Instruction (CPI)

The cycle and instruction counts can be used to calculate the average number of instructions
completed per cycle: Clock cycles per instruction, CPl =Cycl e_cnt /I nstr_cnt.

11.4.2 [IU Event Counts

The counters listed in TABLE 11-5 record branch prediction event counts for taken and
untaken branches in the Instruction Issue Unit (IIU). A retired branch in the following
descriptions refers to a branch that reaches the D-stage without being invalidated.

TABLE 11-5 Counters for Collecting IIU Statistics

Counter Description

IU_Stat_Br_m ss_taken [PICL 01.0101] Counts retired branches that were
predicted to be taken, but in fact were not taken.

U Stat_Br_m ss_untaken |[PICU 01.1101] Counts retired branches that were
predicted to be untaken, but in fact were taken.

I U_Stat_Br_Count _taken [PICL 01.0110] Countsretired taken branches.

I U_Stat_Br_Count_untaken [[PICU 01.1110] Counts retired untaken branches.

11.4.3 ITU Dispatch Stall Counts

IIU stall counts, listed in TABLE 11-6 on page 235, are the major cause of pipeline stalls
(bubbles) from the instruction fetch and decode pipeline. Stalls are counted for each clock
cycle at which the associated condition is true.

FIGURE 11-4 illustrates the first two considerations described in Section 11.4.3.1.

11.4.3.1 Dispatch Counter Considerations

1. Dispatch Counters count when the buffer is empty, regardless of whether the execution
pipeline can accept more instructions from the instruction queue.

2. It is difficult to associate an empty queue. Various reasons taken together or separately can
cause the instruction queue to be empty. The hardware picks the most recent disruptive event
that is in the Fetch Unit to choose a counter to assign the empty queue cycles.

234 UltraSPARC llli Processor User's Manual * June 2003

3. Count accuracy is also subject to the conditions described for all counters in the
Section 11.3.4 “Performance Instrumentation Accuracy” on page 233.”

Dispatch Counter Considerations

Fetch Unit

Instruction Ex_ecu_tion
Queue Pipeline

v

v

Stall Cycles

Stall Cycles due to incoming delays are determined from the dispatch
counters that count clock cycles when the queue is empty (empty cycles).

Dispatch Counters

FIGURE 11-4 Dispatch Counters

TABLE 11-6 Counters for IIU Stalls

Counter

Description®

Di spatchO_I C_mi ss

[PICL 00.0010] Countsthe stall cycles due to the event that no
instructions are issued because |-queue is empty from instruction cache
miss. This count includes L2-cache miss processing if a L2-cache miss
also occurs.

Di spat chO_mi spred

[PI CU 00.0010] Counts the stall cycles due to the event that no
instructions are issued because I-queue is empty due to branch
misprediction.

Di spat chO_br _t ar get

[PICL 00.0011] Countsthe stall cycles due to the event that no
instructions are issued because |-queue is empty due to a branch target
address calculation.

Di spat chO_2nd_br

[PICL 00.0100] Countsthe stall cycles due to the event of having
two branch instructions line-up in one 4-instruction group causing the
second branch in the group to be refetched, delaying its entrance into

the I-queue.

Di spatch_rs_m spred

[PICL 01.0111] Counts the stall cycles due to the event that no
instructions are issued because the I-queue is empty due to a Return
Address Stack misprediction.

1. See Section 11.4.3.1 “Dispatch Counter Considerations’ on page 234 for important

information.

Chapter 11

Performance Instrumentation 235

11.4.4

11.4.5

236

R-stage Stall Counts

Stalls are caused by dependency checks (data not ready for use by the instruction ready for
dispatch) and by resources not being available (out-of-pipeline execution units needed, but

are in-use).

The counters in TABLE 11-7 count the stall cycles at the R-stage of the pipeline. Stalls are
counted for each clock at which the associated condition is true.

TABLE 11-7 Counters for R-stage Stalls

Counter

Description

Rstal |l _storeQ

[PICL 00.0101] CountsR-stage stall cyclesfor a store instruction which is
the next instruction to be executed, but is stalled due to the store queue being
full, that is, cannot hold additional stores. Up to eight entries can be in the store
queue.

Rstal | _FP_use

[PICU 00.1011] Counts R-stage stall cycles due to the event that the next
instruction to be executed depends on the result of a preceding floating-point
instruction in the pipeline that is not yet available.

Rstall | U use

[PICL 00.0110] Counts R-stage stall cycles due to the event that the next
instruction to be executed depends on the result of a preceding integer
instruction in the pipeline that is not yet available.

Recirculation Stall Counts

Recirculation instrumentation is implemented through the counters listed in TABLE 11-8.

TABLE 11-8 Counters for Recirculation

Counter

Description

Re_DC mi ssovhd?

[PICU 00.0100] Countsthe stall cycles from when a D-cache load
misses (causes a recirculation), but L2-cache hit/miss has not been reported.
Counts portion/overhead of stall cycles due to D-cache load miss from the
point the load reaches D-stage (about to be recirculated) to the point L2-cache
hit/miss for the load is reported.

Re_endi an_mi ss

[NA] Event counter does not exist in the UltraSPARC Illi processor.

Re_RAW ni ss

[PICU 10.0110] Countsstall cycles due to recirculation when thereis a
load in the E-stage which has a non-bypassabl e read-after-write (RAW) hazard
with an earlier store instruction. This condition means that load data are being
delayed by completion of an earlier store. See the Section 8.12 “Read After
Write (RAW) Bypassing” on page 197" for a description of the RAW hazard
and causes of recirculation.

Re_FPU_bypass

[PICU 00.0101] Counts stall cycles due to recirculation when a FPU
bypass condition that does not have a direct bypass path occurs.

Re DC niss

[PICU 00.0110] Counts stall cycles due to loads that miss D-cache and
L 2-cache and get recirculated. Includes cacheable loads only.

UltraSPARC llli Processor User's Manual * June 2003

TABLE 11-8 Counters for Recirculation (Continued)

Counter Description

Re_EC mi ss [PICU 00.0111] Counts stall cycles due to loads that miss D-cache and
L2-cache and get recirculated. Stall cycles from the point when L2-cache miss
is detected to the D-stage of the recirculated flow are counted. Includes
cacheable loads only.

Re_PC m ss [PICU 01.0000] Counts stal cycles due to recirculation when a P-cache
miss occurs on a prefetch predicted second load.

1. See Section 11.5.6 “ Separating D-cache Stall Cycle Counts” on page 240.

11.5

11.5.1

Cache Access Counters

Instruction cache, data cache, prefetch cache, write cache, and L2-cache access events can be
collected through the counters listed in TABLE 11-9. Counts are updated by each cache access,
regardless of whether the access will be used.

Instruction Cache Events

TABLE 11-9 Counters for Instruction Cache Events

Counter Description

I C ref [PICL 00.1000] Counts I-cache references. |-cache references are
fetches (up to four instructions) from an aligned block of eight
instructions. I-cache references are generally speculative and include
instructions that are later cancelled due to mis-speculation.

I C miss [PI CU 00.1000] Counts I-cache misses. Includes fetches from

mis-speculated execution paths which are later cancelled.

I C_mss_cancelled

[PICU 00.0011] Counts I-cache misses cancelled due to
mis-speculation, recycle, or other events.

| TLB m ss

[PICU 01.0001] Counts|-TLB miss traps taken.

Chapter 11

Performance Instrumentation 237

11.5.2 Data Cache Events

TABLE 11-10 describes the counters for D-cache events.

TABLE 11-10 Counters for Data Cache Events

Counter Description

DC rd [PICL 00.1001] Counts D-cache read references (including
accesses that subsequently trap). References to pages that are not
virtually cacheable (TTE CV bit = 0) are not counted.

DC rd_m ss [PICU 00.1001] Counts recirculated loads that miss the D-cache.
Includes cacheable loads only.
DC_wr [PICL 00.1010] Counts D-cache cacheable store accesses

encountered (including cacheable stores that subsequently trap).
Non-cacheable accesses are not counted.

DC wr_m ss [PI CU 00.1010] Counts D-cache cacheable store accesses that miss
D-cache. (Thereis no stall or recirculation on store miss.)
DTLB_mi ss [PICU 01.0010] Counts memory reference instructions which trap

due to aD-TLB miss.

11.5.3 Write Cache Events

TABLE 11-11 describes the counters for W-cache events.

TABLE 11-11 Counters for Write Cache Events

Counter Description

WC_ni ss [PICU 01.0011] Counts W-cache misses.

WC _snoop_cb [PICU 01.0100] CountsW-cache copybacks generated by a snoop
from a remote processor.

WC _scr ubbed [PICU 01.0101] CountsW-cache hits to clean lines.

WC wb_wo_read [PICU 01.0110] CountsW-cache writebacks not requiring a read.

238 UltraSPARC llli Processor User's Manual * June 2003

11.54

11.5.5

Prefetch Cache Events

TABLE 11-12 describes the counters for P-cache events.

TABLE 11-12 Counters for Prefetch Cache Events

Counter Description

PC_Ms_m ss [PICU 01.1111] Counts FP loads through the MS pipeline that miss
P-cache.

PC_soft_hit [PICU 01.1000] Counts FP loads that hit a P-cache line that was
prefetched by a software-prefetch instruction.

PC_hard_hit [PICU 01.1010] Counts FP loads that hit a P-cache line that was

prefetched by a hardware prefetch.

PC_snoop_i nv

[PICU 01.1001] Counts P-cache invalidates generated by a snoop
from a remote processor and stores by alocal processor.

PC port0_rd [PICL 01.0000] CountsP-cache cacheable FP loads to the first port
(general-purpose load path to D-cache and P-cache via MS pipeline).
PC portl_rd [PICU 01.1011] Counts P-cache cacheable FP loads to the second

port (memory and out-of-pipeline instruction execution loads via the AO

and A1 pipelines).

L2-Cache Events

The L2-cache write hit count is determined by subtraction of the read hit and the instruction
hit count from the total L2-cache hit count. The L2-cache write reference count is determined
by subtraction of the D-cache read miss and I-cache misses from the total L2-cache
references. Because of write caching, this is not the same as D-cache write misses.

TABLE 11-13 describes the counter for L2-cache events.

Note — A block load or store access is counted as 8 references. For atomics, the read and
write events are counted individually.

TABLE 11-13 Counters for L2-cache Events

Counter

Description

EC ref

[PICL 00.1100] CountsL2-cache reference events. A 64-byte
reguest is counted as one reference. Includes speculative D-cache load
requests that turn out to be a D-cache hit. Count includes cacheable
accesses only.

EC m sses

[PICU 00.1100] Counts L2-cache miss events sent to the System
Interface Unit. Includes I-cache, D-cache, P-cache, W-cache exclusive
(store), read stream (BLD), write stream (BST) requests that miss
L2-cache. Count includes cacheable accesses only.

Chapter 11

Performance Instrumentation 239

TABLE 11-13 Counters for L2-cache Events (Continued)

Counter Description

EC write_hit_RDO [PICL 00.1101] CountsW-cache exclusive requests that hit
L2-cachein S or O state and thus, do a read-to-own (RDO) bus
transaction.

EC_wb [PICU 00.1101] Countsdirty subblocks that produce writebacks
due to L2-cache miss events.

EC_snoop_i nv [PICL 00.1110] CountsL2-cache invalidates generated from a
snoop by a remote processor.

EC_snoop_cb [PICU 00.1110] Counts L2-cache copybacks generated from a
snoop by a remote processor.

EC rd_mi ss [PICL 00.1111] Counts L2-cache miss events (including atomics)
from D-cache requests. Cacheable D-cache loads only.

EC ic_m ss [PICU 00.1111] Counts L2-cache read misses from I-cache
requests. The counter counts all 1-cache misses including those for
instructions from the mis-speculated execution path. Cacheable requests
only.

11.5.6 Separating D-cache Stall Cycle Counts

The D-Cache stall cycle counts can be measured separately for L2-cache hits and misses by
using the Re_DC_missovhd counter. The Re_DC_missovhd stall cycle counter is used with
the recirculation and cache access events to separately calculate the D-cache loads that hit
and miss the L2-cache. TABLE 11-14 describes the Re_DC_missovhd stall cycle counter
processor compatibility.

TABLE 11-14 Re_DC_missovhd Stall Cycle Counter Processor Compatibility

Function Description

The Re_DC_missovhd cycle stall counter is defined in

Miss Overhead Cycle Monitor TABLE 11-8 and in the equations below.

Synthesizing Individual Hit and Miss Stall Times

To explain the synthesis for L2-cache hit and miss stall times separately, consider the four
stall regions A, B, C, and D shown in FIGURE 11-5 and the definitions and calculations that
follow.

240 UltraSPARC llli Processor User's Manual * June 2003

D-cache misses to L2-cache
D-cache load miss L2-cache Hit/Miss Recirculated load reaches
at D Pipeline stage s reported D Pipeline stage again
L2-cache Hit: A b B
L2-cache Miss: c > D 1 >|
To Ty T T3
Stall Time (clock cycles) >

FIGURE 11-5 D-Cache Load Miss Stall Regions

Definitions:
Re DC_missovhd (stall cycles) = (A + C) stall cycles
Re EC miss(stall cycles) = (D) stall cycles
Re DC_miss (stall cycles) = (A + B + C + D) stall cycles

Fraction of D-cache misses _ MmissL2 _ ECrd miss(events) _ .| 5 Ratio

that miss L2-cache " missD-cache ~ DC_rd_miss (events)

Synthesized Stall Cycle Counts:
(C) stall Cycles=Re DC_missovhd * Miss L2 Ratio
L 2-cache Miss Stall Cycles=(C + D) =(C) + Re_EC_miss
L 2-cache Hit Stall Cycles= (A + B) = Re DC_miss- (C + D)

Chapter 11 Performance Instrumentation 241

11.6 Memory Controller Counters

This section describes the memory controller counters in the UltraSPARC IIIi processor.
Descriptions of counters for the UltraSPARC IIli processor memory controller is shown in
TABLE 11-15.

TABLE 11-15 Memory Controller Counters

Counter Description

MC_r ead_di spat ched [PICL 10.0000] Countsthe number of DDR
64-byte reads dispatched by the MIU.

MC_write_dispatched [PICL 10.0001] Countsthe number of DDR

64-byte writes dispatched by the MIU.

MC read_returned_to_JBU |[PICL 10.0010] Countsthe number of 64-byte
reads that return data to JBU.

MC_nsl _busy_stall [PICL 10.0011] Countsthe number of stall
cycles due to msl_busy.

MC_ndb_over fl ow _stal | [PICL 10.0100] Countsthe number of stall
cycles due to potential memory data buffer overflow.

MC_mi u_spec_request [PICL 10.0101] Countsthe number of
speculative requests accepted by MIU.

MC_open_bank_cnds [PICU 10.0000] Countsthe number of open

bank commands sent to the DDR SDRAM. With
PTB enabled in MCU, thisis PTB miss, no entry in

PTB.

MC_r eads [PICU 10.0001] Countsthe number of DDR
64-byte reads by the MSL.

MC writes [PICU 10.0010] Countsthe number of DDR
64-byte writes by the MSL.

MC_page_cl ose_stal | [PICU 10.0011] Countsthe number of DDR

page conflicts. When there is already a Page
Tracking Buffer (PTB) entry, and a different page in
the same bank needs to be opened, a page close is
needed before opening a new page. Always zero
when PTB is disabled.

242 UltraSPARC llli Processor User's Manual * June 2003

11.7

11.7.1

11.7.2

Miscellaneous Counters

System Interface Events and Clock Cycles

System interface statistics are collected through the counters listed in TABLE 11-16.

TABLE 11-16 Counters for System Interface Statistics

Counter Description

Sl _snoop [PICL 01.0001] Counts snoopsfrom remote processor(s) including RDS,
RDO.

Sl _cig_flow [PICL 01.0010] Counts system clock cycles when the flow control
(DOK/ ACK) is asserted from this processor.

S| _owned [PICL 010011] Countsthe number of timesJ PACK indicating OWNED
is asserted on requests.

Software Events

Software statistics are collected through the counters listed in TABLE 11-17.

TABLE 11-17 Counters for Software Statistics

Counter Description

SWcount O [PICL 01.0100] Counts software-generated occurrences of set hi
%hi (0xfc000), g0 instruction.

SW_count 1 [PICU 01.1100] Counts software-generated occurrences of set hi
%hi (0xfc000), g0 instruction.

Note — Both counters measure the same event; thus, the count can be programmed to be
read from either the Pl CL or the Pl CU register.

Chapter 11

Performance Instrumentation 243

11.7.3

Floating-Point Operation Events

Floating-point operation statistics are collected through the counters listed in TABLE 11-18.

TABLE 11-18 Counters for Floating-Point Operation Statistics

Event Counter

Description

FA_pi pe_conpl etion

[PICL 01.1000]
Floating-Point/Graphics ALU pipelines.

Counts instructions that complete execution on the

FM pi pe_conpl eti on

[PICU 10.0111]

Counts instructions that complete execution on the
Floating-Point/Graphics Multiply pipelines.

11.8 PCR.SL and PCR.SU Encodings

TABLE 11-19 lists PCR. SL and PCR. SL selection bit field encoding. Shaded blocks show SL
and SU field duplications.

TaBLE11-19 PI C. SL and PI C. SU Selection Bit Field Encoding

PCR.SL and

PCR.SU

Encodings PICL Event Selection PICU Event Selection
00.0000 Cycl e_cnt Cycl e_cnt
00.0001 I nstr_cnt I nstr_cnt
00.0010 Di spatchO_I C_mi ss Di spat chO_mi spred
00.0011 Di spat chO_br _t ar get I C_miss_cancel |l ed
00.0100 Di spat chO_2nd_br Re_DC_mi ssovhd
00.0101 Rstal | _storeQ Re_FPU_bypass
00.0110 Rstall _| U use Re _DC mi ss
00.0111 Reserved Re_EC mi ss
00.1000 | C ref I C niss

00.1001 DC rd DC rd_nmiss
00.1010 DC wr DC wr_nmiss
00.1011 Reserved Rstal | _FP_use
00.1100 EC ref EC mi sses
00.1101 EC wite_hit_RDO EC wb

00.1110 EC_snoop_i nv EC_snoop_chb
00.1111 EC rd_m ss EC ic_mss
01.0000 PC portO_rd Re_PC niss
01.0001 Sl _snoop | TLB _m ss
01.0010 Sl _ciqg_flow DTLB_mi ss

244

UltraSPARC llli Processor User's Manual * June 2003

TABLE 11-19 PI C. SL and PI C. SU Selection Bit Field Encoding (Continued)

PCR.SL and

PCR.SU

Encodings PICL Event Selection PICU Event Selection
01.0011 SI _owned WC mi ss

01.0100 SW count O WC snoop_cb

01.0101 | U Stat_Br_m ss_taken WC scrubbed

01.0110 | U Stat_Br_count _taken WC wb_wo_read
01.0111 Di spatch_rs_m spred Reserved

01.1000 FA pi pe_conpl etion PC soft_hit

01.1001 Reserved PC_snoop_i nv

01.1010 Reserved PC hard_hit

01.1011 Reserved PC portl_rd

01.1100 Reserved SW count 1

01.1101 Reserved I U Stat_Br_m ss_unt aken
01.1110 Reserved IU_Stat_Br_count _unt aken
01.1111 Reserved PC_MS_nmi ss

10.0000 MC_r ead_di spat ched MC_open_bank_cnds
10.0001 MC write_dispatched MC_r eads

10.0010 MC read_returned_to_JBU MC wites

10.0011 MC_nsl _busy_stal | MC_page_cl ose_stal |
10.0100 MC_ndb_overfl ow stall Reserved

10.0101 MC_m u_spec_request Reserved

10.0110 Reserved Re RAW_miss

10.0111 Reserved FM_pipe_completion
10.1000 Reserved Reserved

10.1001 Reserved Reserved

10.1010 - Reserved Reserved

11.1111

Chapter 11

Performance Instrumentation

245

246 UltraSPARC llli Processor User's Manual * June 2003

sectioN VII

Special Topics

June 2003 Section VIl « Special Topics « 247

248 UltraSPARC llli Processor User's Manual * June 2003

CHAPTER 12

Reset and RED _state

The UltraSPARC I11i processor can be reset using various mechanisms. This section deals
with the reset and RED_state for the UltraSPARC I11i processor.

12.1

RED _state Characteristics

A processor enters RED_state by one of the two ways:
Trapping when already at the maximum trap level
Setting the PSTATE. RED

When the processor enters RED_state, it will clear the DCU Control Register, including
enable bits for I-cache, D-cache, I-MMU, D-MMU, and virtual and physical watchpoints.

Note — Exiting RED_st at e by writing zero to PSTATE. RED in the delay slot of a JMPL
is not recommended. A non-cacheable instruction prefetch can be made to the JMPL target,
which may be in a cacheable memory area. This condition could result in a bus error on
some systems and cause an instruction_access_error trap. The trap can be masked by setting
the NCEEN bit in the ESTATE_ERR_EN register to zero, but this approach will mask all
non-correctable error checking. Exiting RED_st at e with DONE or RETRY avoids the
problem.

12.2

Resets

Reset priorities from highest to lowest are Power-On Reset (POR), System Reset, Externally
Initiated Reset (XIR), Watchdog Reset (WDR), and Software-Initiated Reset (SIR).

249

12.2.1

12.2.2

250

Power-On Reset

A Power-On Reset (POR) occurs when the J POR_L and J RST_L pins are activated and stay
asserted until the processor is within its specified operating range. During POR, all other
resets and traps are ignored. POR has a trap type of 1 at physical address offset 0x20. Any
pending external transactions are canceled.

After POR, software must initialize values of certain registers and state that is unknown after
POR. The following bits must be initialized before the caches are enabled:

In the I-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

In the D-cache, valid bits must be cleared and microtag bits must be set so that each way
within a set has a unique microtag value.

All L2-cache tags and data.
The I-MMU and D-MMU TLBs must also be initialized.
The P-cache valid bits must be initialized before any floating-point loads are executed.

Caution — Executing a DONE or RETRY instruction when TSTATE is uninitialized after a
POR can damage the chip. The POR boot code should initialize TSTATE<3:0>, using wr pr
writes, before any DONE or RETRY instructions are executed.

However, these operations can only be executed in privileged mode. Therefore, user code is
not at risk of damaging the chip.

System Reset

A System Reset occurs when the J RST_L pin is activated without J_ POR_L.When this pin
is active, all other resets and traps are ignored. System Reset has a trap type of 1 at physical
address offset 0x20. Any pending external transactions are cancelled.

After a system reset, software must initialize the following bits as unknown:

In particular,
The valid and micro-tag bits in the Instruction Cache,
The valid and micro-tag bits in the D-cache,
All L2-cache tags and data must be cleared before enabling the caches.
The I-MMU and D-MMU TLBs must also be initialized.

Memory refresh continues uninterrupted during a System Reset. System interface, L2-cache
configuration, memory controller configuration are preserved across a System Reset.

UltraSPARC llli Processor User's Manual * June 2003

12.2.3

12.2.4

12.2.5

The JBUS clock ratio is unaffected during this reset. Clock PLLs are reset during a
Power-On Reset, but not during a System Reset unless the appropriate bit in the CSR is set
before the System Reset.

There are bits in JIO that software can write to cause a System Reset, or Power-On Reset at
any time. CSRs on the UltraSPARC I11i processor that change clock ratios generally do not
take effect until a System Reset.

Externally Initiated Reset (XIR)

An Externdly Initiated Reset (XIR) is sent to all processors through the XIR transaction on
the JBUS. It causes an XIR defined in SPARC-V9, which has a trap type 0x3 at physical
address offset 0x60. It has higher priority than all other resets except Power-On Reset and
System Reset.

Thisreset (actualy atrap) only affects the processors, rather than the entire system. Memory
state, cache state and most CSR states remain unchanged.

The saved PC and nPC will only be approximations since the trap is not precise with respect
to pipeline state.

Reset due to XIR for the UltraSPARC Il1i processor initiates fetch of instruction code from
Boot PROM, and the memory controller continues to perform refresh cycles in order to
preserve main memory contents.

Watchdog Reset (WDR) and error_state

The processor enters er r or _st at e when atrap occurs at TL = MAXTL.

The processor automatically exits er r or _st at e using WDR. The processor signals itself
internally to take a WDR and sets TT = 2. The WDR traps to the address at

RSTVaddr + 0x40,6. WDR sets the processor in a state where it is prepared for diagnosis of
failures.

WDR affects only one processor, rather than the entire system. CWP updates due to window
traps that cause watchdog traps are the same as the no watchdog trap case.

Software-Initiated Reset (SIR)

A Software-Initiated Reset (SIR) isinitiated by an S| Rinstruction within any processor. This
per-processor reset has a trap type 4 at physical address offset 0x80. SIR affects only one
processor, rather than the entire system.

Chapter 12 Reset and RED_state 251

12.3

RED _state Trap Vector

When a SPARC-V9 processor processes a reset or trap that enters RED_state, it takes a trap
at an offset relative to the RED_state_trap_vector base address (RSTVaddr). The trap offset
depends on the type of RED mode trap and takes the values:

POR 0x20
WDR 0x40
XIR 0x60
SIR 0x80
Other OXAO

In the UltraSPARC I11i processor, the following is the RSTV base address:
Virtual Address: OxFFFF FFFF FOOO 0000
Physical Address, PA[42:0]: Ox7FF FO0O 0000
The UltraSPARC Il1i processor hasa RMTV pin to select a second RSTV to allow use of PC
compatible SuperlO chips on a PCI bus. The following is the second RSTV base address:
Virtual Address: OxFFFF FFFF FFFF 0000
Physical Address, PA[42:0]: Ox7FF FFFF 0000

12.4

252

Initialization and Use of the Return Address
Stack

The need to initialize the various L1-cache and L2-cache states, and MMU states, is well
understood, but in the past the need to initialize other caching devices has been overlooked.
The Return Address Stack (RAS) is one such device. While it is initialized to zero when
RED mode is entered, zeroes may not be an appropriate PA or VA.

Failure Scenario

With the I-MMU off, the RAS can be used to generate a predicated physical address for
prefetch. However, the RAS may have a virtual address in it, from execution while the
I-MMU was enabled. This virtual address is used asis for instruction prefetch and may cause
side-effects at whatever destination it indicates, or other errors.

UltraSPARC llli Processor User's Manual * June 2003

The UltraSPARC 111i processor uses the RAS for prediction for CALL, RETURN, DONE, and
RETRY. The UltraSPARC I1li processor considers RETURN to be a JMPL with an %rsl
equal to %07 (normal subroutine) or %i7 (leaf subroutine).

There are possibly other cases that use RAS for prefetch. For instance, immediately after
writing to the LSU control register to enable the -MMU.

The issue also exists whenever software turns off the I-MMU after executing for awhile with
the I-MMU enabled. This should only happen due to traps to RED mode, for normal
software. There is no problem for the transition of I-MMU off to on, because I-MMU will
block the prefetch address if it is an I-MMU miss, and it will get flushed away when the
prediction is determined to be wrong.

Software Rules

After any reset, trap to RED mode, or transition of the I-MMU from on to off, the 8-level
RAS should be initialized with eight CALL instructions to a valid non-cacheable address
before PSTATE. RED turns off. If the I-MMU is enabled before PSTATE. RED turns off,
there may be no issue to worry about, if VA == 0x0 is unmapped, the prefetch will be
disabled.

The output of the RAS is forced to the Red Mode Trap Vector (RMTV) while

PSTATE. RED == 1. However, the RAS isinitialized to zeroes, so when PSTATE. RED turns
off, the zeroes are used for prediction, and may not be valid addresses (cacheable or
non-cacheable).

12.5 M achine States

TABLE 12-1 shows the machine state created as a result of any reset, or after entering
RED_state.

Chapter 12 Reset and RED_state 253

TABLE 12-1 Machine State After Reset and in RED_st at e (1 of 5)
Power-On
Name Fields Reset System Reset WDR XIR SIR FlED_statei
Integer Registers Unknown Unchanged Unchanged
Floating-Point Registers Unknown Unchanged Unchanged
L2-Cache EC MOSI 1 1 Unchanged
Control Register EC _Pwr_Up 0 0
EC_Act Way++ | 0 0
EC_Block 0 0
EC sizet++ 0 0
EC par_En 0 0
EC_ECC_en 0 0
EC_ECC force |0 0
EC check 0 0
RSTV Vaue If processor pin rmtv = 0 VA=0xffff ffff f000 0000, PA=0x7ff 000 0000 else
VA=0xffff ffff ffff 0000, PA = Ox7ff ffff 0000.
PC RSTV | 0x20| RSTV | 0x20 | RSTV | RSTV | RSTV | RSTV | 0xa0
nPC 0x40 0x60 0x80
RSTV | 0x24| RSTV | 0x24 | RSTV | RSTV | RSTV | RSTV | 0xa4
O0x44 0x64 0x84
PSTATE MM 0 (TSO) 0 (TSO) 0 (TSO)
RED 1(RED_state)| 1(RED_state) | 1(RED_state)
PEF 1(FPU on) |1 (FPU on) 1 (FPU on)
AM 0 (Full 64-bit| O (Full 64-bit | O (Full 64-bit address)
address address
PRIV 1 (Privileged | 1 (Privileged | 1 (Privileged mode)
mode) mode)
IE 0 (Disable | O (Disable 0 (Disable interrupts)
interrupts) interrupts)
AG 1 (Alternate | 1 (Alternate 1 (Alternate globals
globals globals selected)
selected) selected)
CLE O (Current | O (current littleq PSTATE.TLE
little-endian) | endian)
TLE 0 (Trap little-| O (trap little- | Unchanged
endian) endian)
IG 0 (Interrupt | O (Interrupt 0 (Interrupt globals
globals not | globals not not selected)
selected) selected)
MG 0 (MMU 0 (MMU 0 (MMU globals not
globals not | globals not selected)
selected) selected)
TBA<63:15> Unknown Unchanged Unchanged
Y Unknown Unchanged Unchanged
PIL Unknown Unchanged Unchanged

254

UltraSPARC llli Processor User's Manual * June 2003

TABLE 12-1 Machine State After Reset and in RED_st at e (2 of 5)
Power-On

Name Fields Reset System Reset WDR XIR SIR RED_s,tatei
CWP Unknown Unchanged Unchanged except for register window traps
TT[TL] 1 1 Unchanged | 3 4 Trap type
CCR Unknown Unchanged Unchanged
AS| Unknown Unchanged Unchanged
TL MAXTL MAXTL min(TL+1, MAXTL)
TPC[TL] Unknown Unchanged PC PC & ~0x1f| PC
TNPC[TL] Unknown Unchanged nPC nPC=PC+4 | nPC
TSTATE CCR Unknown Unchanged CCR

AS Unknown Unchanged ASI

PSTATE Unknown Unchanged PSTATE

CWP Unknown Unchanged CWP

PC Unknown Unchanged PC

nPC Unknown Unchanged nPC
TICK NPT 1 1 Unchanged | Unchanged | Unchanged

counter Restart at 0 | Restart at 0 Count Restart at 0 | Count
CANSAVE Unknown Unchanged Unchanged
CANRESTORE Unknown Unchanged Unchanged
OTHERWIN Unknown Unchanged Unchanged
CLEANWIN Unknown Unchanged Unchanged
WSTATE OTHER Unknown Unchanged Unchanged

NORMAL Unknown Unchanged Unchanged
VER MANUF 0x003E

IMPL 0x0016

MASK mask dependent

MAXTL 5

MAXWIN 7
FSR All 0 0 Unchanged
FPRS All Unknown Unchanged Unchanged
Non-SPARC-V9 ASRs
SOFTINT Unknown Unchanged Unchanged
TICK_COMPARE INT_DIS 1 (off) 1 (off) Unchanged

TICK_CMPR 0 0 Unchanged
STICK NPT 1 1 Unchanged

counter 0 0 Count
STICK_COMPARE INT_DIS 1 (off) 1 (off) Unchanged

TICK_CMPR 0 0 Unchanged

Chapter 12 Reset and RED_state 255

TABLE 12-1 Machine State After Reset and in RED_st at e (3 of 5)
Power-On
Name Fields Reset System Reset WDR XIR SIR RED_s,tatei
PERF_CONTROL S1 Unknown Unchanged Unchanged
SO Unknown Unchanged Unchanged
UT (trace user) | Unknown Unchanged Unchanged
ST
(trace system) Unknown Unchanged Unchanged
PRIV
(priv access) Unknown Unchanged Unchanged
PERF_COUNTER All Unknown Unknown Unknown
GSR IM 0 0 Unchanged
Others Unknown Unchanged Unchanged
DISPATCH_CONTROL| MS 0 0 Unchanged
Sl 0 0 Unchanged
RPE 0 0 Unchanged
BPE 0 0 Unchanged
OBS 0 0 Unchanged
IFPOE 0 0 Unchanged
Non-SPARC-V9 ASls
DCU_CONTROL WE 0(off) 0(off) Unchanged
All others 0 (off) 0 (off) 0 (off)
INST_BREAKPOINT | All 0 (off) 0 (off) Unchanged
VA_WATCHPOINT Unknown Unchanged Unchanged
PA_WATCHPOINT Unknown Unchanged Unchanged
I-& DMMU_SFSR, AS Unknown Unchanged Unchanged
FT Unknown Unchanged Unchanged
E Unknown Unchanged Unchanged
CTXT Unknown Unchanged Unchanged
PRIV Unknown Unchanged Unchanged
w Unknown Unchanged Unchanged
OW (overwrite) | Unknown Unchanged Unchanged
FV (SFSR valid)| 0 0 Unchanged
NF Unknown Unchanged Unchanged
™ Unknown Unchanged Unchanged
DMMU_SFAR Unknown Unchanged Unchanged
INTR_DISPATCH All 0 0 Unchanged
INTR_RECEIVE BUSY 0 0 Unchanged
SOURCE Unknown Unchanged Unchanged
ESTATE_ERR_EN All 0 (All off) 0 (All off) Unchanged
AFAR PA Unknown Unchanged Unchanged
AFSR All 0 Unchanged Unchanged

256

UltraSPARC llli Processor User's Manual * June 2003

TABLE 12-1 Machine State After Reset and in RED_st at e (4 of 5)
Power-On
Name Fields Reset System Reset WDR XIR SIR RED_s,tatei
MCU_CTL_REG1 Clk_Update Unknown 0 Unchanged
Clk_Stop Unknown 0 Unchanged
30 Unknown 0 Unchanged
Remaining bits | 0 Unchanged Unchanged
MCU_CTL_REG2 CLK 2 effect Unchanged
propagated
PLL2 M1 2 effect Unchanged
propagated
PLL2 M2 3 effect Unchanged
propagated
Remaining bits | 0 Unchanged Unchanged
MCU_CTL_REG3 All Unknown Unchanged Unchanged
JBUS_CONFIG PAR_DLY 0 effect Unchanged
propagated
PORT_LOCN Ox7f effect Unchanged
propagated
PORT_PRES J PACK®6- unchanged Unchanged
0<2:0>
DBG2 Oxf effect Unchanged
propagated
DTL {DOWN_25, | unchanged Unchanged
UP_OPEN}
MID 0x3e unchanged Unchanged
MR 0 unchanged Unchanged
MT 0 unchanged Unchanged
AID{[4:3],[2:0]} | {00,J_ID effect Unchanged
<2:0>} propagated
SW_JERR 0 0 Unchanged
E* _CLK 0 unchanged Unchanged
SRT 0 effect Unchanged
propagated
TOF 0 effect Unchanged
propagated
TOV 0 effect Unchanged
propagated
DBG1 0ox7 effect Unchanged
propagated
CLK 0 effect Unchanged
propagated
ARB_MODE 0 effect
propagated
JP_IMP_CTLO All Varies Varies Varies
JP_IMP_CTL1 All 0 Unchanged Unchanged
Chapter 12 Reset and RED_state 257

TABLE 12-1 Machine State After Reset and in RED_st at e (5 of 5)
Power-On
Name Fields Reset System Reset WDR XIR SIR RED_s,tatei
JP_IMP_CTL2 [63:8] 0 0 Unchanged
[7:0] 0 Unchanged
Other Processor-Specific States
Processor L2-Cache Tags, Micro-tags and | Unknown Unknown Unchanged
Data (Includes Data, Instruction, Prefetch,
and Write Caches)
Cache Snooping Enabled
Instruction Queue Empty
Store Queue Empty Empty Unchanged
I-TLB, D-TLB Mappings, Valid,| Unknown Unknown Unchanged
Lock, E-bit, NC-
bit, Global bit,
etc.

*This register is read-only from the system.
¥ Processor states are only updated according to the following table if RED_state is entered due to a reset or a trap. If RED_state is entered

because the PSTATE.RED bit was explicitly set to 1, then software must create the appropriate states itself.
** These bits will read as 0 after POR or System Reset, but subsequent to the first write to this register, will read as 1.

Effect propagated: Some CSRs have delayed effects after writes by software. The readable CSR is updated by the software write, and on
the next reset, the contents of a shadow register is updated from the CSR, which affects chip behavior from then on. Until the update
happens, the shadow register has the old state. If the reset event never happens, it will never have an effect. A Hard POR initializes the
shadow register to the same state as the readable CSR.

258

UltraSPARC llli Processor User's Manual * June 2003

sectioNnVIII

Appendix

June 2003 Section VIII « Appendix « 259

260 UltraSPARC llli Processor User's Manual * June 2003

CHAPTER A

Instruction Definitions

Related instructions are grouped into subsections. Each subsection consists of the following
parts:

1. A table of the opcodes defined in the subsection with the values of the field(s) that
uniquely identify the instruction(s).

2. An illustration of the applicable instruction format(s). In these illustrations, a dash (—)
indicates that the field is reserved for future versions of the architecture and shall be zero
in any instance of the instruction. If the processor encounters nonzero values in these
fields, its behavior is undefined.

3. A description of the features, restrictions, and exception-causing conditions.

4. A list of exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to an instruction_access_error,
instruction_access_exception, fast_instruction_access_MMU_miss, fast ECC_error,
ECC_error (corrected ECC_error), WDR, and interrupts are not listed because they can
occur on any instruction. Instructions not implemented in hardware shall generate an
illegal_instruction exception and therefore will not generate any of the other exceptions
listed. The illegal_instruction exception is not listed because it can occur on any
instruction that triggers an instruction breakpoint or contains an invalid field.

Instruction latencies and execution rates are provided in Chapter 4 “Instruction Execution.”

261

TABLE A-2 summarizes the instruction set; the instruction definitions follow the table. Within
TABLE A-2 and throughout this chapter, certain opcodes are marked with mnemonic
superscripts. The superscripts and their meanings are defined in TABLE A-1.

TABLE A-1 Opcode Superscripts

Superscript Meaning

D Deprecated instruction

P Privileged opcode

Pag Privileged action if bit 7 of the referenced ASI is zero

Pask Privileged opcode if the referenced ASR register is privileged

Prpr Privileged action if PSTATE. PRI V=0 and (S)TI CK. NPT =1

Ppic Privileged action if PCR. PRI V =1

TABLE A-2 Instruction Set (1 of 6)

V9 extension
Operation Name Page formats
ADD, ADDcc Add (and modify condition codes) 268
ADDC, ADDCcc Add with carry (and modify condition codes) 268
AL| GNADDRESS{ _LI TTLE} Calculate address for misaligned data 269 3
AND, ANDc c And (and modify condition codes) 335
ANDN, ANDNc c And not (and modify condition codes) 335
ARRAY(8,16,32) Three-Dimensional array addressing instructions 271 3
BPcc Branch on integer condition codes with prediction 288
Bi ccP Branch on integer condition codes 425
BMASK Set the GSR. MASK field 282 3
BPr Branch on contents of integer register with prediction (also known (283
as BRr)
BSHUFFLE Permute bytes as specified by GSR. MASK 282 3
CALL Call and link 290
CASAPast Compare and swap word in alternate space 291
CASXAPasI Compare and swap doubleword in alternate space 291
DONEP Return from trap 294
EDGE(8,16,32){, L, N, LN} Edge handling instructions 295 3
FABS(s,d,q) Floating-point absolute value 308
FADD(s,d,q) Floating-point add 298
FALI GNDATA Perform data alignment for misaligned data 269 3
FAND{S} Logical AND operation 332 3
FANDNOT(1,2){S} Logical AND operation with one inverted source 332 3
EBf ccP Branch on floating-point condition codes 423
262 UltraSPARC Illi Processor User’s Manual « June 2003

TABLE A-2 Instruction Set (2 of 6)
V9 extension
Operation Name Page formats
FBPf cc Branch on floating-point condition codes with prediction 285
FCWP(s,d,q) Floating-point compare 300
FCMPE(s,d,q) Floating-point compare (exception if unordered) 300
FCMP(GT,LE,NE,EQ)(16,32) Pixel compare operations 369 3
FDI V(s.d,q) Floating-point divide 310
FdMULq Floating-point multiply double to quad 310
FEXPAND Pixel expansion 377 3
Fi TQ(s,d,q) Convert integer to floating-point 306
FLUSH Flush instruction memory 313
FLUSHW Flush register windows 315
FMOV(s,d,q) Floating-point move 308
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 343
FMOV(s.d,q)r Move floating-point register if integer register contents satisfy 349
condition

FMUL(s.d,q) Floating-point multiply 310
FMUL8x16 8x16 partitioned product 364 3
FMUL8x16(AUAL) 8x16 upper/lower a partitioned product 365 3
FMUL8(SU,UL)x16 8x16 upper/lower partitioned product 366 3
FMULD8(SU,UL)x16 8x16 upper/lower partitioned product 367 3
FNAND{ S} Logical NAND operation 332 3
FNEG(s,d,q) Floating-point negate 308
FNOR{ S} Logical NOR operation 332 3
FNOT(1,2){ S} Copy negated source 332 3
FONE{ S} One fill 332 3
FOR{ S} Logical OR operation 332 3
FORNOT(1,2){ S} Logical OR operation with one inverted source 332 3
FPACK(16,32, FI X) Pixel packing 373, 375, 3

376
FPADD(16,32){S} Pixel add (single) 16- or 32-bit 361 3
FPMERGE Pixel merge 378 3
FPSUB(16,32){ S} Pixel subtract (single) 16- or 32-bit 361 3
FsMJULd Floating-point multiply single to double 310
FSQRT(s.d,q) Floating-point square root 312
FSRC(1,2){ S} Copy source 332 3
F(s,d,q)TO Convert floating-point to integer 302
F(s,d,q)TQ(s,d,q) Convert between floating-point formats 304
F(s,d,q)TOx Convert floating-point to 64-bit integer 302

Chapter A Instruction Definitions 263

TABLE A-2 Instruction Set (3 of 6)
V9 extension
Operation Name Page formats
FSUB(s,d,q) Floating-point subtract 298
FXNOR{ S} Logical XNOR operation 332 3
FXOR{ S} Logical XOR operation 332 3
FxTQ(s,d,q) Convert 64-bit integer to floating-point 306
FZERC{ S} Zero fill 332 3
| LLTRAP Illegal instruction 316
JMPL Jump and link 317
LDDP Load integer doubleword 433
LDDAD: Pasi Load integer doubleword from alternate space 434
LDDA ASI _NUCLEUS_QUAD* |Atomic quad load 326 3
LDDF Load double floating-point 318
L DDFAPAs! Load double floating-point from alternate space 274
LDDFA ASI _BLK* Block loads 274 3
LDDFA ASI _FL* Short floating-point loads (VIS I) 400 3
LDF Load floating-point 318
L DFAPast Load floating-point from alternate space 318
LDESRP Load floating-point state register lower 431
L DQF Load quad floating-point 318
LDQFAPas! Load quad floating-point from alternate space 318
LDSB Load signed byte 322
L DSBAPas! Load signed byte from alternate space 324
LDSH Load signed halfword 322
L DSHAPas! Load signed halfword from alternate space 324
LDSTUB Load-store unsigned byte 329
LDSTUBAPas! Load-store unsigned byte in alternate space 330
LDSW Load signed word 322
L DSWAPAs! Load signed word from alternate space 324
LDUB Load unsigned byte 322
L DUBAPAs! Load unsigned byte from alternate space 324
LDUH Load unsigned halfword 322
L DUHAPAs! Load unsigned halfword from alternate space 324
LDUW Load unsigned word 322
L DUWAPAs! Load unsigned word from alternate space 324
LDX Load extended 322

264

UltraSPARC llli Processor User's Manual * June 2003

TABLE A-2 Instruction Set (4 of 6)
V9 extension
Operation Name Page formats
L DXAPast Load extended from alternate space 324
LDXFSR Load floating-point state register 318
MEMBAR Memory barrier 337
MOvecc Move integer register if condition is satisfied 343
MOvr Move integer register on contents of integer register 356
MULSccP Multiply step (and modify condition codes) 436
MULX Multiply 64-bit integers 357
NOP No operation 358
OR, ORcc Inclusive OR (and modify condition codes) 335
ORN, ORNcc Inclusive OR not (and modify condition codes) 335
PDI ST Pixel component distance 371 3
POPC Population Count 378
PREFETCH Prefetch data 379
PREFETCHAPas! Prefetch data from alternate space 379
RDASI Read ASI register 388
RDASRPAsr Read ancillary state register 388
RDCCR Read condition codes register 388
RDDCRP Read dispatch control register 388
RDFPRS Read floating-point registers state register 388
RDGSR Read graphic status register 388
RDPC Read program counter 388
RDPCRP Read performance control register 388
RDP| CPric Read performance instrumentation counters 388
RDPR? Read privileged register 385
RDSOFTI NT? Read per-processor soft interrupt register 388
RDSTI CKP~et Read system TICK register 388
RDSTI CK_CMPR Read system TICK compare register 388
RDTI CKPner Read TICK register 388
RDTI CK_CWPR® Read TICK compare register 388
RDYP Read Y register 440
RESTCORE Restore caller’s window 392
RESTORED? Window has been restored 394
RETRY? Return from trap and retry 294
RETURN Return 390
Chapter A Instruction Definitions 265

TABLE A-2 Instruction Set (5 of 6)
V9 extension
Operation Name Page formats
SAVE Save caller’s window 392
SAVED? ‘Window has been saved 394
SDI VP, spl vecP 32-bit signed integer divide (and modify condition codes) 428
SDI VX 64-bit signed integer divide 357
SETHI Set high 22 bits of low word of integer register 397
SHUTDOWN Shut down the processor 402 3
SI AM Set Interval Arithmetic Mode (VIS 1I) 395
SIR Software-initiated reset 403
SLL Shift left logical (IU) 398
SLLX Shift left logical, extended (IU) 398
SMULP, sMULccP Signed integer multiply (and modify condition codes) 436
SRA Shift right arithmetic (IU) 398
SRAX Shift right arithmetic, extended (IU) 398
SRL Shift right logical (IU) 398
SRLX Shift right logical, extended (IU) 398
STB Store byte (IU) 408
STBAPas! Store byte into alternate space (IU) 409
STBARP Store barrier 441
sTDP Store doubleword 443
STDAD: Past Store doubleword into alternate space 445
STDF Store double floating-point (FP) 404
STDFEAPas! Store double floating-point into alternate space (FP) 406
STDFA ASI _BLK* Block stores 274 3
STDFA ASI _FL* Short floating-point stores (VIS 1) 400 3
STDFA ASI _PST* Partial Store instructions 359 3
STF Store floating-point (FP) 404
STEAPast Store floating-point into alternate space (FP) 406
STESRP Store floating-point state register (FP) 442
STH Store halfword (IU) 408
STHAPas! Store halfword into alternate space (IU) 409
STQF Store quad floating-point (FP) 404
STQFAPast Store quad floating-point into alternate space (FP) 406
STW Store word (IU) 408
STWAPAs! Store word into alternate space (IU) 409
STX Store extended (IU) 408

266

UltraSPARC llli Processor User's Manual * June 2003

TABLE A-2 Instruction Set (6 of 6)
V9 extension

Operation Name Page formats
STXAPast Store extended into alternate space (IU) 409
STXFSR Store extended floating-point state register (MS) 404
SUB, SUBcc Subtract (and modify condition codes) 411
SUBC, SUBCcc Subtract with carry (and modify condition codes) 411
SWAPP Swap integer register with memory 446
SWAPAD: Pasi Swap integer register with memory in alternate space 448
TADDcc, TADDcc TVP Tagged add and modify condition codes (trap on overflow) 412, 449
Tcc Trap on integer condition codes 415
TSUBcc, TSUBccTVP Tagged subtract and modify condition codes (trap on overflow) 413, 450
uDl VP, UDI VecP Unsigned integer divide (and modify condition codes) 428

ubl VX 64-bit unsigned integer divide 357
UMULD, uMuLccP Unsigned integer multiply (and modify condition codes) 436
V\RASI Write ASI register 420
VWRASRFAsR Write ancillary state register 420
WRCCR Write condition codes register 420
WRDCR? Write dispatch control register 420
WRFPRS Write floating-point registers state register 420
VRGSR ‘Write graphic status register 420
VARPCR? Write performance control register 420
WRP| CPric Write performance instrumentation counters register 420
VWRPRY Write privileged register 417
WRSOFTI NTP Write per-processor soft interrupt register 420
VRSOFTI NT_CLR? Clear bits of per-processor soft interrupt register 420
WRSOFTI NT_SET? Set bits of per-processor soft interrupt register 420
VRTI CK_CMPR? Write TICK compare register 420
WRSTI ckP Write System TICK register 420
VRSTI CK_CMPR? Write System TICK compare register 420
VRYP Write Y register 452
XNOR, XNCRcc Exclusive NOR (and modify condition codes) 335
XOR, XORcc Exclusive OR (and modify condition codes) 335

Chapter A Instruction Definitions 267

A.l Add

Opcode Op3 Operation
ADD 00 0000 Add
ADDcc 01 0000 Add and modify condition codes
ADDC 00 1000 Add with Carry
ADDCcc 01 1000 Add with Carry and modify condition codes
Format (3)

10 rd op3 rsl i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

add reg, 1, reg_or_imm, reg,;
addcc reg,., reg_or_imm, reg,;
addc reg,.;, reg_or_imm, reg,,
addccc reg,.;, reg_or_imm, reg,,
Description

ADD and ADDcc compute “r[rs1] +r[rs2]”ifi =0, or
“r[rsl]+sign_ext(siml3)”ifi =1, and write the sum into r [rd] .

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (i cC. C) bit;
that is, they compute “r[rs1] +r[rs2] +icc.c” or
“r[rsl] +sign_ext(sinml3) + icc.c” and write the sum into r [rd] .

ADDc ¢ and ADDCcc modify the integer condition codes (CCR. i cc and CCR. Xcc).
Overflow occurs on addition if both operands have the same sign and the sign of the sum is
different.

268 UltraSPARC llli Processor User's Manual * June 2003

Programming Note — ADDC and ADDCcc read the 32-bit condition codes carry bit
(CCR. i cc. ¢), not the 64-bit condition codes carry bit (CCR. Xcc. C).

Compatibility Note — ADDC and ADDCcc were named ADDX and ADDXcc, respectively,
in SPARC-VS8.

Exceptions

None

A.2 Alignment Instructions (VIS I)

Opcode opf Operation
AL|I GNADDRESS 00001 1000 Calculate address for misaligned data access
ALl GNADDRESS_LI TTLE 00001 1010 Calculate address for misaligned data access little-
endian
FALI GNDATA 00100 1000 Perform data alignment for misaligned data
Format (3)
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax

al i gnaddr reg,c1, 1egrs2s 1€y

al i gnaddr | reg,s1> 1€Zrs2, 1€

faligndata Jiregyst, fregrsas fregu

Chapter A Instruction Definitions 269

270

Description

ALl GNADDRESS adds two integer values, r [r S1] and r [r s2], and stores the result (with
the least significant three bits forced to zero in the integer register r [r d] . The least
significant three bits of the result are stored in the GSR. al i gn field.

AL| GNADDRESS_LI TTLE is the same as ALI GNADDRESS except that the two’s-
complement of the least significant 3 bits of the result is stored in GSR. al i gn.

Note — ALl GNADDR_LI TTLE generates the opposite-endian byte ordering for a subsequent
FALI GNDATA operation.

FALI GNDATA concatenates the two 64-bit floating-point registers specified by r s1 and r s2
to form a 128-bit (16-byte) intermediate value. The contents of the first source operand form
the more-significant 8 bytes of the intermediate value, and the contents of the second source
operand form the less-significant 8 bytes of the intermediate value. Bytes in the intermediate
value are numbered from most significant (byte 0) to least significant (byte 15). Eight bytes
are extracted from the intermediate value and stored in the 64-bit floating-point destination
register specified by r d. GSR. al i gn, specifying the number of the most significant byte to
extract (therefore, the least significant byte extracted from the intermediate value is
numbered GSR. al i gn + 7).

A byte-aligned 64-bit load can be performed as shown in CODE EXAMPLE A-1.

CODE EXAMPLE A-1 Byte-Aligned 64-Bit Load

al i gnaddr Address, Offset, Address
| dd [Address] , %0
| dd [Address + 8], %2

faligndata %0, %2, %4

Programming Note — For good performance, the result of FALI GNDATA should not be
used as a source operand for a 32-bit FP or VIS instruction in the next three instruction
groups.

Exceptions

fp_disabled

UltraSPARC llli Processor User's Manual * June 2003

A3

Three-Dimensional Array Addressing
Instructions (VIS I)

Opcode opf Operation
ARRAYS8 00001 0000 Convert 8-bit 3D address to blocked byte address
ARRAY16 00001 0010 Convert 16-bit 3D address to blocked byte address
ARRAY32 00001 0100 Convert 32-bit 3D address to blocked byte address

Format (3)

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax

array8 regysl> "e8rs2 1e8rd

arrayl6é re8ys> "8rs2 1e8rd

array3z2 regysi> 1e8rs2 T€8rd

Description

These instructions convert three-dimensional (3D) fixed-point addresses contained in
r{rsl] to a blocked-byte address; they store the result in r [r d] . Fixed-point addresses
typically are used for address interpolation for planar reformatting operations. Blocking is
performed at the 64-byte level to maximize L2-cache block reuse, and at the 64 KB level to
maximize TLB entry reuse, regardless of the orientation of the address interpolation. These
instructions specify an element size of 8 bits (ARRAY8), 16 bits (ARRAY16), or 32 bits
(ARRAY32). The second operand, r [r s2] , specifies the power-of-2 size of the X and Y

Chapter A

Instruction Definitions 271

272

dimensions of a 3D image array. The legal values for r s2 and their meanings are shown in
TABLE A-3. Illegal values produce undefined results in the destination register, r [r d] .
FIGURE A-1 illustrates a three-dimensional array fixed-point address format.

TABLE A-3 Three-Dimensional r [r s2] Array X/Y Dimensions

r[rs2] value Number of Elements

0 64

1 128

2 256

3 512

4 1024

5 2048

Z integer Z fraction Y integer Y fraction X integer X fraction

63 55 54 44 43 33 32 22 21 11 10 0

FIGURE A-1 Three-Dimensional Array Fixed-Point Address Format

The integer parts of X, Y, and Z are converted to the following blocked-address formats
illustrated in FIGURE A-2, FIGURE A-3, and FIGURE A-4.

Upper Middle Lower
z Y X z Y X z Y X
20 17 17 17 13 9 5 4 2 0
+2isrc2 + 2 isrc2 +isrc2
FIGURE A-2 Three-Dimensional Array Blocked-Address Format (Ar r ay 8)
Upper Middle Lower
0
z Y X z Y X z Y X
21 18 18 18 14 10 6 5 3 1 0
+2isrc2 + 2 isrc2 + isrc2

FIGURE A-3 Three-Dimensional Array Blocked-Address Format (Ar r ay16)

UltraSPARC llli Processor User's Manual * June 2003

Upper

Middle

Lower

z Y X z

00

22
+ 2 isrc2

19 19
+ 2 isrc2 + isrc2

FIGURE A-4 Three-Dimensional Array Blocked-Address Format (Ar r ay32)

19 15 11 7

The bits above Z upper are set to zero. The number of zeroes in the least significant bits is
determined by the element size. An element size of 8 bits has no zeroes, an element size of
16 bits has one zero, and an element size of 32 bits has two zeroes. Bits in X and Y above
the size specified by r [r s2] are ignored.

The code fragment in CODE EXAMPLE A-2 shows assembly of components along an

interpolated line at the rate of one component per clock.

CODE EXAMPLE A-2

Three-Dimensional Array Addressing Example

add

array8

| dda

Addr, Del taAddr, Addr

Addr, 9%g0, bAddr

[bAddr] ASI _FL8 PRI MARY, data

faligndata data, accum accum

Note — To maximize reuse of L2-cache and TLB data, software should block array

references of a large image to the 64 KB level. This means processing elements within a
32x64x64 block.

Exceptions

None

Chapter A

Instruction Definitions

273

A4

Block Load and Block Store (VIS I)

Opcode imm_asi ASI Value |Operation

LDDFA ASI _BLK_Al UP 7016 64-byte block load/store from/to primary address

STDFA space, privilege mode access only

LDDFA ASI _BLK_AI US 116 64-byte block load/store from/to secondary

STDFA address space, privilege mode access only

LDDFA ASI _BLK_Al UPL 7816 64-byte block load/store from/to primary address

STDFA space, little-endian, privilege mode access only

LDDFA ASI _BLK_AI USL 7916 64-byte block load/store from/to secondary

STDFA address space, little-endian, privilege mode access
only

LDDFA ASI _BLK_P FOy¢ 64-byte block load/store from/to primary address

STDFA space

LDDFA ASI _BLK_S Flyg 64-byte block load/store from/to secondary

STDFA address space

LDDFA ASI _BLK_PL F8¢ 64-byte block load/store from/to primary address

STDFA space, little-endian

LDDFA ASI _BLK_SL F9¢ 64-byte block load/store from/to secondary

STDFA address space, little-endian

STDFA ASI _BLK_COMWM T_P |E0¢ 64-byte block commit store to primary address
space

STDFA ASI _BLK_ COMWM T_S |El¢ 64-byte block commit store to secondary address
space

Format (3) LDDFA

11 rd 110011 rsl i=0 imm_asi rs2
11 rd 110011 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0
274 UltraSPARC Illi Processor User’s Manual « June 2003

Format (3) STDFA

11 rd 110111 rsi i=0 imm_asi rs2
11 rd 110111 rsi i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax
| dda [reg_addr] imm_asi, freg,;
| dda [reg_plus_imm] Yasi, freg,,
stda freg,q [reg_addr] imm_asi
stda freg,q [reg_plus_imm] Y@si
Description

A block load (BLD) or block store (BST) instruction uses an LDDFA or STDFA instruction
combined with a block transfer ASI. Block transfer ASIs allow BLDs and BSTs to be
performed accessing the same address space as normal loads and stores. Little-endian ASIs
(those with an ‘L’ suffix) access data in little-endian format; otherwise, the access is assumed
to be big-endian. Byte swapping is performed separately for each of the eight double-
precision registers used by the instruction. Endianness does not matter if these instructions
are only being used for a block copy operation.

A BST with commit forces the data to be written to memory and invalidates copies in all
caches present. As a result, a BST with commit maintains coherency with the I-cache.! It
does not, however, flush instructions that have already been fetched into the pipeline before
executing the modified code. If a BST with commit is used to write modified instructions, a
FLUSH instruction must still be executed to guarantee that the instruction pipeline is flushed.

LDDFA with a block transfer ASI loads 64 bytes of data from a 64-byte aligned memory area
into the eight double-precision floating-point registers specified by r d. The lowest-addressed
eight bytes in memory are loaded into the lowest-numbered double-precision destination
register. An illegal_instruction exception occurs if the floating-point registers are not aligned
on an eight double-precision register boundary. The least significant six bits of the memory
address must be zero or a mem_address_not_aligned exception occurs.

STDFA with a block transfer ASI stores data from the eight double-precision floating-point
registers specified by r S1 to a 64-byte-aligned memory area. The lowest-addressed eight
bytes in memory are stored from the lowest-numbered double-precision r d. An

1. All store instructions in the processor coherently update the instruction cache. In general SPARC-V9 implementations,
the store instructions (other than BST with Commit) do not maintain data coherency between instruction and data caches.

Chapter A Instruction Definitions 275

276

illegal_instruction exception occurs if the floating-point registers are not aligned on an eight
register boundary. The least significant 6 bits of the memory address must be zero or a
mem_address_not_aligned exception occurs.

ASIs EOy¢4 and E1,4 are only used for BST with commit operations; they are not used for
BLD operations.

Programming Note — In the UltraSPARC IIIi processor, BLD does not offer a
performance advantage over normal loads. For high performance, the use of prefetch
instructions and 8-byte loads is recommended. BST and BST with commit can offer
performance advantage and are used in high performance UltraSPARC Illi processor
libraries.

Programming Note — BLD does not provide register dependency interlocks, as ordinary
load instructions do.

Before BLD data can be referenced, a second BLD (to a different set of registers) or a
MEMBAR #Sync must be performed. If a second BLD is used to synchronize against
returning data, the processor will continue execution before all data has been returned. The
programmer is then responsible for scheduling instructions so registers are only used when
they become valid.

To determine when data is valid, the programmer must count instruction groups containing
floating-point (FP) operate instructions (not FP loads or stores). The lowest-numbered
destination register of the first BLD may be referenced in the first instruction group
following the second BLD, using an FP operate instruction only.

The second-lowest-numbered destination register of the first BLD may be referenced in the
second instruction group containing an FP operate instruction, and so on.

If this block-load/block-load synchronization mechanism is used, the initial reference to the
BLD data must be an FP operate instruction (not an FP store), and only instruction groups
with FP operate instructions are counted when determining BLD data availability.

If these rules are violated, data from before or after the BLD may be returned by a reference
to any of the BLD’s destination registers.

If a MEMBAR #Sync is used to synchronize on BLD data, there are no restrictions on data
usage, although performance will be lower than if block-load/block-load synchronization is
used. No other MEMBARs can be used to provide data synchronization for BLD.

FP operate instructions can be issued in a single instruction group with FP stores. If block-
load/block-load synchronization is used, FP operates and FP stores can be interlaced. This
allows an FP operate instruction, such as FMOVD or FALI GNDATA, to reference the returning
data before using the data in any FP store (normal store or BST).

UltraSPARC llli Processor User's Manual * June 2003

The processor also continues execution, without register interlocks, before all the store data
for BSTs are transferred from the register file.

If store source registers are overwritten before the next BST or MEMBAR #Sync instruction,
then the following rule must be observed: The first register can be overwritten in the same
instruction group as the BST, the second register can be overwritten in the instruction group
following the BST, and so on. If this rule is violated, the BST may use the old or the new
(overwritten) data.

When determining correctness for a code sample, note that the processor may interlock more
than what is required above. For example, there may be partial register interlocks, such as on
the lowest-number register.

Code that does not meet the above constraints may appear to work on a particular processor.
However, to be portable across all processors similar to the UltraSPARC IIli processor, all of
the above rules should be followed.

Rules

Note — These instructions are used for transferring large blocks of data (more than

256 bytes), for example, in C library routines bcopy() and bfi | | (). They do not allocate
in the data cache or L2-cache on a miss. They update the L2-cache on a hit. One BLD and,
in the most extreme cases, up to fifteen (maximum) BSTs can be outstanding on the
interconnect at one time.

To simplify the implementation, BLD destination registers may or may not interlock like
ordinary load instructions. Before the BLD data is referenced, a second BLD (to a different
set of registers) or a MEMBAR #Sync must be performed. If a second BLD is used to
synchronize with returning data, then it continues execution before all data have been
returned. The lowest-number register being loaded can be referenced in the first instruction
group following the second BLD, the second lowest number register can be referenced in the
second group, and so on. If this rule is violated, data from before or after the load may be
returned.

Similarly, BST source data registers are not interlocked against completion of previous load
instructions (even if a second BLD has been performed). The previous load data must be
referenced by some other intervening instruction, or an intervening MEMBAR #Sync must be
performed. If the programmer violates these rules, data from before or after the load may be
used. The load continues execution before all of the store data have been transferred. If store
data registers are overwritten before the next BST or MEMBAR #Sync instruction, then the
following rule must be observed: The first register can be overwritten in the same instruction
group as the BST, the second register can be overwritten in the instruction group following
the BST, and so on. If this rule is violated, the store may store correct data or the overwritten
data.

Chapter A Instruction Definitions 277

278

There must be a MEMBAR#Sync or a trap following a BST before a DONE, RETRY, or WRPR
to PSTATE instruction is executed. If this is rule is violated, instructions after the DONE,
RETRY, or WRPR to PSTATE may not see the effects of the updated PSTATE register.

BLD does not follow memory model ordering with respect to stores. In particular, read-after-
write and write-after-read hazards to overlapping addresses are not detected. The side-effects
bit (TTE. E) associated with the access is ignored. Some ordering considerations are as
follows:

If ordering with respect to earlier stores is important (for example, a BLD that overlaps
previous stores), then there must be an intervening MEMBAR #St or eLoad or stronger
MVEMBAR

If ordering with respect to later stores is important (for example, a BLD that overlaps a
subsequent store), then there must be an intervening MEMBAR #LoadSt or e or a
reference to the BLD data. This restriction does not apply when a trap is taken; therefore,
the trap handler does not have to worry about pending BLDs.

If the BLD overlaps a previous or later store and there is no intervening MEMBAR, then the
trap or data referencing the BLD may return data from before or after the store.

BST does not follow memory model ordering with respect to loads, stores, or flushes. In
particular, read-after-write, write-after-write, flush-after-write, and write-after-read hazards to
overlapping addresses are not detected. The side-effects bit associated with the access is
ignored. Some ordering considerations are as follows:

If ordering with respect to earlier or later loads or stores is important, then there must be
an intervening reference to the load data (for earlier loads) or an appropriate VEMBAR
instruction. This restriction does not apply when a trap is taken; therefore, the trap handler
does not have to worry about pending BSTs.

If the BST overlaps a previous load and there is no intervening load data reference or
MEMBAR #St or eLoad instruction, then the load may return data from before or after the
store and the contents of the block are undefined.

If the BST overlaps a later load and there is no intervening trap or
MEMBAR #LoadSt or e instruction, then the contents of the block are undefined.

If the BST overlaps a later store or flush and there is no intervening trap or
MEMBAR#Sync instruction, then the contents of the block are undefined.

If the ordering of two successive BST instructions (overlapping or not) is required, then a
MEMBAR #Sync must occur between the BST instructions.

Block operations do not obey the ordering restrictions of the currently selected processor
memory model (TSO, PSO, RMO). Block operations always execute under an RMO memory
ordering model. Explicit MEMBAR instructions are required to order block operations among
themselves or with respect to normal memory operations. In addition, block operations do
not conform to dependence order on the issuing processor; that is, no read-after-write, write-
after-read, or write-after-write checking occurs between block operations. Explicit

MEMBAR #Sync instructions are required to enforce dependence ordering between block
operations that reference the same address.

UltraSPARC llli Processor User's Manual * June 2003

Typically, BLD and BST will be used in loops where software can ensure that the data being
loaded and the data being stored do not overlap. The loop will be preceded and followed by
the appropriate MEMBARS to ensure that there are no hazards with loads and stores outside the
loops. CODE EXAMPLE A-3 demonstrates the loop.

CODE EXAMPLE A-3 Byte-Aligned Block Copy Inner Loop with Block Load/Block Store

Note that the loop must be unrolled two times to achieve maximum performance. All FP registers
are double-precision. Eight versions of this loop are needed to handle all the cases of doubleword
misalignment between the source and destination.

| oop:
faligndata %0, %2, 9% 34
faligndata %2, %4, % 36
faligndata %4, %6, 9% 38
faligndata %6, %8, %40
faligndata % 8, % 10, 9% 42
faligndata 9% 10, 9% 12, 9% 44
faligndata 9% 12, 9% 14, % 46
addcc %0, -1, %O
bg, pt 1
f movd 9% 14, 96 48
I (end of |oop handling)
11: |dda [regaddr] ASI _BLK_P, 9% 0
st da % 32, [regaddr] ASI_BLK P
faligndata % 48, 9% 16, 9% 32
faligndata 0% 16, 9% 18, 9% 34
faligndata % 18, 9% 20, 9% 36
faligndata % 20, 9% 22, 9% 38
faligndata 0% 22, % 24, 9% 40
faligndata 9% 24, 926, % 42
faligndata % 26, 9% 28, % 44
faligndata 0% 28, 9% 30, 9% 46
addcc %0, -1, %O
be, pnt done
f novd 9% 30, 9% 48
| dda [regaddr] ASI _BLK_P, 9% 16
stda % 32, [regaddr] ASI _BLK P

Chapter A Instruction Definitions 279

CODE EXAMPLE A-3 Byte-Aligned Block Copy Inner Loop with Block Load/Block Store

ba | oop

faligndata 0% 48, 9% 0, 9% 32
done: I (end of | oop processing)
Bcopy Code

To achieve the highest Bcopy bandwidths, use prefetch instructions and floating-point loads
instead of BLD instructions. Using prefetch instructions to bring memory data into the
prefetch cache hides all of the latency to memory. This allows a Bcopy loop to run at
maximum bandwidth. CODE EXAMPLE A-4 shows how to modify the standard UltraSPARC I
processor bcopy() loop to use PREFETCH and floating-point load instructions instead of
BLDs.

CODE EXAMPLE A-4 High-Performance bcopy() Preamble Code

pr eanbl e:
prefetch [srcaddr] , 1
prefetch [srcaddr+0x40] , 1
prefetch [srcaddr+0x80] , 1
prefetch [srcaddr+0xc0] , 1
| ddf [srcaddr] , % O
prefetch [srcaddr+0x100] , 1
| ddf [srcaddr+0x8] , % 2
| ddf [srcaddr+0x10] , % 4
faligndata 9% 0, % 2, % 32
| ddf [srcaddr+0x18] , % 6
faligndata % 2,9% 4, % 34
| ddf [srcaddr+0x20] , % 8
faligndata % 4, % 6, % 36
| ddf [srcaddr+0x28] , % 10
faligndata % 6, % 8, % 38
| ddf [srcaddr+0x30] , 96 12

faligndata
| ddf
faligndata
| ddf

subcc

bpe

add

% 8, % 10, % 40

[srcaddr+0x38] , %6 14
% 10, % 12, % 42

[srcaddr+0x40] , 9% 16
count, 0x40, count
<exit>

srcaddr, 0x40, srcaddr

UltraSPARC llli Processor User's Manual * June 2003

CODE EXAMPLE A-4 High-Performance bcopy() Preamble Code (Continued)

| oop:

f movd

| ddf
faligndata
| ddf
faligndata
st da

| ddf
faligndata
| ddf
faligndata
| ddf
faligndata
| ddf
faligndata
| ddf
faligndata
| ddf
prefetch
faligndata
subcc

add

bpg

add

P O © © © 0 0 0O N ~NO O oo A DWW WNDNPFP P

Exceptions

fp_disabled

PA_watchpoint (recognized on only the first 8 bytes of a transfer)
VA_watchpoint (recognized on only the first 8 bytes of a transfer)

% 16, 9% 0

[srcaddr+0x8] , % 2
% 12, % 14, % 44

[srcaddr+0x10] , % 4
% 14, 9% 0, % 46

9% 32, [dstaddr] ASI _BLK_P
[srcaddr+0x18] , % 6
% 0, % 2, % 32

[srcaddr+0x20] , % 8
% 2,% 4, % 34

[srcaddr+0x28] , 9% 10
% 4, % 6, 9% 36

[srcaddr+0x30] , % 12
% 6, % 8, % 38

[srcaddr+0x38] , % 14
9% 8, % 10, % 40

[srcaddr+0x40] , 9% 16
[srcaddr+0x100] , 1
9% 10, 9% 12, % 42
count, 0x40, count
dstaddr, 0x40, dstaddr
| oop

srcaddr, 0X40, srcaddr

illegal_instruction (misaligned r d)
mem_address_not_aligned
data_access_exception

data_access_error

fast_data_access_MMU_miss
fast_data_access_protection

Chapter A

Instruction Definitions

281

A.S

Byte Mask and Shuffle Instructions (VIS II)

Opcode opf
BMASK 00001 1001

Operation

Set the GSR. MASK field in preparation for a
following BSHUFFLE instruction

Permute bytes as specified by GSR. MASK

BSHUFFLE 00100 1100

Format (3)

10

110110 rsl opf rs2

31 30 29

282

25 24 19 18 14 13 5 4 0

Assembly Language Syntax

bmask
bshuffle

regysi> 1e8rs2 1e8rd

Jreg s, freg o, fiegy

Description

BMASK adds two integer registers, r [r s1] and r [r 2], and stores the result in the integer
register I [r d] . The least significant 32 bits of the result are stored in the GSR. mask field.

BSHUFFLE concatenates the two 64-bit floating-point registers specified by r s1 (more-
significant half) and r 2 (less-significant half) to form a 16-byte value. Bytes in the
concatenated value are numbered from most significant to least significant, with the most
significant byte being byte 0. BSHUFFLE extracts 8 of the 16 bytes and stores the result in
the 64-bit floating-point register specified by r d. Bytes in the r d register are also numbered
from most to least significant, with the most significant being byte 0. The following table
indicates which source byte is extracted from the concatenated value for each byte in r d.

Destination Byte (in r [r d]) [Source Byte

0 (Most significant)

(rirsi][]

rs2])[GSR.

mask<31:28>]

1

(rirsi][]

rs2])[GSR.

mask<27:24>]

(rirsi][]

rs2])[GSR.

mask<23:20>]

mask<19:16>]

(rirsi][]

rs2])[GSR.

mask<15:12>]

(rirsi][]

rs2])[GSR.

mask<11:8>]

(rirsi][]

rs2])[GSR.

mask<7:4>]

2
3
4
5
6
7

(Least significant)

(r[rsi]]

r
r
r
rfrsi1[]r
r
r
r
r

rs2])[GSR.

[
[
[
[rs2])[GSR.
[
[
[
[

mask<3:0>]

UltraSPARC llli Processor User's Manual * June 2003

Note — The BMASK instruction uses the MS pipeline; therefore, it cannot be grouped with a
store, non-prefetchable load, or a special instruction. The integer r d register result is
available after a two-cycle latency. A younger BMASK can be grouped with an older
BSHUFFLE (BMASK is “break-after”).

Results have a four-cycle latency to other dependent instructions executed in FGA and FGM
pipelines. The FGA pipeline is used to execute BSHUFFLE. The GSR mask must be set at or
before the instruction group previous to the BSHUFFLE (GSR. mask dependency).
BSHUFFLE is fully pipelined (one per cycle).

Exceptions

fp_disabled

A.6

Branch on Integer Register with Prediction
(BPr)

Opcode rcond Operation Register Contents Test|
— 000 Reserved —
BRZ 001 Branch on Register Zero r[rsl] =0
BRLEZ 010 Branch on Register Less Than or Equal to Zero rirsi] <0
BRLZ 011 Branch on Register Less Than Zero r{rsi] <0
— 100 Reserved —
BRNZ 101 Branch on Register Not Zero r[rsl] #0
BRGZ 110 Branch on Register Greater Than Zero r[rsi] >0
BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rsi] =0
Format (2)
00 [a| 0| rcond 011 diéhi | p rsl di6lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0

Chapter A Instruction Definitions 283

284

Assembly Language Syntax

brz{,a}{,pt|, pn} reg,;, label
brlez{,a}{,pt|,pn} reg,;, label
brlz{,a}{,pt],pn} reg,.;, label
brnz{, a}{, pt|, pn} reg,.;, label
brgz{,a}{, pt], pn} reg,;, label
brgez{, a}{, pt|, pn} reg,;, label

Programming Note — To set the annul bit for BPr instructions, append “, a” to the
opcode mnemonic. For example, use “br z, a % 3, | abel .” In the preceding table, braces
signify that the “, a” is optional. To set the branch prediction bit p, append either “, pt ” for
predict taken or “, pn” for predict not taken to the opcode mnemonic. If neither “, pt ” nor
“, pn” is specified, the assembler shall default to “, pt .”

Programming Note — Both BP and BR represent branch on integer register with
prediction. They are, in fact, the same instruction.

Description

These instructions branch based on the contents of r [r s1] . They treat the register contents
as a signed integer value.

A BPr instruction examines all 64 bits of r [r s1] according to the r cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is,
the instruction causes a PC-relative, delayed control transfer to the address

“PC+ (4 *si gn_ext (d16hi D d16l o)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the
annul bit. If the branch is not taken and the annul bit (a) is one, the delay instruction is
annulled (not executed).

The predict bit (p) gives the hardware a hint about whether the branch is expected to be
taken. A one in the p bit indicates that the branch is expected to be taken; a zero indicates
that the branch is expected not to be taken.

Implementation Note — The UltraSPARC IIIi processor does not implement this
instruction by tagging each register value. The UltraSPARC IIli processor looks at the full
64-bit register to determine a negative or zero.

UltraSPARC llli Processor User's Manual * June 2003

Exceptions

illegal_instruction (if r cond = 000, or 100,)

A7 Branch on Floating-Point Condition Codes
with Prediction (FBPfcc)

Opcode cond Operation fcc Test
FBPA 1000 Branch Always 1
FBPN 0000 Branch Never 0
FBPU 0111 Branch on Unordered U
FBPG 0110 Branch on Greater G
FBPUG 0101 Branch on Unordered or Greater GorU
FBPL 0100 Branch on Less L
FBPUL 0011 Branch on Unordered or Less LorU
FBPLG 0010 Branch on Less or Greater LorG
FBPNE 0001 Branch on Not Equal Lor Gor U
FBPE 1001 Branch on Equal E
FBPUE 1010 Branch on Unordered or Equal Eor U
FBPGE 1011 Branch on Greater or Equal E or G
FBPUGE 1100 Branch on Unordered or Greater or Equal Eor Gor U
FBPLE 1101 Branch on Less or Equal EorL
FBPULE 1110 Branch on Unordered or Less or Equal EorLorU
FBPO 1111 Branch on Ordered EorLorG
Format (2)
00 |a cond 101 [cclccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0

Chapter A Instruction Definitions 285

286

ccl D cc0 Condition Code
00 fcco
01 fccl
10 fcc2
11 fces

Assembly Language Syntax

fba{,a}{,pt]|,pn} % ccn, label

fbn{,a}{,pt|,pn} % ccn, label

fbu{,a}{,pt|,pn} % ccn, label

fbg{,a}{,pt|,pn} % ccn, label

fbug{, a}{, pt|, pn} % ccn, label

fbl{,a}{,pt]|,pn} % ccn, label

fbul {,a}{,pt],pn} % ccn, label
fblg{,a}{,pt|,pn} % ccn, label

fbne{, a}{, pt|, pn} % ccn, label (synonym: f bnz)
fbe{,a}{,pt|,pn} % ccn, label (synonym: f bz)
fbue{, a}{, pt|, pn} % ccn, label

fbge{, a}{, pt|, pn} % ccn, label

fbuge{,a}{,pt], pn} % ccn, label
fble{,a}{,pt],pn} % ccn, label

fbul e{,a}{,pt], pn} % ccn, label

fbo{,a}{,pt|,pn} % ccn, label

Programming Note — To set the annul bit for FBPf cc instructions, append “, a” to the
opcode mnemonic. For example, use “f bl , a % cc3, | abel .” In the preceding table,
braces signify that the “, a” is optional. To set the branch prediction bit, append either

“, pt ” (for predict taken) or “, pn” (for predict not taken) to the opcode mnemonic. If
neither “, pt ” nor “, pn” is specified, the assembler shall default to “, pt .” To select the
appropriate floating-point condition code, include “% cc0,” “% ccl,” “% cc2,” or

“9% cc3” before the label.

Description

Unconditional branches and Fcc-conditional branches are described below.

UltraSPARC llli Processor User's Manual * June 2003

Unconditional branches (FBPA, FBPN) — If its annul field is zero, an FBPN
(Floating-Point Branch Never with Prediction) instruction acts like a NOP. If the Branch
Never annul field is zero, the following (delay) instruction is executed; if the annul field is
one, the following instruction is annulled (not executed). In no case does an FBPN cause
a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-
relative, delayed control transfer to the address “PC+ (4 x si gn_ext (di sp19)). If
the annul field of the branch instruction is one, the delay instruction is annulled (not
executed). If the annul field is zero, the delay instruction is executed.

Fcc-conditional branches — Conditional FBPf cc instructions (except FBPA and FBPN)
evaluate one of the four floating-point condition codes (f ccO, fccl, fcc2,fcc3) as
selected by ccO and cc1, according to the cond field of the instruction, producing either
a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-
relative, delayed control transfer to the address “PC+ (4 x si gn_ext (di sp19)).” If
FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the
value of the annul field. If a conditional branch is not taken and the annul field (a) is one,
the delay instruction is annulled (not executed).

Note — The annul bit has a different effect on conditional branches than it does on
unconditional branches.

The predict bit (p) gives the hardware a hint about whether the branch is expected to be
taken. A one in the p bit indicates that the branch is expected to be taken. A zero indicates
that the branch is expected not to be taken.

If FPRS. FEF = 0 or PSTATE. PEF = 0, or if an FPU is not present, an FBPf cc instruction
is not executed and instead, an fp_disabled exception is generated.

Compatibility Note — Unlike SPARC-V8, SPARC-V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBf cc, FBPf cc).

Exceptions

fp_disabled

Chapter A Instruction Definitions 287

A.8

Branch on Integer Condition Codes with
Prediction (BPcc)

Opcode |[cond |Operation icc Test
BPA 1000 [Branch Always 1
BPN 0000 [Branch Never 0
BPNE 1001 [Branch on Not Equal not Z
BPE 0001 [Branch on Equal Z
BPG 1010 [Branch on Greater not (Z or (N xor V))
BPLE (0010 |Branch on Less or Equal Z or (N xor V)
BPGE 1011 [Branch on Greater or Equal not (N xor V)
BPL 0011 ([Branch on Less N xor V
BPGU 1100 [Branch on Greater Unsigned not (C or 7)
BPLEU (0100 |Branch on Less or Equal Unsigned CorZ
BPCC 1101 |Branch on Carry Clear (Greater Than or Equal, Unsigned) [not C
BPCS [0101 |Branch on Carry Set (Less than, Unsigned) C
BPPOS (1110 |Branch on Positive not N
BPNEG (0110 |Branch on Negative N
BPVC 1111 |Branch on Overflow Clear not V
BPVS 0111 |[Branch on Overflow Set v
Format (2)
00 |a cond 001 [cclccO| p disp19

3130 29 28 25 24 22 21 20 19 18 0
ccl D cco Condition Code
00 icc
01 —
10 xcc
11 —

288

UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax

ba{, a}{, pt|, pn} i_or_x_cc, label

bn{,a}{, pt|, pn} i_or_x_cc, label (or: i pref et ch label)
bne{, a}{, pt|, pn} i_or_x_cc, label (synonym: bnz)
be{, a}{, pt|. pn} i_or_x_cc, label (synonym: bz)
bg{, a}{, pt|., pn} i_or_x_cc, label

bl e{,a}{,pt], pn} i_or_x_cc, label

bge{, a}{, pt|, pn} i_or_x_cc, label

bl {,a}{,pt], pn} i_or_x_cc, label

bgu{, a}{, pt|, pn} i_or_x_cc, label

bl eu{, a}{, pt|, pn} i_or_x_cc, label

bce{, a}{, pt|, pn} i_or_x_cc, label (synonym: bgeu)
bes{,a}{,pt|,pn} i_or_x_cc, label (synonym: bl u)
bpos{, a}{, pt], pn} i_or_x_cc, label

bneg{, a}{, pt|, pn} i_or_x_cc, label

bvc{, a}{, pt|, pn} i_or_x_cc, label

bvs{, a}{,pt|, pn} i_or_x_cc, label

Programming Note — To set the annul bit for BPcc instructions, append “, a” to the
opcode mnemonic. For example, use “bgu, a % cc, | abel .” Braces in the preceding table
signify that the “, a” is optional. To set the branch prediction bit, append to an opcode
mnemonic either “, pt ” for predict taken or ““, pn” for predict not taken. If neither “, pt ”
nor “, pn” is specified, the assembler shall default to ““, pt .” To select the appropriate integer
condition code, include “% cc” or “%xcc” before the label.

Description

Unconditional branches and conditional branches are described below:

Unconditional branches (BPA, BPN) — A BPN (Branch Never with Prediction)
instruction for this branch type (op2 = 1) is used in SPARC-V9 as an instruction prefetch;
that is, the effective address (PC+ (4 x si gn_ext (di sp19))) specifies an address of
an instruction that is expected to be executed soon. If the Branch Never annul field is one,
then the following (delay) instruction is annulled (not executed). If the annul field is zero,
then the following instruction is executed. In no case does a Branch Never cause a transfer
of control to take place.

Chapter A Instruction Definitions 289

A.9

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed
control transfer to the address “PC+ (4 x si gn_ext (di sp19)).” If the annul field of
the branch instruction is one, then the delay instruction is annulled (not executed). If the
annul field is zero, then the delay instruction is executed.

Conditional branches — Conditional BPcc instructions (except BPA and BPN) evaluate
one of the two integer condition codes (i cC or Xcc), as selected by ccO and cc1,
according to the cond field of the instruction, producing either a TRUE or FALSE result.
If TRUE, the branch is taken; that is, the instruction causes a PC-relative, delayed control
transfer to the address “PC+ (4 x si gn_ext (di sp19)).” If FALSE, the branch is not
taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the
value of the annul field. If a conditional branch is not taken and the annul field (a) is one,
the delay instruction is annulled (not executed).

Note — The annul bit has a different effect for conditional branches than it does for
unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is
expected to be taken. A one in the p bit indicates that the branch is expected to be taken;
a zero indicates that the branch is expected not to be taken.

Exceptions

illegal_instruction (ccl [| cc0=01, or 11,)

Call and Link

Opcode op Operation
CALL 01 Call and Link
Format (1)
01 disp30
3130 29 0
290 UltraSPARC Illi Processor User's Manual * June 2003

Assembly Language Syntax

cal |

|label

Description

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to

address PC+ (4 x si gn_ext (di sp30)). Since the word displacement (di sp30) field is

30 bits wide, the target address lies within a range of —23! to +23! — 4 bytes. The PC-relative
displacement is formed by sign-extending the 30-bit word displacement field to 62 bits and
appending two low-order zeroes to obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL,
into r [15] (out register 7).

Exceptions

None

A.10

Compare and Swap

Opcode op3 Operation
CASAPAs! 111100 Compare and Swap Word from Alternate Space
CASXAPast 111110 Compare and Swap Extended from Alternate Space
Format (3)

11 rd op3 rsi i=0 imm_asi rs2

11 rd op3 rsi i=1 — rs2

3130 29 25 24 19 18 14 13 12 5 0
Chapter A Instruction Definitions 291

292

Assembly Language Syntax

casa [reg,s;] imm_asi, reg,,, reg,
casa [reg,../] Y@Si , reg, s, reg,q
casxa [reg,s;] imm_asi, reg,,, reg,
casxa [reg,;] Y@Si |, reg,s, reg,y
Description

Concurrent processes use these instructions for synchronization and memory updates. Uses
of compare-and-swap include spin-lock operations, updates of shared counters, and updates
of linked-list pointers. The last two can use wait-free (non-locking) protocols.

The CASXA instruction compares the value in register r [r 2] with the doubleword in
memory pointed to by the doubleword address in r [r s1] . If the values are equal, the value
inr[rd] is swapped with the doubleword pointed to by the doubleword address in

r[rsi] . If the values are not equal, the contents of the doubleword pointed to by r [r s1]
replaces the value in r [r d] , but the memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of register r [r s2] with a word in
memory pointed to by the word address in r [r s1] . If the values are equal, then the low-
order 32 bits of register r [r d] are swapped with the contents of the memory word pointed
to by the address in r [r s1] and the high-order 32 bits of register r [r d] are set to zero. If
the values are not equal, the memory location remains unchanged, but the zero-extended
contents of the memory word pointed to by r [r S1] replace the low-order 32 bits of r [r d]
and the high-order 32 bits of register r [r d] are set to zero.

A compare-and-swap instruction comprises three operations: load, compare, and swap. The
overall instruction is atomic; that is, no intervening interrupts or deferred traps are
recognized by the processor and no intervening update resulting from a compare-and-swap,
swap, load, load-store unsigned byte, or store instruction to the doubleword containing the
addressed location, or any portion of it, is performed by the memory system.

A compare-and-swap operation does not imply any memory barrier semantics. When
compare-and-swap is used for synchronization, the same consideration should be given to
memory barriers as if a load, store, or swap instruction were used.

A compare-and-swap operation behaves as if it performs a store, either of a new value from
r[rd] or of the previous value in memory. The addressed location must be writable, even if
the values in memory and r [r S2] are not equal.

If i =0, the address space of the memory location is specified in the i nm_asi field; if
i =1, the address space is specified in the ASI register.

UltraSPARC llli Processor User's Manual * June 2003

A mem_address_not_aligned exception is generated if the address in r [r S1] is not properly
aligned. CASXA and CASA cause a privileged_action exception if PSTATE. PRI V=0 and
bit 7 of the ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses is maintained for cacheable memory space.

Programming Note — Compare and Swap (CAS) and Compare and Swap Extended
(CASX) synthetic instructions are available for “big-endian” memory accesses. Compare and
Swap Little (CASL) and Compare and Swap Extended Little (CASXL) synthetic instructions
are available for “little-endian” memory accesses.

The compare-and-swap instructions do not affect the condition codes.

Exceptions

privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

Chapter A Instruction Definitions 293

A.ll

DONE and RETRY

Opcode op3 fcn Operation
DONEP 111110 0 Return from Trap (skip trapped instruction)
RETRY? 111110 1 Return from Trap (retry trapped instruction)
— 111110 2-31 Reserved
Format (3)
10 fcn op3 —
31 30 29 25 24 19 18

294

The DONE instruction skips the trapped instruction by setting PC — TNPC[TL] and
nPC — TNPC[TL] +4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruction

Assembly Language Syntax

done

retry

Description

produces undefined results.

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI , CCR,
and PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting

PC — TPC[TL] (the saved value of PCon trap) and nPC ~ TNPC[TL] (the saved value of
nPC on trap).

UltraSPARC llli Processor User's Manual * June 2003

Programming Note — Use the DONE and RETRY instructions to return from privileged

trap handlers.

Exceptions

privileged_opcode
illegal_instruction (if TL = 0 or fcn =2-31)

A.12

Edge Handling Instructions (VIS I, VIS II)

Opcode opf Operation

EDGES 00000 0000 Eight 8-bit edge boundary processing

EDGESN 0 0000 0001 Eight 8-bit edge boundary processing, no condition codes

EDGESL 00000 0010 Eight 8-bit edge boundary processing, little-endian

EDGESLN 00000 0011 Eight 8-bit edge boundary processing, little-endian, no condition
codes

EDCGE16 00000 0100 Four 16-bit edge boundary processing

EDGE16N 00000 0101 Four 16-bit edge boundary processing, no condition codes

EDGE16L 000000110 Four 16-bit edge boundary processing, little-endian

EDGEL16LN [0 00000111 Four 16-bit edge boundary processing, little-endian, no condition
codes

EDGE32 0 0000 1000 Two 32-bit edge boundary processing

EDGE32N 00000 1001 Two 32-bit edge boundary processing, no condition codes

EDGE32L 00000 1010 Two 32-bit edge boundary processing, little-endian

EDGE32LN [0 0000 1011 Two 32-bit edge boundary processing, little-endian, no condition
codes

Format (3)

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Chapter A Instruction Definitions 295

296

Assembly Language Syntax

edge8 7€ s> 1L 152 1€y
edge8n 7€ s> 1L 152 1Ly
edges8l 7€, 1> 1€ ys2y YLy
edge8l n r€g s> 1 ys2y 1€Lrg
edgel6 7€ 1> Y€ ys2s Yy
edgel6n 7,5 1> 1L 152y 1Ly
edgel6l 7,51 1€ ys2s TSy
edgel6l n 7€ s> 1 ys2y 1€8ry
edge32 7€, > 1152 1€y
edge32n r€g,s 1> 12 ys2 1Ly
edge32| 7€ s> 1€ ys2y Y€Lrg
edge32l n 7€ 1> 1L ys2s 1 d
Description

These instructions handle the boundary conditions for parallel pixel scan line loops, where
srcl is the address of the next pixel to render and Sr c2 is the address of the last pixel in
the scan line.

EDGESL(N), EDGE16L(N), and EDGE32L(N) are little-endian versions of EDGES(N),
EDGE16(N), and EDGE32(N). They produce an edge mask that is bit-reversed from their big-
endian counterparts but are otherwise identical. This makes the mask consistent with the
mask produced by the graphics compare operations (see Section A.44, “Pixel Compare

(VIS I)”) and with the Partial Store instruction (see Section A.41, “Partial Store (VIS I)”) on
little-endian data.

A 2-bit (EDGE32), 4-bit (EDGEL6), or 8-bit (EDGES) pixel mask is stored in the least
significant bits of r [r d] . The mask is computed from left and right edge masks as follows:

1. The left edge mask is computed from the three least significant bits (LSBs) of r[rs1],
and the right edge mask is computed from the three LSBs of r [s2] , according to
TABLE A-4 (TABLE A-5 for little-endian byte ordering).

2. If 32-bit address masking is disabled (PSTATE. AM= 0, 64-bit addressing) and the upper
61 bits of r [r s1] are equal to the corresponding bits in r [rs2], r[rd] is set to the
right edge mask ANDed with the left edge mask.

3. If 32-bit address masking is enabled (PSTATE. AM= 1, 32-bit addressing) and bits 31:3 of
r{rsl] match bits 31:3 of r[rs2], r[rd] is set to the right edge mask ANDed with
the left edge mask.

4. Otherwise, r [rd] is set to the left edge mask.

UltraSPARC llli Processor User's Manual * June 2003

The integer condition codes are set per the rules of the SUBCC instruction with the same
operands (see Section A.64, “Subtract”).

The EDGE(8, 16, 32)(L)N instructions do not set the integer condition codes.

Exceptions

None

TABLE A-4 Edge Mask Specification
Edge Size A2-A0 Left Edge Right Edge
8 000 1111 1111 1000 0000
8 001 0111 1111 1100 0000
8 010 0011 1111 1110 0000
8 011 0001 1111 1111 0000
8 100 0000 1111 1111 1000
8 101 00000111 1111 1100
8 110 0000 0011 11111110
8 111 0000 0001 11111111
16 00x 1111 1000
16 01x 0111 1100
16 10x 0011 1110
16 11x 0001 1111
32 0xx 11 10
32 1xx 01 11

TABLE A-5 Edge Mask Specification (Little-Endian)
Edge Size A2-A0 Left Edge Right Edge
8 000 11111111 0000 0001
8 001 11111110 0000 0011
8 010 1111 1100 0000 0111
8 011 1111 1000 0000 1111

Chapter A

Instruction Definitions

297

TABLE A-5 Edge Mask Specification (Little-Endian) (Continued)

Edge Size A2-A0 Left Edge Right Edge
8 100 1111 0000 0001 1111
8 101 1110 0000 0011 1111
8 110 1100 0000 0111 1111
8 111 1000 0000 1111 1111
16 00x 1111 0001

16 01x 1110 0011

16 10x 1100 0111

16 11x 1000 1111

32 Oxx 11 01

32 1xx 10 11

A.13 Floating-Point Add and Subtract

Opcode op3 opf Operation
FADDs 11 0100 00100 0001 Add Single
FADDd 11 0100 00100 0010 Add Double
FADDq 110100 001000011 Add Quad
FSUBs 11 0100 001000101 Subtract Single
FSUBd 110100 001000110 Subtract Double
FSUBq 11 0100 001000111 Subtract Quad
Format (3)
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4

298 UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax

fadds fregss s, fregrso fregra
faddd fregys, fregrsa fregmu
faddq \fregysr. fregyso freg
fsubs \fregst fregysa fregra
fsubd fregss s, fregrso frega
fsubg fregys, fregrsa fregm

Description

The floating-point add instructions add the floating-point register(s) specified by the r s1
field and the floating-point register(s) specified by the r s2 field. The instructions then write
the sum into the floating-point register(s) specified by the r d field.

The floating-point subtract instructions subtract the floating-point register(s) specified by the
r s2 field from the floating-point register(s) specified by the r s1 field. The instructions then
write the difference into the floating-point register(s) specified by the r d field.

Rounding is performed as specified by the FSR. RD field.

Compatibility Note — When FSR. NS = 0, the processor operates in standard floating-
point mode. FADD or FSUB with a subnormal result causes an fp_exception_other exception
with FSR. f tt = unfinished_FPop, system software emulates the instruction, and the correct
numerical result is calculated.

When FSR. NS = 1, the processor operates in “nonstandard” floating-point mode. When
FSR. NS =1, and FADD or FSUB produces a subnormal result on an UltraSPARC IIIi
processor, a fp_exception_other exception occurs with FSR. f t t = unfinished_FPop (even
though the processor is operating in nonstandard floating-point mode), then system software
emulates the instruction, and the correct numerical result is calculated (instead of replacing
the result with zero).

Therefore, the processor may produce a different (albeit more accurate) result than in
previous processors in the following situation:

FADD or FSUB produces a subnormal result
FSR. NS=1

Chapter A Instruction Definitions 299

Notes —

1) The processor does not implement (in hardware) the instructions that refer to a quad
floating-point register. Execution of such an instruction generates fp_exception_other (with
ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these
instructions.

2) For FADDs, FADDd, FSUBs, FSUBd, an fp_exception_other with f t t = unfinished_FPop
can occur if either operand is NaN.

Exceptions

fp_disabled

fp_exception_ieee_754 (OF, UF, NX, NV)

fp_exception_other (f t t = unimplemented_FPop (FADDq and FSUBQ only))
fp_exception_other (f t t = unifinished_FPop (FADDs, FADDd, FSUBs, FSUBd only))

A.14

Floating-Point Compare

Opcode op3 opf Operation

FCVPs 110101 00101 0001 Compare Single

FCVPd 110101 00101 0010 Compare Double

FCVPq 110101 00101 0011 Compare Quad

FCVPEs 110101 00101 0101 Compare Single and Exception if Unordered
FCVPEd 110101 001010110 Compare Double and Exception if Unordered
FCMPEq 110101 001010111 Compare Quad and Exception if Unordered

Format (3)
10 000 |ccl|ccO op3 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 4 0
300 UltraSPARC Illi Processor User's Manual * June 2003

Assembly Language Syntax

f cnps 9% ccn, freg,s;, freg,s
fcnpd % ccn, freg,,, fieg.
fcnpq % ccn, freg,,;, fieg,.
f crpes % ccn, freg,,;, freg,
f cnped 9% ccn, freg,s;, freg,s
f cnpeq % ccn, freg,,, fieg.
ccl |_| cc0 Condition Code

00 fcco

01 fccl

10 fcc2

11 fcc3
Description

These instructions compare the floating-point register(s) specified by the r s1 field with the
floating-point register(s) specified by the r s2 field, and set the selected floating-point
condition code (f ccn) as shown below.

fcc value Relation

0 Jregys =Jfregys:

1 Jreg s < fregs:

2 Jregrsi > Jregs2

3 freg,o; ? freg,s> (unordered)

The “?” in the preceding table means that the comparison is unordered. The unordered
condition occurs when one or both of the operands to the compare is a signalling or quiet
NaN.

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCVPEQ)
instructions cause an invalid (NV) exception if either operand is a NaN.

FCVP causes an invalid (NV) exception if either operand is a signalling NaN.

Chapter A Instruction Definitions 301

Compatibility Note — Unlike SPARC-V8, SPARC-V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBf cc, FBPf cc).

SPARC-V8 floating-point compare instructions are required to have a zero in the r [r d]
field. In SPARC-V9, bits 26 and 25 of the r [r d] field specify the floating-point condition
code to be set. Legal SPARC-V8 code will work on SPARC-V9 because the zeroes in the
r[rd] field are interpreted as f ccO and the FBf cc instruction branches according to
fccO.

Note — The processor does not implement (in hardware) the instructions that refer to a quad
floating-point register. Execution of such an instruction generates fp_exception_other (with
ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these
instructions.

Exceptions

fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (ftt = unimplemented_FPop (FCMPq, FCMPEQ only))

A.15 Convert Floating-Point to Integer

Opcode op3 opf Operation

FSTOx 110100 01000 0001 Convert Single to 64-bit Integer
FATOx 11 0100 01000 0010 Convert Double to 64-bit Integer
FqTOx 110100 01000 0011 Convert Quad to 64-bit Integer
FsTO 11 0100 01101 0001 Convert Single to 32-bit Integer
FATO 110100 01101 0010 Convert Double to 32-bit Integer
FqTO 11 0100 011010011 Convert Quad to 32-bit Integer

302 UltraSPARC llli Processor User's Manual * June 2003

Format (3)

10

rd

op3 — opf rs2

31 30 29

25 24 19 18 14 13 5 4 0

Assembly Language Syntax

f st ox \freg,ss freg,q
f dt ox freg,.> freg,,
f gt ox fregyss fregra
fstoi \freg,ss freg,
f dt oi \freg,ss freg,q
f gt oi freg,.> freg,,
Description

FsTOx, FATOX, and FqQTOX convert the floating-point operand in the floating-point
register(s) specified by r s2 to a 64-bit integer in the floating-point register(s) specified by
rd.

FsTQ , FATGO , and FqQTA convert the floating-point operand in the floating-point
register(s) specified by r s2 to a 32-bit integer in the floating-point register specified by r d.

The result is always rounded toward zero; that is, the rounding direction (RD) field of the
FSR register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the specified
size or is a NaN or infinity, then a fp_exception_ieee_754 “invalid” exception occurs.

Note — The processor does not implement (in hardware) the instructions that refer to a quad
floating-point register. Execution of such an instruction generates fp_exception_other (with
ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these
instructions.

Chapter A Instruction Definitions 303

The following floating-point-to-integer conversion instructions generate an unfinished_FPop
exception for certain ranges of floating-point operands, as shown in TABLE A-6.

TABLE A-6 Floating-Point to Integer unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FsTO result < — 231, result = 23!, Inf, NaN

FsTOx [result| = 252, Inf, NaN

FdTO result < — 231, result = 23!, Inf, NaN

FATOX [result| = 252, Inf, NaN
Exceptions

fp_disabled

fp_exception_ieee_754 (NV, NX)

unfinished_FPop

fp_exception_other (ft t = unimplemented_FPop (FQTO , FQTOX only))

A.16

Convert Between Floating-Point Formats

Opcode op3 opf Operation

FsTCOd 110100 01100 1001 Convert Single to Double
FsTOg 110100 011001101 Convert Single to Quad
FdTCs 11 0100 011000110 Convert Double to Single
FAdTOg 110100 011001110 Convert Double to Quad
FqTCs 110100 011000111 Convert Quad to Single
FqTOd 11 0100 01100 1011 Convert Quad to Double

Format (3)

10

rd

op3 — opf rs2

31 30 29

304

25 24 19 18 14 13 5 4 0

UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax
fstod e o fregra
fstog fieg 52, frega
fdtos freg s fregn
fdtoq \freg o freg
fgtos \fregysa frega
fqtod fieg 52, frega
Description

These instructions convert the floating-point operand in the floating-point register(s) specified
by r s2 to a floating-point number in the destination format. They write the result into the
floating-point register(s) specified by r d.

Rounding is performed as specified by the FSR. RD field.

FgTQd, FQTGs, and FATCOs (the “narrowing” conversion instructions) can raise OF, UF, and
NX exceptions. FATOg, FsTQg, and FSTCd (the “widening” conversion instructions) cannot.

Any of these six instructions can trigger an NV exception if the source operand is a
signalling NaN.

Notes —

1) The UltraSPARC IIIi processor does not implement (in hardware) the instructions that
refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with f t t = unimplemented_FPop), which causes a trap. Supervisor
software then emulates these instructions.

2) For FATOs and FSTQ, a fp_exception_other with f t t = unfinished_FPop can occur if
the source operand is NaN or subnormal, or out of range of the destination format.

The following floating-point to floating-point conversion instructions generate an
unfinished_FPop exception for certain ranges of floating-point operands, as shown in
TABLE A-7.

TABLE A-7 Floating-Point/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

FdTGCs [result| = 252 |result] <2731 operand < - 222 operand = 222 NaN

Chapter A Instruction Definitions 305

Exceptions

fp_disabled

fp_exception_ieee_754 (OF, UF, NV, NX)

fp_exception_other (f t t = unimplemented_FPop (FsTQq, FATOy, FqTGCs, FqTQ only))
unfinished_FPop

fp_exception_other (f t t = unfinished_FPop (FATCs and FsTQOd only))

A.17 Convert Integer to Floating-Point

Opcode op3 opf Operation
FxTCs 110100 0 1000 0100 Convert 64-bit Integer to Single
FxTCd 110100 0 1000 1000 Convert 64-bit Integer to Double
FxTOg 11 0100 0 1000 1100 Convert 64-bit Integer to Quad
Fi TCs 110100 011000100 Convert 32-bit Integer to Single
Fi TGd 110100 0 1100 1000 Convert 32-bit Integer to Double
Fi TQg 110100 01100 1100 Convert 32-bit Integer to Quad
Format (3)
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax

fxtos Jregpso, fregn
fxtod Jregyso fregn
fxtog [reg 5o, fregra
fitos Jregysa fregpa
fitod Jreg s fregn
fitog Jregyso fregr

306 UltraSPARC llli Processor User's Manual * June 2003

Description

FXTGOs, FXTCd, and FxTQOg convert the 64-bit signed integer operand in the floating-point
registers specified by r s2 into a floating-point number in the destination format.

Fi TCs, Fi TQd, and Fi TOg convert the 32-bit signed integer operand in floating-point
register(s) specified by r s2 into a floating-point number in the destination format. All write
their result into the floating-point register(s) specified by r d.

Fi TGs, FXTOs, and FXTQd round as specified by the FSR. RD field.

Note — The UltraSPARC IIli processor does not implement (in hardware) the instructions
that refer to a quad floating-point register. Execution of such an instruction generates
fp_exception_other (with f t t = unimplemented_FPop), which causes a trap. Supervisor
software then emulates these instructions.

The following integer-to-floating-point conversion instructions generate an unfinished_FPop
exception for certain ranges of integer operands, as shown in TABLE A-8.

TABLE A-8 Integer/Floating-Point unfinished_FPop Exception Conditions

Instruction Unfinished Trap Ranges

Fi TCs operand < — 222, operand = 222

FXTGCs operand < — 2%2, operand = 272

FxTCQd operand < - 2%, operand = 2°!
Exceptions

fp_disabled

fp_exception_ieee_754 (NX (Fi TOs, FXTOs, FXTQd only))
unfinished_FPop

fp_exception_other (ft t = unimplemented_FPop (Fi TOy, FXTQg only))

Chapter A Instruction Definitions 307

A.18 Floating-Point Move

Opcode op3 opf Operation
FMOVs 11 0100 00000 0001 Move Single
FMOvd 110100 00000 0010 Move Double
FMOVg 110100 00000 0011 Move Quad
FNEGs 110100 00000 0101 Negate Single
FNEGd 11 0100 00000 0110 Negate Double
FNEGq 11 0100 000000111 Negate Quad
FABSs 110100 0 0000 1001 Absolute Value Single
FABSd 11 0100 00000 1010 Absolute Value Double
FABSq 11 0100 00000 1011 Absolute Value Quad
Format (3)
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4

Assembly Language Syntax

f movs fregrsa fregra
f novd fregrsa Jregr
fmovq fregysa Jregn
fnegs Jregrsa fregra
fnegd fregrsa fregra
fnegq Jregysa Jregn
f abss freg,s freg,q
f absd freg,oo, freg,
fabsq fregrsa fregra

308 UltraSPARC llli Processor User's Manual * June 2003

Description

The single-precision versions of these instructions copy the contents of a single-precision
floating-point register to the destination. The double-precision versions copy the contents of
a double-precision floating-point register to the destination. The quad-precision versions
copy a quad-precision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.
FNEG copies the source to the destination with the sign bit complemented.
FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Note — The processor does not implement (in hardware) the instructions that refer to a quad
floating-point register. Execution of such an instruction generates fp_exception_other (with
ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these
instructions.

Exceptions

fp_disabled
fp_exception_other (f t t = unimplemented_FPop (FMOVQq, FNEGg, FABSq only))

Chapter A Instruction Definitions 309

A.19

Floating-Point Multiply and Divide

Opcode op3 opf Operation

FMULs 110100 |0 0100 1001 Multiply Single

FMULd 11 0100 00100 1010 Multiply Double

FMULg 11 0100 00100 1011 Multiply Quad

FsMJLd 11 0100 00110 1001 Multiply Single to Double

FdMULq 110100 001101110 [Multiply Double to Quad

FDI Vs 11 0100 001001101 Divide Single

FDI Vd 11 0100 001001110 Divide Double

FDI Vg 11 0100 001001111 Divide Quad

Format (3)

10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax

fmls ﬁegrsl) frEgrSZ’ fregrd

fmul d Jreg sy, fregso fregy

fmul g fregrsb .ﬁegrSZv ﬁ’egrd

fsnuld fregrsb Jregyo fregrd

fdnul q ﬁegrsl) frEgrSZ’ fregrd

fdivs Jreg sy, fregso fregy

fdivd .ﬁegrsl’ .ﬁegrSZv ﬁ’egrd

fdivqg fregrsb Jregyo fregrd
Description

The floating-point multiply instructions multiply the contents of the floating-point register(s)
specified by the r s1 field by the contents of the floating-point register(s) specified by the
r s2 field. The instructions then write the product into the floating-point register(s) specified
by the r d field.
310 UltraSPARC Illi Processor User's Manual * June 2003

The FsMULd instruction provides the exact double-precision product of two single-precision
operands, without underflow, overflow, or rounding error. Similarly, FAMJLQ provides the
exact quad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s)
specified by the r s1 field by the contents of the floating-point register(s) specified by the

r s2 field. The instructions then write the quotient into the floating-point register(s) specified
by the r d field.

Rounding is performed as specified by the FSR. RD field.

Notes -

1) The processor does not implement (in hardware) the instructions that refer to a quad
floating-point register. Execution of such an instruction generates fp_exception_other (with
ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these
instructions.

2) For FDI Vs and FDI Vd, a fp_exception_other with f t t = unfinished_FPop can occur if
the divide unit detects certain unusual conditions.

Exceptions

fp_disabled

fp_exception_ieee_754 (OF, UF, DZ (FDI V only), NV, NX)

fp_exception_other (f t t = unimplemented_FPop (FMULq, FAMJLq, FDI VQq)
fp_exception_other (f t t = unifinished_FPop (FMJLs, FMULd, FSMULd, FDI Vs, FDI V))

Chapter A Instruction Definitions 311

A.20 Floating-Point Square Root

Opcode op3 opf Operation
FSQRTs 110100 00010 1001 Square Root Single
FSQRTd 110100 00010 1010 Square Root Double
FSQRTq 110100 00010 1011 Square Root Quad
Format (3)
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax
fsarts | freg, fregu
fsartd |freg. fregy
fsqgrtq freg,s freg,,

Description

These SPARC-V9 instructions generate the square root of the floating-point operand in the
floating-point register(s) specified by the r s2 field and place the result in the destination

floating-point register(s) specified by the r d field. Rounding is performed as specified by the
FSR. RD field.

Note — The processor does not implement (in hardware) the instructions that refer to a quad
floating-point register. Execution of such an instruction generates fp_exception_other (with
ftt = unimplemented_FPop), which causes a trap. Supervisor software then emulates these
instructions.

For FSQRTs and FSQRTd a fp_exception_other (with f t t = unfinished_FPop) can occur if
the operand to the square root is positive denormalized.

312 UltraSPARC llli Processor User's Manual * June 2003

Exceptions

fp_disabled

fp_exception_ieee_754 (IEEE_754_exception (NV, NX))
fp_exception_other (unimplemented_FPop) (Quad forms)
fp_exception_other (unfinished_FPop) (FSQRTs, FSQRTd)

A2l

Flush Instruction Memory

Opcode op3 Operation
FLUSH 111011 Flush Instruction Memory
Format (3)
10 — op3 rsl i=0 — rs2
10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax
flush |address

Description

FLUSH ensures that the doubleword specified as the effective address is consistent across any
local caches, and in a multiprocessor system, will eventually become consistent everywhere.

In the following discussion Py gy refers to the processor that executed the FLUSH

instruction.

FLUSH ensures that instruction fetches from the specified effective address by Pg; gy appear
to execute after any loads, stores, and atomic load-stores to that address issued by Py ygy
prior to the FLUSH. In a multiprocessor system, FLUSH also ensures that these values will
eventually become visible to the instruction fetches of all other processors. FLUSH behaves
as if it were a store with respect to MEMBAR-induced orderings. See Section A.34, “Memory

Barrier.”

Chapter A Instruction Definitions

313

314

The effective address operand for the FLUSH instruction is “r[rs1] +r[rs2]”ifi =0,
or“r[rsl] +sign_ext(sinmml3)”ifi =1. The least significant two address bits of the
effective address are unused and should be supplied as zeroes by software. Bit 2 of the
address is ignored because FLUSH operates on at least a doubleword.

Programming Note —

1. Typically, FLUSH is used in self-modifying code. The use of self-modifying code is
discouraged.

2. The order in which memory is modified can be controlled by means of FLUSH and
MEMBAR instructions interspersed appropriately between stores and atomic load-stores.
FLUSH is needed only between a store and a subsequent instruction fetch from the
modified location. When multiple processes may concurrently modify live (that is,
potentially executing) code, the programmer must ensure that the order of update
maintains the program in a semantically correct form at all times.

3. The memory model guarantees in a uniprocessor that data loads observe the results of the
most recent store, even if there is no intervening FLUSH.

4. FLUSH may be time consuming.

5. In a multiprocessor system, the time it takes for a FLUSH to take effect is dependent on
the system. No mechanism is provided to ensure or test completion.

6. Because FLUSH is designed to act on a doubleword and on some implementations FLUSH
may trap to system software, system software should provide a user-callable service
routine for flushing arbitrarily sized regions of memory. On some processor
implementations, this routine would issue a series of FLUSH instructions; on others, it
might issue a single trap to system software that would then flush the entire region.

On an UltraSPARC II1i processor:
A FLUSH instruction flushes the processor pipeline and synchronizes the processor.

The instruction cache is kept coherent; therefore, there is no need to perform any action
on it.

The address provided with the FLUSH instruction is ignored. However, for portability
across all SPARC-V9 implementations, software must supply the target effective address
in FLUSH instructions.

FLUSH synchronizes code and data spaces after code space is modified during program
execution. The FLUSH effective address is ignored. FLUSH does not access the data MMU
and cannot generate a data MMU miss or exception.

SPARC-V9 specifies that the FLUSH instruction has no latency on the issuing processor. In
other words, a store to instruction space prior to the FLUSH instruction is visible immediately
after the completion of FLUSH. When a FLUSH operation is performed, the processor
guarantees that earlier code modifications will be visible across the whole system.

UltraSPARC llli Processor User's Manual * June 2003

Exceptions

None

A.22 Flush Register Windows

Opcode op3 Operation
FLUSHW 10 1011 Flush Register Windows
Format (3)
10 — op3 — i=0 —
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax

fl ushw |

Description

FLUSHWCcauses all active register windows except the current window to be flushed to
memory at locations determined by privileged software. FLUSHWbehaves as a NOP if there
are no active windows other than the current window. At the completion of the FLUSHW
instruction, the only active register window is the current one.

Programming Note — The FLUSHWinstruction can be used by application software to
switch memory stacks or to examine register contents for previous stack frames.

FLUSHWacts as a NOP if CANSAVE = NW NDOWS — 2. Otherwise, there is more than one
active window, so FLUSHWCcauses a spill exception. The trap vector for the spill exception is
based on the contents of OTHERW N and WSTATE. The spill trap handler is invoked with the
CWP set to the window to be spilled (that is, (CWP + CANSAVE + 2) mod NW NDOWS).

Chapter A Instruction Definitions 315

Programming Note — Typically, the spill handler saves a window on a memory stack and
returns to re-execute the FLUSHWinstruction. Thus, FLUSHW!traps and re-executes until all
active windows other than the current window have been spilled.

Exceptions

spill_n_normal
spill_n_other

A.23

Illegal Instruction Trap

Opcode op op2 Operation
| LLTRAP 00 000 illegal_instruction trap
Format (2)
00 — 000 const22
31 30 29 25 24 22 21 0

316

Assembly Language Syntax

illtrap |const22

Description

The | LLTRAP instruction causes an illegal_instruction exception. The const 22 value is
ignored by the hardware; specifically, this field is not reserved by the architecture for any
future use.

Compatibility Note — Except for its name, this instruction is identical to the SPARC-V8
UNI MP instruction.

UltraSPARC llli Processor User's Manual * June 2003

Exceptions

illegal_instruction

A.24

Jump and Link

Opcode op3 Operation
JMPL 11 1000 Jump and Link
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

 npl

|address, reg,q

Description

The JMPL instruction causes a register-indirect delayed control transfer to the address given
by “r[rsl] + r[rs2]”ifi =0,or“r[rsl] +sign_ext(sinml3)”ifi =1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into
register r [rd] .

If either of the low-order two bits of the jump address is nonzero, a
mem_address_not_aligned exception occurs.

Chapter A

Instruction Definitions

317

Programming Note — A JMPL instruction with r d = 15 functions as a register-indirect
call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is
“r [31] + 8,” if a nonleaf routine (one that uses the SAVE instruction) is entered by a CALL
instruction, or “r [15] + 8” if a leaf routine (one that does not use the SAVE instruction) is
entered by a CALL instruction or by a JMPL instruction with r d = 15.

Exceptions

mem_address_not_aligned

A.25 Load Floating-Point

Opcode op3 rd Operation

LDF 10 0000 0-31 Load Floating-Point Register

LDDF 10 0011 i Load Double Floating-Point Register
LDQF 10 0010 i Load Quad Floating-Point Register
LDXFSR 10 0001 1 Load Floating-Point State Register
— 10 0001 2-31 Reserved

 Encoded floating-point register value.

Format (3)
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

318 UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax
I d [address], freg,4
| dd [address], freg,q
I dg [address], freg,,
I dx [address], % sr
Description

The load single floating-point instruction (LDF) copies a word from memory into f [rd] .

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword
from memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) traps to software.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions
that have not finished execution to complete and then loads a doubleword from memory into
the FSR

Load floating-point instructions access the primary address space (ASI = 80,¢). The effective
address for these instructions is “r[rs1] +r[rs2] ”ifi =0, or
“r[rsl] +sign_ext(simil3)”ifi =1.

LDF causes a mem_address_not_aligned exception if the effective memory address is not
word aligned. LDXFSR causes a mem_address_not_aligned exception if the address is not
doubleword aligned. If the floating-point unit is not enabled (per FPRS. FEF and
PSTATE. PEF) or if no FPU is present, then a load floating-point instruction causes an
Jfp_disabled exception.

LDDF requires doubleword aligned. If word alignment is used, then the LDDF causes an
LDDF _mem_address_not_aligned exception. The trap handler software shall emulate the
LDDF instruction and return.

Programming Note — In SPARC-VS, some compilers issued sequences of single-
precision loads when they could not determine that doubleword or quadword operands were
properly aligned. For SPARC-V9, since emulation of misaligned loads is expected to be fast,
compilers are recommended to issue sets of single-precision loads only when they can
determine that doubleword or quadword operands are not properly aligned.

If a load floating-point instruction traps with any type of access error, the contents of the
destination floating-point register(s) is undefined.

Chapter A Instruction Definitions 319

In the UltraSPARC I1Ii processor, an LDDF instruction causes an
LDDF_mem_address_not_aligned trap if the effective address is 32-bit aligned but not 64-bit
(doubleword) aligned.

Exceptions

illegal_instruction (0p3 =214 and r d =2-31)
fp_disabled

LDDF_mem_address_not_aligned (LDDF only)
mem_address_not_aligned
data_access_exception

PA_watchpoint

VA_watchpoint

data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.26

Load Floating-Point from Alternate Space

Opcode op3 rd Operation

L DEAPAst 11 0000 |0-31 |Load Floating-Point Register from Alternate Space

L DDFAPAst 110011 |t Load Double Floating-Point Register from Alternate Space
LDQFAPas! 110010 |+ Load Quad Floating-Point Register from Alternate Space

T Encoded floating-point register value.

Format (3)
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

320

UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax

| da [regaddr] imm_asi, freg,,
| da [reg_plus_imm] Yasi , freg,,
| dda [regaddr] imm_asi, freg,,

| dda [reg_plus_imm] Yasi , freg,,

| dga [regaddr] imm_asi, freg,,

| dga [reg_plus_imm] Y@asi , freg,,

Description

The load single floating-point from alternate space instruction (LDFA) copies a word from
memory into f [rd] .

The load double floating-point from alternate space instruction (LDDFA) copies a word-
aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) traps to software.

Load floating-point from alternate space instructions contain the address space

identifier (ASI) to be used for the load in the i nm_asi field if i =0, or in the ASI register
if i =1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged.
The effective address for these instructions is “r[rs1] +r[rs2]”ifi =0, or

“r[rsl] +sign_ext(simml3)”ifi =1.

LDFA causes a mem_address_not_aligned exception if the effective memory address is not
word aligned. If the floating-point unit is not enabled (per FPRS. FEF and PSTATE. PEF) or
if no FPU is present, then load floating-point from alternate space instructions cause an
fp_disabled exception.

LDDFA with certain target ASIs is defined to be a 64-byte block-load instruction. See
Section A.4, “Block Load and Block Store (VIS I)” for details.

Implementation Note — LDFA and LDDFA cause a privileged_action exception if
PSTATE. PRI V=0 and bit 7 of the ASI is zero.

LDDF requires doubleword alignment. If word alignment is used, then the LDDF causes an
LDDF_mem_address_not_aligned exception. The trap handler software shall emulate the
LDDF instruction and return.

Chapter A Instruction Definitions 321

Programming Note — In SPARC-VS, some compilers issued sequences of single-
precision loads when they could not determine that doubleword or quadword operands were
properly aligned. For SPARC-V9, since emulation of misaligned loads is expected to be fast,
compilers should issue sets of single-precision loads only when they can determine that
doubleword or quadword operands are not properly aligned.

If a load floating-point instruction traps with any type of access error, the contents of the
destination floating-point register(s) is undefined.

In the UltraSPARC IIIi processor, an LDDFA instruction causes an
LDDF_mem_address_not_aligned trap if the effective address is 32-bit aligned but not 64-bit
(doubleword) aligned.

Exceptions

illegal_instruction (LDQFA only)
fp_disabled
LDDF_mem_address_not_aligned (LDDFA only)
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
VA_watchpoint

PA_watchpoint

A.27 Load Integer

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 001010 Load Signed Halfword
LDSW 00 1000 Load Signed Word
LDUB 00 0001 Load Unsigned Byte
LDUH 000010 Load Unsigned Halfword
LDUw 00 0000 Load Unsigned Word
LDX 00 1011 Load Extended Word

322 UltraSPARC llli Processor User's Manual * June 2003

Format (3)

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

| dsb [address], reg,

I dsh [address], reg,

| dsw [address], reg,y

| dub [address], reg,,

| duh [address], reg,;

| duw [address], reg,y (synonym: | d)
I dx [address], reg,y

Description

The load integer instructions copy a byte, a halfword, a word, or an extended word from
memory. All copy the fetched value into r [r d] . A fetched byte, halfword, or word is right-
justified in the destination register r [r d] ; it is either sign-extended or zero-filled on the left,
depending on whether the opcode specifies a signed or unsigned operation, respectively.

Load integer instructions access the primary address space (ASI = 80;¢4). The effective
address is “r[rsl] +r[rs2]”ifi =0,or “r[rsl] +sign_ext(simil3)”ifi =1.

A successful load (notably, load extended) instruction operates atomically.

LDUH and LDSH cause a mem_address_not_aligned exception if the address is not halfword
aligned. LDUWand LDSWcause a mem_address_not_aligned exception if the effective
address is not word aligned. LDX causes a mem_address_not_aligned exception if the address
is not doubleword aligned.

Compatibility Note — The SPARC-V8 LD instruction has been renamed LDUWin
SPARC-V9. The LDSWinstruction is new in SPARC-VO.

Chapter A Instruction Definitions 323

Exceptions

mem_address_not_aligned (all except LDSB, LDUB)

data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

VA_watchpoint
PA_watchpoint

A.28

Load Integer from Alternate Space

Opcode op3 Operation

L DSBAPs! 01 1001 Load Signed Byte from Alternate Space
LDSHAPAs! 011010 Load Signed Halfword from Alternate Space
LDSWAPAs! 01 1000 Load Signed Word from Alternate Space
LDUBAPAs! 01 0001 Load Unsigned Byte from Alternate Space

L DUHAPAs! 010010 Load Unsigned Halfword from Alternate Space
LDUWAPAs! 01 0000 Load Unsigned Word from Alternate Space

L DXAPast 011011 Load Extended Word from Alternate Space
Format (3)

11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5

324 UltraSPARC Illi Processor User’s Manual « June 2003

Assembly Language Syntax

| dsba [regaddr] imm_asi, reg,

| dsha [regaddr] imm_asi, reg,,

| dswa [regaddr] imm_asi, reg,;

| duba [regaddr] imm_asi, reg,,

| duha [regaddr] imm_asi, reg,,

| duwa [regaddr] imm_asi, reg,; (synonym: | da)

| dxa [regaddr] imm_asi, reg,,

| dsba [reg_plus_imm] %asi , reg,,

I dsha [reg_plus_imm] Y@si , reg,,

| dswa [reg_plus_imm] Y@si , reg,y

| duha [reg_plus_imm] Y@si , reg,y

| duwa [reg_plus_imm] %asi , reg,, (synonym: | da)

]
]
]
| duba [reg_plus_imm] Y@si , reg,;
]
]
]

| dxa [reg_plus_imm] Y@si , reg,,

Description

The load integer from alternate space instructions copy a byte, halfword, word, or an
extended word from memory. All copy the fetched value into r [r d] . A fetched byte,
halfword, or word is right-justified in the destination register r [r d] ; it is either sign-
extended or zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

The load integer from alternate space instructions contain the address space identifier (ASI)
to be used for the load in the i nm_asi field if i =0, or in the ASI register if i =1. The
access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective
address for these instructions is “r [rs1] +r[rs2] ”ifi =0, or

“r[rsl] +sign_ext(sinmml3)”ifi =1.

A successful load (notably, load extended) instruction operates atomically.

LDUHA and LDSHA cause a mem_address_not_aligned exception if the address is not
halfword aligned. LDUWA and LDSWA cause a mem_address_not_aligned exception if the
effective address is not word aligned; LDXA causes a mem_address_not_aligned exception if
the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE. PRI V = 0 and bit 7 of the
ASI is zero.

Chapter A Instruction Definitions 325

Exceptions

privileged_action

mem_address_not_aligned (all except LDSBA and LDUBA)

data_access_exception
PA_watchpoint
VA_watchpoint
fast_data_access_MMU_miss
fast_data_access_protection
data_access_error

A.29

Load Quadword, Atomic (VIS I)

Opcode imm_asi

ASI Value

Operation

LDDA ASI_NUCLEUS_QUAD_LDD

2446

128-bit atomic load

LDDA ASI_NUCLEUS_QUAD_LDD_L |2Cyg¢

128-bit atomic load, little-endian

LDDA ASI_QUAD_LDD_PHYS 3446 128-bit atomic load
LDDA ASI_QUAD_LDD_PHYS_L 3Cy4 128-bit atomic load, little-endian
Format (3) LDDA
11 rd 010011 rsi i=0 imm_asi rs2
11 rd 010011 rsl i=1 simm_13
31 30 29 25 24 19 18 14 13 5 4

326

Assembly Language Syntax

| dda [reg_addr] imm_asi, reg,

| dda [reg_plus_imm] Y@si , reg,y

UltraSPARC llli Processor User's Manual * June 2003

Description

ASIs 24,4 and 2C 4 are used with the LDDA instruction to atomically read a 128-bit, virtually
addressed data item. They are intended to be used by a TLB miss handler to access TSB
entries without requiring locks. The data is placed in an even/odd pair of 64-bit registers. The
lowest-address 64 bits are placed in the even register; the highest-address 64 bits are placed
in the odd-numbered register. The reference is made from the nucleus context. ASIs 24, and
2C are translated by the MMU into physical addresses according to normal translation rules
for the nucleus context.

To reduce the number of locked pages in D-TLB a new ASI load instruction, atomic quad
load physical (I dda ASI_QUAD_LDD_PHYS) was added. It allows a full TTE entry

(128 bits, tag and data) in TSB to be read directly with PA, bypassing the VA-to-PA
translation. In the D-TLB miss handler, a TTE entry is read using two | dX instructions. ASIs
34,¢ and 3C4 are not translated by the MMU and addresses provided are interpreted directly
as physical addresses.

Since quad load with these ASIs bypasses the D-MMU, the physical address is set equal to
the truncated virtual address, that is, PA[42:0] = VA[42:0]. Internally in hardware, the
physical page attribute bits of these ASIs are hardcoded (not coming from DCU Control
Register) as follows:

CP=1, Cv=0, |E=0, E=0, P=0, W=0, NFO=0, Size=8K

Note that (CP, CV) = 10 means it is cacheable in L2-cache, W-cache, and P-cache, but not D-
cache (since D-cache is VA-indexed). Therefore, this atomic quad load physical instruction
can only be used with cacheable PA.

Semantically, ASI_QUAD_LDD_PHYS is like a combination of
ASI_NUCLEUS_QUAD_LDD and ASI_PHYS_USE_EC.

An illegal_instruction occurs if an odd “r d” register number is used. If non-privileged
software tries to use this ASI, a privileged_action exception occurs. If the physical address of
the data referenced matches the watchpoint register
(ASI_DMMU_PA_WATCHPOINT_REG), the PA_watchpoint exception occurs.

In addition to the usual traps for LDDA using a privileged ASI, a data_access_exception trap
occurs for a non-cacheable access or if a quadword-load ASI is used with any instruction
other than LDDA. A mem_address_not_aligned trap is taken if the access is not aligned on a
128-byte boundary.

Exceptions

privileged_action

PA_watchpoint (recognized on only the first 8 bytes of an access)
VA_watchpoint (recognized on only the first 8 bytes of an access)
illegal_instruction (misaligned r d)

mem_address_not_aligned

Chapter A Instruction Definitions 327

data_access_exception (an attempt to access a page marked as non-cacheable)

data_access_error
fast_data_access_MMU_miss

fast_data_access_protection

328 UltraSPARC llli Processor User's Manual * June 2003

A.30

Load-Store Unsigned Byte

Opcode op3 Operation
LDSTUB 00 1101 Load-Store Unsigned Byte
Format (3)
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

| dstub |[address], reg,

Description

The load-store unsigned byte instruction copies a byte from memory into r [r d] , then
rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in the
destination register r [r d] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same
doubleword simultaneously are guaranteed to execute them in an undefined, but serial order.

The effective address for these instructions is “r[rs1] +r[rs2]”ifi =0, or
“r{rsl] +sign_ext(sinmil3)”ifi =1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses is maintained for cacheable memory space.

Chapter A Instruction Definitions A-329

Exceptions

data_access_exception

data_access_error

fast_data_access_MMU_miss
fast_data_access_protection

VA_watchpoint
PA_watchpoint

A31

Load-Store Unsigned Byte to Alternate

Space

Opcode op3 Operation
LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate Space
Format (3)
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4
Assembly Language Syntax
| dst uba [regaddr] imm_asi, reg,;

A-330

| dst uba [reg_plus_imm] Y@si , reg,,

Description

The load-store unsigned byte into alternate space instruction copies a byte from memory into
r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is right-

justified in the destination register r [r d] and zero-filled on the left.

UltraSPARC llli Processor User's Manual * June 2003

The operation is performed atomically, that is, without allowing intervening interrupts or
deferred traps. In a multiprocessor system, two or more processors executing LDSTUB,
LDSTUBA, CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same
doubleword simultaneously are guaranteed to execute them in an undefined, but serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in the i m_asi
field if i =0, or in the ASI register if i = 1. The access is privileged if bit 7 of the ASI is
zero; otherwise, it is not privileged. The effective address is “r[rsl1] +r[rs2] ”ifi =0,
or“r[rsl] +sign_ext(sinml3)”ifi =1.

LDSTUBA causes a privileged_action exception if PSTATE. PRI V = 0 and bit 7 of the ASI is
ZEero.

The coherence and atomicity of memory operations between processors and [/O DMA
memory accesses is maintained for cacheable memory space.

Exceptions

privileged_action
data_access_exception
data_access_error
fast_data_access_ MMU_miss
fast_data_access_protection
VA_watchpoint
PA_watchpoint

Chapter A Instruction Definitions A-331

A.32 Logical Operate Instructions (VIS I)

Opcode opf Operation

FZERO 00110 0000 Zero fill

FZERGCS 00110 0001 Zero fill, single precision

FONE 001111110 One fill

FONES 001111111 One fill, single precision

FSRC1 001110100 Copy srcl

FSRC1S 001110101 Copy sr c1, single precision

FSRC2 00111 1000 Copy src2

FSRC2S 00111 1001 Copy Sr €2, single precision

FNOT1 001101010 Negate (ones-complement) Sr c1l
FNOT1S 001101011 Negate (ones-complement) src1l, single precision
FNOT2 001100110 Negate (ones-complement) St c2
FNOT2S 001100111 Negate (ones-complement) Sr €2, single precision
FOR 00111 1100 Logical OR

FORS 001111101 Logical OR, single precision

FNOR 001100010 Logical NOR

FNORS 001100011 Logical NOR, single precision

FAND 00111 0000 Logical AND

FANDS 00111 0001 Logical AND, single precision

FNAND 001101110 Logical NAND

FNANDS 001101111 Logical NAND, single precision

FXOR 001101100 Logical XOR

FXORS 001101101 Logical XOR, single precision

FXNOR 001110010 Logical XNOR

FXNORS 001110011 Logical XNOR, single precision

FORNOT 1 00111 1010 Negated srcl OR src2

FORNOT1S 001111011 Negated src1 OR sr c2, single precision
FORNOT 2 001110110 srcl OR negated src2

FORNOT2S 001110111 srcl OR negated Sr c2, single precision
FANDNOT 1 00110 1000 Negated sSrc1 AND src2

FANDNOT1S 00110 1001 Negated src1 AND sr c2, single precision

A-332 UltraSPARC llli Processor User's Manual * June 2003

Opcode opf Operation
FANDNOT 2 001100100 srcl AND negated Src2
FANDNOT2S 001100101 srcl AND negated Sr €2, single precision
Format (3)
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 0
Assembly Language Syntax
fzero \freg,q
fzeros \freg,q
fone freg,q
f ones freg,
fsrcl \fregys i, fregra
fsrcls \freg,s1, freg,q
fsrc2 freg s Jregra
fsrc2s freg,so freg,q
fnotl \fregys i, fregra
fnot 1s \freg,s1, freg,q
fnot2 freg,s2 freg
f not 2s \freg, <2 freg, g
for \fregy s, fregysa fregra
fors \freg s, fregrsa freg
f nor fregys . fregrso fiegr
fnors \fregy 1, fregysa fregra
fand \fregy s, fregysa fregra
fand \fregys, fregrso freg
f nands fregys . fregrso fiegr
f nands \fregy s, fregysa fregra
f xor \fregy s, freg s fregra
f xors \freg,c 1, fregy s freg,y
fxnor \freg sy, fregrso fregra
fxnors \fregy sy, fregysa fregra
Chapter A Instruction Definitions A-333

A-334

Assembly Language Syntax

fornotl \freg,s . freg s fregra
fornot1s freg,s .. fregrsa fiegr
fornot2 freg,s . fregysa fregra
fornot 2s \freg g1, fregy o fregr
fandnot 1 \freg, s, freg s fregra
fandnot 1s freg,s .. fregrsa fiegr
fandnot 2 freg,s . fregsa fregra
fandnot 2s \freg g1, fregy o fregr
Description

The standard 64-bit versions of these instructions perform 1 of 16 64-bit logical operations
between the 64-bit floating-point registers specified by r s1 and r s2. The result is stored in
the 64-bit floating-point destination register specified by r d. The 32-bit (single-precision)

version of these instructions perform 32-bit logical operations.

Note — For good performance, the result of a single logical instruction should not be used
as part of a 64-bit graphics instruction source operand in the next three instruction groups.
Similarly, the result of a standard logical should not be used as a 32-bit graphics instruction

source operand in the next three instruction groups.

Exceptions

fp_disabled

UltraSPARC llli Processor User's Manual * June 2003

A.33

Logical Operations

Opcode op3 Operation
AND 00 0001 AND
ANDcc 01 0001 AND and modify condition codes
ANDN 000101 AND Not
ANDNc c 010101 AND Not and modify condition codes
OR 00 0010 Inclusive OR
ORcc 010010 Inclusive OR and modify condition codes
ORN 000110 Inclusive OR Not
ORNcc 010110 Inclusive OR Not and modify condition
codes

XOR 000011 Exclusive OR
XCORcc 010011 Exclusive OR and modify condition codes
XNOR 000111 Exclusive NOR
XNORcc 010111 Exclusive NOR and modify condition codes
Format (3)

10 rd op3 rsl i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 0
Chapter A Instruction Definitions A-335

Assembly Language Syntax

and reg,c;, reg_or_imm, reg,;
andcc reg,s;, reg_or_imm, reg,;
andn reg,c;, reg_or_imm, reg,;
andncc reg,c;, reg_or_imm, reg,;
or reg,s;, reg_or_imm, reg,;
orcc reg,s;, reg_or_imm, reg,;
orn reg,..;, reg_or_imm, reg,;
orncc reg,c;, reg_or_imm, reg,;
xor reg,c;, reg_or_imm, reg,;
Xorcc reg,s;, reg_or_imm, reg,;
xnor reg, ;. reg_or_imm, reg,;
Xnor cc reg,c;, reg_or_imm, reg,;
Description

These instructions implement bitwise logical operations. They compute
“r{rsl] op r[rs2]”ifi =0,or“r[rsl] opsign_ext(simil3)”ifi =1, and
write the result into r [rd] .

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition codes
(i cc and xcc). They set the condition codes as follows:

icc.v,icc.c,xcc.vV,and Xcc. € to zero

i cC. n to bit 31 of the result
. XCC. n to bit 63 of the result

i cc. z to one if bits 31:0 of the result are zero (otherwise to zero)

Xcc. z to one if all 64 bits of the result are zero (otherwise to zero)

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before applying the
main (AND or OR) operation.

A-336 UltraSPARC llli Processor User's Manual * June 2003

Programming Note — XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc

logical operations, respectively.

Exceptions

None

A.34

Memory Barrier

Opcode op3 Operation
MEMBAR 10 1000 Memory Barrier
Format (3)
10 0 op3 01111 i=1 cmask mmask
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax

menbar

|membar_mask

Description

76

The memory barrier instruction, MEMBAR, has two complementary functions: to express
order constraints between memory references and to provide explicit control of memory-
reference completion. The merbar _nmask field in the suggested assembly language is the

concatenation of the cmask and nmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing
before the MEMBAR and memory references following it in a program. The particular classes
of memory references are specified by the mmask field. Memory references are classified as
loads (including load instructions LDSTUB(A), SWAP(A), CASA, and CASXA and stores

Chapter A

Instruction Definitions

A-337

(including store instructions LDSTUB(A), SWAP(A), CASA, CASXA, and FLUSH). The mmask
field specifies the classes of memory references subject to ordering, as described. MEMBAR
applies to all memory operations in all address spaces referenced by the issuing processor,
but it has no effect on memory references by other processors. When the cnmask field is
nonzero, completion as well as order constraints are imposed, and the order imposed can be
more stringent than that specifiable by the mmask field alone.

A load has been performed when the value loaded has been transmitted from memory and
cannot be modified by another processor. A store has been performed when the value stored
has become visible, that is, when the previous value can no longer be read by any processor.
In specifying the effect of MEMBAR, instructions are considered to be executed as if they
were processed in a strictly sequential fashion, with each instruction completed before the
next has begun.

The mrask field is encoded in bits 3 through 0 of the instruction. TABLE A-9 specifies the
order constraint that each bit of mmask (selected when set to one) imposes on memory
references appearing before and after the MEMBAR. From zero to four, mask bits may be
selected in the nrask field.

TABLE A-9 MEMBAR mmmask Encodings

Mask Bit Name Description
mrask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction must be visible to
all processors before the effect of any stores following the MEMBAR; it is equivalent to
the deprecated STBAR instruction.
mmask<2> #LoadSt ore All loads appearing prior to the MEMBAR instruction must have been performed before
the effects of any stores following the MEMBAR are visible to any other processor.
nmask<1> #St or eLoad The effects of all stores appearing prior to the MEMBAR instruction must be visible to
all processors before loads following the MEMBAR may be performed.
nmas k<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been performed before
any loads following the MEMBAR may be performed.
The cmask field is encoded in bits 6 through 4 of the instruction. Bits in the cmask field,
described in TABLE A-10, specify additional constraints on the order of memory references
and the processing of instructions. If cmask is zero, then MEMBAR enforces the partial
ordering specified by the mmask field; if cmask is nonzero, then completion and partial
order constraints are applied.
TABLE A-10 MEMBAR cmask Encodings
Mask Bit Function Name Description
cmask[2] Synchronization #Sync All operations (including non-memory reference operations)
barrier appearing prior to the MEMBAR must have been performed and the

effects of any exceptions be visible before any instruction after the
MEMBAR may be initiated.

A-338

UltraSPARC llli Processor User's Manual * June 2003

TABLE A-10 MEMBAR crmask Encodings (Continued)
Mask Bit Function Name Description
cmask[1] Memory issue #Mem ssue All memory reference operations appearing prior to the MEMBAR
barrier must have been performed before any memory operation after the
MEMBAR may be initiated.
cmask[0] Lookaside #Lookasi de |A store appearing prior to the MEMBAR must complete before any
barrier load following the MEMBAR referencing the same address can be
initiated.

The encoding of MEMBAR is identical to that of the RDASR instruction, except that r s1 = 15,
rd=0,andi =1.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses is maintained for cacheable memory space.

Compatibility Note — MEMBAR with mmask = 8,4 and cmask =0
(“menbar #St or eSt or e”) is identical in function to the SPARC-V8 STBAR instruction,
which is deprecated.

The information included in this section should not be used for the decision as to when
MEMBARs should be added to software that needs to be compliant across all
UltraSPARC-based platforms. The operations of block load/block store (BLD/BST) on the
UltraSPARC I1Ii processor are generally more ordered with respect to other operations,
compared to the UltraSPARC I processor and the UltraSPARC II processor. Code written and
found to “work” on the UltraSPARC Illi processor may not work on the UltraSPARC I
processor and the UltraSPARC II processor if it does not follow the rules for BLD/BST
specified for those processors. Code that happens to work on the UltraSPARC I processor
and the UltraSPARC II processor may not work on the UltraSPARC IIIi processor if it did
not meet the coding guidelines specified for those processors. In no case is the coding
requirement for the UltraSPARC IIli processor more restrictive than that for the
UltraSPARC I and the UltraSPARC II processors.

Software developers should not use the information in this section for determining the need
for MEMBARS but instead should rely on the SPARC-V9 MEMBAR rules. These

UltraSPARC I1Ii processor rules are less restrictive than SPARC-V9, UltraSPARC 1
processor, and the UltraSPARC II processor rules and are never more restrictive.

MEMBAR Rules

The UltraSPARC IIli hardware uses the following rules to guide the interlock
implementation.

1. Non-cacheable load or store with side-effect bit on will always be blocked.

2. Cacheable or non-cacheable BLD will not be blocked.

Chapter A Instruction Definitions A-339

A-340

3. VA<12:5> of a load (cacheable or non-cacheable) will be compared with the VA<12:5> of
all entries in Store Queue. When a matching is detected, this load (cacheable or non-
cacheable) will be blocked.

4. An insertion of MEMBAR is required if Strong Ordering is desired while not fitting
rules 1 to 3.

TABLE A-11 and TABLE A-12 reflect the hardware interlocking mechanism implemented in the
UltraSPARC IlI1i processor. The tables are read from Row to Column, the first memory
operation in program order being in Row followed by the memory operation found in
Column. The following two symbols are used as table entries:

— No intervening operation required because Fireplane-compliant systems
automatically order R before C.

M — MEMBAR#Sync or MEMBAR#Mem ssue or MEMBAR #St or eLoad required.

For VA<12:5> of a column operation not matching with VA<2:5> of a row operation while a
strong ordering is desired, the MEMBAR rules summarized in TABLE A-11 reflect the
UltraSPARC IIIi processor’s hardware implementation.

TABLE A-11 VEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong

Ordering
To Column Operation C:
=
7]
< 17
= <
£ .
g 2 3
E 5 N £
= @ = £
£ £ @ J = o S o g
£ e o | 2 = g = 5 |
ha = I | | | = £ 2 = £
From Row = = 2 4 E| = 4 = 4 &] 5 <]
; g g S g s|ls|s|g|s|=2|g |2 |2 |z%
Operation R: = = = - == - = = = = 2 = =
load # # # # # # # # # M M # M M
load from internal ASI # # # # # # # # # # # # # #
store M # # # # M # M # M M # M M
store to internal ASI # M # # # # # # # M # # M M
atomic # # # # # # # # # M M # M M
load_nc_e # # # # # # # # # M M # M M
store_nc_e M # # # # # # M # M M # M M
load_nc_ne # # # # # # # # # M M # M M
store_nc_ne M # # # # M # M # M M # M M
bload M # M # M M M M # M M
bstore M # M # M M M M # M M

UltraSPARC llli Processor User's Manual * June 2003

TABLE A-11 MEMBAR Rules for Column VA <12:5> # Row VA <12:5> While Desiring Strong
Ordering (Continued)
To Column Operation C:
7
< 7
= <
g E =
E 5 o | 2 g
-1 @ = £
£ £ @ o = J s u g
£] P 2 = 2 = { = |
= ° > = | o | o = I 2 = e
From Row = = 2 2 E (= 2 = 2 s 3 3 5 3
] < S S S] S s S S < < o <
Operation R: = = - Z = = 2 2 - = =2 =2 = =2
bstore_commit M # M # M M M M # M M
bload_nc M # M # M M M # M
bstore_nc M # M # M M # M

When VA<12:5> of a column operation matches VA<12:5> of a row operation, the MEMBAR
rules summarized in TABLE A-12 reflect the UltraSPARC IIli’s hardware implementation.

TABLE A-12 VEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong

Ordering
To Column Operation C:

-

w)

< 17

= <

= —

E E 3

£ h-i ® el 5 5 5 o o

e e) 2 < 2 4 = 5

& - 2|5 15 (N 2 g |2 | g
From Row = = 2 4 E| = 4 = 4 &] 5 < S

. g g S g s|ls|s|g |22 |2 |2 |z%
Operation R: 2 2 2 = =] = = 2 2 = 2 2 = 2
load # # # # # # # # # # # # # #
load from internal ASI # # # # # # # # # # # # # #
store # # # # # # # # # M # # # #
store to internal ASI # M # # # # # # # M # # M M
atomic # # # # # # # # # # # # # #
load_nc_e # # # # # # # # # # # # # #
store_nc_e # # # # # # # # # M # # M #
load_nc_ne # # # # # # # # # # # # # #
store_nc_ne # # # # # # # # # M # # M #
bload # # # # # # # # # # # # # #
bstore # # # # # # # # # M # # # #
Instruction Definitions A-341

Chapter A

A-342

TABLE A-12 MEMBAR Rules for Column VA<12:5> = Row VA<12:5> While Desiring Strong
Ordering (Continued)

To Column Operation C:

7

< 7

= <

E 5 o | e £

g = 1o |52 S |g |2

£] o | g = g] O |

ha > = | | | = £ 2 = £
From Row = = 2 2 E (= 2 = 2 5 3 3 5 3

g |z s |s |18 |s|8|s|E|E |2 |8 |¢%

Operation R: = = - Z = = 2 2 - = =2 =2 = =2
bstore_commit M # M # M M M M M M M # M M
bload_nc # # # # # # # # # # # # # #
bstore_nc # # # # # # # # # # # # M #

Special Rules for Quad LDD (ASI 24,4 and ASI 2Cyy)

MEMBAR is only required before quad LDD if VA<12:5> of a preceding store to the same
address space matches VA<12:5> of the quad LDD.

Exceptions

None

UltraSPARC llli Processor User's Manual * June 2003

A.35

Move Floating-Point Register on Condition
(FMOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icclxcc Test
FMOVA 110101 1000 [Move Always 1

FMOVN 110101 |0000 [Move Never 0

FMOVNE 110101 1001 [Move if Not Equal not Z

FMOVE 11 0101 0001 Move if Equal Z

FMOVG 110101 1010 [Move if Greater not (Z or (N xor V))
FMOVLE 110101 |0010 [Move if Less or Equal Z or (N xor V)
FMOVGE 110101 1011 [Move if Greater or Equal not (N xor V)
FMOVL 110101 |0011 [Move if Less N xor V
FMOVGQU 110101 1100 [Move if Greater Unsigned not (C or Z)
FMOVLEU 110101 |0100 [Move if Less or Equal Unsigned (Cor2)
FMOVCC 110101 1101 [Move if Carry Clear (Greater or Equal, Unsigned) not C
FMOVCS 11 0101 0101 |Move if Carry Set (Less than, Unsigned) C

FMOVPOS 110101 1110 |Move if Positive not N
FMOVNEG 110101 |0110 [Move if Negative N

FMOVVC 110101 1111 [Move if Overflow Clear not V

FMOWVS 11 0101 0111 |Move if Overflow Set \%

Chapter A

Instruction Definitions

A-343

For Floating-Point Condition Codes

Opcode op3 cond Operation fcc Test
FMOVFA 11 0101 1000 Move Always 1
FMOVFN 110101 0000 Move Never 0
FMOVFU 110101 0111 Move if Unordered U
FMOVFG 110101 0110 Move if Greater G
FMOVFUG 110101 0101 Move if Unordered or Greater GorU
FMOVFL 110101 0100 Move if Less L
FMOVFUL 110101 0011 Move if Unordered or Less LorU
FMOVFLG 110101 0010 Move if Less or Greater LorG
FMOVFENE 110101 0001 Move if Not Equal LorGorU
FMOVFE 110101 1001 Move if Equal E
FMOVFUE 110101 1010 Move if Unordered or Equal EorU
FMOVFGE 110101 1011 Move if Greater or Equal Eor G
FMOVFUGE 110101 1100 Move if Unordered or Greater or Equal Eor Gor U
FMOVFLE 110101 1101 Move if Less or Equal EorL
FMOVFULE 110101 1110 Move if Unordered or Less or Equal EorLorU
FMOVFO 110101 1111 Move if Ordered EorLor G
Format (4)
10 rd op3 0 cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 14 13 11 10 5 4
A-344 UltraSPARC Illi Processor User’s Manual « June 2003

Encoding of the opf_cc Field

opf_cc Condition Code
000 fcco

001 fccl

010 fcc2

011 fcc3

100 icc

101 —

110 Xcc

111

Encoding of opf Field (opf_cc [] opf_low)

Instruction Variation opf_cc opf_low opf

FMOVScc % ccn,rs2,rd Onn 00 0001 0 nn00 0001
FMOVDcc % ccn,rs2,rd Onn 000010 0 nn00 0010
FMOVQcc % ccn,rs2,rd Onn 000011 0 nn00 0011
FMOVScc % cc, rs2,rd 100 00 0001 1 0000 0001
FMOVDcc % cc, rs2,rd 100 000010 1 0000 0010
FMOVQcc % cc, rs2,rd 100 000011 1 0000 0011
FMOVScc oxcc, rs2,rd 110 00 0001 1 1000 0001
FMOVDcc oxcc, rs2,rd 110 000010 1 1000 0010
FMOVQecce wxce, rs2,rd 110 000011 1 1000 0011

Chapter A

Instruction Definitions

A-345

A-346

For Integer Condition Codes

Assembly Language Syntax

frov{s, d, q}a

i_or_x_cc, freg, freg,q

frmov{s, d, q}n

i_or_x_cc, freg,., freg,,

fmov{s, d, q} ne

i_or_x_cc, freg,s freg,,

(synonyms: f mov{s, d, q} nz)

frov{s,d, q}e

i_or_x_cc, freg,, freg,,

(synonyms: f mov{s, d, q} z)

frov{s,d, g}g

i_or_x_cc, freg,, fregy

frmov{s,d,q}le

i_or_x_cc, freg,.., freg,,

fmov{s, d, q} ge

i_or_x_cc, freg,.s freg,,

fmov{s, d, q}I

i_or_x_cc, freg, freg,

frov{s, d, g}gu

i_or_x_cc, freg,, freg.y

frov{s,d, q}l eu

i_or_x_cc, freg,., freg,,

fmov{s, d, q}cc

i_or_x_cc, freg,s freg,,

(synonyms: f nov{s, d, q} geu)

frov{s, d, q}cs

i_or_x_cc, freg, freg,.q

(synonyms: f mov{s, d, q} | u)

f mov{s, d, q} pos

i_or_x_cc, freg,, fregyy

fmov{s, d, q} neg

i_or_x_cc, freg,., freg,,

fmov{s, d, q}vc

i_or_x_cc, freg,s freg,,

fmov{s, d, q}vs

i_or_x_cc, freg,o freg,q

UltraSPARC llli Processor User's Manual * June 2003

Programming Note — To select the appropriate condition code, include % cc or %&cc
before the registers.

For Floating-Point Condition Codes

Assembly Language Syntax

frov{s, d, q}a % ccn, freg,, freg,y

fmov{s, d, q}n % ccn, freg,.s, freg

frov{s, d, q}u % ccn, freg,.s, freg

fmov{s, d, q}g % cen, freg, freg

f mov{s, d, q} ug 9% ccn, freg, freg,y

fnov{s, d, g}l % ccn, freg.s, freg

f mov{s, d, q} ul % ccn, freg,), freg,y

frov{s,d,q}lg % ccn, freg,, freg

frov{s, d, g} ne % ccn, freg, freg (synonyms: f mov{s, d, q} nz)
frov{s,d, q}e % ccn, freg,, freg,y (synonyms. f nov{s, d, q} z)
frov{s, d, q}ue % ccn, freg,.s, freg

fmov{s, d, q} ge % ccn, freg,, freg

f mov{s, d, q} uge % ccn, freg,. freg,y

frmov{s,d,q}l e % ccn, freg, freg,y

frov{s, d, q}ule % ccn, freg,s, freg

frov{s, d, q}o % ccn, freg,.s, freg,y

Description

These instructions copy the floating-point register(s) specified by r s2 to the floating-point
register(s) specified by r d if the condition indicated by the cond field is satisfied by the
selected condition code. The condition code used is specified by the opf _cc field of the
instruction. If the condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Chapter A Instruction Definitions A-347

Programming Note — In general, branches cause the processor’s performance to degrade.
Frequently, the MOVcc and FMOVCcC instructions can be used to avoid branches. For
example, the following C language segment:

double A B, X

if (A>B) then X = 1.03; else X = 0.0;

can be coded as

I assume Ais in %0; Bisin %2, %Xx points to constant area
| dd [%&x+C_1.03],% 4 I X = 1.03
fcmpd % cc3, % 0, % 2 I A>B
fble ,a % cc3, | abel
I following only executed if the branch is taken
f subd % 4,%4,% 4 I X =0.0

| abel : ...

This code takes four instructions including a branch.

With FMOVcc, this could be coded as

| dd [%&x+C_1.03],% 4 I X =1.03
f subd % 4,% 4,%6 I X =0.0
fcmpd % cc3, % 0, % 2 I A>B

frovdle % cc3,%6,%4 I X =0.0

This code also takes four instructions but requires no branches and may boost performance
significantly. Use MOVcc and FMOVcc instead of branches wherever these instructions would
improve performance.

Exceptions

fp_disabled
Jp_exception_other (f t t = unimplemented_FPop (0pf _cc =101, or 111, and quad forms))

A-348 UltraSPARC llli Processor User's Manual * June 2003

A.36

Move Floating-Point Register on Integer
Register Condition (FMOVTr)

Opcode op3 rcond Operation Test
— 110101 000 Reserved —
FMOVRZ 110101 001 Move if Register Zero rfrsl] =0
FMOVRLEZ 110101 010 Move if Register Less Than or Equal to Zero r{rsi] <0
FMOVRLZ 110101 011 Move if Register Less Than Zero r[rsl] <0
— 110101 100 Reserved —
FMOVRNZ 110101 101 Move if Register Not Zero r[rsl] #0
FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r{rsi] >0
FMOVRGEZ 110101 111 Move if Register Greater Than or Equal to Zero r[rsl] =20
Format (4)
10 rd op3 rsl 0 rcond opf_low rs2
31 30 29 25 24 19 18 14 13 12 10 9 4 0
Encoding of opf_low Field
Instruction variation opf_low
FMOVSrcond rsl, rs2, rd 00101
FMOVDrcond rsl, rs2, rd 00110
FMOVQrcond rsl, rs2, rd 00111
Chapter A Instruction Definitions A-349

Assembly Language Syntax

frmovr{s,d, q}e reg, 1, freg,so, freg,q (synonym: f movr {s, d, q} z)
frovr{s,d, q}l ez reg 1, freg, o, freg,

frovr{s,d, q}l z reg, 1, freg,c, freg,q

frovr{s, d, g} ne reg,., freg.so freg.y (synonym: f movr {s, d, q} nz)
frovr{s, d, q}gz reg, 1, freg,so freg,q

frovr{s,d, q} gez regysy, Jreg s, fregu

Description

If the contents of integer register r [r s1] satisfy the condition specified in the r cond field,
these instructions copy the contents of the floating-point register(s) specified by the r s2 field
to the floating-point register(s) specified by the r d field. If the contents of r [r s1] do not

satisfy the condition, the floating-point register(s) specified by the r d field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not
modify any condition codes.

Implementation Note — The UltraSPARC IIIi processor does not implement this
instruction by tagging each register value. The UltraSPARC IlIi processor looks at the full
64-bit register to determine a negative or zero.

Exceptions

fp_disabled
[fp_exception_other (unimplemented_FPop (r cond = 000, or 100, and quad forms))

A-350 UltraSPARC llli Processor User's Manual * June 2003

A.37 Move Integer Register on Condition

(MOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcc Test
MOVA 10 1100 1000 Move Always 1

MOVN 10 1100 0000 Move Never 0

MOVNE 10 1100 1001 Move if Not Equal not Z

MOVE 10 1100 0001 Move if Equal Z

MOVG 10 1100 1010 Move if Greater not (Z or (N xor V))
MOVLE 10 1100 0010 Move if Less or Equal Z or (N xor V)
MOVGE 10 1100 1011 Move if Greater or Equal not (N xor V)
MOVL 10 1100 0011 Move if Less N xor V
MOVGU 10 1100 1100 Move if Greater Unsigned not (C or Z)
MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (Cor2)
MOvVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C

MOVPOS 10 1100 1110 Move if Positive not N
MOVNEG 10 1100 0110 Move if Negative N

MOVVC 10 1100 1111 Move if Overflow Clear not V

MOWVS 10 1100 0111 Move if Overflow Set v

Chapter A Instruction Definitions

A-351

For Floating-Point Condition Codes

Opcode op3 cond Operation fcc Test
MOVFA 10 1100 1000 Move Always 1
MOVFN 10 1100 0000 Move Never 0
MOVFU 10 1100 0111 Move if Unordered 6]
MOVFG 10 1100 0110 Move if Greater G
MOVFUG 10 1100 0101 Move if Unordered or Greater GorU
MOVFL 10 1100 0100 Move if Less L
MOVFUL 10 1100 0011 Move if Unordered or Less LorU
MOVFLG 10 1100 0010 Move if Less or Greater Lor G
MOVENE 10 1100 0001 Move if Not Equal LorGorU
MOVFE 10 1100 1001 Move if Equal E
MOVFUE 10 1100 1010 Move if Unordered or Equal EorU
MOVFGE 10 1100 1011 Move if Greater or Equal Eor G
MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal Eor Gor U
MOVFLE 10 1100 1101 Move if Less or Equal EorL
MOVFULE 10 1100 1110 Move if Unordered or Less or Equal Eor L or U
MOVFO 10 1100 1111 Move if Ordered EorLor G
Format (4)
10 rd op3 cc2 cond i=0|cc1|ccO rs2
10 rd op3 cc2 cond i=1{ccl|ccO simm1l
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4
A-352 UltraSPARC Illi Processor User’s Manual « June 2003

cc2 U ccl U cc0 Condition Code
000 fecO

001 fecl

010 fce2

011 fee3

100 icc

101 Reserved

110 Xce

111 Reserved

For Integer Condition Codes

Assembly Language Syntax

nova i_or_x_cc, reg_or_immll, reg,;

novn i_or_x_cc, reg_or_immll, reg,;

novne i_or_x_cc, reg_or_immll, reg,, (synonym: nmovnz)
nove i_or_x_cc, reg_or_immll, reg,, (synonym: nmovz)
nmovg i_or_x_cc, reg_or_immll, reg,;

movl e i_or_x_cc, reg_or_immll, reg,;

novge i_or_x_cc, reg_or_immll, reg,;

movl i_or_x_cc, reg_or_immll, reg,,

nmovgu i_or_x_cc, reg_or_immll, reg,;

movl eu i_or_x_cc, reg_or_immll, reg,;

novcc i_or_x_cc, reg_or_immll, reg,; (synonym: novgeu)
novcs i_or_x_cc, reg_or_immll, reg,; (synonym: movl u)
nmovpos i_or_x_cc, reg_or_immll, reg,;

nmovneg i_or_x_cc, reg_or_immll, reg,;

novvc i_or_x_cc, reg_or_immll, reg,;

novvs i_or_x_cc, reg_or_immll, reg,;

Chapter A

Instruction Definitions

A-353

A-354

Programming Note — To select the appropriate condition code, include % cc or %&cc
before the register or immediate field.

For Floating-Point Condition Codes

Assembly Language Syntax

nmova % ccn, reg_or_immll, reg,,

nmovn 9% ccn, reg_or_immll, reg,,

novu % ccn, reg_or_immll, reg,,

novg % ccn, reg_or_immll, reg,,

nmovug % ccn, reg_or_immll, reg,

movl 9% ccn, reg_or_immll, reg,,

movul % ccn, reg_or_immll, reg,,

nmovl g % ccn, reg_or_immll, reg,,

novne % ccn, reg_or_immll, reg,, (synonym: movnz)
nove 9% ccn, reg_or_immll, reg,, (synonym: movz)
novue % ccn, reg_or_immll, reg,,

novge % ccn, reg_or_immll, reg,,

nmovuge % ccn, reg_or_immll, reg,,

movl e 9% ccn, reg_or_immll, reg,,

movul e % ccn, reg_or_immll, reg,,

nmvo % ccn, reg_or_immll, reg,,

Programming Note — To select the appropriate condition code, include % ccO, % cc1,
% cc2, or % cc3 before the register or immediate field.

Description

These instructions test to see if cond is TRUE for the selected condition codes. If so, they
copy the value in r [r s2] if thei field =0, or “si gn_ext (si ml1l)” if i =1 into

r[rd]. The condition code used is specified by the cc2, ccl, and ccO fields of the
instruction. If the condition is FALSE, then r [r d] is not changed.

UltraSPARC llli Processor User's Manual * June 2003

These instructions copy an integer register to another integer register if the condition is

TRUE. The condition code that is used to determine whether the move will occur can be
either integer condition code (i cC or Xcc) or any floating-point condition code (f ccO,
fccl, fcc2,orfccld).

These instructions do not modify any condition codes.

Programming Note — In general, branches cause the processor performance to degrade.
Frequently, the MOVcc and FMOVcc instructions can be used to avoid branches. For
example, consider the C language if-then-else statement:

if (A>B) then X =1; else X = 0;

can be coded as

cnp % 0, % 2

bg, a %«cc, | abel

or %90, 1, % 3 I X =1

or %0, 0, % 3 I X =0
| abel ;...

This takes four instructions including a branch. With MOVcc, this could be coded as

cnp % 0, % 2
or %90, 1, % 3 I assunme X =1
novl e % cc, 0, % 3 I overwite with X =10

This approach takes only three instructions and no branches and may boost performance
significantly. Use MOVcc and FMOVcc instead of branches wherever these instructions would
increase performance.

Exceptions

illegal_instruction (cc2 [] ccl [] ccO =101, or 111,)
Jp_disabled (cc2 [] ccl [] cc0O=000,, 001,, 010,, or 011, and the FPU is disabled)

Chapter A Instruction Definitions A-355

A.38 Move Integer Register on Register Condition
(MOVr)

Opcode op3 rcond Operation Test
101111 000 Reserved —
MOVRZ 10 1111 001 Move if Register Zero rirsi] =0
MOVRLEZ 101111 010 Move if Register Less Than or Equal to Zero r{rsi] <0
MOVRLZ 101111 011 Move if Register Less Than Zero r[rsl] <0
— 101111 100 Reserved —
MOVRNZ 10 1111 101 Move if Register Not Zero r[rsl]#0
MOVR&Z 10 1111 110 Move if Register Greater Than Zero r[rsi] >0
MOVRGEZ 101111 111 Move if Register Greater Than or Equal to Zero r[rsl] =0
Format (3)
10 rd op3 rsl i=0| rcond — rs2
10 rd op3 rsl i=1{ rcond simm10
31 30 29 25 24 19 18 14 13 12 10 9 5 4 0

Assembly Language Syntax

nmovr z reg, ;. reg_or_imml0, reg,, (synonym: movr e)
novr | ez reg,c;, reg_or_imml0, reg,,

novrl z reg,..;, reg_or_imml0, reg,;

nmovr nz reg,;, reg_or_imml0, reg,,; (synonym: movr ne)
nmovr gz reg, ;. reg_or_imml0, reg,,

novr gez reg,.;, reg_or_imml0, reg,,

A-356 UltraSPARC llli Processor User's Manual * June 2003

Description

If the contents of integer register r [r s1] satisfy the condition specified in the r cond field,
these instructions copy r [r s2] (ifi =0) or si gn_ext (si mmL0) (ifi = 1) intor[rd] .
If the contents of r [r s1] do not satisfy the condition, then r [r d] is not modified. These
instructions treat the register contents as a signed integer value; they do not modify any
condition codes.

Implementation Note — The UltraSPARC IIIi processor does not implement this
instruction by tagging each register value. The UltraSPARC IIIi processor looks at the full
64-bit register to determine a negative or zero.

Exceptions

illegal_instruction (r cond = 000, or 100,)

A.39

Multiply and Divide (64-bit)

Opcode op3 Operation
MULX 00 1001 Multiply (signed or unsigned)
SDI VX 10 1101 Signed Divide
ubl VX 00 1101 Unsigned Divide
Format (3)

10 rd op3 rsl i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Chapter A Instruction Definitions A-357

Assembly Language Syntax

mul x reg,), reg_or_imm, reg,,

sdi vx reg,;, reg_or_imm, reg,,

udi vx reg, 1, reg_or_imm, reg,;

Description

MULX computes “r[rs1] xr[rs2]”ifi =0or“r[rsl] xsign_ext(simil3)”if
i =1, and writes the 64-bit product into r [r d] . MULX can be used to calculate the 64-bit
product for signed or unsigned operands (the product is the same).

SDI VX and UDI VX compute “r[rs1] +r[rs2]”ifi =0 or

“r[rsl] +sign_ext(sinml3)”ifi =1, and write the 64-bit result into r [rd] .

SDI VX operates on the operands as signed integers and produces a corresponding signed
result. UDI VX operates on the operands as unsigned integers and produces a corresponding
unsigned result.

For SDI VX, if the largest negative number is divided by —1, the result should be the largest
negative number. That is:

8000 0000 0000 0000;¢ + FFFF FFFF FFFF FFFF 4 = 8000 0000 0000 0000 .

These instructions do not modify any condition codes.

Exceptions

division_by_zero

A.40

A-358

No Operation

Opcode op op2 Operation
NOP 0 0000 100 No Operation

UltraSPARC llli Processor User's Manual * June 2003

Format (2)

00 op op2 00000000000OOOO0OOOOOOOO

31 30 29 25 24 22 21 0

Assembly Language Syntax

nop |

Description

The NOP instruction changes no program-visible state (except that of the PC and nPC).

NOP is a special case of the SETHI instruction, with i M2 =0 and r d = 0.

Exceptions

None

A.41 Partial Store (VIS I)

Opcode imm_asi ASI Value Operation

STDFA ASI _PST8_P COy4 Eight 8-bit conditional stores to primary address space

STDFA ASI _PST8_S Clyg Eight 8-bit conditional stores to secondary address space

STDFA AS| _PST8_PL C8y¢ Eight 8-bit conditional stores to primary address space, little-endian
STDFA ASI _PST8_SL C946 Eight 8-bit conditional stores to secondary address space, little-endian
STDFA AS| _PST16_P C26 Four 16-bit conditional stores to primary address space

STDFA ASI _PST16_S C346 Four 16-bit conditional stores to secondary address space

STDFA ASI _PST16_PL CAg Four 16-bit conditional stores to primary address space, little-endian
STDFA ASI _PST16_SL CByg Four 16-bit conditional stores to secondary address space, little-endian
STDFA ASI _PST32_P Cdyq Two 32-bit conditional stores to primary address space

STDFA ASI _PST32_S C516 Two 32-bit conditional stores to secondary address space

Chapter A Instruction Definitions A-359

Opcode imm_asi ASI Value Operation

STDFA ASI _PST32_PL CCig Two 32-bit conditional stores to primary address
space, little-endian

STDFA ASI _PST32_SL CDyg Two 32-bit conditional stores to secondary address
space, little-endian

Format (3)
11 rd 110111 rsl i= imm_asi rs2
31 30 29 25 24 19 18 14 13 5 4 0

A-360

Assembly Language Syntax1

stda lfregrd, reg,., [reg,s;] imm_asi

—_

. The original assembly language syntax for a partial store instruction (“st da
freg,q [reg.s1] reg,s, imm_asi”) has been deprecated because of
inconsistency with the rest of the SPARC assembly language. Over time,
assemblers will support the new syntax for this instruction. In the meantime,
some assemblers may recognize only the original syntax.

Description

The partial store instructions are selected by one of the partial store ASIs with the STDFA
instruction.

Two 32-bit, four 16-bit, or eight 8-bit values from the 64-bit floating-point register specified
by r d are conditionally stored at the address specified by r [r s1] , using the mask specified
inr[rs2]. The value in r [rs2] has the same format as the result specified by the pixel

compare instructions (see Section A.44, “Pixel Compare (VIS I)”). The most significant bit

of the mask (not the entire register) corresponds to the most significant part of the floating-
point register specified by r d. The data is stored in little-endian form in memory if the ASI
name has an “L” suffix; otherwise, it is stored in big-endian format.

A partial store instruction can cause a virtual (or physical) watchpoint exception when the
following conditions are met:

The virtual (physical) address in r [r s1] matches the address in the VA (PA) Data
Watchpoint Register.

The byte store mask in r [r s2] indicates that a byte is to be stored.

UltraSPARC llli Processor User's Manual * June 2003

The Virtual (Physical) Data Watchpoint Mask in DCUCR indicates that one or more of the
bytes to be stored at the watched address is being watched.

Watchpoint exceptions on partial store instructions behaves as if every partial store always
stores all 8 bytes. The DCUCR Data Watchpoint masks are only checked for nonzero value
(watchpoint enabled). The byte store mask (r [r s2]) in the partial store instruction is
ignored, and a watchpoint exception can occur even if the mask is zero (that is, no store will
take place).

ASIs C0;4-C5;6 and C8;4-CDq4 are only used for partial store operations. In particular, they
should not be used with the LDDFA instruction.

Note — If the byte ordering is little-endian, the byte enables generated by this instruction are
swapped with respect to big-endian.

Exceptions

fp_disabled

illegal_instruction (When i = 1, no immediate mode is supported.)
PA_watchpoint

VA_watchpoint

mem_address_not_aligned

data_access_exception

data_access_error

fast_data_access_MMU_miss

fast_data_access_protection

A.42 Partitioned Add/Subtract Instructions (VIS I)

Opcode opf Operation
FPADD16 00101 0000 Four 16-bit Add
FPADD16S 00101 0001 Two 16-bit Add
FPADD32 001010010 Two 32-bit Add
FPADD32S 00101 0011 One 32-bit Add
FPSUB16 00101 0100 Four 16-bit Subtract
FPSUB16S 001010101 Two 16-bit Subtract
FPSUB32 001010110 Two 32-bit Subtract

Chapter A Instruction Definitions A-361

Opcode opf Operation

FPSUB32S 001010111 One 32-bit Subtract
Format (3)
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

A-362

Assembly Language Syntax

f padd16 freg,s 1, freg s fregq
fpadd16s fregmt fregr freg,s
f padd32 \fregy s, freg o fregra
f padd32s fregy sy, fregrs2. fregr
fpsubl6 freg,s 1, fregy s fregq
f psubl6s \freg, 1, freg,sa freg,q
f psub32 reystr Jeg s fegna
f psub32s fregys .. fregrso. fregm
Description

The standard versions of these instructions perform four 16-bit or two 32-bit partitioned adds
or subtracts between the corresponding fixed-point values contained in the source operands
(the 64-bit floating-point registers specified by r s1 and r s2). For subtraction, the second
operand (r s2) is subtracted from the first operand (r s1). The result is placed in the 64-bit
destination register specified by r d.

The single-precision versions of these instructions (FPADD16S, FPSUB16S, FPADD32S,
FPSUB32S) perform two 16-bit or one 32-bit partitioned add(s) or subtract(s); only the low
32 bits of the destination register are affected.

Note — For good performance, the result of a single FPADD should not be used as part of a
source operand of a 64-bit graphics instruction in the next instruction group. Similarly, the
result of a standard FPADD should not be used as a 32-bit graphics instruction source
operand in the next three instruction groups.

UltraSPARC llli Processor User's Manual * June 2003

Exceptions

fp_disabled

A.43 Partitioned Multiply Instructions (VIS I)

Opcode opf Operation
FMUL8x16 00011 0001 8-bit x 16-bit Partitioned Product
FMUL8x16AU 000110011 8-bit x 16-bit Upper a Partitioned Product
FMUL8x16AL 000110101 8-bit x 16-bit Upper a Partitioned Product
FMUL8SUx 16 000110110 Upper 8-bit x 16-bit Partitioned Product
FMULBULXx16 000110111 Lower Unsigned 8-bit x 16-bit Partitioned Product
FMULD8SUx 16 00011 1000 Upper 8-bit x 16-bit Partitioned Product
FMULD8ULX 16 00011 1001 Lower Unsigned 8-bit x 16-bit Partitioned Product

Format (3)

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax

fmul 8x16 fregrsl) fregrSZ’ fre«grd

fmul 8x16au \freg sy, fregys fregn

fnul 8x16al ﬁegrsl’ ﬁe‘grSZ’ fregrd

f mul 8sux16 fregrslf fregmg, fregrd

fmul 8ul x16 fregrsl) fregrs}fre«grd

f mul d8sux16 \freg 1, feg,s freg,

f mul d8ul x16 freg,s1, freg,so freg,

Chapter A Instruction Definitions A-363

Description

Note — For good performance, the result of a partitioned multiply should not be used as a
32-bit graphics instruction source operand in the next three instruction groups.

Programming Note — When software emulates an 8-bit unsigned by16-bit signed
multiply, the unsigned value must be zero-extended and the 16-bit value sign-extended before
the multiplication.

Note — For good performance, the result of a partitioned multiply should not be used as a
source operand of a 32-bit graphics instruction in the next three instruction groups.

The following sections describe the versions of partitioned multiplies.

Exceptions

fp_disabled

A.43.1 FMULS&x16 Instruction

FMUL8x16 multiplies each unsigned 8-bit value (that is, a pixel) in f [r s1] by the
corresponding (signed) 16-bit fixed-point integer in the 64-bit floating-point register specified
by r s2; it rounds the 24-bit product (assuming binary point between bits 7 and 8) and stores
the upper 16 bits of the result into the corresponding 16-bit field in the 64-bit floating-point
destination register specified by r d. FIGURE A-5 illustrates the operation.

Note — This instruction treats the pixel values as fixed-point with the binary point to the left
of the most significant bit. Typically, this operation is used with filter coefficients as the
fixed-point r s2 value and image data as the r S1 pixel value. Appropriate scaling of the
coefficient allows various fixed-point scaling to be realized.

A-364 UltraSPARC llli Processor User's Manual * June 2003

31 24 23 16 15 8 7 0

rsl /

63 48 47 32 31 16/ 15 / 0

rs2 /
= N Y/ y

MSB X MsB X MsB X MsB
63 48 47 32 31 16 15 1 0

N N N

X

rd

FIGURE A-5 FMULSx16 Operation

A.43.2 FMULS8x16AU Instruction

FMUL8x16AU is the same as FMJL8x 16, except that one 16-bit fixed-point value is used for
all four multiplies. This value is the most significant 16 bits of the 32-bit register f [r s2] ,
which is typically a proportional value. FIGURE A-6 illustrates the operation.

31 24 23 16 15 8 7 0

rsl - - ’ /

= T

-
Ve
~
_ 31 16 /15 / 0
-~ Ve
rs2 _ /
- [~ /
yZs 4 Y
X X X X

63 | 48 47 | 32 31 A 16 15 | 0

rd

FIGURE A-6 FMULS8x16AU Operation

A.A433 FMULS8x16AL Instruction

FMUL8x16AL is the same as FMUL8Xx16AU, except that the least significant 16 bits of the
32-bit register f [r s2] register are used as a proportional value. FIGURE A-7 illustrates the

operation.

Chapter A Instruction Definitions A-365

31 24 23 16 15 8 7 0

rsl - - ’ /
= T
-
v
-
_ 31 16,/15 / 0
rs2 _ e / |
P —
- / w
= 4
X X X X
63 | 48 47 | 32 31 | 16 15 A 0
rd v

FIGURE A-7 FMUL8X16AL Operation

A.43.4 FMUL&SUx16 Instruction

FMUL8SUx 16 multiplies the upper 8 bits of each 16-bit signed value in the 64-bit floating-
point register specified by r s1 by the corresponding signed, 16-bit, fixed-point, signed
integer in the 64-bit floating-point register specified by r s2. It rounds the 24-bit product
toward the nearest representable value and then stores the upper 16 bits of the result into the
corresponding 16-bit field of the 64-bit floating-point destination register specified by r d. If
the product is exactly halfway between two integers, the result is rounded toward positive
infinity. FIGURE A-8 illustrates the operation.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

rsl \ \ \ \

63 \ 48 47 \ 32 31 \ 16 15 \ 0
=2 [\ \ \ \
\ \ \ \

X MSB X MsSB X MsSB MSB
63 48 47 32 31 16 15 0

N N N N

X

rd

FIGURE A-8 FMUL8SUx16 Operation

A-366 UltraSPARC llli Processor User's Manual * June 2003

A.43.5 FMULS8ULx16 Instruction

FMUL8ULX 16 multiplies the unsigned lower 8 bits of each 16-bit value in the 64-bit floating-
point register specified by r s1 by the corresponding fixed-point signed integer in the 64-bit
floating-point register specified by r s2. Each 24-bit product is sign-extended to 32 bits. The
upper 16 bits of the sign-extended value are rounded to nearest representable value and then
stored in the corresponding 16-bit field of the 64-bit floating-point destination register
specified by r d. If the result is exactly halfway between two integers, the result is rounded
toward positive infinity. FIGURE A-9 illustrates the operation. CODE EXAMPLE A-5 shows an
example.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

rsl / / / /

63 / 48 47 / 32 31 / 16 15 / 0
2 | | | |
4 4 4 4

signed-extended Xsigned-extended Xsigned-extended Xsigned-extended

8 MSB 8 MSB 8 MSB 8 MSB
63 A1 48 47 . 32 31 . 16 15 . 0

rd

FIGURE A-9 FMUL8LUX16 Operation

CODE EXAMPLE A-5 FMULSLUx16 Operation

f nul 8sux16 %0, %1, %2

f mul 8ul x16 %0, %1, %3

f padd16 %2, %3, %4

A.43.6 FMULDS8SUx16 Instruction

FMULD8SUx16 multiplies the upper 8 bits of each 16-bit signed value in f [r s1] by the
corresponding signed 16-bit fixed-point signed integer in f [r s2] . Each 24-bit product is
shifted left by 8 bits to make up a 32-bit result, which is then stored in the 64-bit floating-
point register specified by r d. FIGURE A-10 illustrates the operation.

Chapter A Instruction Definitions A-367

31 24 23 16 15 8 7 0

rsl \ \

31 \ 16 15 \ 0
rs2 \ \
\ \

X X

63 0 39 32 31 8 7 0

=
rd 00000000 =z

00000000

FIGURE A-10 FMULD8SUx 16 Operation

A.43.7 FMULDS8ULx16 Instruction

FMULD8ULX 16 multiplies the unsigned lower 8 bits of each 16-bit value in f [r s1] by the
corresponding fixed-point signed integer in f [r 2] . Each 24-bit product is sign-extended to
32 bits and stored in the 64-bit floating-point register specified by r d. FIGURE A-11 illustrates
the operation; CODE EXAMPLE A-6 exemplifies the operation.

31 24 23 16 15 8 7 0

rsl / /

31 / 16 15 / 0
rs2 / /
y y

X sign-extended X sign-extended

63 32 31 0

rd = s

FIGURE A-11 FMULD8ULX16 Operation

A-368 UltraSPARC llli Processor User's Manual * June 2003

CODE EXAMPLE A-6 FMULDBULX16 Operation
ful d8sux16 %0, % 1, 9% 2

frul d8ul x16 %0, % 1, %3

f padd32 %2, %3, %4

A.44 Pixel Compare (VIS I)

Opcode opf Operation

FCMPGT16 00010 1000 Four 16-bit Compares; set rd if srcl >src2
FCMPGT 32 00010 1100 Two 32-bit Compares; set rd if srcl >src2
FCVPLEL16 00010 0000 Four 16-bit Compares; set rd if srcl < src2
FCMPLE32 000100100 Two 32-bit Compares; set rd if srcl < src2
FCMPNE16 000100010 Four 16-bit Compares; set rd if srcl #src2
FCVPNE32 000100110 Two 32-bit Compares; set r d if srcl #src2
FCMPEQL6 000101010 Four 16-bit Compares; set rd if srcl =src2
FCMPEQ32 00010 1110 Two 32-bit Compares; set rd if sSrcl =src2
Format (3)

10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Chapter A Instruction Definitions A-369

Assembly Language Syntax

fCNPOt16 freg, s, fieger regu
fenpgt32 |freg s, fregusn eg
fcnpl el6 fieg st fieg so regr
fonple32 |freger freg 708
fenpnels |freg, . fiegsr regu
fenpned2 |freg, . freg.o 1ega
fcnpeql6 fieg st fieg so regr
fenpeqd2 |frege fieg 708

Description

Either four 16-bit or two 32-bit fixed-point values in the 64-bit floating-point source registers
specified by r s1 and r s2 are compared. The 4-bit or 2-bit results are stored in the least
significant bits in the integer destination register r [r d] . Signed comparisons are used. Bit 0
of r[rd] corresponds to the least significant 16-bit or 32-bit comparison.

For FCVMPGIT, each bit in the result is set if the corresponding value in the first source operand
is greater than the value in the second source operand. Less-than comparisons are made by
swapping the operands.

For FCMPLE, each bit in the result is set if the corresponding value in the first source
operand is less than or equal to the value in the second source operand. Greater-than-or-equal
comparisons are made by swapping the operands.

For FCMPEQ, each bit in the result is set if the corresponding value in the first source
operand is equal to the value in the second source operand.

For FCMPNE, each bit in the result is set if the corresponding value in the first source
operand is not equal to the value in the second source operand.

Exceptions

fp_disabled

A-370 UltraSPARC llli Processor User's Manual * June 2003

A.45 Pixel Component Distance (PDIST) (VIS I)

Opcode opf Operation
PDI ST 000111110 Distance between eight 8-bit components
Format (3)
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax
pdi st fregy 1, fregyso fregra

Description

Eight unsigned 8-bit values are contained in the 64-bit floating-point source registers
specified by r s1 and r s2. The corresponding 8-bit values in the source registers are
subtracted (that is, the second source operand from the first source operand). The sum of the
absolute value of each difference is added to the integer in the 64-bit floating-point
destination register specified by r d. The result is stored in the destination register. Typically,
this instruction is used for motion estimation in video compression algorithms.

Note — For good performance, the r d operand of PDI ST should not reference the result of
a non-PDI ST instruction in the five previously executed instruction groups.

Exceptions

fp_disabled

Chapter A Instruction Definitions A-371

A.46

Pixel Formatting (VIS I)

Opcode opf Operation
FPACK16 00011 1011 Four 16-bit packs into 8 unsigned bits
FPACK32 00011 1010 Two 32-bit packs into 8 unsigned bit
FPACKFI X 00011 1101 Four 16-bit packs into 16 signed bits
FEXPAND 00100 1101 Four 16-bit expands
FPVERGE 00100 1011 Two 32-bit merges
Format (3)
10 rd 110110 rsl opf rs2
31 30 29 25 24 19 18 14 13
Assembly Language Syntax
f packl6 \fiegrsa fiegra
f pack32 \fiegrst, fiegrsa fiegra
f packfi x \freg sa, fregeg
f expand ﬁ’@grsz, .ﬁegrd
f prer ge \fregrst, fregrsa fiegr
Description
The FPACK instructions convert multiple values in a source register to a lower-precision
fixed or pixel format and stores the resulting values in the destination register. Input values
are clipped to the dynamic range of the output format. Packing applies a scale factor from
GSR. scal e to allow flexible positioning of the binary point.
A-372 UltraSPARC Illi Processor User’s Manual « June 2003

A.46.1

Programming Note — For good performance, the result of an FPACK (including
FPACK32) should not be used as part of a 64-bit graphics instruction source operand in the
next three instruction groups.

FEXPAND performs the inverse of the FPACK16 operation.

FPMERGCE interleaves four 8-bit values from each of two 32-bit registers into a single 64-bit
destination register.

Programming Note — The result of FEXPAND or FPMERGE should not be used as a 32-
bit graphics instruction source operand in the next three instruction groups.

Exceptions

fp_disabled

FPACK16

FPACK16 takes four 16-bit fixed values from the 64-bit floating-point register specified by
r s2, scales, truncates, and clips them into four 8-bit unsigned integers, and stores the results
in the 32-bit destination register, f [r d] . FIGURE A-12 illustrates the FPACK16 operation.

Chapter A Instruction Definitions A-373

63 48 47 32 31 16 15 0

rs2 \

rd . BN N
4 0 4 0
GSR.scale x1010 GSR.scale x0100
15 0 15 0

rs2 rs2
1514 10 9 6 0 1514 7 6 4 0
000 00000O0O 0000
25 /]\ 3 19 3.)
AR — implicit binary point L= — implicit binary point

7 0 7 0

FIGURE A-12 FPACK16 Operation

Note — FPACK16 ignores the most significant bit of GSRscal e (GSR. scal e<4>).

This operation is carried out as follows:

1. Left-shift the value from the 64-bit floating-point register specified by r s2 by the number
of bits specified in GSR. scal e while maintaining clipping information.

2. Truncate and clip to an 8-bit unsigned integer starting at the bit immediately to the left of
the implicit binary point (that is, between bits 7 and 6 for each 16-bit word). Truncation
converts the scaled value into a signed integer (that is, round toward negative infinity). If
the resulting value is negative (that is, its most significant bit is set), zero is returned as
the clipped value. If the value is greater than 255, then 255 is delivered as the clipped
value. Otherwise, the scaled value is returned as the result.

3. Store the result in the corresponding byte in the 32-bit destination register, f [rd] .

A-374 UltraSPARC llli Processor User's Manual * June 2003

A46.2 FPACK32

FPACK32 takes two 32-bit fixed values from the second source operand (the 64-bit floating-
point register specified by r s2) and scales, truncates, and clips them into two 8-bit unsigned
integers. The two 8-bit integers are merged at the corresponding least significant byte
positions with each 32-bit word in the 64-bit floating-point register specified by r s1, left-
shifted by 8 bits. The 64-bit result is stored in the 64-bit floating-point register specified by
r d. Thus, successive FPACK32 instructions can assemble two pixels by using three or four
pairs of 32-bit fixed values. FIGURE A-13 illustrates the FPACK32 operation.

63 5655 48 47 40 39 32 31 24 23 16 15 8 7 0
rs2 \ \
\ \
\ \
rsl \/(\/(
” ZT Z1 ZT\ ZT Z1 ZT\
4 0
GSR.scale 00110
15 0
rs2
31 2322 0
000000
37
Lo -
rd implicit binary point
7 0

FIGURE A-13 FPACK32 Operation

This operation is carried out as follows:

1. Left-shift each 32-bit value from the second source operand by the number of bits
specified in GSR. scal e, while maintaining clipping information.

2. For each 32-bit value, truncate and clip to an 8-bit unsigned integer starting at the bit
immediately to the left of the implicit binary point (that is, between bits 23 and 22 for
each 32-bit word). Truncation converts the scaled value into a signed integer (that is,

Chapter A Instruction Definitions A-375

A.46.3

A-376

round toward negative infinity). If the resulting value is negative (that is, MSB is set), then
zero is returned as the clipped value. If the value is greater than 255, then 255 is delivered
as the clipped value. Otherwise, the scaled value is returned as the result.

. Left-shift each 32-bit value from the first source operand (the 64-bit floating-point register

specified by r s1) by 8 bits.

. Merge the two clipped 8-bit unsigned values into the corresponding least significant byte

positions in the left-shifted value from the second source operand.

. Store the result in the r d register.

FPACKFIX

FPACKFI X takes two 32-bit fixed values from the 64-bit floating-point register specified by
r s2, scales, truncates, and clips them into two 16-bit unsigned integers, and then stores the
result in the 32-bit destination register f [r d] . FIGURE A-14 illustrates the FPACKFI X

operation.
63 32 31 16 15 0
rs2
rd T N\
4 0
GSR.scale 00110
0
rs2
31 1615 >z 0
000000
37
implicit binary point
rd
15 0

FIGURE A-14 FPACKFI X Operation

UltraSPARC llli Processor User's Manual * June 2003

A.46.4

This operation is carried out as follows:

1. Left-shift each 32-bit value from the source operand (the 64-bit floating-point register
specified by r s2) by the number of bits specified in GSR. scal e while maintaining

clipping information.

2. For each 32-bit value, truncate and clip to a 16-bit unsigned integer starting at the bit
immediately to the left of the implicit binary point (that is, between bits 16 and 15 for
each 32-bit word). Truncation converts the scaled value into a signed integer (that is,
round toward negative infinity). If the resulting value is less than —32768, then —32768 is
returned as the clipped value. If the value is greater than 32767, then 32767 is delivered as
the clipped value. Otherwise, the scaled value is returned as the result.

3. Store the result in the 32-bit destination register f [r d] .

FEXPAND

FEXPAND takes four 8-bit unsigned integers from f [r s2] , converts each integer to a 16-bit
fixed-point value, and stores the four resulting 16-bit values in a 64-bit floating-point register

specified by r d. FIGURE A-15 illustrates the operation.

31 24 23 16 15 7
-~
rs2 — /
63 16 32 31 16 15) /
rd = = /4
7
rs2
15 12 4
rd 0000 0000

FIGURE A-15 FEXPAND Operation

This operation is carried out as follows:

1. Left-shift each 8-bit value by four and zero-extend the results to a 16-bit fixed value.

2. Store the result in the destination register.

Chapter A

Instruction Definitions

A-377

A.46.5

FPMERGE

FPMERGE interleaves four corresponding 8-bit unsigned values in f[r s1] and f[rs2] to
produce a 64-bit value in the 64-bit floating-point destination register specified by r d. This
instruction converts from packed to planar representation when it is applied twice in

succession; for example,

R1G1BI1AI, R3G3B3A3 - RIR3G1G3AI1A3 - R1R2R3R4G1G2G3G4.

FPMERCE also converts from planar to packed when it is applied twice in succession; for
example, RIR2R3R4, B1B2B3B4 - RIB1R2B2R3B3R4B4 - R1G1B1A1R2G2B2A2.

FIGURE A-16 illustrates the operation.

31 2423 1615 8 7
rsl _ P .
~
~
- 3 A2 1915 8 7
~ 7~
rs2 _ - 4
-
- P /
63 5655~ 48 47 40,89 32 24 23 15,8 7
rd = =1 = V 5 Y 5

FIGURE A-16 FPIVERGE Operation

Back-to-back FPMERMGES cannot be done on adjacent cycles.

A.47

Population Count

Opcode

op3

Operation

POPC

101110

Population Count

A-378

UltraSPARC llli Processor User's Manual * June 2003

Format (3)

10 rd op3 0 0000 i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 0
Assembly Language Syntax
popc reg_or_imm, reg,;
Description

POPC counts the number of one bits in r [r s2] if i =0, or the number of one bits in
sign_ext (simil3) ifi =1, and stores the count in r [r d] . This instruction does not
modify the condition codes.

Note — The UltraSPARC IIIi processor does not implement this instruction in hardware;

instead, it traps to software. The instruction is emulated in supervisor software.

Exceptions

illegal_instruction

A.48

Prefetch Data

Opcode op3 Operation
PREFETCH 10 1101 Prefetch Data
PREFETCHA As! 11 1101 Prefetch Data from Alternate Space

Implementation Note — The PREFETCH{A} instructions are supported in the
UltraSPARC IIIi processor.

Chapter A

Instruction Definitions

A-379

Format (3) PREFETCH{A}

- PREFETCH: —
11 fen op3 sl =0l PREFETCHA: imm_asi rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax
prefetch [address], prefetch_fcn
prefetcha [regaddr] imm_asi, prefetch_fen
prefetcha [reg_plus_imm)] Y@si , prefetch_fcn
Description

A-380

Prefetching is used to help manage data memory cache(s). A prefetch to a non-prefetchable
location has no effect. Non-cacheable and non-prefetchable locations are not the same.

Variants of the prefetch instruction are used to prepare the memory system for different types
of memory accesses.

In non-privileged code, a prefetch instruction has no observable effect. Its execution is
nonblocking and cannot cause an observable trap. In particular, a prefetch instruction shall
not trap if it is applied to an illegal or nonexistent memory address.

Programming Note — When software needs to prefetch 64 bytes beginning at an
arbitrary address, issue two prefetch instructions to canvas all bytes:

pr ef et ch[address] , prefetch_fcn

pr ef et ch[address + 63], prefetch_fcn

PREFETCH A

Prefetch instructions that do not load from an alternate address space access the primary
address space (ASI _PRI MARY{ LI TTLE}). Prefetch instructions that do load from an
alternate address space contain the address space identifier (ASI) to be used for the load in
the i mm_asi field if i =0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is zero; otherwise, it is not privileged. The effective address for these instructions
is“r[rsl] +r[rs2]”ifi =0,or “r[rsl] +sign_ext(simil3)”ifi =1.

UltraSPARC llli Processor User's Manual * June 2003

A.48.1

Exceptions

illegal_instruction

Prefetch Instruction Variants

PREFETCH(A) instructions with f cn = 0-3 are implemented.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is
different from other instructions in SPARC-V9 (except BPN), all of which specify specific
actions.

The prefetch instruction variants are intended to provide scalability for future improvements
in both hardware and compilers.

The prefetch variant is selected by the f cn field of the instruction. In accordance with
SPARC-V9, f cn values 4-15 cause an illegal_instruction exception.

A prefetch with f cn = 16 invalidates the P-cache line corresponding to the effective address
of the prefetch. Use this characteristic to prefetch non-cacheable data after data are loaded

into registers from the P-cache. A prefetch invalidate is issued to remove the data from the P-
cache so it will not be found by a later reference. Prefetch with f cn = 20, 21, 22, 23 are new.

TABLE A-13 lists the types of software prefetch instructions. Note that the table contains
hexadecimal values for f cn unlike the decimal values in the explanation above.

TABLE A-13 Types of Software Prefetch Instructions

fen Instruction

Value Strength Request Exclusive

(hex) Instruction Type Prefetch into: UltraSPARC llli Ownership

00 Prefetch read many | P-cache and weak No
L2-cache

01 Prefetch read once P-cache only weak No

02 Prefetch write many | L2-cache only weak Yes

03 Prefetch write once! | L2-cache only weak No

04 reserved Undefined

05 - reserved Undefined

OF

10 Prefetch invalidate Invalidates a P- N/A
cache line, no data
is prefetched.

11 - reserved Undefined

13

Chapter A

Instruction Definitions

A-381

TABLE A-13 Types of Software Prefetch Instructions (Continued)

Value Request Exclusive
(hex) Instruction Type Prefetch into: UltraSPARC llli Ownership

14 Same as f cn = 00 weak? No

15 Same as f cn =01 weak? No

16 Same as f cn = 02 weak? Yes

17 Same as f cn =03 weak? No

18 - reserved Undefined

1F

1. Although the name is “prefetch write once,” the actual use is prefetch to L2-cache for a future read.

2. These weak instructions may be implemented as strong in future implementations.

A.48.2 New Error Handling of PREFETCH,2 and Other
Prefetches

Since PREFETCH,2 request for cache line ownership (RTO/R_RTO), an error occurs while
processing it will be handled differently compared to other prefetch requests with RTS/
R_RTS, as described in TABLE A-14.

A-382 UltraSPARC llli Processor User's Manual * June 2003

TABLE A-14 Error Handling of Prefetch Requests

Prefetch Type | L2-cache [Error Type L2-cache Action P-cache Error Trap
Hit/Miss Action Logging
PREFETCH,2 Hit Tag, No state change None THCE Disrupting
(RTO/R_RTO) Hardware-corrected
Miss Tag, Install data, state None THCE Disrupting
Hardware-corrected | change to M
“Hit” Tag, uncorrectable No data install, None TUE Fatal Error
(tag error) no state change
Hit Data, No state change None EDC Disrupting
Hardware-corrected
Hit Data, No state change None EDU Disrupting
uncorrectable
Miss Data, Install data, state None CE Disrupting
Hardware-corrected | change to M
Miss Data, Install uncorrected None DUE Disrupting
uncorrectable data, state change to M
Miss Mtag, Install data, state None EMC Disrupting
Hardware-corrected | change to M
Miss Mtag, Install data if L2-cache | None EMU Fatal Error
uncorrectable state is M or Os

Chapter A

Instruction Definitions

A-383

TABLE A-14 Error Handling of Prefetch Requests (Continued)

Prefetch Type | L2-cache | Error Type L2-cache Action P-cache Error Trap
Hit/Miss Action Logging
PREFETCH,0 Hit Tag, No state change Install data THCE Disrupting
PREFETCH, 1 Hardware-corrected (except
PREFETCH,3 gREFETCH’
Hardware)
prefetch Miss Tag, Install data, state Install data THCE Disrupting
(RTS/R_RTS) Hardware-corrected | change to S or E (except
- PREFETCH,
3)
“Hit” Tag, No data install, Cancel TUE Fatal Error
(tag error) | uncorrectable no state change install
Hit Data, No state change Install data EDC Disrupting
Hardware-corrected (except
PREFETCH,
3)
Hit Data, No state change Cancel EDU Disrupting
uncorrectable install
Miss Data, Install data, state Install data CE Disrupting
Hardware-corrected | change to S or E (except
PREFETCH,
3)
Miss Data, -If RTS, cancel install, | Cancel DUE Disrupting
uncorrectable no state change. install
-If R_RTS, install
uncorrected data, state
change to Os.
Miss Mtag, Install data, state None EMC Disrupting
Hardware-corrected | change to S or E
Miss Mtag, Install data if L2-cache | None EMU Fatal Error
uncorrectable state is M or Os

A.48.2.1

A-384

New Column in Coherence Table

A new column has been added to the UltraSPARC IIli Coherence Table to describe the

processor action on write prefetch RTO. Basically, the behavior of coherence state change is
the following:

On L2-cache hit: same as Load request (no state change)

On L2-cache miss: same as Store request (send RTO/R_RTO to get M state)

UltraSPARC llli Processor User's Manual * June 2003

A.49

Read Privileged Register

Opcode op3 Operation
RDPR? 10 1010 Read Privileged Register
Format (3)
10 rd op3 rsl
31 30 29 25 24 19 18 14 13 0
rsi Privileged Register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 Tl CK
5 TBA
6 PSTATE
7 TL
8 PI L
9 CwWp
10 CANSAVE
11 CANRESTORE
12 CLEANW N
13 OTHERW N
14 WETATE
15 FQ
16-30 —
31 VER
Chapter A Instruction Definitions A-385

Assembly Language Syntax

rdpr % pc, reg,y

rdpr % npc, reg,;
rdpr % state, reg,y
rdpr %t, reg,,

rdpr % i ck, reg,;
rdpr % ba, reg,;

rdpr Ypst ate, reg,y
rdpr %1, reg,;

rdpr Wi |, reg,y

rdpr YEWD, reg,y

rdpr Ygansave, reg,;
rdpr Y%canrestore, reg,,
rdpr %l eanwi n, reg,;
rdpr %ot herwi n, reg,;
rdpr owst at e, reg,;
rdpr % q, reg,y

rdpr Wer, reg,y
Description

The r s1 field in the instruction determines the privileged register that is read. There are
MAXTL copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these
registers returns the value in the register indexed by the current value in the trap level
register (TL). A read of TPC, TNPC, TT, or TSTATE when the trap level is zero (TL =0)
causes an illegal_instruction exception.

RDPR instructions with r S1 in the range 16 —30 are reserved; executing an RDPR instruction
with r S1 in that range causes an illegal_instruction exception.

A-386 UltraSPARC llli Processor User's Manual * June 2003

Programming Note — On this implementation with precise floating-point traps, the
address of a trapping instruction will be in the TPC[TL] register when the trap code begins

execution.

Exceptions

privileged_opcode
illegal_instruction ((r s1 =16-30) or ((r S1 < 3) and (TL =0)))

Chapter A Instruction Definitions A-387

A.50

Read State Register

Opcode op3 rs1 Operation

RDYP 10 1000 0 Read Y Register; deprecated (see Section A.70.9, “Read Y
Register”)

— 10 1000 1 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

RDCCR 10 1000 2 Read Condition Codes Register

RDASI 10 1000 3 Read ASI Register

RDTI CKPner 10 1000 4 Read Tick Register

RDPC 10 1000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

— 10 1000 7-14 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

See section description 10 1000 15 STBAR, MEMBAR, or Reserved; see section description.

RDASR 10 1000 16-31 |Read non-SPARC-V9 ASRs

RDPCRPrcr 16 Read Performance Control Registers (PCR)

RDP| CPric 17 Read Performance Instrumentation Counters (Pl C)

RDDCR? 18 Read Dispatch Control Register (DCR)

RDGSR 19 Read Graphic Status Register (GSR)

— 20-21 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

RDSOFTI NT? 22 Read per-processor Soft Interrupt Register

RDTI CK_CMPR® 23 Read Tick Compare Register

RDSTI CKPner 24 Read System TICK Register

RDSTI CK_CMPR? 25 Read System TICK Compare Register

— 26-31 Reserved, do not access; attempt to access causes in
illegal_instruction exception.

Format (3)
10 rd op3 rsl i=0 —
31 30 29 25 24 19 18 14 13 12
A-388 UltraSPARC Illi Processor User’s Manual « June 2003

Assembly Language Syntax

rd Yecr, reg,y

rd Yasi , reg,y

rd % ick, reg,y

rd |upc, regy

rd % prs, reg,y

rd upcr, reg,y

rd i c, reg,y

rd veicr, reg,y

rd Ygsr, reg,y

rd sof tint,reg,,
rd % ick_cnpr, reg,,
rd Ysys_tick, reg,y
rd Ysys_tick_cnpr, reg,,
Description

These instructions read the state register specified by rs1 into r [rd] .

Values 7-14 of r sS1 are reserved for future versions of the architecture. A Read State
Register instruction with r s1 =15,rd =0, and i =0 is defined to be a (deprecated) STBAR
instruction (see Section A.70.10, “Store Barrier”). An RDASR instruction with r s1 =15,
rd=0,andi =1 is defined to be a MEMBAR instruction. RDASRwithrsl =15andrd #0
is reserved for future versions of the architecture; it causes an illegal_instruction exception.

For RDPC, the processor writes the full 64-bit program counter value to the destination
register of a CALL, JMPL, or RDPC instruction. When PSTATE. AM= 1 and a trap occurs,
the processor writes the full 64-bit program counter value to TPC[TL] .

RDFPRS waits for all pending FPops and loads of floating-point registers to complete before
reading the FPRS register.

RDGSR causes a fp_disabled exception if PSTATE. PEF =0 or FPRS. FEF = 0.

RDTI CK causes a privileged_action exception if PSTATE. PRI V=0 and Tl CK. NPT = 1.
RDSTI CK causes a privileged_action exception if PSTATE. PRI V=0 and STI CK. NPT = 1.

RDPI C causes a privileged_action exception if PSTATE. PRI V=0 and PCR. PRI V= 1.

RDPCR causes a privileged_opcode exception due to access privilege violation.

Chapter A Instruction Definitions A-389

Implementation Note — Ancillary state registers include, for example, timer, counter,

diagnostic, self-test, and trap-control registers.

Compatibility Note — The SPARC-V8 RDPSR, RDW M and RDTBR instructions do not
exist in SPARC-V9 since the PSR, W M and TBR registers do not exist in SPARC-V9.

Exceptions

privileged_opcode(RDDCR, RDSOFTI NT, RDTI CK_CMPR, RDSTI CK, RDSTI CK_CMPR,

and RDPCR)
illegal_instruction(RDASR with r s1 =1 or 7-14;
RDASR with rs1=15and rd # 0;
RDASR with r s1 =20-21, 26-31)
privileged_action (RDTI CK with PSTATE. PRI V=0 and Tl CK. NPT = 1;
RDPI C with PSTATE. PRI V=0 and PCR. PRI V=1,
RDSTI CK with PSTATE. PRI V=0 and STI CK. NPT =1)
fp_disabled (RDGSR with PSTATE. PEF = 0 or FPRS. FEF = 0)

A5l

RETURN

Opcode op3 Operation
RETURN 11 1001 Return
Format (3)
10 — op3 rsl i=0 — rs2
10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

A-390

UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax

return |address

Description

The RETURN instruction causes a delayed transfer of control to the target address and has the
window semantics of a RESTORE instruction; that is, it restores the register window prior to
the last SAVE instruction. The target address is “r [rs1] +r[rs2]”ifi =0, or

“r[rsl] +sign_ext(simml3)”ifi =1.Registers r[rsl] and r[rs2] come from
the old window.

The RETURN instruction may cause an exception. It may cause a window_fill exception as
part of its RESTORE semantics, or it may cause a mem_address_not_aligned exception if
either of the two low-order bits of the target address is nonzero.

Programming Note — To re-execute the trapped instruction when returning from a user
trap handler, use the RETURN instruction in the delay slot of a JMPL instruction, for

example:
j mpl % 6,%90 | Trapped PC supplied to user trap handl er
return % 7 | Trapped nPC supplied to user trap handler

Programming Note — A routine that uses a register window may be structured either as:

save osp, - framesize, Ysp
ret | Sane as jmpl %7 +8, %0
restore | Sonething useful like “restore

| %2, % 2, %00
or,
save osp, - framesize, Ysp
return % 7+ 8

nop | Could do sone useful work in the caller’s
| window, for exanple, “or %01, %2, %0"

Chapter A Instruction Definitions A-391

Exceptions

mem_address_not_aligned
fill_n_normal (n=0-7)
fill_n_other (n=0-7)

A.52 SAVE and RESTORE

Opcode op3 Operation
SAVE 11 1100 Save Caller’s Window
RESTORE 111101 Restore Caller’s Window
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

save reg,.;, reg_or_imm, reg,;

restore reg,;, reg_or_imm, reg,,

Description (Effect on Non-Privileged State)

The SAVE instruction provides the routine executing it with a new register window. The out
registers from the old window become the in registers of the new window. The contents of
the out and the local registers in the new window are zero or contain values from the
executing process; that is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruction
executed by the current process. The in registers of the old window become the out registers
of the new window. The in and local registers in the new window contain the previous values.

A-392 UltraSPARC llli Processor User's Manual * June 2003

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE behave
like normal ADD instructions, except that the source operands r [r s1] orr[rs2] are read
from the old window (that is, the window addressed by the original CWP) and the sum is
written into r [r d] of the new window (that is, the window addressed by the new CWP).

Note — CWP arithmetic is performed modulo the number of windows, NWW NDOWS.

Programming Note — Typically, if a SAVE (RESTORE) instruction traps, the spill (fill)
trap handler returns to the trapped instruction to reexecute it. So, although the ADD operation
is not performed the first time (when the instruction traps), it is performed the second time
the instruction executes. The same applies to changing the CWP.

The SAVE instruction can be used to atomically allocate a new window in the register file
and a new software stack frame in memory.

There is a performance trade-off to consider between using SAVE/RESTORE and saving and
restoring selected registers explicitly.

Description (Effect on Privileged State)

If the SAVE instruction does not trap, it increments the CAP (mod NW NDOWS) to provide a
new register window and updates the state of the register windows by decrementing
CANSAVE and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The
trap vector for the spill trap is based on the value of OTHERW N and WSTATE. The spill trap
handler is invoked with the CWP set to point to the window to be spilled (that is, old

CWP +2).

If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be cleaned.
It causes a clean_window trap if the number of unused clean windows is zero, that is,
(CLEANW N— CANRESTORE) = 0. The clean_window trap handler is invoked with the CWP
set to point to the window to be cleaned (that is, old CWP + 1).

If the RESTORE instruction does not trap, it decrements the CWP (mod NW NDOWS) to
restore the register window that was in use prior to the last SAVE instruction executed by the
current process. It also updates the state of the register windows by decrementing
CANRESTORE and incrementing CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), then a fill trap is
generated. The trap vector for the fill trap is based on the values of OTHERW N and
WSTATE. The fill trap handler is invoked with CWP set to point to the window to be filled,
that is, old CWP — 1.

Chapter A Instruction Definitions A-393

Programming Note — The vectoring of spill and fill traps can be controlled by setting the
value of the OTHERW N and WSTATE registers appropriately.

The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by
a RETRY instruction.

Exceptions

clean_window (SAVE only)
fill_n_normal (RESTORE only, n=0-7)
fill_n_other (RESTORE only, n = 0-7)
spill_n_normal (SAVE only, n =0-7)
spill_n_other (SAVE only, n =0-7)

A.53

SAVED and RESTORED

Opcode op3 fcn Operation
SAVEDP 11 0001 0 Window has been saved
RESTORED® 11 0001 1 Window has been restored
— 11 0001 2-31 Reserved
Format (3)
10 fcn op3 —

31 30 29 25 24 19 18 0
Assembly Language Syntax
saved
restored
Description

A-394

SAVED and RESTORED adjust the state of the register-windows control registers.

UltraSPARC llli Processor User's Manual * June 2003

SAVED increments CANSAVE. If OTHERW N= 0, SAVED decrements CANRESTORE.
If OTHERW N # 0, it decrements OTHERW N.

RESTORED increments CANRESTORE. If CLEANW N < (NW NDOW5-1), then RESTORED
increments CLEANW N. If OTHERW N = 0, it decrements CANSAVE. If OTHERW N # 0, it
decrements OTHERW N.

Programming Note — The spill (fill) handlers use the SAVED (RESTORED) instruction to
indicate that a window has been spilled (filled) successfully.

Normal privileged software would probably not do a SAVED or RESTORED from trap level
zero (TL = 0). However, it is not illegal to do so and doing so does not cause a trap.

Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is
likely to create an inconsistent window state. Hardware will not signal an exception,
however, since maintaining a consistent window state is the responsibility of privileged
software.

Exceptions

privileged_opcode
illegal_instruction (f cn = 2-31)

A.54

Set Interval Arithmetic Mode (VIS II)

Opcode opf Operation
SI AM 0 1000 0001 Set the interval arithmetic mode fields in the GSR
Format (3)
10 110110 — opf — mode
31 30 29 25 24 19 18 14 13 5 4 32 0

Chapter A Instruction Definitions A-395

Assembly Language Syntax

si am |mode

Description

The SI AMinstruction sets the GSR. | Mand GSR. | RND fields as follows:
GSR. | M= mode<2>
GSR. | RND = mode<1:0>

Note — S| AMis a groupable, break-after instruction. It enables the interval rounding mode
to be changed every cycle without flushing the pipeline. FPops in the same instruction group
as an S| AMinstruction use the previous rounding mode.

Exceptions

fp_disabled

A-396 UltraSPARC llli Processor User's Manual * June 2003

A.55

SETHI

Opcode op2 Operation
SETHI 100 Set High 22 Bits of Low Word
Format (2)
00 rd op2 imm22
31 30 29 25 24 22 21 0

Assembly Language Syntax

set hi const22, reg,y
set hi Wi (value), reg,y
Description

SETHI zeroes the least significant 10 bits and the most significant 32 bits of r [r d] and
replaces bits 31 through 10 of r [r d] with the value from its i 22 field.

SETHI does not affect the condition codes.
Some SETHI instructions with r d = 0 has a special use:

rd=0and i M®2 = 0: has no architectural effect and is defined to be a NOP instruction

rd=0andi N2 £ 0 is used to trigger hardware performance counters. See Chapter 11
“Performance Instrumentation” for details.

Programming Note — The most common form of 64-bit constant generation is creating
stack offsets whose magnitude is less than 232. The code below can be used to create the
constant 0000 0000 ABCD 12344:

set hi %i (Oxabcd1234), %00
or %00, 0x234, %0

The following code shows how to create a negative constant. Note: The immediate field of
the xor instruction is sign extended and can be used to get ones in all of the upper 32 bits.
For example, to set the negative constant FFFF FFFF ABCD 12344:

set hi %i (0x5432edcb), %0 ' note 0x5432EDCB, not O0xABCD1234

Chapter A Instruction Definitions A-397

xor

%00,

Ox1le34,

%0 1 part of imm overlaps upper bits
Exceptions
None
A.56 Shift
Opcode op3 X Operation
SLL 100101 0 Shift Left Logical — 32 bits
SRL 100110 0 Shift Right Logical — 32 bits
SRA 100111 0 Shift Right Arithmetic — 32 bits
SLLX 100101 1 Shift Left Logical — 64 bits
SRLX 100110 1 Shift Right Logical — 64 bits
SRAX 100111 1 Shift Right Arithmetic — 64 bits
Format (3)
10 rd op3 rsl i=0| x — rs2
10 rd op3 rsl i=1{x=0 — shcent32
10 rd op3 rsl i=1[x=1 — shent64
31 30 29 25 24 19 18 14 13 12 6 5 4 0
A-398

UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax

sl reg,.;, reg_or_shent, reg.y
srl reg,c;, reg_or_shcnt, reg,,
sra reg,.;, reg_or_shcnt, reg,,
sl1x reg,.;, reg_or_shent, reg,,
srlx reg,.;, reg_or_shent, reg,,
Srax reg,c;, reg_or_shcnt, reg,,
Description

When i =0 and X = 0, the shift count is the least significant five bits of r [r s2] . When

i =0 and x = 1, the shift count is the least significant six bits of r[rs2] . When i =1 and
X =0, the shift count is the immediate value specified in bits 0 through 4 of the instruction.
When i =1 and X = 1, the shift count is the immediate value specified in bits 0 through 5 of
the instruction.

TABLE A-15 shows the shift count encodings for all values of i and X.

TABLE A-15 Shift Count Encodings

Shift Count
bits 4-0 of r [r s2]
bits 5-0 of r[rs2]

bits 4-0 of instruction

—_ O = o X

bits 5-0 of instruction

SLL and SLLX shift all 64 bits of the value in r [r s1] left by the number of bits specified
by the shift count, replacing the vacated positions with zeroes, and write the shifted result to
rird].

SRL shifts the low 32 bits of the value in r [r s1] right by the number of bits specified by
the shift count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result
is written to r [rd] .

SRLX shifts all 64 bits of the value in r [r s1] right by the number of bits specified by the
shift count. Zeroes are shifted into the vacated high-order bit positions, and the shifted result
is written to r [rd] .

SRA shifts the low 32 bits of the value in r [r s1] right by the number of bits specified by
the shift count and replaces the vacated positions with bit 31 of r [r s1] . The high-order
32 bits of the result are all set with bit 31 of r [r s1], and the result is written to r [r d] .

Chapter A Instruction Definitions A-399

SRAX shifts all 64 bits of the value in r [r S1] right by the number of bits specified by the
shift count and replaces the vacated positions with bit 63 of r [r s1] . The shifted result is
written to r [rd] .

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-bit
shifts as noted above.

These instructions do not modify the condition codes.

Programming Note — “Arithmetic left shift by 1 (and calculate overflow)” can be
effected with the ADDcc instruction.

The instruction “sra rsl, 0, r d” can be used to convert a 32-bit value to 64 bits, with
sign extension into the upper word; “srl rsl, 0, rd” can be used to clear the upper
32bitsof r{rd].

Exceptions

None

A.57

A-400

Short Floating-Point Load and Store (VIS I)

Opcode imm_asi ASI Value [Operation

LDDFA ASI _FL8_P D04 8-bit load/store from/to primary address space

STDFA

LDDFA ASI _FL8_S D144 8-bit load/store from/to secondary address space

STDFA

LDDFA ASI _FL8_PL D84 8-bit load/store from/to primary address space, little-endian
STDFA

LDDFA ASI _FL8_SL D944 8-bit load/store from/to secondary address space, little-endian
STDFA

LDDFA ASI _FL16_P D244 16-bit load/store from/to primary address space

STDFA

LDDFA ASI _FL16_S D344 16-bit load/store from/to secondary address space

STDFA

LDDFA ASI _FL16_PL [DA4 16-bit load/store from/to primary address space, little-endian
STDFA

LDDFA ASI _FL16_SL [DBy4 16-bit load/store from/to secondary address space, little-endian
STDFA

UltraSPARC llli Processor User's Manual * June 2003

Format (3) LDDFA

11 rd 110011 rsi i=0 imm_asi rs2

11 rd 110011 rsi i=1 simm_13

31 30 29 25 24 19 18 14 13 5 4 0
Format (3) STDFA

11 rd 110111 rsi i=0 imm_asi rs2

11 rd 110111 rsi i=1 simm_13

31 30 29 25 24 19 18 14 13 5 4 0

Assembly Language Syntax

| dda [reg_addr] imm_asi, freg,,

| dda [reg_plus_imm] Y@Si , freg,,
stda freg,q, [reg_addr] imm_asi
stda freg, g, [reg_plus_imm] Y@sSi
Description

Short floating-point load and store instructions are selected by means of one of the short
ASIs with the LDDFA and STDFA instructions.

These ASIs allow 8- and 16-bit loads or stores to be performed to/from the floating-point
registers. Eight-bit loads can be performed to arbitrary byte addresses. For 16-bit loads, the
least significant bit of the address must be zero or a mem_address_not_aligned trap is taken.
Short loads are zero-extended to the full floating-point register. Short stores access the low-
order 8 or 16 bits of the register.

Little-endian ASIs transfer data in little-endian format in memory; otherwise, memory is
assumed to be big-endian. Short loads and stores are typically used with the FALI GNDATA
instruction (see Section A.2, “Alignment Instructions (VIS 1)”) to assemble or store 64 bits
on noncontiguous components.

Chapter A Instruction Definitions A-401

Exceptions

fp_disabled

PA_watchpoint
VA_watchpoint
mem_address_not_aligned (odd memory address for a 16-bit load or store)
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

A.58

SHUTDOWN (VIS I)

Opcode opf Operation
SHUTDOWY 0 1000 0000 Shut down to enter power-down mode
Format (3)
10 — 110110 — opf —
31 30 29 25 24 19 18 14 13 5 4 0

A-402

Assembly Language Syntax

shut down

Description

SHUTDOWN is a privileged instruction.

The SHUTDOWN instruction executes as a NOP. An external system signal is used to enter
and leave Low Power mode.

Because SHUTDOWN is a privileged instruction, an attempt to execute it while in non-
privileged mode causes a privileged_opcode trap.

UltraSPARC llli Processor User's Manual * June 2003

Exceptions

privileged_opcode

A.59

Software-Initiated Reset

Opcode op3 rd Operation
SIR 11 0000 15 Software-Initiated Reset
Format (3)
10 01111 op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax

sir simm13

Description

SI Ris used to generate a software-initiated reset (SIR). As with other traps, a software-
initiated reset performs different actions when TL = MAXTL than it does when TL < MAXTL.

When executed in non-privileged mode, SIR acts like a NOP with no visible effect.

Exceptions

software_initiated_reset

Chapter A Instruction Definitions A-403

A.60

Store Floating-Point

Opcode op3 rd Operation
STF 10 0100 0-31 Store Floating-Point Register
STDF 100111 T Store Double Floating-Point Register
STQF 100110 t Store Quad Floating-Point Register
STXFSR 100101 1 Store Floating-Point State Register
10 0101 2-31 Reserved
 Encoded floating-point register value.
Format (3)
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4
Assembly Language Syntax
st freg,y, [address]
std freg,q, laddress]
stq freg.q laddress)
st X % sr, [address]
Description
The store single floating-point instruction (STF) copies f [r d] into memory.
The store double floating-point instruction (STDF) copies a doubleword from a double
floating-point register into a word-aligned doubleword in memory.
The store quad floating-point instruction (STQF) traps to software.
A-404 UltraSPARC Illi Processor User’s Manual « June 2003

The store floating-point state register instruction (STXFSR) waits for any currently executing
FPop instructions to complete, and then it writes all 64 bits of the FSR into memory.

STXFSR zeroes FSR. f t t after writing the FSR to memory.

Implementation Note — FSR. f t t should not be zeroed until it is known that the store
will not cause a precise trap.

The effective address for these instructions is “r[rs1] +r[rs2]”ifi =0, or
“r[rsl] +sign_ext(simml3)”ifi =1.

STF requires word alignment otherwise a mem_address_not_aligned exception occurs.

STDF instruction causes a STDF_mem_address_not_aligned trap if the effective address is
32-bit aligned but not 64-bit (doubleword) aligned. In this case, the trap handler software
shall emulate the STDF instruction and return.

STXFSR requires doubleword alignment; otherwise, it causes a mem_address_not_aligned
exception. In this case, the trap handler software shall emulate the STXFSR instruction and
return.

If the floating-point unit is not enabled for the source register r d (per FPRS. FEF and
PSTATE. PEF) or if the FPU is not present, then a store floating-point instruction causes a
fp_disabled exception.

Programming Note — In SPARC-VS, some compilers issued sets of single-precision
stores when they could not determine that doubleword or quadword operands were properly
aligned. For SPARC-V9, since emulation of misaligned stores is expected to be fast, it is
recommended that compilers issue sets of single-precision stores only when they can
determine that doubleword or quadword operands are not properly aligned.

Exceptions

illegal_instruction (0p3 =254 and r d = 2-31)
fp_disabled

mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only)
data_access_exception

data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

PA_watchpoint

VA_watchpoint

Chapter A Instruction Definitions A-405

A.61

Store Floating-Point into Alternate Space

Opcode op3 rd Operation

STFAPas: 110100 0-31 Store Floating-Point Register to Alternate Space
STDFAPs! 110111 ¥ Store Double Floating-Point Register to Alternate Space
STQFAPAs! 110110 T Store Quad Floating-Point Register to Alternate Space

T Encoded floating-point register value.

Format (3)

11 rd op3 rsl i=0 imm_asi rs2

11 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0
Assembly Language Syntax
sta freg,s, [regaddr] imm_asi
sta freg,q [reg_plus_imm] Yasi
stda freg,q [regaddr] imm_asi
stda freg,q [reg_plus_imm] Yasi
stqga freg,, [regaddr] imm_asi
stga freg.q [reg_plus_imm] %asi
Description
The store single floating-point into alternate space instruction (STFA) copies f [rd] into
memory.
The store double floating-point into alternate space instruction (STDFA) copies a doubleword
from a double floating-point register into a word-aligned doubleword in memory.
The store quad floating-point into alternate space instruction (STQFA) traps to software.
A-406 UltraSPARC Illi Processor User’s Manual « June 2003

Store floating-point into alternate space instructions contain the address space

identifier (ASI) to be used for the load in the i mm_asi field ifi =0 or in the ASI register if
i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] +r[rs2]”ifi =0, or

“r[rsl] +sign_ext(sinmml3)”ifi =1.

STFA requires word alignment; otherwise, a mem_address_not_aligned exception occurs.

STDFA instruction causes a STDF_mem_address_not_aligned trap if the effective address is
32-bit aligned but not 64-bit (doubleword) aligned. In this case, the trap handler software
shall emulate the STDF instruction and return.

STDFA with certain target ASI is defined to be a 64-byte block-store instruction. See
Section A.4, “Block Load and Block Store (VIS I)” for details.

If the floating-point unit is not enabled for the source register r d (per FPRS. FEF and
PSTATE. PEF) or if the FPU is not present, store floating-point into alternate space
instructions cause a fp_disabled exception.

Implementation Note — This check is not made for STQFA. STFA and STDFA cause a
privileged_action exception if PSTATE. PRI V=0 and bit 7 of the ASI is zero.

Programming Note — In SPARC-V8, some compilers issued sets of single-precision
stores when they could not determine that doubleword or quadword operands were properly
aligned. For SPARC-V9, since emulation of misaligned stores is expected to be fast,
compilers are recommended to issue sets of single-precision stores only when they can
determine that doubleword or quadword operands are not properly aligned.

Exceptions

illegal_instruction
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA only)
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

Chapter A Instruction Definitions A-407

A.62 Store Integer

Opcode op3 Operation
STB 000101 Store Byte
STH 000110 Store Halfword
STW 00 0100 Store Word
STX 001110 Store Extended Word
Format (3)

11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

stbh reg,q, [address) (synonyms: st ub, st sb)
sth reg,q, [address] (synonyms: st uh, st sh)
stw reg,q, [address] (synonyms: st , St uw, st sw)
st x reg, 4, [address)

Description

The store integer instructions (except store doubleword) copy the whole extended (64-bit)
integer, the less significant word, the least significant halfword, or the least significant byte of
r{rd] into memory.

The effective address for these instructions is “r[rs1] +r[rs2] ”ifi =0, or
“r[rsl] +sign_ext(sinmml3)”ifi =1.

A successful store (notably, store extended) instruction operates atomically.

A-408 UltraSPARC llli Processor User's Manual * June 2003

STH causes a mem_address_not_aligned exception if the effective address is not halfword
aligned. STWcauses a mem_address_not_aligned exception if the effective address is not

word aligned. STX causes a mem_address_not_aligned exception if the effective address is
not doubleword aligned.

Exceptions

mem_address_not_aligned (all except STB)

data_access_exception
data_access_error

fast_data_access_MMU_miss

fast_data_access_protection

PA_watchpoint
VA_watchpoint

A.63

Store Integer into Alternate Space

Opcode op3 Operation
STBAPAs! 010101 Store Byte into Alternate Space
STHAPast 010110 Store Halfword into Alternate Space
STWAPAs! 010100 Store Word into Alternate Space
STXAPAs! 011110 Store Extended Word into Alternate Space
Format (3)

11 rd op3 rsl i=0 imm_asi rs2

11 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 0
Chapter A Instruction Definitions A-409

A-410

Assembly Language Syntax

st ba reg,g, [regaddr] imm_asi (synonyms: st uba, st sba)

st ha reg,g, [regaddr] imm_asi (synonyms: st uha, st sha)

st wa reg, . [regaddr] imm_asi (synonyms: st a, st uwa, st swa)
st xa reg, . [regaddr] imm_asi

st ba reg, g, [reg_plus_imm] %@si (synonyms: st uba, st sba)

st ha reg,q [reg_plus_imm] Y@si (synonyms: st uha, st sha)
stwa reg,q [reg_plus_imm] Y@si (synonyms: st a, st uwa, st swa)
st xa reg,, [reg_plus_imm] %@si

Description

The store integer into alternate space instructions copy the whole extended (64-bit) integer,
the less significant word, the least significant halfword, or the least significant byte of r [r d]
into memory.

Store integer to alternate space instructions contain the address space identifier (ASI) to be
used for the store in the i mm_asi field if i =0, or in the ASI register if i = 1. The access
is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The effective address
for these instructions is “r[rsl] +r[rs2] ”ifi =0, or “r[rs1] +sign_ext(si mml3)”
ifi =1.

A successful store (notably, store extended) instruction operates atomically.

STHA causes a mem_address_not_aligned exception if the effective address is not halfword
aligned. STWA causes a mem_address_not_aligned exception if the effective address is not

word aligned. STXA causes a mem_address_not_aligned exception if the effective address is
not doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if
PSTATE. PRI V=0 and bit 7 of the ASI is zero.

Compatibility Note — The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions

privileged_action

mem_address_not_aligned (all except STBA)
data_access_exception

data_access_error

UltraSPARC llli Processor User's Manual * June 2003

fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

A.64

Subtract

Opcode op3 Operation
SUB 000100 Subtract
SUBcc 010100 Subtract and modify condition codes

SUBC 00 1100
SUBCcc 011100

Subtract with Carry

Subtract with Carry and modify condition codes

Format (3)

10 rd op3 rsl i=0 — rs2

10 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax
sub reg,g;, reg_or_imm, reg,;
subcc reg,.;, reg_or_imm, reg,;
subc reg,s;, reg_or_imm, reg,;
subccc reg,g;, reg_or_imm, reg,;
Description

These instructions compute “r[rsl1] —r[rs2] ”ifi =0, or
“r[rsl] —sign_ext(simil3)”ifi =1, and write the difference into r [rd] .

SUBC and SUBCcc (“subtract with carry”) also subtract the CCR register’s 32-bit carry
(i cc. c) bit; that is, they compute “r[rs1l] — r[rs2] —icc.c”or

Chapter A

Instruction Definitions

A-411

“r[rsl] -sign_ext(simil3) — icc.c,” and write the difference into r [rd] .

SUBcc and SUBCcc modify the integer condition codes (CCR. i cc and CCR. xcc). A 32-
bit overflow (CCR. i ccC. V) occurs on subtraction if bit 31 (the sign) of the operands differs

and bit 31 (the sign) of the difference differs from r [r s1] <31>. A 64-bit overflow

(CCR. xcc. V) occurs on subtraction if bit 63 (the sign) of the operands differs and bit 63
(the sign) of the difference differs from r [r s1] <63>.

Programming Note — A SUBcc with rd =0 can be used to effect a signed or unsigned

integer comparison.

SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR. i ccC. €), not the 64-bit
condition codes’ carry bit (CCR. xcc. c).

Exceptions

None

A.65

Tagged Add

Opcode op3 Operation
TADDcc 10 0000 Tagged Add and modify condition codes
Format (3)
10 rd op3 rsl i=0 rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12
Assembly Language Syntax
taddcc reg,;, reg_or_imm, reg,;

A-412

UltraSPARC llli Processor User's Manual * June 2003

Description

This instruction computes a sum that is “r[rs1] +r[rs2]”ifi =0, or
“r[rsl] +sign_ext(simml3)”ifi =1.

TADDcc modifies the integer condition codes (i cc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the addition
generates 32-bit arithmetic overflow (that is, both operands have the same value in bit 31 and
the sum of bit 31 is different).

If a TADDccC causes a tag overflow, the 32-bit overflow bit (CCR. i cc. V) is set to one; if
TADDcc does not cause a tag overflow, CCR. i cC. Vv is set to zero.

In either case, the remaining integer condition codes (both the other CCR. i cc bits and all
the CCR. xcc bits) are also updated as they would be for a normal ADD instruction. In
particular, the setting of the CCR. xcc. v bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). CCR. xcc. v is set only, based on
the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Exceptions

None

A.66

Tagged Subtract

Opcode op3 Operation
TSUBcc 10 0001 Tagged Subtract and modify condition codes
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Chapter A Instruction Definitions A-413

A-414

Assembly Language Syntax

tsubcc reg,g;, reg_or_imm, reg,;

Description

This instruction computes “r[rsl1] —r[rs2]”ifi =0, or
“r[rsl] —sign_ext(simil3)”ifi =1.

TSUBcc modifies the integer condition codes (i cc and xcc).

A tag overflow condition occurs if bit 1 or bit 0 of either operand is nonzero or if the
subtraction generates 32-bit arithmetic overflow; that is, the operands have different values in
bit 31 (the 32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31
ofr{rsi].

If a TSUBcC causes a tag overflow, the 32-bit overflow bit (CCR. i cc. V) is set to one; if
TSUBcc does not cause a tag overflow, CCR. i ccC. V is set to zero.

In either case, the remaining integer condition codes (both the other CCR. i cc bits and all
the CCR. xcc bits) are also updated as they would be for a normal subtract instruction. In
particular, the setting of the CCR. XccC. Vv bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). The CCR. Xcc. Vv setting is based
only on the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.

Exceptions

None

UltraSPARC llli Processor User's Manual * June 2003

A.67

Trap on Integer Condition Codes (Tcc)

Opcode op3 cond Operation icc Test
TA 111010 1000 Trap Always 1
TN 111010 0000 Trap Never 0
TNE 111010 1001 Trap on Not Equal not Z
TE 111010 0001 Trap on Equal V4
TG 11 1010 1010 Trap on Greater not (Z or (N xor V))
TLE 111010 0010 Trap on Less or Equal Z or (N xor V)
TGE 111010 1011 Trap on Greater or Equal not (N xor V)
TL 111010 0011 Trap on Less N xor V
TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)
TLEU 111010 0100 Trap on Less or Equal Unsigned (Cor2)
TCC 111010 1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C
TCS 111010 0101 Trap on Carry Set (Less Than, Unsigned) C
TPCOS 11 1010 1110 Trap on Positive or zero not N
TNEG 111010 0110 Trap on Negative N
TVC 111010 1111 Trap on Overflow Clear not V
TVS 111010 0111 Trap on Overflow Set A"
Format (4)
10 |— cond op3 rsl i=0|ccllcco rs2
10 |— cond op3 rsl i=1|ccllcco — sw_trap_#
3130 29 28 25 24 19 18 14 13 12 11 10 7 6 5 4
ccl U cc0 Condition Codes

00 icc

01 —

10 Xcc

11 —

Chapter A Instruction Definitions A-415

A-416

Assembly Language Syntax

ta i_or_x_cc, software_trap_number

tn i_or_x_cc, software_trap_number

tne i_or_x_cc, software_trap_number (synonym: t nz)
te i_or_x_cc, software_trap_number (synonym: t 2)
tg i_or_x_cc, software_trap_number

tle i_or_x_cc, software_trap_number

tge i_or_x_cc, software_trap_number

tl i_or_x_cc, software_trap_number

tgu i_or_x_cc, software_trap_number

tleu i_or_x_cc, software_trap_number

tcc i_or_x_cc, software_trap_number (synonym: t geu)
tcs i_or_x_cc, software_trap_number (synonym: t | u)
t pos i_or_x_cc, software_trap_number

t neg i_or_x_cc, software_trap_number

tvce i_or_x_cc, software_trap_number

tvs i_or_x_cc, software_trap_number

Description

The Tcc instruction evaluates the selected integer condition codes (i cC or xcc) according
to the cond field of the instruction, producing either a TRUE or FALSE result. If TRUE and
no higher-priority exceptions or interrupt requests are pending, then a trap_instruction
exception is generated. If FALSE, a trap_instruction exception does not occur and the
instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of
“r[rsl] +r[rs2]”ifi =0, or the least significant seven bits of
“r[rsl] +sw_ trap_#”ifi =1.

When i =1, bits 7 through 10 are reserved and should be supplied as zeroes by software.
When i =0, bits 5 through 10 are reserved, the most significant 57 bits of
“r[rsl] +r[rs2]” are unused, and both should be supplied as zeroes by software.

Description (Effect on Privileged State)

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL] . Then
the trap is taken, and the processor performs the normal trap entry procedure.

UltraSPARC llli Processor User's Manual * June 2003

Programming Note — Tcc can be used to implement breakpointing, tracing, and calls to
supervisor software. It can also be used for runtime checks, such as out-of-range array
indexes, integer overflow, and so on.

Compatibility Note — Tcc is upward compatible with the SPARC-V8 Ti cc instruction,
with one qualification: a Ti cc withi =1 and si nml3 < 0 may execute differently on a
SPARC-V9 processor. Use of the i =1 form of Ti cc is believed to be rare in SPARC-V8
software, and si MML3 < 0 is probably not used at all; therefore, it is believed in practice,
that full software compatibility will be achieved.

Exceptions

trap_instruction
illegal_instruction (ccl [] cc0 =01, or 115, or reserved fields nonzero)

A.68

Write Privileged Register

Opcode op3 Operation
VWRPR? 110010 Write Privileged Register
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Chapter A Instruction Definitions A-417

A-418

=

Privileged Register

O 0 9 N L AW DN~ O

—_ = = =
A LW NN = O

15-31

TPC

TNPC
TSTATE
TT

TI CK

TBA
PSTATE
TL

PI L

oW,
CANSAVE
CANRESTORE
CLEANW N
OTHERW N
WSTATE

Reserved

Assembly Language Syntax

wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr
wr pr

wr pr

reg,s;, reg_or_imm,
reg,q;, reg_or_imm,
reg,s, reg_or_imm,
reg,s, reg_or_imm,
reg,s, reg_or_imm,
reg,q;, reg_or_imm,
reg,s, reg_or_imm,
reg,s, reg_or_imm,
reg,s;, reg_or_imm,
reg,q;, reg_or_imm,
reg,s, reg_or_imm,
reg,s, reg_or_imm,
reg,q;, reg_or_imm,
reg,q, reg_or_imm,

reg,s, reg_or_imm,

% pc

% npc

% state
%t

% ick

% ba

Ypst at e

% |

%pi |

YewWp
Y%cansave
Y%canrestore
%l eanwi n
%ot herwi n
Ywst at e

UltraSPARC llli Processor User's Manual * June 2003

Description

This instruction stores the value “r[rsl1] xorr[rs2]”ifi =0, or
“r[rsl] xorsign_ext(si mil3)”ifi =1, to the writable fields of the specified
privileged state register.

Note — The operation is an exclusive OR.

The r d field in the instruction determines the privileged register that is written. There are at
least four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A
write to one of these registers sets the register indexed by the current value in the trap level
register (TL). A write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0)
causes an illegal_instruction exception.

A VWRPR of TL does not cause a trap or return from trap; it does not alter any other machine
state.

Programming Note — A WRPR of TL can be used to read the values of TPC, TNPC, and
TSTATE for any trap level; however, make sure that traps do not occur while the TL register
is modified.

The WRPR instruction is a non-delayed write instruction. The instruction immediately
following the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions with r d in the range 15-31 are reserved for future versions of the
architecture; executing a WRPR instruction with r d in that range causes an illegal_instruction
exception.

Implementation Note — Some WRPR instructions could serialize the processor in some
implementations.

Exceptions

privileged_opcode
illegal_instruction ((rd =15-31) or ((r d £ 3) and (TL = 0)))

Chapter A Instruction Definitions A-419

A.69 Write State Register

Opcode op3 rd Operation
VRYP 11 0000 0 Write Y register; deprecated (see Section A.70.18, “Write Y
Register”).
— 11 0000 1 Reserved, do not access, attempt to access causes an
illegal_instruction exception.
WRCCR 11 0000 2 Write Condition Codes Register
VARASI 11 0000 3 Write Graphics Status Register
— 11 0000 4,5 Reserved, do not access, attempt to access causes an
illegal_instruction exception.
VRFPRS 11 0000 6 Write Floating-Point Registers Status Register
— 11 0000 7-14 Reserved, do not access, attempt to access causes an
illegal_instruction exception.
— 11 0000 15 Software-initiated reset (see Section A.59, “Software-
Initiated Reset”).
WRASR 11 0000 16-31 Write non-SPARC-V9 ASRs
VRPCRPer 16 Write Performance Control Registers (PCR)
VRP| CPric 17 Write Performance Instrumentation Counters (Pl C)
V\RDCRP 18 Write Dispatch Control Register (DCR)
WRGSR 19 Write Graphic Status Register (GSR)
WRSOFTI NT_SET? 20 Set bits of per-processor Soft Interrupt Register
WRSOFTI NT_CLR? 21 Clear bits of per-processor Soft Interrupt Register
VRSOFTI NTP 22 Write per-processor Soft Interrupt Register
VRTI CK_CMPR? 23 Write Tick Compare Register
VRSTI CKP 24 Write System TICK Register
WRSTI CK_CWPR® 25 Write System TICK Compare Register

— 26-31 Reserved, do not access, attempt to access causes an
illegal_instruction exception.

A-420 UltraSPARC llli Processor User's Manual * June 2003

Format (3)

10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

reg,., reg_or_imm, Y€Cr
wr reg,;, reg_or_imm, Y@si
wr reg,;, reg_or_imm, % prs
wr reg,;, reg_or_imm, Upcr
wr reg,;, reg_or_imm, 9pi C
wr reg,;, reg_or_imm, Ygcr
wr reg,., reg_or_imm, Y@Sr
wr reg,s;, reg_or_imm, %set_softint
wr reg,;, reg_or_imm, %l ear _softint
wr reg,;, reg_or_imm, ¥sof tint
wr reg,;, reg_or_imm, % i ck_cnpr
wr reg,;, reg_or_imm, Ysys_tick
wr reg,;, reg_or_imm, Ysys_tick_cnpr
Description

These instructions store the value “r[rsl1] xor r[rs2]”ifi =0, or
“r[rsl] xorsign_ext(si ml3)”ifi =1, to the writable fields of the specified state

register.

Note — The operation is an exclusive OR.

WRASR writes a value to the ancillary state register (ASR) indicated by r d. The operation
performed to generate the value written may be r d dependent or implementation dependent
(see below). A VWIRASR instruction is indicated by op =2, r d = = 16, and op3 =30y4.

The WRASR opcode forrd =15,rs1 =0, and i =1 is used for the software-initiated
reset (SI R) instruction (see Section A.59, “Software-Initiated Reset”).

Chapter A

Instruction Definitions A-421

The WRCCR, WRFPRS, and WRASI instructions are not delayed-write instructions. The
instruction immediately following a WRCCR, WRFPRS, or WRASI R observes the new value of
the CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the
FPRS register.

WRGSR causes a fp_disabled trap if PSTATE. PEF = 0 or FPRS. FEF = 0.
WRPI C causes a privileged_action exception if PSTATE. PRI V=0 and PCR. PRI V= 1.

VARPCR causes a privileged_opcode exception due to access privilege violation.

Implementation Note — Ancillary state registers may include, for example, timer,
counter, diagnostic, self-test, and trap-control registers.

Compatibility Note — The SPARC-V8 WRI ER WRPSR, WRW M and WRTBR instructions
do not exist in SPARC-V9 because the | ER, PSR, TBR, and W Mregisters do not exist in
SPARC-V9.

Implementation Note — Some WRASR instructions could serialize the processor in some
implementations.

Exceptions

software_initiated_reset (rd =15,rs1 =0,andi =1 only)
privileged_opcode (WRDCR, WRSOFTI NT_SET, WRSOFTI NT_CLR, WRSCOFTI NT,
WRTI CK_CMPR, WRSTI CK, WRSTI CK_CWPR,
and WRPCR)
illegal_instruction (\\RASR with rd =1, 4, 5, 7-14, 26-31;
WRASRwithrd=15andrsl1 #0ori # 1)
privileged_action (WRPI C with PSTATE. PRI V =0 and PCR. PRI V = 1)
fp_disabled (WRGSR with PSTATE. PEF = 0 or FPRS. FEF = 0)

A-422 UltraSPARC llli Processor User's Manual * June 2003

A.70

A.70.1

Deprecated Instructions

The following instructions are deprecated; they are provided only for compatibility with
previous versions of the architecture. They should not be used in new SPARC-V9 software.
For each deprecated instruction, another instruction is recommended to be used instead.

Please see TABLE A-2 for the page number at which you can find a description of the
preferred instruction.

Branch on Floating-Point Condition Codes (FBfcc)

The FBf cc instructions are deprecated. Use the FBPf cc instructions instead.

Opcode cond Operation fcc Test
FBAP 1000 Branch Always 1

FBNP 0000 Branch Never 0

FBUP 0111 Branch on Unordered U

FBGP 0110 Branch on Greater G

FBUGP 0101 Branch on Unordered or Greater GorU
FBLD 0100 Branch on Less L

FBULP 0011 Branch on Unordered or Less LorU
FBLG® 0010 Branch on Less or Greater LorG
FBNEP 0001 Branch on Not Equal LorGorU
FBED 1001 Branch on Equal E

FBUEP 1010 Branch on Unordered or Equal EorU
FBGEDP 1011 Branch on Greater or Equal Eor G
FBUGEP 1100 Branch on Unordered or Greater or Equal Eor GorU
FBLEP 1101 Branch on Less or Equal EorL
FBULEP 1110 Branch on Unordered or Less or Equal Eor L or U
FBOP 1111 Branch on Ordered EorLorG

Chapter A

Instruction Definitions

A-423

Format (2)

00 | a cond 110 disp22
3130 29 28 25 24 22 21 0

Assembly Language Syntax

f ba{, a} label

fbn{, a} label

fbu{, a} label

fbg{, a} label

f bug{, a} label

fbl{,a} label

fbul {, a} label

fbl g{, a} label

fbne{, a} label (synonym: f bnz)

f be{, a} label (synonym: f bz)

f bue{, a} label

f bge{, a} label

f buge{, a} label

fbl e{, a} label

fbul e{, a} label

f bo{, a} label

Programming Note — To set the annul bit for FBf cc instructions, append “, a” to the

opcode mnemonic. For example, use “f bl , a /label” In the preceding table, braces around

“, a” signify that “, a” is optional.

Description

Unconditional and Fcc branches are described below:
Unconditional branches (FBA, FBN) — If its annul field is zero, an FBN (Branch Never)
instruction acts like a NOP. If its annul field is one, the following (delay) instruction is
annulled (not executed) when the FBN is executed. In neither case does a transfer of
control take place.

A-424 UltraSPARC Illi Processor User’s Manual « June 2003

A.70.2

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC+ (4 x si gn_ext (di sp22)),” regardless of the value of the floating-point
condition code bits. If the annul field of the branch instruction is one, the delay instruction
is annulled (not executed). If the annul field is zero, the delay instruction is executed.

Fce-conditional branches — Conditional FBf cc instructions (except FBA and FBN)
evaluate floating-point condition code zero (f ccO) according to the cond field of the
instruction. Such evaluation produces either a TRUE or FALSE result. If TRUE, the branch
is taken, that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC+ (4 x si gn_ext (di sp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the
value of the annul field. If a conditional branch is not taken and the annul (a) field is one,
the delay instruction is annulled (not executed).

Note — The annul bit has a different effect on conditional branches than it does on
unconditional branches.

Compatibility Note — Unlike SPARC-VS8, SPARC-V9 does not require an instruction
between a floating-point compare operation and a floating-point branch (FBf cc, FBPf cc).

If FPRS. FEF = 0 or PSTATE. PEF =0, or if an FPU is not present, the FBf cC instruction
is not executed and instead generates a fp_disabled exception.

Exceptions

fp_disabled

Branch on Integer Condition Codes (Bicc)

Use the BPcc instructions in place of Bi cc instructions.

Chapter A Instruction Definitions A-425

Opcode cond Operation icc Test
BAP 1000 Branch Always 1
BNP 0000 Branch Never 0
BNEP 1001 Branch on Not Equal not Z
BEP 0001 Branch on Equal Z
BGP 1010 Branch on Greater not (Z or (N xor V))
BLEP 0010 Branch on Less or Equal Z or (N xor V)
BGEDP 1011 Branch on Greater or Equal not (N xor V)
BLP 0011 Branch on Less N xor V
BGUP 1100 Branch on Greater Unsigned not (C or Z)
BLEUP 0100 Branch on Less or Equal Unsigned CorZ
BCcP 1101 Branch on Carry Clear (Greater Than or Equal, Unsigned) not C
BcsP 0101 Branch on Carry Set (Less Than, Unsigned) C
BPOsP 1110 Branch on Positive not N
BNEGP 0110 Branch on Negative N
BvVCP 1111 Branch on Overflow Clear not V
BvsP 0111 Branch on Overflow Set v
Format (2)
00 | a cond 010 disp22
3130 29 28 25 24 22 21 0

A-426 UltraSPARC llli Processor User's Manual * June 2003

Assembly Language Syntax

ba{, a} label

bn{, a} label

bne{, a} label (synonym: bnz)
be{, a} label (synonym: bz)
bg{, a} label

bl e{, a} label

bge{, a} label

bl {, a} label

bgu{, a} label

bl eu{, a} label

bcce{, a} label (synonym: bgeu)
bes{, a} label (synonym: bl u)
bpos{, a} label

bneg{, a} label

bvc{, a} label

bvs{, a} label

Programming Note — To set the annul bit for Bi cc instructions, append “, a” to the
opcode mnemonic. For example, use “bgu, a label” In the preceding table, braces signify
that the “, a” is optional.

Description

Unconditional branches and icc-conditional branches are described below:

Unconditional branches (BA, BN) — If its annul field is zero, a BN (Branch Never)
instruction is treated as a NOP. If its annul field is one, the following (delay) instruction is
annulled (not executed). In neither case does a transfer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the
address “PC+ (4 x si gn_ext (di sp22)).” If the annul field of the branch instruction is
one, the delay instruction is annulled (not executed). If the annul field is zero, the delay

instruction is executed.

Icc-conditional branches — Conditional Bi cc instructions (all except BA and BN)
evaluate the 32-bit integer condition codes (i cc), according to the cond field of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken, that
is, the instruction causes a PC-relative, delayed control transfer to the address

“PC+ (4 x si gn_ext (di sp22)).” If FALSE, the branch is not taken.

Chapter A Instruction Definitions A-427

A.70.3

If a conditional branch is taken, the delay instruction is always executed regardless of the
value of the annul field. If a conditional branch is not taken and the annul (a) field is one,
the delay instruction is annulled (not executed).

Note — The annul bit has a different effect on conditional branches than it does on

unconditional branches.

Exceptions

None

Divide (64-bit / 32-bit)

The UDI V, UDI Vcc, SDI V, and SDI Vcc instructions are deprecated. Use the UDI VX and
SDI VX instructions instead.

Opcode op3 Operation
upl VP 001110 Unsigned Integer Divide
sbl VP 001111 Signed Integer Divide

Ubl VCcD 011110
SDI VccD 01 1111

Unsigned Integer Divide and modify condition codes

Signed Integer Divide and modify condition codes

Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
A-428 UltraSPARC Illi Processor User's Manual * June 2003

Assembly Language Syntax

udi v reg, 1, veg_or_imm, reg,,
sdi v reg,. ., reg_or_imm, reg,;
udi vece reg,;, reg_or_imm, reg,;
sdi vcce reg,, reg_or_imm, reg,
Description

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. If i =0,
they compute “(Y D r{rsl] <31:0>) + r[rs2] <31:0>. Otherwise (that is, if i =1), the
divide instructions compute “(Y D r{rsil] <31:0>) + (si gn_ext (si mml3) <31:0>).” In
either case, if overflow does not occur, the less significant 32 bits of the integer quotient are
sign-extended or zero-extended to 64 bits and are written into r [r d] .

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide
operation.

Unsigned Divide

Unsigned divide (UDI V, UDI Vcc) assumes an unsigned integer doubleword dividend

(Y D r[rsi] <31:0>) and an unsigned integer word divisor r [r $2<31:0>] or

(si gn_ext (si mmL3) <31:0>) and computes an unsigned integer word quotient (r [r d]).
Immediate values in Si mMl3 are in the ranges 0 to 2!2—1 and 232-2!2 to 2321 for
unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero.

In the UltraSPARC IlIi processor, LDD is implemented in hardware.

Chapter A Instruction Definitions A-429

A-430

Programming Note — The rational quotient is the infinitely precise result quotient. It
includes both the integer part and the fractional part of the result. For example, the rational
quotient of 11/4 =2.75 (integer part = 2, fractional part =.75).

The result of an unsigned divide instruction can overflow the less significant 32 bits of the
destination register r [r d] under certain conditions. When overflow occurs, the largest
appropriate unsigned integer is returned as the quotient in r [r d] . The condition under
which overflow occurs and the value returned in r [r d] under this condition are specified in
TABLE A-16.

TABLE A-16 UDI V/ UDI Vcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in r{rd]
Rational quotient > 232 232 -
(0000 0000 FFFF FFFF¢)

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into
register r [rd] .

UDI V does not affect the condition code bits. UDI Vcc writes the integer condition code bits
as shown in the following table. Note that negative (N) and zero (Z) are set according to the
value of r [rd] after it has been set to reflect overflow, if any.

Bit UDIVce
icc.N Setif r[rd] <31>=1
icc.Z Setifr[rd] <31:0>=0
iccV Set if overflow (per TABLE A-16)
icc.C Zero
xcc. N Set if r [r d] <63>=1
Xcc. Z Setif r[rd] <63:0>=0
xcc.V Zero
xcc. C Zero
Signed Divide

Signed divide (SDI V, SDI Vcc) assumes a signed integer doubleword dividend
Y D lower 32 bits of r [r s1]) and a signed integer word divisor (lower 32 bits of r [r S2]
or lower 32 bits of si gn_ext (si mmL3)) and computes a signed integer word quotient

(rfrd]).

Signed division rounds an inexact quotient toward zero. For example, —7 + 4 equals the
rational quotient of —1.75, which rounds to —1 (not —2) when rounding toward zero.

UltraSPARC llli Processor User's Manual * June 2003

A.70.4

The result of a signed divide can overflow the low-order 32 bits of the destination register
r[rd] under certain conditions. When overflow occurs, the largest appropriate signed
integer is returned as the quotient in r [r d] . The conditions under which overflow occurs
and the value returned in r [r d] under those conditions are specified in TABLE A-17.

TABLE A-17 SDI V/ SDI Vcc Overflow Detection and Value Returned

Condition Under Which Overflow Occurs Value Returned in rird]
Rational quotient > 231 231 -1

(0000 0000 7FFF FFFF)
Rational quotient < 2317 231

(FFFF FFFF 8000 0000,¢)

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into
register r [rd] .

SDI V does not affect the condition code bits. SDI Vcc writes the integer condition code bits
as shown in the following table. Note that negative (N) and zero (Z) are set according to the
value of r [rd] after it has been set to reflect overflow, if any.

Bit SDIVce
icc.N Setifr[rd] <31>=1
icc.Z Setif r[rd] <31:0>=0
icc.V Set if overflow (per TABLE A-17)
icc.C Zero
xcc. N Setifr[rd] <63>=1
xcc. Z Set if r [r d] <63:0>=0
xcc. 'V Zero
xcc. C Zero
Exceptions

division_by_zero

Load Floating-Point Status Register

The LDFSR instruction is deprecated. Use the LDXFSR instruction instead.

Opcode op3 rd Operation
LDFSRP 10 0001 0 Load Floating-Point State Register Lower

Chapter A Instruction Definitions A-431

Format (3)

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Assembly Language Syntax
I d [address], % sr
Description
The load floating-point state register lower instruction (LDFSR) waits for all FPop
instructions that have not finished execution to complete and then loads a word from memory
into the less significant 32 bits of the FSR. The upper 32 bits of FSR are unaffected by
LDFSR.
LDFSR causes a mem_address_not_aligned exception if the effective memory address is not
word aligned.
Compatibility Note — SPARC-V9 supports two different instructions to load the FSR: the
SPARC-V8 LDFSR instruction is defined to load only the less significant 32 bits of the FSR,
whereas LDXFSR allows SPARC-V9 programs to load all 64 bits of the FSR.
Exceptions
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint
A-432 UltraSPARC Illi Processor User’s Manual « June 2003

A.70.5

Load Integer Doubleword

The LDD instruction is deprecated; it is provided only for compatibility with previous

versions of the architecture. It should not be used in new SPARC-V9 software. Use the LDX

instruction instead.

Please refer to Section A.27, “Load Integer” for the current load integer instructions.

Opcode op3 Operation
LDDP 000011 Load doubleword
Format (3)
11 rd op3 rsl i=0 rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax

| dd [address], reg,

Description

The load doubleword integer instruction (LDD) copies a doubleword from memory into an
I register pair. The word at the effective memory address is copied into the even r register.
The word at the effective memory address + 4 is copied into the following odd-numbered

r register. The upper 32 bits of both the even-numbered and odd-numbered r registers are

zero-filled.

Chapter A

Instruction Definitions

A-433

A.70.6

A-434

Notes — A load doubleword with r d = 0 modifies only r [1] . The least significant bit of
the r d field in an LDD instruction is unused and should be set to zero by software. An
attempt to execute a load doubleword instruction that refers to a misaligned (odd-numbered)
destination register causes an illegal_instruction exception.

With respect to little-endian memory, an LDD instruction behaves as if it is composed of two
32-bit loads, each of which is byte swapped independently before being written into each
destination register.

Load integer doubleword instructions access the primary address space (ASI=80;¢). The
effective address is “r[rsl1l] +r[rs2]”ifi =0, or “r[rsl] +sign_ext(si mm3)”
ifi =1.

A successful load doubleword instruction operates atomically.

Programming Note — LDD s provided for compatibility with SPARC-V8. It may execute
slowly on SPARC-V9 machines because of data path and register-access difficulties.

Exceptions

illegal_instruction (LDD with odd r d)
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint

VA_watchpoint

Load Integer Doubleword from Alternate Space

The LDDA instruction is deprecated. Use the LDXA instruction in its place.

Please refer to Section A.28, “Load Integer from Alternate Space” for current load integer
from alternate space instructions.

Opcode op3 Operation
LDDAD- Past 010011 Load Doubleword from Alternate Space

UltraSPARC llli Processor User's Manual * June 2003

Format (3)

11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Assembly Language Syntax
| dda [regaddr] imm_asi, reg,,
| dda [reg_plus_imm] Y@si , reg,,
Description

The load doubleword integer from alternate space instruction (LDDA) copies a doubleword
from memory into an r register pair. The word at the effective memory address is copied into
the even r register. The word at the effective memory address + 4 is copied into the
following odd-numbered r register. The upper 32 bits of both the even-numbered and odd-
numbered r registers are zero-filled.

Notes — A load doubleword with r d = 0 modifies only r [1] . The least significant bit of
the r d field in an LDDA instruction is unused and should be set to zero by software. An
attempt to execute a load doubleword instruction that refers to a misaligned (odd-numbered)
destination register causes an illegal_instruction exception.

With respect to little-endian memory, an LDDA instruction behaves as if it is composed of
two 32-bit loads, each of which is byte-swapped independently before being written into
each destination register.

The load integer doubleword from alternate space instructions contain the address space
identifier (ASI) to be used for the load in the i m_asi field if i =0, or in the ASI register
if i = 1. The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged.
The effective address for these instructions is “r[rs1] +r[rs2]”ifi =0, or

“r[rsl] +sign_ext(simm3)”ifi =1.

A successful load doubleword instruction operates atomically.
LDDA causes a mem_address_not_aligned exception if the address is not doubleword aligned.

These instructions cause a privileged_action exception if PSTATE. PRI V = 0 and bit 7 of the
ASI is zero.

Chapter A Instruction Definitions A-435

In the UltraSPARC IIIi processor, LDDA is implemented in hardware.

LDDA with ASI=24,¢ or 2Cy, is defined to be a Load Quadword Atomic instruction. See
Section A.29, “Load Quadword, Atomic (VIS I)” for details.

Programming Note — LDDA is provided for compatibility with SPARC-V8. It may
execute slowly on SPARC-V9 machines because of data path and register-access difficulties.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access
in order to preserve atomicity.

Exceptions

privileged_action

illegal_instruction (LDDA with odd r d)
mem_address_not_aligned
data_access_exception
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint

VA_watchpoint

A.70.7 Multiply (32-bit)

The UMJL, UMJLcc, SMUL, and SMJLcc instructions are deprecated. Use the MULX
instruction instead.

Opcode op3 Operation

umuLP 00 1010 Unsigned Integer Multiply

SMULP 00 1011 Signed Integer Multiply

UMJLccP 011010 Unsigned Integer Multiply and modify condition codes
SMULccP 011011 Signed Integer Multiply and modify condition codes

A-436 UltraSPARC llli Processor User's Manual * June 2003

Format (3)

10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

unul reg,g;, reg_or_imm, reg,;
snul reg,g;, reg_or_imm, reg.,
unmul cc reg,g;, reg_or_imm, reg,;
smul cc reg,;, reg_or_imm, reg,;
Description

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results.
They compute “r [r s1] <31:0> x r [rs2] <31:0>” if i =0, or

“r[rsi] <31:0> x si gn_ext (si m3) <31:0>” if i = 1. They write the 32 most
significant bits of the product into the Y register and all 64 bits of the product into r [r d] .

Unsigned multiply instructions (UMJL, UMJLcC) operate on unsigned integer word operands
and compute an unsigned integer doubleword product. Signed multiply instructions (SMUL,
SMULcc) operate on signed integer word operands and compute a signed integer doubleword
product.

UMUL and SMUL do not affect the condition code bits. UMJLcc and SMJLcc write the
integer condition code bits, i cC and Xcc, as shown in TABLE A-18.

Chapter A Instruction Definitions A-437

A.70.8

A-438

Note — Zero (i cc. Z) and 32-bit negative (i cc. N) condition codes are set according to the
less significant word of the product, not according to the full 64-bit result.

TABLE A-18 UMULcc / SMULcc Condition Code Settings

Bit UMULcc / SMULcc
icc.N Set if product<31>=1
icc.Z Set if product<31:0>= 0
icc.V 0

icc.C 0

xcc. N Set if product<63>= 1
xcc. Z Set if product<63:0>= 0
xcc.V 0

xcc. C 0

Programming Notes — 32-bit overflow after UMJL/UMJLcc is indicated by Y # 0.

Y #(r[rd] >>31) is indicates 32-bit overflow after SMUL/SMJLcc, where “>>” indicates
32-bit arithmetic right-shift.

Exceptions

None

Multiply Step

The MULScc instruction is deprecated. Use the MULX instruction instead.

Opcode op3 Operation
MULSccP 10 0100 Multiply Step and modify condition codes

UltraSPARC llli Processor User's Manual * June 2003

Format (3)

10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

nmul scc reg,c;, reg_or_imm, reg,,

Description

MULScc treats the less significant 32 bits of both r [r s1] and the Y register as a single 64-
bit, right-shiftable doubleword register. The least significant bit of r [r s1] is treated as if it
were adjacent to bit 31 of the Y register. The MULScc instruction adds, based on the least
significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier, r [r s1] contains
the most significant bits of the product, and r [r s2] contains the multiplicand. Upon
completion of the multiplication, the Y register contains the least significant bits of the
product.

Note — A standard MJLScc instruction has rs1 =rd.

MULScc operates as follows:
1. The multiplicand is r [r s2] ifi =0, or si gn_ext (si m13) ifi =1.

2. A 32-bit value is computed by shifting r [r s1] right by one bit with
“CCR. i cc.n xor CCR. i cc. v” replacing bit 31 of r [r s1] . (This is the proper sign for
the previous partial product).

3. If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are
added. If the least significant bit of Y = 0, then zero is added to the shifted value from
step (2).

4. The sum from step (3) is written into r [r d] . The upper 32 bits of r [r d] are undefined.
The integer condition codes are updated according to the addition performed in step (3).
The values of the extended condition codes are undefined.

Chapter A Instruction Definitions A-439

5. The Y register is shifted right by one bit, with the least significant bit of the unshifted
r{rsl] replacing bit 31 of Y.

Exceptions

None

A.70.9 Read Y Register

The RDY instruction from the Read State Register instructions (Section A.50, “Read State
Register”) is deprecated. It is recommended that all instructions that reference the Y register

be avoided.
Opcode op3 rs1 Operation
RDYP 101000 0 Read Y Register
Format (3)
10 rd op3 rsl i=0 —
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax
rd %W, reg,y

Description

This instruction reads the Y register into r [r d] .

Exceptions

None

A-440 UltraSPARC llli Processor User's Manual * June 2003

A.70.10 Store Barrier

The STBAR instruction is deprecated. Use the MEMBAR instruction instead.

Opcode op3 Operation
STBARP 10 1000 Store Barrier
Format (3)
10 0 op3 01111 0 —
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax

st bar

Description

The store barrier instruction (STBAR) forces a// store and atomic load-store operations issued
by a processor prior to the STBAR to complete their effects on memory before any store or
atomic load-store operations issued by that processor subsequent to the STBAR are executed
by memory.

Note — The encoding of STBAR is identical to that of the RDASR instruction except that
rsl=15andrd = 0, and it is identical to that of the MEMBAR instruction except that bit 13

(i)=0.

Compatibility Note — STBAR is identical in function to a MEMBAR instruction with
mmask = 8;¢. STBAR is retained for compatibility with SPARC-VS.

Chapter A Instruction Definitions A-441

A.70.11

Implementation Note — For correctness, it is sufficient for a processor to stop issuing
new store and atomic load-store operations when an STBAR is encountered and to resume
after all stores have completed and are observed in memory by all processors. More efficient
implementations may take advantage of the fact that the processor is allowed to issue store
and load-store operations after the STBAR, as long as those operations are guaranteed not to
become visible before all the earlier stores and atomic load-stores have become visible to all
processors.

Exceptions

None

Store Floating-Point Status Register Lower

The STFSR instruction is deprecated. Use the STXFSR instruction instead.

Opcode op3 rd Operation
STFSRP 10 0101 0 Store Floating-Point State Register Lower
Format (3)
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

A-442

Assembly Language Syntax
st % sr, [address]

Description

The store floating-point state register lower instruction (STFSR) waits for any currently
executing FPop instructions to complete, and then it writes the less significant 32 bits of the
FSR into memory.

UltraSPARC llli Processor User's Manual * June 2003

A.70.12

Compatibility Note — SPARC-V9 needs two store-FSR instructions, since the SPARC-V8
STFSR instruction is defined to store only 32 bits of the FSR into memory. STXFSR allows
SPARC-V9 programs to store all 64 bits of the FSR.

STFSR zeroes FSR. f t t after writing the FSR to memory.

Implementation Note — FSR. ftt should not be zeroed until it is known that the store
will not cause a precise trap.

The effective address for this instruction is “r[rs1] +r[rs2]”ifi =0, or
“r[rsl] +sign_ext(simml3)”ifi =1.

STFSR causes a mem_address_not_aligned exception if the effective memory address is not
word aligned.

Exceptions

illegal_instruction (0p3 =25, and r d =2-31)
fp_disabled

mem_address_not_aligned
data_access_exception

data_access_error
fast_data_access_MMU_miss
fast_data_access_protection

PA_watchpoint

VA_watchpoint

Store Integer Doubleword

The STD instruction is deprecated. Use the STX instruction instead.

Opcode op3 Operation
STDP 000111 Store Doubleword

Chapter A Instruction Definitions A-443

Format (3)

11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Assembly Language Syntax
std reg,,, [address]
Description
The store doubleword integer instruction (STD) copies two words from an r register pair into
memory. The least significant 32 bits of the even-numbered r register are written into
memory at the effective address, and the least significant 32 bits of the following odd-
numbered r register are written into memory at the “effective address + 4.” The least
significant bit of the r d field of a store doubleword instruction is unused and should always
be set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numbered) r d causes an illegal_instruction exception.
The effective address for this instruction is “r[rs1] +r[rs2]”ifi =0, or
“r[rsl] +sign_ext(simml3)”ifi =1.
A successful store doubleword instruction operates atomically.
STD causes a mem_address_not_aligned exception if the effective address is not doubleword
aligned.
In the UltraSPARC I1I1i processor, STD is implemented in hardware.
Programming Notes — STD is provided for compatibility with SPARC-V8. It may
execute slowly on SPARC-V9 machines because of data path and register-access difficulties.
Therefore, programmers should avoid using STD.
If STD is emulated in software, STX should be used to preserve atomicity.
With respect to little-endian memory, a STD instruction behaves as if it is composed of two
32-bit stores, each of which is byte-swapped independently before being written into each
destination memory word.
A-444 UltraSPARC Illi Processor User’s Manual « June 2003

Exceptions

illegal_instruction (STD with odd r d)
mem_address_not_aligned (all except STB)
data_access_exception

data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint

VA_watchpoint

A.70.13 Store Integer Doubleword into Alternate Space

The STDA instruction is deprecated. Instead, use the STXA instruction.

Opcode op3 Operation
STDAPD: PASI 010111 Store Doubleword into Alternate Space
Format (3)
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

stda reg,q, [reg_plus_imm] Y@si

Description

The store doubleword integer instruction (STDA) copies two words from an r register pair
into memory. The least significant 32 bits of the even-numbered r register are written into
memory at the effective address, and the least significant 32 bits of the following odd-
numbered r register are written into memory at the “effective address + 4.” The least

Chapter A Instruction Definitions A-445

A.70.14

A-446

significant bit of the r d field of a store doubleword instruction is unused and should always
be set to zero by software. An attempt to execute a store doubleword instruction that refers to
a misaligned (odd-numbered) r d causes an illegal_instruction exception.

Store integer doubleword to alternate space instructions contain the address space identifier
(ASI) to be used for the store in the i mm_asi field if i =0, or in the ASI register if i = 1.
The access is privileged if bit 7 of the ASI is zero; otherwise, it is not privileged. The
effective address for these instructions is “r[rs1] +r[rs2]”ifi =0, or

“r[rsl] +sign_ext (si mml3)”ifi =1.

A successful store doubleword instruction operates atomically.

STDA causes a mem_address_not_aligned exception if the effective address is not
doubleword aligned.

A store integer into alternate space instruction causes a privileged_action exception if
PSTATE. PRI V=0 and bit 7 of the ASI is zero.

In the UltraSPARC IIIi processor, STDA is implemented in hardware.

Programming Note — STDA is provided for compatibility with SPARC-V3. It may
execute slowly on SPARC-V9 machines because of data path and register-access difficulties.
Therefore, programmers should avoid using STDA.

Exceptions

illegal_instruction (STDA with odd r d)
privileged_action
mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint

VA_watchpoint

Swap Register with Memory

The SWAP instruction is deprecated. Use the CASA or CASXA instruction in its place.

Opcode op3 Operation
swapP 001111 Swap Register with Memory

UltraSPARC llli Processor User's Manual * June 2003

Format (3)

11 rd op3 rsl i=0 rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 0

Assembly Language Syntax

swap [address], reg,,

Description

SWAP exchanges the less significant 32 bits of r [r d] with the contents of the word at the
addressed memory location. The upper 32 bits of r [r d] are set to zero. The operation is
performed atomically, that is, without allowing intervening interrupts or deferred traps. In a
multiprocessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,

LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial order.

The effective address for these instructions is “r [rs1] +r[rs2]”ifi =0, or

“r[rsl] +sign_ext(simml3)”ifi = 1. This instruction causes a

mem_address_not_aligned exception if the effective address is not word aligned.

The coherence and atomicity of memory operations between processors and I/O DMA

memory accesses are implementation dependent.

Implementation Note — See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for
information on the presence of hardware support for these instructions in the various

SPARC-V9 implementations.

Exceptions

mem_address_not_aligned
data_access_exception
data_access_error
fast_data_access_MMU_miss

Chapter A

Instruction Definitions

A-447

A.70.15

fast_data_access_protection
PA_watchpoint
VA_watchpoint

Swap Register with Alternate Space Memory

The SWAPA instruction is deprecated. Use the CASXA instruction instead.

Opcode op3 Operation
SWAPAD: Pasi 01 1111 Swap register with Alternate Space Memory
Format (3)
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Assembly Language Syntax
swapa [regaddr] imm_asi, reg,,
swapa [reg_plus_imm] Y@asi , reg,,
Description
SWAPA exchanges the less significant 32 bits of r [r d] with the contents of the word at the
addressed memory location. The upper 32 bits of r [r d] are set to zero. The operation is
performed atomically, that is, without allowing intervening interrupts or deferred traps. In a
multiprocessor system, two or more processors executing CASA, CASXA, SWAP, SWAPA,
LDSTUB, or LDSTUBA instructions addressing any or all of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial order.
The SWAPA instruction contains the address space identifier (ASI) to be used for the load in
the i mm_asi field if i = 0, or in the ASI register if i = 1. The access is privileged if bit 7
of the ASI is zero; otherwise, it is not privileged. The effective address for this instruction is
“r[rsl] + r[rs2]”ifi =0,or “r[rsl] +sign_ext(sinmml3)”ifi =1.
A-448 UltraSPARC Illi Processor User’s Manual « June 2003

A.70.16

This instruction causes a mem_address_not_aligned exception if the effective address is not
word aligned. It causes a privileged_action exception if PSTATE. PRI V =0 and bit 7 of the
ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation dependent.

Implementation Note — See Implementation Characteristics of Current SPARC-V9-
based Products, Revision 9.x, a document available from SPARC International, for
information on the presence of hardware support for this instruction in the various
SPARC-V9 implementations.

Exceptions

mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
fast_data_access_MMU_miss
fast_data_access_protection
PA_watchpoint
VA_watchpoint

Tagged Add and Trap on Overflow

The TADDcc TV instruction is deprecated. Use the TADDcc followed by BPVS instruction
(with instructions to save the pre-TADDcC integer condition codes if necessary).

Opcode op3 Operation
TADDccTVP 100010 Tagged Add and modify condition codes, or Trap on Overflow
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Chapter A Instruction Definitions A-449

A.70.17

A-450

Assembly Language Syntax

taddcctv reg,s;, reg_or_imm, reg,;

Description

This instruction computes a sum that is “r[rsl1] +r[rs2]”ifi =0, or
“r[rsl] +sign_ext(simml3)”ifi =1.

TADDcc TV modifies the integer condition codes if it does not trap.

A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero or if the
addition generates 32-bit arithmetic overflow (that is, both operands have the same value in
bit 31 and the sum of bit 31 is different).

If TADDccTV causes a tag overflow, a tag_overflow exception is generated and r [r d] and
the integer condition codes remain unchanged. If a TADDcc TV does not cause a tag overflow,
the sum is written into r [r d] and the integer condition codes are updated. CCR. i cC. V is
set to zero to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR. i cc bits and all
the CCR. xcc bits) are also updated as they would be for a normal ADD instruction. In
particular, the setting of the CCR. XccC. V bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). CCR. XccC. V is set, based only on
the normal 64-bit arithmetic overflow condition, like a normal 64-bit add.

Compatibility Note — TADDcc TV traps based on the 32-bit overflow condition, just as in
SPARC-VS8. Although the tagged add instructions set the 64-bit condition codes CCR. xcc,
there is no form of the instruction that traps the 64-bit overflow condition.

Exceptions

tag_overflow

Tagged Subtract and Trap on Overflow

The TSUBccTV instruction is deprecated. Use the TSUBCC instruction followed by BPVS
(with instructions to save the pre-TSUBcC integer condition codes if necessary).

UltraSPARC llli Processor User's Manual * June 2003

Opcode op3 Operation

TSUBccTVP 10 0011 Tagged Subtract and modify condition codes, or Trap on Overflow
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

tsubcctv reg,; reg_or_imm, reg.y

Description

This instruction computes “r [rs1] —r[rs2] ”ifi =0, or
“r[rsl] — sign_ext(simm3)”ifi =1.

TSUBcc TV modifies the integer condition codes (i cc and xcc) if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero or if the subtraction
generates 32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the
32-bit sign bit) and the sign of the 32-bit difference in bit 31 differs from bit 31 of r [rs1].

If TSUBcCTV causes a tag overflow, then a fag_overflow exception is generated and r [r d]
and the integer condition codes remain unchanged. If a TSUBccTV does not cause a tag
overflow condition, the difference is written into r [r d] and the integer condition codes are
updated. CCR. i cC. V is set to zero to indicate no 32-bit overflow.

In either case, the remaining integer condition codes (both the other CCR. i cc bits and all
the CCR. xcc bits) are also updated as they would be for a normal subtract instruction. In
particular, the setting of the CCR. Xcc. Vv bit is not determined by the tag overflow condition
(tag overflow is used only to set the 32-bit overflow bit). CCR. Xcc. Vv is set, based only on
the normal 64-bit arithmetic overflow condition, like a normal 64-bit subtract.

Chapter A Instruction Definitions A-451

Compatibility Note — TSUBccTV traps are based on the 32-bit overflow condition, just
as in SPARC-VS8. Although the tagged-subtract instructions set the 64-bit condition codes
CCR. xcc, there is no form of the instruction that traps on 64-bit overflow.

Exceptions

tag_overflow

A.70.18 Write Y Register

The WRY instruction is deprecated. It is recommended that all instructions that reference the
Y register be avoided.

Opcode op3 rd Operation
WRYP 11 0000 0 Write Y register
— 11 0000 1-31 See Section A.69, “Write State Register”
Format (3)
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Assembly Language Syntax

wr reg,;, reg_or_imm,%y

Description

This instruction stores the value “r[rsl1] xorr[rs2]”ifi =0, or
“r[rsl] xorsign_ext(si mml3)”ifi =1, to the writable fields of the Y register.

Note — The operation is an exclusive OR.

A-452 UltraSPARC llli Processor User's Manual * June 2003

The WRY instruction is not a delayed-write instruction. The instruction immediately
following a VARY observes the new value of the Y register.

Exceptions

None

Chapter A Instruction Definitions A-453

A-454 UltraSPARC llli Processor User's Manual * June 2003

Index

June 2003 455

456 UltraSPARC llli Processor User's Manual * June 2003

A
a field of instructions 174, 284, 287, 288, 291, 424, 427
A pipeline stage 36, 39
A0 pipeline stage 37
Al pipeline stage 37
accesses
cacheable 185
/0 194
noncacheable 185
nonfaulting ASIs 192
real memory space 184
restricted ASI 184
with side effects 184, 185, 194
accrued exception (aexc) field of FSR register 121, 122,
124
ADD instruction 268
ADDC instruction 268
ADDcc instruction 268, 400
ADDCcc instruction 268
address
64-bit virtual data watchpoint 132
aliasing 199
illegal address alliasing 206
physical address data watchpoint 133
space identifier (ASI) 184
virtual address
data watchpoint 132
watchpoint priority 132
virtual passed to physical 129
virtual-to-physical translation 184
address mask (AM) field of PSTATE register 112
address space identifier (ASI)
affected by watchpoint traps 132
appended to memory address 139, 177
bit 7 setting for privileged_action exception 407
definition xxxi
explicit values 138
imm_asi instruction field 175
implicit values 138
load floating-point instructions 319
load integer doubleword instructions 434
load integer instructions 323
with prefetch instructions 380
restriction indicator 92
address space identifier (ASI) register
for load/store alternate instructions 92
and imm_asi instruction field 138
and LDDA instruction 435
and LDSTUBA instruction 331

load floating-point from alternate space instructions
321
load integer from alternate space instructions 325
with prefetch instructions 380
restoring saved state 294
and STDA instruction 446
store floating-point into alternate space instructions
407
store integer to alternate space instructions 410
and SWAPA instruction 448
and TSTATE Register 105
and write state register instructions 422
addressing conventions 137, 177
ADDX instruction (SPARC V8) 269
ADDXcc instruction (SPARC V8) 269
alias
address 199
boundary 206
floating-point registers 81
ALIGNADDRESS instruction 269
ALIGNADDRESS_LITTLE instruction 269
alignment
data (load/store) 137, 137
doubleword 137, 137
extended-word 137
halfword 137, 137
instructions 137, 137
integer registers 434, 435
quadword 137, 137
word 137, 137
alternate address space 380
alternate global registers 76
alternate globals enable (AG) field of PSTATE register
76,110
alternate space instructions 92
ancillary state registers (ASRs) 90?7
access 94
number 90
possible registers included 390, 422
writing to 421
AND instruction 335
ANDcc instruction 335
ANDN instruction 335
ANDNCcc instruction 335
annul bit
in branch instructions 284
in conditional branches 425
in control transfer instruction 93
annulled branches 284

Index 457

application program xxxi, 127
Architectural Register File (ARF) 46
architecture, meaning for SPARC V9 xxviii
ARF (Architectural Register File) 46
arithmetic overflow 91
ARRAY 16 instruction 271
ARRAY32 instruction 271
ARRAY8 instruction 271
ASI
_BLK_COMMIT_PRIMARY 206
_BLK_COMMIT_SECONDARY 206
_NUCLEUS_QUAD_LDD_S 326
atomic access 192
nonfaulting 192
restricted 184
UltraSPARC III internal 195
ASI_AS_IF_USER_PRIMARY 191
ASI_AS_IF_USER_PRIMARY_LITTLE 191
ASI_AS_IF_USER_SECONDARY 191
ASI_AS_IF_USER_SECONDARY_LITTLE 191
ASI_DCU_CONTROL_REGISTER 127
ASI_INTR_DISPATCH_STATUS 216, 220
ASI_INTR_DISPATCH_STATUS.BUSY bit 216
ASI_INTR_DISPATCH_STATUS.NACK bit 216
ASI_INTR_DISPATCH_W 219
ASI_INTR_RECEIVE 217, 221
ASI_INTR_W 216, 219
ASI_NUCLEUS 191
ASI_NUCLEUS_LITTLE 191
ASI_PHYS_USE_EC 191
ASI_PHYS_USE_EC_LITTLE 191
ASI_PRIMARY 138, 191
ASI_PRIMARY_LITTLE 110, 191
ASI_PRIMARY_NO_FAULT 192
ASI_PRIMARY_NO_FAULT_LITTLE 192
ASI_PST16_P 359
ASI_PST16_PL 359
ASI_PST16_S 359
ASI_PST16_SL 359
ASI_PST32_P 359
ASI_PST32_PL 360
ASI_PST32_S 359
ASI_PST32_SL 360
ASI_PST8_P 359
ASI_PST8_PL 359
ASI_PST8_S 359
ASI_PST8_SL 359
ASI_SDB_INTR 218, 221
ASI_SDB_INTR_R 217

ASI_SECONDARY 191
ASI_SECONDARY_LITTLE 191
ASI_SECONDARY_NO_FAULT 192
ASI_SECONDARY_NO_FAULT_LITTLE 192
ASRs

grouping rules 46
async_data_error exception 320, 326, 330, 436
atomic

load quadword 326

memory operations 327

store doubleword instruction 444, 446

store instructions 408, 410
atomic instructions

compare and swap 191

LDSTUB 191

mutual exclusion support 191

and store queue 197

SWAP 191

use with ASIs 191
atomic load-store instructions 292

compare and swap 291

load-store unsigned byte 329, 447, 448

load-store unsigned byte to alternate space 330

swap r register with alternate space memory 448

swap 7 register with memory 292, 446

B
B pipeline stage 37
BA instruction 426, 427
BCC instruction 426
BCS instruction 426
BE instruction 426
BG instruction 426
BGE instruction 426
BGU instruction 426
Bicc instructions 92, 93, 425
big-endian
swapping in partial store instructions 361
big-endian byte order 110, 136, 137, 177
bit vector concatenation xxix
BLE instruction 426
BLEU instruction 426
block
load and store instructions
compliance across UltraSPARC platforms 339
data size (granularity) 194
E-cache access counting 239

458 UltraSPARC llli Processor User's Manual * June 2003

load instruction 194
grouping 47
ordering 278
and store queue 197
load instructions 81, 203, 206, 274
operations and memory model 278
overlapping stores 278
store instruction
data size (granularity) 194
grouping 47
ordering 278
and PDIST 45
use in loops 279
store instructions 81, 203, 274
use in loops 279
BMASK instruction 282
and BSHUFFLE instruction 283
and MS pipeline 283
grouping rules 45
BN instruction 426, 427
BNE instruction 426
BNEG instruction 426
BPA instruction 288
BPCC instruction 288
BPcc instructions 92, 93, 174, 175, 288
BPCS instruction 288
BPE instruction 288
BPG instruction 288
BPGE instruction 288
BPGU instruction 288
BPL instruction 288
BPLE instruction 288
BPLEU instruction 288
BPN instruction 288
BPNE instruction 288
BPNEG instruction 288
BPOS instruction 426
BPPOS instruction 288
BPr instructions 93, 174, 175, 283
BPVC instruction 288
BPVS instruction 288
BR pipeline 37
branch
annulled 284
delayed 177
elimination 140, 141
fec-conditional 287, 425
icc-conditional 427
prediction bit 284

unconditional 287, 289, 424, 427
branch if contents of integer register match condition
instructions 283
branch instructions, conditional 39
branch on floating-point condition codes instructions 423
branch on floating-point condition codes with prediction
instructions 285
branch on integer condition codes instructions, See Bicc
instructions
branch on integer condition codes with prediction (BPcc)
instructions 288
branch prediction
in B pipeline stage 37
mispredict signal 39
statistics for taken/untaken 234
Branch Predictor (BP) 36
break-after, definition 41
break-before, definition 41
BRGEZ instruction 283
BRGZ instruction 283
BRLEZ instruction 283
BRLZ instruction 283
BRNZ instruction 283
BRZ instruction 283
BSHUFFLE instruction 282
and BMASK instruction 283
fully pipelined 283
grouping rules 45
bubble, vs. helper 46
bubbles 234
BUSY/NACK pairs 220
BVC instruction 426
BVS instruction 426
byte
addressing 179
data format 59
order 136, 137, 177
order, big-endian 110, 136
order, implicit 110
order, little-endian 110, 136
byte mask
grouping 283
byte ordering 361

C
C pipeline stage 39, 40
cache

Index 459

coherency protocol 185

flushing 205

level 1 199

level 2 201

organization 199
cacheable accesses

indication 185

properties 185
CALL instruction

description 290

destination register 93

displacement 155

does not change CWP 80

and JMPL instruction 318

writing address into r[15] 76
CANRESTORE register 114
CANSAVE register 114
carry (C) bit of condition fields of CCR 91
CAS(X)A instruction 191
CASA instruction 142, 291, 329, 331, 447, 448
CASXA instruction 142, 291, 329, 331, 447, 448
cc0 field of instructions 174, 287, 288, 301, 353
ccl field of instructions 174, 287, 288, 301, 353
cc2 field of instructions 174, 353
CCR, See condition codes (CCR) register
clean register window 115, 392
clean windows (CLEANWIN) register 114, 114, 385,

418
clean_window exception 114, 393, 394
CLEAR_SOFTINT pseudo-register 223
clock-tick register (TICK) 102, 103, 385,418
code

kernel 222

nucleus 222
coherence

domain 185

unit of 185
compare and swap instructions 291
comparison instruction 144, 412
complex calculations, fixed data format 71
concatenation of bit vectors xxix
cond field of instructions 174, 287, 288, 345, 353, 424,

427
condition codes 293

adding 413

extended integer (Xcc) 92

floating-point 425

icc field 91

integer 90

results of integer operation (icc) 92
subtracting 412, 414
trapping on 416
xcc field 91
condition codes (CCR) register 90, 105, 268, 294, 422,
439
conditional branch instructions 39
conditional branches 287, 425, 427
conditional move instructions
grouping rules 48
const22 field of instructions 316
constants, generating 397
control and status registers 90
control-transfer instructions (CTIs) 154, 294
conventions
font xxviii
notational xxix
conversion
between floating-point formats instructions 304
floating-point to integer instructions 302
integer to floating-point instructions 306
planar to packed 378
CTI queue 37
current exception (cexc) field of FSR register 121, 122,
123, 124, 125, 126, 147
current window pointer (CWP) register
and CALL/JMPL instructions 80
and clean windows 115
definition xxxii
and FLUSHW instruction 315
function 114
incremented/decremented 78, 393
and overlapping windows 78
range of values 114
reading CWP with RDPR instruction 385
and RESTORE instruction 154, 393
restored during DONE or RETRY 294
and SAVE instruction 154, 393
and TSTATE Register 105
writing CWP with WRPR instruction 418
current_little_endian (CLE) field of PSTATE register
110, 110
cycles accumulated, count 233

D
D pipeline stage 40, 234
d16hi field of instructions 174, 284

460 UltraSPARC llli Processor User's Manual * June 2003

d16lo field of instructions 174, 284
data
formats
byte 59
doubleword 59
extended word 59
halfword 59
quadword 59
tagged word 59
word 59
types
floating-point 59
signed integer 59
unsigned integer 59
width 59
watchpoint
behavior 132
exception 360
physical address 133
register format 133
virtual address 133
Data Cache 199
flush 205
data cache
and block load/store 277
Data Cache Unit Control Register, See DCUCR
data_access_error exception 281, 293, 320, 324, 328,
330, 331, 361, 402, 405, 407, 409, 410, 434, 443,
445, 446
data_access_exception exception 110, 220, 293, 320,
322,330, 331, 405, 407, 409, 410, 445, 446, 447, 449
data_access_exception exception 185, 191, 192, 194
data_access_protection exception 281, 324, 326, 328,
361, 402, 434, 436
DB_PA field of PA Data Watchpoint register 133
DC_wr 238
DC_wr_miss 238
DCR
branch and return control 95
fields
BPE (branch prediction enable) 95
MS (multiscalar dispatch enable) 96
RPE (return address prediction enable) 96
SI (single issue disable) 96
IFPOE field 96
instruction dispatch control 96
layout 95
DCUCR
access data format 128

DC (data cache enable) field 130
DM (DMMU enable) field 129
IC (I-cache enable) field 196
IC (instruction cache enable) field 130
IMI (IMMU enable) field 129
PM (PA data watchpoint mask) field 130
PR/PW (PA watchpoint enable) fields 131
VM (VA data watchpoint mask) field 131
VR/VW (VA data watchpoint enable) fields 131
watchpoint byte masks/enable bits 132
deferred trap
queue, floating-point (FQ) 385
delay instruction 93, 154, 284, 287, 290, 294, 391, 425
delayed branch 177
delayed control transfer 93, 284
deprecated instructions
BA 426
BCC 426
BCS 426
BE 426
BG 426
BGE 426
BGU 426
Bicc 425
BLE 426
BLEU 426
BN 426
BNE 426
BNEG 426
BPOS 426
BVC 426
BVS 426
FBA 423
FBE 423
FBG 423
FBGE 423
FBL 423
FBLE 423
FBLG 423
FBN 423
FBNE 423
FBO 423
FBU 423
FBUE 423
FBUGE 423
FBUL 423
FBULE 423
LDD 433
LDDA 434

Index 461

LDFSR 431

MULScc 90, 438

RDY 90, 388, 440

SDIV 90, 428

SDIVcec 90, 428

SMUL 90, 436

SMULcc 90, 436

STD 443

STDA 445

STFSR 442

SWAP 446

SWAPA 448

TSUBccTV 449, 451

UDIV 90, 428

UDIVce 90, 428

UMUL 90, 436

UMULcc 90, 436

WRY 90, 420, 452
disp19 field of instructions 174, 287, 288
disp22 field of instructions 175, 424, 427
disp30 field of instructions 175, 290
Dispatch_rs_mispred 235
DispatchO_2nd_br 235
DispatchO_br_target 235
divide instructions 357, 428
divide-by-zero mask (DZM) bit of TEM field of FSR

register 124
division_by_zero exception 144, 358
division-by-zero accrued (dza) bit of aexc field of FSR

register 127
division-by-zero current (dzc) bit of cexc field of FSR

register 127
DONE instruction 92, 109, 294

after internal store to ASI 196

and BST 278

exiting RED_state 25, 249

grouping rules 47

restoring AG, IG, MG bits 109

target address 155

when TSTATE uninitialized 25, 250
doublet xxxii
doubleword

addressing 180

alignment 137

data format 59

definition xxxii

in memory 76
D-SFAR register

exception address (64-bit) 112

D-TLB
access 39

E
E pipeline stage 38
EC_ic_miss 240
EC_misses 239
E-cache 203
EDGE16 instruction 295
EDGEI16L instruction 295
EDGEI16LN instruction 295
EDGEI16N instruction 295
EDGE32 instruction 295
EDGE32L instruction 295
EDGE32LN instruction 295
EDGE32N instruction 295
EDGES instruction 295
EDGESL instruction 295
EDGESLN instruction 295
EDGESN instruction 295
emulating multiple unsigned condition codes 141
enable floating-point (FEF) field of FPRS register 94,
111, 146,287, 319, 321, 405, 407, 425
enable floating-point (PEF) field of PSTATE register 94,
111, 146, 287, 319, 321, 405, 407, 425
Error Enable Register
NCEEN field 195
error_state
and watchdog reset 251
error_state, and watchdog reset 26
exceptions
async_data_error 320, 326, 330, 436
clean_window 114, 393, 394
data_access_error 281,293, 320, 324, 328, 330, 331,
361, 402, 405, 407, 409, 410, 434, 443, 445, 446
data_access_exception 293, 320, 322, 330, 331, 405,
407, 409, 410, 445, 446, 447, 449
data_access_protection 281, 324, 326, 328, 361, 402,
434, 436
division_by_zero 144, 358
fill_n_normal 392, 394
fill_n_other 392, 394
fp_disabled 94, 146, 287, 300, 304, 306, 307, 309,
311, 319, 320, 321, 322, 348, 350, 355, 405, 407,
425,432,443
fp_exception_ieee_754 119, 124, 125, 126, 300, 304,
306, 307, 311

462 UltraSPARC llli Processor User's Manual * June 2003

Jfp_exception_other 83, 176, 299, 300, 302, 304, 306, FBE instruction 423

307, 309, 311, 313, 350 FBfcc instructions 93, 118, 146, 423, 425
illegal_instruction 76, 105, 176, 285, 290, 295, 317, FBG instruction 423
320, 355, 357, 379, 386, 387, 389, 395, 405, 407, FBGE instruction 423
417,419, 434, 435, 436, 443, 444, 445, 446 FBL instruction 423
LDDF_mem_address_not_aligned 137, 319, 321, 322 FBLE instruction 423
mem_address_not_aligned 137,293, 318, 319, 320, FBLG instruction 423
322,323,324, 325, 326, 391, 392, 405, 407, 409, FBN instruction 423, 424
410, 434, 436, 443, 445, 446, 447, 449 FBNE instruction 423
privileged_action 92, 138, 293, 321, 322, 325, 326, FBO instruction 423
331, 389, 390, 407, 410, 435, 436, 446, 449 FBPA instruction 285, 287
privileged_opcode 295, 387, 395, 419 FBPcc instructions 174
spill_n_normal 316, 394 FBPE instruction 285
spill_n_other 316, 394 FBPfcc instructions 93, 118, 146, 174, 175, 285, 425
STDF_mem_address_not_aligned 137, 405, 407 FBPG instruction 285
tag_overflow 143, 413, 414, 450, 452 FBPGE instruction 285
trap_instruction 416, 417 FBPL instruction 285
window_fill 115, 391 FBPLE instruction 285
window_spill 115 FBPLG instruction 285
extended word addressing 180 FBPN instruction 285, 287
extended word data format 59 FBPNE instruction 285
Externally Initiated Reset (XIR) 251 FBPO instruction 285
FBPU instruction 285
FBPUE instruction 285
FBPUG instruction 285
F FBPUGE instruction 285
F pipeline stage 36 FBPUL instruction 285
FABSd instruction 308 FBPULE instruction 285
FABSq instruction 308 FBU instruction 423
FABS:s instruction 308 FBUE instruction 423
FADD instruction 299 FBUG instruction 423
fadd of numbers with opposite signs 119 FBUGE instruction 423
FADDd instruction 298 FBUL instruction 423
FADDq instruction 298 FBULE instruction 423
FADDs instruction 298 fee-conditional branches 287, 425
FALIGNADDR instruction FCMP* instructions 118, 119, 300
grouping rules 45 FCMPd instruction 300
FALIGNDATA instruction 269 FCMPE* instructions 118, 119, 300
grouping rules 45 FCMPEd instruction 300
FAND instruction 332 FCMPEQ instruction 370
FANDNOT!1 instruction 332 FCMPEq instruction 300
FANDNOTIS instruction 332 FCMPEQ16 instruction 369
FANDNOT? instruction 333 FCMPEQ32 instruction 369
FANDNOT?2S instruction 333 FCMPEs instruction 300
FANDS instruction 332 FCMPG instruction 370
fast_data_access_MMU_miss exception 110 FCMPGT16 instruction 369
fast_data_access_protection exception 110 FCMPGT32 instruction 369
fast_instruction_access_MMU_miss exception 110 FCMPL instruction 370
FBA instruction 423, 425 FCMPLE16 instruction 369

Index 463

FCMPLE32 instruction 369 floating-point multiply and divide instructions 310

FCMPNE instruction 370 floating-point operate (FPop) instructions 120, 124, 146,
FCMPNEI6 instruction 369 175,432
FCMPNE32 instruction 369 floating-point registers 83
FCMPq instruction 300 floating-point registers state (FPRS) register 93, 389, 422
FCMPs instruction 300 floating-point square root instructions 312
fen field of instructions 294 floating-point state (FSR) register 117, 124, 125, 127,
FDIVd instruction 310 405,432,442, 443
FDIVq instruction 310 floating-point trap type (ftt) field of FSR register 125
FDIVs instruction 310 floating-point trap type (f#) field of FSR register 117,
FdMULq instruction 310 120, 124, 147, 405, 443
FdTO:i instruction 302, 304 floating-point trap types
FdTOq instruction 304 IEEE 754 _exception 121, 122, 124, 125, 127
FdTOs instruction 304 invalid_fp_register 83, 121, 309, 313
fdtos instruction 120 numeric values 121
FdTOx instruction 302, 304 sequence_error 121
FEXPAND instruction 151, 372, 377 unfinished_FPop 121, 122,127,299, 311
FEXPAND instruction, pixel formatting 373 unimplemented_FPop 121, 127, 300, 302, 304, 306,
FEXPAND operation 377 307,311, 348, 350
FFA (f.p./Graphics ALU) pipeline 37 floating-point traps
FFA pipeline 244 precise 387
FGA pipeline xxxiii, 283 FLUSH instruction 313
FGM (F.p./Graphics multiply) pipeline 37 after internal store 196
FGM pipeline xxxiii, 244 grouping rule 47
fill register window 78, 154, 393, 395 memory ordering control 187
fill_n_normal exception 392, 394 self-modifying code 314
fill_n_other exception 392, 394 flush register windows instruction 315
FiTOd instruction 306 flushing
FiTOq instruction 306 TLB 209
FiTOs instruction 306, 307 FLUSHW instruction 153, 315
fixed-point scaling 364 FLUSHW instruction, grouping rule 46
floating point FMOVA instruction 343
divide/square root 45 FMOVcc instruction 343
grouping rules 7745 FMOVcc instructions 92, 118, 140, 174, 175, 343, 348,
latencies 44 355
operation statistics 244 grouping rules 48
register file access 39 FMOVCS instruction 343
store instructions 45 FMOVd instruction 308
subnormal value generation 119 FMOVDcc instruction 345
floating point complex calculations 71 FMOVE instruction 343
floating-point add and subtract instructions 298 FMOVFA instruction 344
floating-point compare instructions 118, 119, 300, 300 FMOVFE instruction 344
floating-point condition code bits 425 FMOVFG instruction 344
floating-point condition codes (fcc) fields of FSR register FMOVFGE instruction 344
118,121, 122, 287, 301, 425 FMOVFL instruction 344
floating-point data type 59 FMOVFLE instruction 344
floating-point deferred-trap queue (FQ) 385 FMOVFLAG instruction 344
floating-point exception 120 FMOVEFN instruction 344
floating-point move instructions 308 FMOVEFNE instruction 344

464 UltraSPARC llli Processor User's Manual * June 2003

FMOVFO instruction 344
FMOVFU instruction 344
FMOVFUE instruction 344
FMOVFUG instruction 344
FMOVFUGE instruction 344
FMOVFUL instruction 344
FMOVFULE instruction 344
FMOVG instruction 343

FMOVGE instruction 343
FMOVGU instruction 343

FMOVL instruction 343

FMOVLE instruction 343
FMOVLEU instruction 343
FMOVN instruction 343

FMOVNE instruction 343
FMOVNERG instruction 343
FMOVPOS instruction 343
FMOVq instruction 308

FMOVQcc instruction 345

FMOVr instructions 175, 349
FMOVRGEZ instruction 349
FMOVRGZ instruction 349
FMOVRLEZ instruction 349
FMOVRLZ instruction 349
FMOVRNZ instruction 349
FMOVRZ instruction 349

FMOVs instruction 308

FMOVScc instruction 345
FMOVVC instruction 343
FMOVYVS instruction 343
FMULS8SUx16 instruction 363, 366
FMULSBULX16 instruction 363, 367
FMULS8X16 instruction 152, 363, 364
FMULSBx16AL instruction 363, 365
FMULSBx16AU instruction 363, 365
FMULJ instruction 310
FMULDS8SUx16 instruction 363, 367
FMULDS8ULX16 instruction 363, 368
FMUL(q instruction 310

FMULSs instruction 310

FNAND instruction 332

FNANDS instruction 332

FNEGd instruction 308

FNEGq instruction 308

FNEGs instruction 308

FNOR instruction 332

FNORS instruction 332

FNOT1 instruction 332

FNOTI1S instruction 332

FNOT?2 instruction 332

FNOT?2S instruction 332

FONE instruction 332

FONES instruction 332

FOR instruction 332

formats, instruction 171

FORNOTT! instruction 332

FORNOT1S instruction 332

FORNOT?2 instruction 332

FORNOT2S instruction 332

FORS instruction 332

fp_disabled exception 94, 96, 146, 287, 300, 304, 306,
307,309, 311, 319, 320, 321, 322, 348, 350, 355,
402, 405, 407, 425, 432, 443

fp_disabled trap 98

fp_exception exception 124

fp_exception_ieee_754 "invalid" exception 303

fp_exception_ieee_754 exception 97, 119, 124, 125, 126,
300, 304, 306, 307, 311

fp_exception_other exception 83, 97, 119, 122, 147, 176,
299, 300, 302, 304, 306, 307, 309, 311, 313, 350

FPACK instructions 151-??, 372-377

FPACK, performance usage 373

FPACK16 instruction 151, 372, 373

FPACK16 operation 374

FPACK32 instruction 372, 375

FPACK32 operation 375

FPACKFIX instruction 372, 376

FPACKFIX operation 377

FPADD16 instruction 361

FPADD16S instruction 361

FPADD?32 instruction 361

FPADD32S instruction 361

FPMERGE instruction 372, 378

FPMERGE instruction, back-to-back execution 373

FPRS
.FEF 98

FPRS register
description 93
FEF field 97, 422

FPSUBI6 instruction 361

FPSUBI6S instruction 361

FPSUB32 instruction 361

FPSUB32S instruction 362

FqTOd instruction 304

FqTOi instruction 302

FqTOs instruction 304

FqTOx instruction 302

FsMULJ instruction 310

Index 465

FSQRTd instruction 312
FSQRTq instruction 312
FSQRTs instruction 312
FSR

ftt field 119

nonstandard floating-point operation 119

NS field 119

=1119

=0299

=1299
FSRCI instruction 332
FSRCIS instruction 332
FSRC?2 instruction 332
FSRC2S instruction 332
FsTOd instruction 304
FsTOi instruction 302, 304
FsTOq instruction 304
FsTOx instruction 302, 304
FSUB instruction 299
fsub of numbers with the same signs 120
FSUBd instruction 298
FSUBq instruction 298
FSUBSs instruction 298
FXNOR instruction 332
FXNORS instruction 332
FXOR instruction 332
FXORS instruction 332
FxTOd instruction 306, 307
FxTOq instruction 306
FxTOs instruction 306, 307
FZERO instruction 332
FZEROS instruction 332

G

generating constants 397
global registers
interrupt 109
trap 109
global registers 74, 76, 76
global visibility 186
graphics data format
fixed 16-bit 71
Graphics Status Register
format 98
grouping rules 4145
BMASK and BSHUFFLE 283
SIAM instruction 396

466

GSR
fields
ALIGN 99
IM (interval mode) field 98
IRND (rounding) 99
MASK 98
SCALE 99
format 98
mask, setting before BSHUFFLE 283
write instruction latency 45

H
halfword
addressing 179
alignment 137
data format 59
hardware
interlocking mechanism 340
helper
cycle 43
execution order 43
generation 43
in pipelines 43

|

i field of instructions 175, 268, 313, 315, 317, 319, 321,
323,325, 329, 330, 336, 353, 356, 358, 379, 389,

391,429, 432, 433, 435, 437, 439, 440
I pipeline stage 37
I/D Translation Storage Buffer Register
differences from UltraSPARC-1 210
/0
access 194, 196
memory 184
memory-mapped 185
noncacheable address 191
IC_miss 237
IC_miss_cancelled 237

icc field of CCR register 90, 92, 268, 290, 336, 355, 412,

413,416,427, 430, 431, 437, 439
icc-conditional branches 427

IEEE Std 754-1985 xxxiii, 119, 122, 126, 127, 147
IEEE_754_exception floating-point trap type xxxiii, 121,

122, 124, 127
IER register (SPARC V8) 422

UltraSPARC llli Processor User's Manual * June 2003

1y
branch prediction statistics 234
stall counts 234
illegal address aliasing 206
illegal_instruction exception 76, 105, 176, 261, 285, 290,
295,317, 320, 355, 357, 379, 386, 387, 389, 395,
405,407,417,419, 434,435,436, 443, 444, 445, 446
illegal_instruction exception 381
ILLTRAP instruction 316
images
band interleaved 70
band sequential 70
imm_asi field of instructions 138, 175, 291, 319, 321,
323,325,329, 330,432, 433, 435
imm22 field of instructions 175
I-MMU
disabled 195
Enable bit 129
and instruction prefetching 195
implementation
dependency xxvi
implementation note Xxx
implementation number (impl) field of VER register 116
implicit
AST 138
byte order 110
in registers 74, 78, 392
inexact accrued (nxa) bit of aexc field of FSR register 127
inexact current (nxc) bit of cexc field of FSR register 127
inexact mask (NXM) bit of TEM field of FSR register 124
inexact quotient 429, 430
initiated xxxiv
instruction
bypass 44
conditional branch 39
dependency check 42
dispatching properties 49
execution order 42
explicit synchronization 278
grouping rules 4145
latency 42, 49
multicycle, blocking 42
number completed 233
prefetch 25, 195, 249
window-saving 46
with helpers 47
writing integer register 43
Instruction Cache 201
physically indexed

physically tagged 201
instruction cache
effect of mode change 202
reference counts 237
instruction fields

a 174,284,288, 291, 424, 427

cc0 174,287, 288, 301, 353

ccl 174,287, 288, 301, 353

cc2 174,353

cond 174,287, 288, 345, 353, 424, 427

const22 316

d16hi 174, 284

dl6lo 174, 284

definition xxxiv

displ19 174, 287, 288

disp22 175, 424, 427

disp30 175,290

fen 294

i175,268,313,315,317,319, 321, 323, 325, 329,
330, 336, 353, 356, 358, 379, 389, 391, 429, 432,
433, 435, 437, 439, 440

imm_asi 138, 175, 291, 319, 321, 323, 325, 432, 433,
435

imm22 175

mmask 175, 441

op3 175,268, 291,294, 313, 315, 317, 319, 321, 323,
325, 329, 330, 336, 358, 385, 389, 391, 429, 432,
433,435,437, 439, 440

opf'175, 299, 301, 303, 305, 306, 308, 310, 312

opf_cc 175, 345

opf_low 175, 345, 349

p 175,284, 287, 288

rcond 175, 284, 349, 356

rd 175, 268, 291, 299, 303, 305, 306, 308, 310, 312,
317,319, 321, 323, 325, 329, 330, 336, 345, 349,
353,356, 358, 379, 385, 389, 429, 432, 433, 435,
437, 439, 440

reserved 261

rsl 175,268,284, 291, 299, 301, 310, 313, 317, 319,
321, 323, 325, 329, 330, 336, 349, 356, 358, 385,
389, 391, 429, 432, 433, 435, 437, 439, 440

rs2 175,268,291, 299, 301, 303, 305, 306, 308, 310,
312,313,317, 319, 321, 323, 325, 329, 330, 336,
345, 349, 353, 356, 358, 379, 391, 429, 432, 433,
435, 437, 439

shent32 175

shent64 175

simml10 175, 356

simmll 175,353

Index 467

simmi13 175, 268, 313, 317, 319, 321, 323, 324, 329,
330, 336, 358, 379, 390, 429, 432, 433, 435, 437,
439

sw_trap# 176

x176

instruction set architecture (ISA) xxxiv
instruction_access_error exception 25, 249
instruction_access_exception exception 110
instructions

alignment 137, 137, 270

array addressing 150, 271

atomic 292

atomic load-store 291, 292, 329, 330, 446, 448

block load and store 275

branch if contents of integer register match condition
283

branch on floating-point condition codes 423

branch on floating-point condition codes with
prediction 285

branch on integer condition codes 425

branch on integer condition codes with prediction 288

causing illegal instruction 316

compare and swap 291

comparison 144, 412

control-transfer (CTIs) 154, 294

convert between floating-point formats 304

convert floating-point to integer 302

convert integer to floating-point 306

count of number of bits 379

divide 357, 428

DONE 109, 294

edge handling 151, 296

floating-point add and subtract 298

floating-point compare 118, 119, 300, 300

floating-point move 308

floating-point multiply and divide 310

floating-point operate (FPop) 120, 124, 146, 432

floating-point square root 312

flush instruction memory 313

flush register windows 315

formats 171

generate software-initiated reset 403

jump and link 155, 317

load floating-point 431

load floating-point from alternate space 320

load integer 322, 433

load integer from alternate space 324, 434

load quadword 327

load-store unsigned byte 292, 329, 447, 448

load-store unsigned byte to alternate space 330

logical 335

logical operate 334

move floating-point register if condition is true 343

move floating-point register if contents of integer
register satisfy condition 349

move integer register if contents of integer register
satisfies condition 356

multiply 357, 436, 436

ordering MEMBAR 153

partial store 360

partitioned add/subtract 151, 362

partitioned multiply 364

permuting bytes specified by GSR.MASK 282

pixel compare 152, 370

pixel component distance 371

pixel formatting (PACK) 151, 372

prefetch data 379

read privileged register 385

read state register 388, 440

register window management 153

reserved 176

reserved fields 261

RETRY 109, 294

RETURN vs. RESTORE 391

sequencing MEMBAR 153

set high bits of low word 397

set interval arithmetic mode 396

setting GSR.MASK field 150, 282

shift 143, 398

shift count 399

short floating-point load/store 401

shut down to enter power-down mode 402

software-initiated reset 403

store 408

store floating point 404

store floating-point into alternate space 406, 406

store integer 408

store integer into alternate space 410

subtract 411, 411

swap r register with alternate space memory 448

swap r register with memory 446

tagged addition 413

tagged arithmetic 143

tagged subtraction 414

timing 261

trap on condition codes 416

trap on integer condition codes 415

unimplemented 176

468 UltraSPARC llli Processor User's Manual * June 2003

write privileged register 417
writing privileged register 419
integer register file access 38
integer unit (IU)
condition codes 92
interrupt
enable (IE) field of PSTATE register 112
on floating-point instructions 96
global registers 109
level 113
request XxXxiv
trap 217
vector dispatch 216
vector dispatch register 219
vector dispatch status register 220
vector receive 217
vector receive register 221
Interrupt Vector Dispatch Status Register 220
interrupt_vector exception 97
interrupt_vector trap 109
invalid accrued (nva) bit of aexc field of FSR register 126
invalid current (nvc) bit of cexc field of FSR register 126
invalid mask (NVM) bit of TEM field of FSR register 124
invalid_exception exception 303
invalid_fp_register floating-point trap type 83, 121, 309,
313
invalidation
prefetch cache 381
issued xxxiv
ITID field of Interrupt Vector Dispatch register 217

J
JMPL instruction 25, 39, 249
computing target address 155
description 317
destination register 93
does not change CWP 80
reexecuting trapped instruction 391
jump and link (JMPL) instruction 155, 317

K
kernel code 222

L
12203
L2-Cache 203, 207
L2-cache 184, 205, 207, 277
latency
BMASK and BSHUFFLE 283
floating-point operations 44
FPADD instruction 362
partitioned multiply 364
LD instruction (SPARC V8) 323
LDD instruction 197, 322, 433
LDDA instruction 76, 324, 326, 434
LDDEF instruction 137, 318, 431
LDDF_mem_address_not_aligned exception 137, 322
LDDFA instruction 137, 274, 320, 361, 400
LDF instruction 318, 431
LDFA instruction 320
LDFSR instruction 47, 118, 120, 121, 197, 431
LDQF instruction 176, 318, 431
LDQFA instruction 320
LDSB instruction 197, 322, 433
LDSBA instruction 324, 434
LDSH instruction 197, 322, 433
LDSHA instruction 324, 434
LDSTUB instruction 139, 191, 329, 331
LDSTUBA instruction 329, 330
LDSW instruction 197, 322, 433
LDSWA instruction 324, 434
LDUB instruction 322, 433
LDUBA instruction 324, 434
LDUH instruction 322, 433
LDUHA instruction 324, 434
LDUW instruction 322, 433
LDUWA instruction 324, 434
LDX instruction 322, 433
LDXA instruction 324, 434
LDXFSR instruction 117, 118, 120, 121, 197, 318, 431
level-1 cache 199
flushing 205
little-endian
ordering in partial store instructions 361
little-endian byte order xxxv, 110, 136
load floating-point from alternate space instructions 320
load floating-point instructions 431
load instructions Xxxv
load instructions, getting data from store queue 197
load integer from alternate space instructions 324, 434
load integer instructions 322, 433
load quadword atomic 326

Index 469

load recirculation 198

LoadLoad MEMBAR relationship 338

loads
from alternate space 92, 138

load-store alignment 137, 137

load-store instructions 139
compare and swap 291
definition xxxv
load-store unsigned byte 292, 329, 447, 448
load-store unsigned byte to alternate space 330
swap r register with alternate space memory 448
swap r register with memory 292, 446

LoadStore MEMBAR relationship 338

local registers 74, 78, 392

logical instructions 335

Lookaside MEMBAR relationship 339

Low Power 402

lower registers dirty (DL) field of FPRS register 94

M
M pipeline stage 39
machine state
after reset 253
in RED_state 253
mask number (mask) field of VER register 117
maximum trap levels (MAXTL) field of VER register
117
MAXTL 112, 403
may (keyword) xxxv
mem_address_not_aligned exception 137,293, 318, 319,
320, 322, 323, 324, 325, 326, 391, 392, 402, 405,
407,409, 410, 434, 436, 443, 445, 446, 447, 449
MEMBAR
#LoadLoad 186, 338
#LoadStore 186, 338
#LoadStore and block store 278
#Lookaside 184
#Memlssue 184, 340
#StoreLoad 338
and BLD 278
and BST 278
for strong ordering 340
#StoreStore 314, 338
and BST 278
code example 186
#Sync 206
after BST 278

after internal ASI store 195
BLD and BST 277
semantics 188
for strong ordering 340
instruction 153, 175, 218, 313, 337, 389, 441
explicit synchronization 186
grouping rules 47
memory ordering 187
side-effect accesses 194
single group 47
QUAD_LDD requirement 342
rules for interlock implementation 339
UltraSPARC-III specifics 339
Memlssue MEMBAR relationship 339
memory
access instructions 139
cached 184
current model, indication 184
global visibility of memory accesses 186
location 184
models
and block operations 278
ordering and block store 278
partial store order (PSO) 183, 278
relaxed memory order (RMO) 278
strongly ordered 196, 340
total store order (TSO) 183
total store order (TSO)TSO 278
ordering 186
synchronization 187
memory_model (MM) field of PSTATE register 111
memory-mapped I/O 185
merge buffer 196
mispredict signal 39
mmask field of instructions 175, 441
MMU
global registers 109
mode
privileged 104
user 92
MOVA instruction 351
MOVCC instruction 351
MOVcc instructions 92, 118, 140, 174, 175, 348, 355
grouping rules 48
MOVCS instruction 351
move floating-point register if condition is true 343
move floating-point register if contents of integer register
satisfy condition 349
MOVE instruction 351

470 UltraSPARC llli Processor User's Manual * June 2003

move integer register if contents of integer register
satisfies condition instructions 356
MOVFA instruction 352
MOVFE instruction 352
MOVFG instruction 352
MOVFGE instruction 352
MOVFL instruction 352
MOVFLE instruction 352
MOVFLG instruction 352
MOVFN instruction 352
MOVFNE instruction 352
MOVFO instruction 352
MOVFU instruction 352
MOVFUE instruction 352
MOVFUG instruction 352
MOVFUGE instruction 352
MOVFUL instruction 352
MOVFULE instruction 352
MOVG instruction 351
MOVGE instruction 351
MOVGU instruction 351
MOVL instruction 351
MOVLE instruction 351
MOVLEU instruction 351
MOVN instruction 351
MOVNE instruction 351
MOVNEG instruction 351
MOVPOS instruction 351
MOVR instructions
grouping rules 48
MOVr instructions 175, 356
MOVRGEZ instruction 356
MOVRGZ instruction 356
MOVRLEZ instruction 356
MOVRLZ instruction 356
MOVRNZ instruction 356
MOVRZ instruction 356
MOVVC instruction 351
MOVVS instruction 351
MS pipeline
description 37
E-stage bypass 42
integer instruction execution 39
and W-stage 40
multiple unsigned condition codes, emulating 141
multiply instructions 357, 436, 436
multiprocessor synchronization instructions 292, 447,
448
multiprocessor system 313, 447, 448, 449

Index

MULX instruction 357
must (keyword) xxxv
mutual exclusion, atomic instructions 191

N

NaN (not-a-number)
converting floating-point to integer 303
quiet 301
signalling 119, 301, 305
negative () bit of condition fields of CCR 91
next program counter (nPC) 93, 105, 177, 294, 359
noncacheable
accesses 185
I/O address 191
instruction prefetch 25, 195, 249
store compression 196
store merging enable 129
nonfaulting
ASIs and atomic accesses 192
load
and TLB miss 192
behavior 192
use by optimizer 192
nonfaulting load xxxvi
nonleaf routine 318
nonprivileged
mode xxxi, 121
software 93
nonprivileged trap (NPT) field of TICK register 389
nonstandard floating-point operation 119
NOP instruction 287, 358, 416, 424, 427
note
implementation Xxx
programming XxXx
nPC register, See next program counter (nPC)
NS field of FSR 119
Nucleus code 222
NWINDOWS 78, 78, 393

(0

op3 field of instructions 175, 268, 291, 294, 313, 315,
317,319, 321, 323, 325, 329, 330, 336, 358, 385,
389, 391, 429, 432, 433,435, 437, 439, 440

opcode
definition xxxvi

471

opffield of instructions 175, 299, 301, 303, 305, 306,
308,310,312

opf_cc field of instructions 175, 345

opf_low field of instructions 175, 345, 349

OR instruction 335

ORcc instruction 335

ordering
block load 278
block store 278

ordering MEMBAR instructions 153

ORN instruction 335

ORNCcc instruction 335

other windows (OTHERWIN) register 114, 315, 385,
393,418

out register #7 76

out registers 78, 392

overflow (V) bit of condition fields of CCR 91, 143

overflow accrued (ofa) bit of aexc field of FSR register

126

overflow current (ofc) bit of cexc field of FSR register 126
overflow mask (OFM) bit of TEM field of FSR register

124

P
p field of instructions 175, 284, 287, 288
PA Data Watchpoint Register
DB_PA field 133
format 133
PA_watchpoint exception 132
packed-to-planar conversion 151, 378
partial store instruction 45
partial store instructions 359
partitioned multiply instructions 364
PC register, See program counter (PC)
PC, Instr_cnt 233
PC_1st_rd 239
PC_2nd_rd 239
PC_counter_inv 239
PC_hard_hit 239
PC_MS_misses 239
PC_soft_hit 239
PCR
access 228
fields
PRIV 229
ST(system trace enable) field 229
SU (select upper bits of PIC) field 229

UT (user trace enable) field 229
function
Cycle_cnt 233
DC_hit 238
Dispatch0_2nd_br 235
DispatchO_br_target 235
Dispatch0_IC_miss 234
DispatchO_mispred 235
EC_ref 239
EC_snoop_inv 240
EC_snoop_wb 240
EC_wb 240
EC_write_hit_clean 240
IC_ref 237
SI_snoops 243
PRIV field 228
ST field 228, 233
UT field 228, 233
PDIST instruction 371
PDIST, instruction latency 45
performance hints
FPACK usage 373
FPADD usage 362
logical operate instructions 334
partitioned multiply usage 364
physical address
data watchpoint 133
Physical Indexed Caches 201
Physical Tagged Caches 201
physical-indexed
physical-tagged (PIPT) cache 203
PIC register
and PCR 228
access 228
PICO Events 244
PIC1 Events 244
PICL field 230
SL selection bit field encoding 244
pipeline
A037,38
Al37
BR 37
conditional moves 48
dependencies 38
FFA 37, 244
FGA xxxiii, 283
FGM xxxiii, 37, 244
MS 37, 39, 40
stages

472 UltraSPARC llli Processor User's Manual * June 2003

A 36, 39
B 37
C 39,40
D 40, 234
E 38
F 36
137
M 39
mnemonics 32
R 38,236
T 40
W 40
stalls, causes 234
pixel instructions
comparison 152, 370
component distance 371
formatting 151, 372
planar-to-packed conversion 378
POK pin 250
POPC instruction 176, 378
power-on reset (POR) 102, 103
system reset when Reset pin activated 26
Power-On-Reset (POR) 250
precise floating-point traps 387
predict bit 284
prefetch
instruction, noncacheable 25, 249
instructions 195
noncacheable data 381
Prefetch Cache
physically indexed
physically tagged 202
prefetch cache
invalidation 381
valid bits 25, 250
prefetch data instruction 379
PREFETCH instruction 160, 379
descriptions 193
types 381
PREFETCHA instruction 379
priority
VA vs. PA_watchpoint 132
privileged
mode 104
registers 104
software 78, 111, 120, 138, 315
privileged (PRIV) field of PSTATE register 112, 293,
321,331, 389,407, 410, 446, 449
privileged mode (PRIV) field of PSTATE register 112

privileged registers 46
privileged_action exception 92, 138, 219, 220, 221, 222,
293, 321, 322, 325, 326, 331, 389, 390, 407, 410,
435, 436, 446, 449
privileged_action exception 184, 191, 228, 230
PIC access 229
privileged_opcode exception 222, 295, 387, 395, 419
privileged_opcode exception 228
processor interrupt level (PIL) register 113,223,385, 418
processor pipeline
address stage 36
branch target computation stage 37
cache stage 39
done stage 40
execute stage 38
fetch stage 36
instruction issue 37
register stage 38
trap stage 40
processor state (PSTATE) register 77, 105, 107, 110, 294,
385,418
program counter (PC) 93, 104, 177, 291, 294, 317, 359
programming note xxx
PSO memory model 183, 186, 187, 194
PSR register (SPARC V8) 422
PSTATE
.PEF 98
AM field 112
global register selection encodings 108
IE field 97, 223
IG field 108, 109, 218
MG field 108, 109
MM field 184
PEF field 422
PRIV field xxxvi, xxxvii, 184, 191
RED field 96
exiting RED_state 25, 195, 249
register 109
WRPR instruction and BST 278

Q
Quad FPop instructions 176
quad load instruction 197, 342
quadword

addressing 180

alignment 137

data format 59

Index 473

definition xxxvii
quiet NaN (not-a-number) 119, 301

R

R pipeline stage 38

r register
#1576
categories 75
special-purpose 76
alignment 434, 435

rational quotient 430

R-A-W
Bypass Enable bit in DCUCR 129
bypassing algorithm 197
bypassing data from store queue 129
detection algorithm 198

rcond field of instructions 175, 284, 349, 356

rd field of instructions 175, 268, 291, 299, 303, 305, 306,
308, 310,312,317, 319, 321, 323, 325, 329, 330,
336, 345, 349, 353, 356, 358, 379, 385, 389, 429,
432,433,435,437,439, 440

RDASI instruction 388, 388, 440

RDASR
format 98

RDASR instruction 94, 228, 388, 388, 440, 441
dispatching 46
forcing bubbles before 46

RDCCR instruction 50, 388, 388, 440

RDDCR instruction 388

RDFPRS instruction 388, 388, 440

RDGSR instruction 388

RDPC instruction 93, 388, 388, 440

RDPIC instruction 229, 388

RDPR FQ instruction 176

RDPR instruction 104, 108, 113, 116, 385, 390
dispatching 46
forcing bubbles before 46

RDSOFTINT instruction 388

RDSTICK instruction 388

RDSTICK_CMPR instruction 388

RDTICK instruction 388, 388, 390, 440

RDTICK_CMPR instruction 388

RDY instruction 90

Re_DC_miss counter 236

Re_EC_miss counter 237

Re_FPU_bypass counter 236

Re_PC_miss counter 237

Re_RAW_miss counter 236
read privileged register (RDPR) instruction 385
read state register instructions 388, 440
real memory 184
recirculation instrumentation 236
RED_state 249
exiting 195
trap vector 27, 252
RED_state (RED) field of PSTATE register 110
register
access
floating-point 39
integer 38
Floating-Point Status (FSR) 119
global trap 109
PSTATE 109
register window management instructions 153
register windows 78
clean 115
fill 78, 154, 393, 395
spill 78, 154, 393, 395
registers
address space identifier (ASI) 294, 321, 325, 331,
380,407, 410, 422, 435, 446, 448
alternate global 76
ancillary state registers (ASRs) 90, 94
ASI192, 105
CANRESTORE 114
CANSAVE 114
clean windows (CLEANWIN) 114, 114, 385,418
CLEAR_SOFTINT 223
condition codes register (CCR) 105, 268, 294, 422,
439
control and status 90
current window pointer (CWP) 78, 105, 114, 114,
115,294,315, 385, 393, 418
Data Cache Unit Control (DCUCR) 128
dispatch control register (DCR) 95
floating-point 83
floating-point registers state (FPRS) 93, 389, 422
floating-point state (FSR) 117, 124, 125, 127, 432,
442
global 74,76, 76
IER (SPARC V8) 422
in74,78,392
Interrupt Vector Dispatch register 219
Interrupt Vector Dispatch Status register 220
Interrupt Vector Receive register 221
local 74,78, 392

474 UltraSPARC llli Processor User's Manual * June 2003

other windows (OTHERWIN) 114, 315, 385, 393,
418
out 78, 392
out #7176
PC 93
performance control (PCR) 228
privileged 104
processor interrupt level (PIL) 113, 385, 418
processor state (PSTATE) 77, 105, 107, 110, 294,
385,418
PSR (SPARC V8) 422
ri5
r register #15 76
restorable windows (CANRESTORE) 78, 114, 115,
385,393, 395,418
savable windows (CANSAVE) 78, 114, 114, 315,
385,393, 395,418
SET_SOFTINT 223
SOFTINT 222
TBR (SPARC V8) 422
TICK 102, 103, 385, 418
TICK_COMPARE 103
trap base address (TBA) 107, 385, 418
trap level (TL) 104, 107, 112, 112, 115, 117, 294,
385, 386, 395, 403, 418, 419
trap next program counter (TNPC) 105, 385, 418
trap program counter (TPC) 385, 387,418
trap state (TSTATE) 105, 109, 294, 385, 418
trap type (TT) 105, 107, 115, 385, 416, 418
version register (VER) 116, 385
WIM (SPARC V8) 422
window state (WSTATE) 113, 115, 315, 385, 393,
418
Y 90, 90, 429, 437, 439, 453
reserved
fields in instructions 261
instructions 176
reset
power-on 102, 103
reset trap 102, 103
system 26
restorable windows (CANRESTORE) register 78, 114,
115, 385,393, 395,418
RESTORE instruction 392-394
actions 154
and current window 79
decrementing CWP register 78
followed by SAVE instruction 80
managing register windows 153

Index

operation 392
performance trade-off 393
and restorable windows (CANRESTORE) register
114
restoring register window 393
SPARC V9 vs. SPARC V8 115
RESTORED instruction 154, 394, 394, 394
use by privileged software 153
RESTORED instruction, single group 46
restricted address space identifier 138
restricted ASI 184
RETRY instruction 92, 97, 109, 155, 294
after internal store to ASI 196
and BST 278
exiting RED_state 25, 249
grouping rules 47
restoring AG, 1G, MG bits 109
use with IFPOE 97
when TSTATE uninitialized 25, 250
RETURN instruction 39, 390-392
computing target address 155
destination register 93
operation 390
reexecuting trapped instruction 391
RMO memory model 183, 186, 187, 194, 278
rounding
behavior in GSR 98
for floating-point results 119
in signed division 430
rounding direction (RD) field of FSR register 119, 299,
303, 305, 307,311, 312
routine, nonleaf 318
rs1 field of instructions 175, 268, 284, 291, 299, 301,
310,313,317, 319, 321, 323, 325, 329, 330, 336,
349, 356, 358, 385, 389, 391, 429, 432, 433, 435,
437,439, 440
rs2 field of instructions 175, 268, 291, 299, 301, 303,
305, 306, 308, 310, 312, 313, 317, 319, 321, 323,
325,336, 345, 349, 353, 356, 358, 379, 429, 432,
433,435,437, 439
R-stage stall counts 236
Rstall_FP_use counter 236
Rstall_IU_use counter 236
Rstall_storeQ counter 236
RSTVaddr 27, 252

475

S

savable windows (CANSAVE) register 78, 114, 114, 315,

385,393, 395,418
SAVE instruction 392-394
actions 154
after RESTORE instruction 391
and current window 79
decrementing CWP register 78
leaf procedure 318
and local/out registers of register window 80
managing register windows 153
no clean window available 115
number of usable windows 114
operation 392
performance trade-off 393
and savable windows (CANSAVE) register 114
SPARC V9 vs. SPARC V8 115
SAVED instruction 153, 154, 394, 394, 394
SAVED instruction, single group 46
Scalable Processor Architecture see SPARC
scaling of the coefficient 364
SDIV instruction 90, 428
SDIVcc instruction 90, 428
SDIVX instruction 357
self-modifying code 314
sequence_error floating-point trap type 121
sequencing MEMBAR instructions 153
SET_SOFTINT pseudo-register 223
SETCC instruction, grouping 43
SETHI instruction 143, 144, 175, 359, 397, 397
SFSR
FT field
FT=10192
FT=2 185,192, 194
FT=4191
FT=8191,192
shall (keyword) xxxviii
shent32 field of instructions 175
shcnt64 field of instructions 175
shift count encodings 399
shift instructions 143, 144, 398
short floating-point load and store instructions 400
short floating-point load instruction 197
should (keyword) xxxix
SHUTDOWN instruction 402
SIAM instruction 395
grouping rules 45
rounding 396
setting GSR fields 396

side effect
accesses 185, 194
and block load 278
instruction placement 195
instruction prefetching 195
visible 185
signalling NaN (not-a-number) 119, 301, 305
signed integer data type 59
sign-extended 64-bit constant 175
simm10 field of instructions 175, 356
simml1 field of instructions 175, 353
simm 3 field of instructions 175, 268, 313, 317, 319,
321, 323, 325, 329, 330, 336, 358, 379, 391, 429,
432,433,435,437,439
single-instruction group 42, 43, 46, 47, 50
SIR instruction 26, 251, 403, 421
grouping rule 47
SLL instruction 398, 398
SLLX instruction 398, 398
SMUL instruction 90, 436
SMULcc instruction 90, 436
snooping
snoop counts 243
SOFTINT register 222
software interrupt (SOFTINT) register
clearing 223
in code sequence for Interrupt Receive 218
scheduling interrupt vectors 222
setting 223
software statistics, counters 243
software trap 416
software_initiated_reset (SIR) 26, 403
Software-Initiated Reset (SIR) 47, 251
SPARC xxv
Architecture Manual, Version 9 xxv
brief history xxv
International, address of xxvi
V9, architecture xxv
SPARC V8 compatibility
ADDC/ADDCcc renamed 269
current window pointer (CWP) register differences
115
delay instruction 155
delay instruction fetch 158
executing delayed conditional branch 158
existing nonprivileged SPARC V8 software 77
instruction between FBfcc /FBPfcc 287
LD, LDUW instructions 323
level 15 interrupt 113

476 UltraSPARC llli Processor User's Manual * June 2003

read state register instructions 390
STA instruction renamed 410
STBAR instruction 339, 441
STD instruction 444
STDA instruction 446
STFSR instruction 443
tagged add instructions 450
tagged subtract instructions 452
Ticc instruction 417
UNIMP instruction renamed 316
write state register instructions 422
SPARC V9
compliance xxxvi
speculative load 185
spill register window 78, 154, 393, 395
spill windows 393
spill_n_normal exception 316, 394
spill_n_other exception 316, 394
SRA instruction 398, 398
SRAX instruction 398, 398
SRL instruction 398, 398
SRLX instruction 398, 398
stable storage 206
stack frame 393
stalls
counted 234
pipeline 234
R Stage counts 236
STB instruction 408
STBA instruction 409
STBAR instruction 187, 339, 389
STDA instruction 76
STDF instruction 137, 404
STDF_mem_address_not_aligned exception 137, 405,
407
STDFA instruction 137, 274, 359, 400, 406, 406
STF instruction 404
STFA instruction 406
STFSR instruction 117, 118, 120
STH instruction 408
STHA instruction 409
STICK register 388
STICK_COMPARE register 103, 388
STICK_INT 223
store
buffer
merging 194
compression 185, 196
instructions, giving data to a load 197

noncacheable, coalescing 196
queue
R-stage stall count 236

store floating-point into alternate space instructions 406
store instructions Xxxix
StoreLoad MEMBAR relationship 338
stores to alternate space 92, 138
StoreStore MEMBAR relationship 338
STQF instruction 176, 404
STQFA instruction 406, 406
strongly ordered memory model 196, 340
STW instruction 408
STWA instruction 409
STX instruction 408
STXA instruction 409
STXFSR instruction 117, 118, 120, 404
SUB instruction 411, 411
SUBC instruction 411, 411
SUBcc instruction 144, 411, 411
SUBCcc instruction 411, 411
subtract instructions 411
supervisor software 77, 121, 138
SW_count_0 243
SW_count_1 243
sw_trap# field of instructions 176
SWAP instruction 191, 329, 331, 446
swap r register with alternate space memory instructions

448
swap r register with memory instructions 292, 446
SWAPA instruction 329, 331, 448
Sync MEMBAR relationship 338
Synchronous Fault

Status Registers(SFSR)

Extensions

Differences From
PARC-I210

UltraS-

system interface
statistics, counters 243
system interface unit (SIU) instructions 39
system software 314
system timer interrupt, STICK_INT 223

T

T pipeline stage 40

TA instruction 415

TADDcc instruction 143, 412

Index 477

TADDccTV instruction 143
tag overflow 143

tag_overflow exception 143, 413, 414, 450, 452

tagged arithmetic instructions 143
tagged word data format 59
tagged words 59
TBR register (SPARC V8) 422
TCC instruction 415
Tcc instructions 92, 174, 176, 415
TCS instruction 415
TE instruction 415
TG instruction 415
TGE instruction 415
TGU instruction 415
Ticc instruction (SPARC V8) 417
TICK
_CMPR.INT_DIS field 222
TICK_COMPARE register 103
TICK_INT 223
timer interrupt, TICK_INT 223
timing of instructions 261
TL instruction 415
TL register 419
TLB
and 3-dimensional arrays 273
data access 39
Data Access Register 210
Diagnostic Register 211
flushing 209
hit xxxix
miss and nonfaulting load 192
miss counts 237
TLE instruction 415
TLEU instruction 415
TN instruction 415
TNE instruction 415
TNEG instruction 415
total store order (TSO) memory model 111
TPOS instruction 415
trap
atomic accesses 191
atomic instructions 191
fp_disabled
GSR access 422
fv_disabled 96
fv_exception_ieee_754 97
Jfp_exception_other 97, 119
level 112
noncacheable accesses 185

stack 108
VA_/PA_watchpoint 132
trap base address (TBA) register 107, 385, 418
trap enable mask (TEM) field of FSR register 123, 124
trap globals 109
trap handler 295
user 121
trap level (TL) register 104, 107, 112, 112, 115, 117,
294, 385, 386, 395, 403, 418, 419
trap next program counter (TNPC) register 105, 385, 418
trap on integer condition codes instructions 415
trap program counter (TPC) register 385, 387, 418
trap state (TSTATE) register 105, 109, 294, 385, 418
trap type (TT) register 105, 107, 115, 385, 416, 418
trap_instruction (ISA) exception 416, 417
trap_little_endian (TLE) field of PSTATE register 110,
110
traps
software 416
TSO memory model 183, 184, 185, 186, 187, 194
TSTATE register
initializing 25, 250
PEF field 97
TSUBcc instruction 143, 413
TSUBccTV instruction 143
TTE
CP (cacheability) field 185, 191
CV (cacheability) field 185, 191
E field 184, 185, 186, 192, 194
format 210
NFO field 192
TVC instruction 415
TVS instruction 415

U

UART 185

UDIV instruction 90, 428

UDIVcc instruction 90, 428

UDIVX instruction 357

UltraSPARC-I 339

UltraSPARC-II 339

UMUL instruction 90, 436

UMULcc instruction 90, 436

unconditional branches 287, 289, 424, 427

underflow accrued (ufa) bit of aexc field of FSR register
127

underflow current (ufc) bit of cexc field of FSR register

478 UltraSPARC llli Processor User's Manual * June 2003

127

underflow mask (UFM) bit of TEM field of FSR register

124, 127
unfinished_FPop exception 119
unfinished_FPop exception 304, 305, 307

unfinished_FPop floating-point trap type 121, 122, 127,

311
UNIMP instruction (SPARC V8) 316
unimplemented instructions 176

unimplemented_FPop floating-point trap type 121, 123,

127, 300, 302, 304, 306, 307, 311, 348, 350
unsigned integer data type 59

upper registers dirty (DU) field of FPRS register 94

user
mode 92
trap handler 121

\%
VA Data Watchpoint Register
DB_VA field 132
VA_watchpoint exception 132
version register (VER) 116, 385
virtual address 184
data watchpoint 132
virtual address 0 192
Virtual Indexed, Physical Tagged Caches 199
virtual-indexed
physical-tagged (VIPT) cache 199
virtual-to-physical address translation 184
VIS instruction execution 39
Visual Instruction Set (VIS) 97

W
W pipeline stage 40
watchdog_reset (WDR) 26, 251
watchpoints

data registers 132
WC_miss 238
WC_scrubbed 238
WC_snoop_cb 238
WC_wb_wo_read 238
WIM register (SPARC V8) 422
window changing 46
window fill trap handler 153
window overflow 78

window spill trap handler 153
window state (WSTATE) register
description 115
overview 113
reading WSTATE with RDPR instruction 385
spill exception 315
spill trap 393
writing WSTATE with WRPR instruction 418
window underflow 78
window, clean 392
window_fill exception 115, 391
window_spill exception 115
word
addressing 180
alignment 137
data format 59
Working Register File (WRF) 46
WRASI instruction 420
WRASR
format 98
WRASR instruction 94, 228, 420
forcing bubbles after 46
grouping rule 46
WRDCR instruction 420
WRGSR instruction 420
WRPCR instruction 420
WRPIC instruction 420
WRSOFTINT instruction 420
WRSOFTINT_CLR instruction 420
WRSOFTINT_SET instruction 420
WRSTICK instruction 420
WRSTICK_CMPR instruction 420
WRTICK_CMP instruction 420
WRCCR instruction 92, 420
WRF (Working Register File) 46
WREFPRS instruction 420
WRGSR instruction 45
WRIER instruction (SPARC V8) 422
Write Cache 203
write cache
miss counts 238
write privileged register instruction 417
WRPIC instruction 229
WRPR instruction 102, 108, 113, 417,417
forcing bubbles after 46
grouping rule 46
to PSTATE and BST 278
WRPSR instruction (SPARC V8) 422
WRTBR instruction (SPARC V8) 422

Index

479

WRWIM instruction (SPARC V8) 422
WRY instruction 90, 420

X

x field of instructions 176

xcc field of CCR register 92, 268, 290, 336, 355, 412,
413,430,431, 437,439

XNOR instruction 335

XNORcc instruction 335

XOR instruction 335

XORcc instruction 335

Y
Y register 90, 90, 429, 437, 439, 453

V4
zero (Z) bit of condition fields of CCR 91
zero virtual address 192

480 UltraSPARC llli Processor User's Manual * June 2003

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Target Audience
	A Brief History of SPARC
	Prerequisites
	User’s Manual Overview
	SPARC�V9 Architecture

	Textual Usage
	Fonts
	Notational Conventions
	Notation for Numbers
	Informational Notes

	Acronyms and Definitions
	Introducing the UltraSPARC�IIIi Processor
	1.1 Overview
	1.2 Features
	1.3 Summary

	UltraSPARC�IIIi Processor in a System
	2.1 System Configurations
	2.1.1 Four-Processor System
	2.1.2 Two-Processor System
	2.1.3 One-Processor System

	2.2 JBUS Interface
	2.3 Memory System
	2.4 Power Management

	UltraSPARC IIIi Processor Architecture Basics
	3.1 Component Overview
	3.1.1 Instruction Fetch and Buffering
	3.1.2 Execution Pipelines
	3.1.3 Load/Store Unit
	3.1.3.1 Data Prefetching Support

	3.1.4 Memory Management Units
	3.1.5 Embedded Cache Unit (Level-2 Unified Cache)
	3.1.6 JBUS Interface Unit
	3.1.7 Memory Controller Unit

	3.2 Processor Operating Modes
	3.2.1 Privileged Mode
	3.2.2 Non-Privileged Mode
	3.2.3 Reset and RED_State
	3.2.3.1 RED_state Characteristics
	3.2.3.2 Resets

	3.2.4 Error Handling
	3.2.4.1 Error Classes in Severity
	3.2.4.2 Corrective Actions
	3.2.4.3 Errors Synchronous and Asynchronous to Instruction Execution

	3.2.5 Debug and Diagnostics Mode

	Instruction Execution
	4.1 Introduction
	4.1.1 NOP, Neutralized, and Helper Instructions
	4.1.1.1 NOP Instruction
	4.1.1.2 Neutralized Instruction
	4.1.1.3 Helper Instructions

	4.2 Processor Pipeline
	4.2.1 Instruction Dependencies
	4.2.1.1 Grouping Dependencies
	4.2.1.2 Dispatch Dependencies
	4.2.1.3 Execution Dependencies

	4.2.2 Instruction-Fetch Stages
	4.2.2.1 A-stage (Address Generation)
	4.2.2.2 P-stage (Preliminary Fetch)
	4.2.2.3 F-stage (Fetch)
	4.2.2.4 B-stage (Branch Target Computation)

	4.2.3 Instruction Issue and Queue Stages
	4.2.3.1 I-stage (Instruction Group Formation)
	4.2.3.2 J-stage (Instruction Group Staging)
	4.2.3.3 R-stage (Dispatch and Register Access)
	4.2.3.4 S-stage (Normally Bypassed)

	4.2.4 Execution Pipeline
	4.2.4.1 Integer Instruction Execution: E-stage (Execute)
	4.2.4.2 C-stage (Cache)
	4.2.4.3 M-stage (Miss)
	4.2.4.4 W-stage (Write)
	4.2.4.5 X-stage (Extend)

	4.2.5 Trap and Done Stages
	4.2.5.1 T-stage (Trap)
	4.2.5.2 D-stage (Done)

	4.3 Pipeline Recirculation
	4.4 Grouping Rules
	4.4.1 Execution Order
	4.4.2 Integer Register Dependencies to Instructions in the MS Pipeline
	4.4.2.1 Helpers

	4.4.3 Integer Instructions Within a Group
	4.4.4 Same-Group Bypass
	4.4.5 Floating-Point Unit Operand Dependencies
	4.4.5.1 Latency and Destination Register Addresses
	4.4.5.2 Grouping Rules for Floating-Point Instructions
	4.4.5.3 Grouping Rules for VIS Instructions
	4.4.5.4 PDIST Special Cases

	4.4.6 Grouping Rules for Register-Window Management Instructions
	4.4.7 Grouping Rules for Reads and Writes of the ASRs
	4.4.8 Grouping Rules for Other Instructions

	4.5 Conditional Moves
	4.6 Instruction Latencies and Dispatching Properties
	4.6.1 Latency
	4.6.2 Blocking
	4.6.3 Pipeline
	4.6.4 Break and SIG

	Data Formats
	5.1 Integer Data Formats
	5.1.1 Integer Data Value Range
	5.1.2 Integer Data Alignment
	5.1.3 Signed Integer Data Types
	5.1.3.1 Signed Integer Byte
	5.1.3.2 Signed Integer Halfword
	5.1.3.3 Signed Integer Word
	5.1.3.4 Signed Integer Double
	5.1.3.5 Signed Extended Integer

	5.1.4 Unsigned Integer Data Types
	5.1.4.1 Unsigned Integer Byte
	5.1.4.2 Unsigned Integer Halfword
	5.1.4.3 Unsigned Integer Word
	5.1.4.4 Unsigned Integer Double
	5.1.4.5 Unsigned Extended Integer

	5.1.5 Tagged Word

	5.2 Floating-Point Data Formats
	5.2.1 Floating-Point Data Value Range
	5.2.2 Floating-Point Data Alignment
	5.2.3 Floating-Point, Single-Precision
	5.2.4 Floating-Point, Double-Precision
	5.2.5 Floating-Point, Quad-Precision

	5.3 VIS Execution Unit Data Formats
	5.3.1 Pixel Data Format
	5.3.2 Fixed-Point Data Formats
	5.3.2.1 Fixed16 Data Format
	5.3.2.2 Fixed32 Data Format

	Registers
	6.1 Introduction
	6.1.1 Document Notes

	6.2 Integer Unit General-Purpose r Registers
	6.2.1 Windowed (in/local/out) r Registers
	6.2.1.1 Predefined r Register Usages
	6.2.1.2 128-bit Operand Considerations

	6.2.2 Global r Register Sets
	6.2.2.1 Overlapping Windows

	6.3 Register Window Management
	6.3.1 CALL and JMPL Instructions
	6.3.2 Circular Windowing
	6.3.3 Clean Window with RESTORE and SAVE Instructions

	6.4 Floating-Point General-Purpose Registers
	6.4.1 Floating-Point Register Number Encoding
	6.4.2 Double and Quad Floating-Point Operands

	6.5 Control and Status Register Summary
	6.5.1 State and Ancillary State Register Summary
	6.5.2 Privileged Register Summary
	6.5.3 ASI and Specially Accessed Register Summary

	6.6 State Registers
	6.6.1 32-bit Multiply/Divide (YD) State Register 0
	6.6.2 Integer Unit Condition Codes State Register 2 (CCR)
	6.6.2.1 CCR Condition Code Fields (xcc and icc)

	6.6.3 Address Space Identifier (ASI) Register ASR 3
	6.6.4 TICK Register (TICK) ASR4
	6.6.5 Program Counters State Register 5
	6.6.6 Floating-Point Registers State (FPRS) Register 6
	6.6.6.1 FPRS_enable_fp (FEF)
	6.6.6.2 FPRS_dirty_upper (DU)
	6.6.6.3 FPRS_dirty_lower (DL)

	6.7 Ancillary State Registers: ASRs 16-25
	6.7.1 Dispatch Control Register (DCR) ASR 18
	6.7.2 Graphics Status Register (GSR) ASR 19
	6.7.3 Software Interrupt State Registers: ASRs�20,�21,�and�22
	6.7.4 Timer State Registers: ASRs 4, 23, 24, 25

	6.8 Privileged Registers
	6.8.1 Trap Stack Privileged Registers 0 through 3
	6.8.1.1 Common Attributes
	6.8.1.2 Trap Stack Operation
	6.8.1.3 Effects of Reset and Normal Operation

	6.8.2 Trap Base Address (TBA) Privileged Register 5
	6.8.3 Processor State (PSTATE) Privileged Register 6
	6.8.3.1 Global Register Set Selection - IG, MG, AG bits
	6.8.3.2 PSTATE_current_little_endian (CLE)
	6.8.3.3 PSTATE_trap_little_endian (TLE)
	6.8.3.4 PSTATE_mem_model (MM)
	6.8.3.5 PSTATE_RED_state (RED)
	6.8.3.6 PSTATE_enable_floating-point (PEF)
	6.8.3.7 PSTATE_address_mask (AM)
	6.8.3.8 PSTATE_privileged_mode (PRIV)
	6.8.3.9 PSTATE_interrupt_enable (IE)

	6.8.4 Trap Level (TL) Privileged Register 7
	6.8.5 Processor Interrupt Level (PIL) Privileged Register 8
	6.8.6 Register-Window State Privileged Registers 9 through�13
	6.8.7 Window State (WSTATE) Privileged Register 14
	6.8.8 Version (VER) Privileged Register 31

	6.9 Special Access Register
	6.9.1 Floating-Point Status Register (FSR)
	6.9.1.1 FSR_fp_condition_codes (fcc0, fcc1, fcc2, fcc3)
	6.9.1.2 FSR_rounding_direction (RD)
	6.9.1.3 FSR_nonstandard_fp (NS)
	6.9.1.4 FSR_version (ver)
	6.9.1.5 FSR_floating-point_trap_type (ftt)
	6.9.1.6 Floating-Point Exceptions Control and Status
	6.9.1.7 Floating-Point Exception Fields

	6.10 ASI Mapped Registers
	6.10.1 Data Cache Unit Control Register (DCUCR)
	6.10.2 Data Watchpoint Registers

	Instruction Types
	7.1 Introduction
	7.2 Memory Addressing for Load and Store Instructions
	7.2.1 Integer Unit Memory Alignment Requirements
	7.2.2 FP/VIS Memory Alignment Requirements
	7.2.3 Byte Order Addressing Conventions (Endianess)
	7.2.4 Address Space Identifiers (ASIs)
	7.2.5 Maintaining Data Coherency

	7.3 Integer Execution Environment
	7.3.1 IU Data Access Instructions
	7.3.1.1 Load and Store Instructions
	7.3.1.2 Move Instruction
	7.3.1.3 Conditional Move Instructions
	7.3.1.4 Atomic Instructions

	7.3.2 IU Arithmetic Instructions
	7.3.2.1 Integer Add and Subtract Instructions
	7.3.2.2 Tagged Integer Add and Subtract Instructions
	7.3.2.3 Integer Multiply and Divide Instructions
	7.3.2.4 Set High 22 Bits of Low Word
	7.3.2.5 Integer Shift Instructions

	7.3.3 IU Logic Instructions
	7.3.3.1 ADD, ANDN, OR, ORN, XOR, XNOR Instructions

	7.3.4 IU Compare Instructions
	7.3.5 IU Miscellaneous Instructions
	7.3.5.1 Interval Arithmetic Mode Instruction (SIAM) (VIS II)
	7.3.5.2 Align Address Instruction
	7.3.5.3 Population of Ones Count
	7.3.5.4 Privileged Register Access Instructions
	7.3.5.5 State Register Access Instructions

	7.4 Floating-Point Execution Environment
	7.4.1 Floating-Point Operate Instructions
	7.4.2 FPU/VIS Data Access Instructions
	7.4.2.1 Load Instructions
	7.4.2.2 Store Instructions
	7.4.2.3 Block Load and Store Instructions
	7.4.2.4 Conditional Move Instructions

	7.4.3 Floating-Point Arithmetic Instructions
	7.4.3.1 Absolute Value and Negate Instructions
	7.4.3.2 Add and Subtract Instructions
	7.4.3.3 Multiply Instructions
	7.4.3.4 Square Root and Divide Instructions

	7.4.4 Floating-Point Conversion Instructions
	7.4.4.1 Floating-Point to Integer
	7.4.4.2 Integer to Floating-Point
	7.4.4.3 Floating-Point to Floating-Point

	7.4.5 Floating-Point Compare Instructions
	7.4.6 Floating-Point Miscellaneous Instructions
	7.4.6.1 Load and Store FSR Register
	7.4.6.2 Data Alignment Instruction

	7.5 VIS Execution Environment
	7.5.1 VIS Pixel Data Instructions
	7.5.1.1 Array Instruction
	7.5.1.2 Byte Mask and Shuffle Instructions
	7.5.1.3 Edge Handling Instructions
	7.5.1.4 Pixel Packing Instructions
	7.5.1.5 Expand and Merge Instructions
	7.5.1.6 Pixel Distance Instruction

	7.5.2 VIS Fixed-Point 16-bit and 32-bit Data Instructions
	7.5.2.1 Partitioned Add and Subtract Instructions
	7.5.2.2 Partitioned Multiply Instructions
	7.5.2.3 Pixel Compare Instruction

	7.5.3 VIS Logic Instructions
	7.5.3.1 Fill with Ones and Zeroes Instruction
	7.5.3.2 Source Copy
	7.5.3.3 AND, OR, NAND, NOR, and XNOR Instructions

	7.6 Data Coherency Instructions
	7.6.1 FLUSH Instruction Cache Instruction
	7.6.2 MEMBAR (Memory Synchronization) Instruction
	7.6.3 Store Barrier Instruction

	7.7 Register Window Management Instructions
	7.8 Program Control Transfer Instructions
	7.8.1 Control Transfer Instructions (CTIs)
	7.8.1.1 Conditional Branches
	7.8.1.2 Unconditional Branches
	7.8.1.3 CALL/JMPL and RETURN Instructions
	7.8.1.4 DONE and RETRY Instructions
	7.8.1.5 Trap Instruction (Tcc)
	7.8.1.6 ILLTRAP
	7.8.1.7 NOP

	7.9 Prefetch Instructions
	7.10 Instruction Summary Table by Category
	7.10.1 Instruction Superscripts
	7.10.2 Instruction Mnemonics Expansion
	7.10.3 Instruction Grouping Rules
	7.10.4 Table Organization
	7.10.5 Integer Execution Environment Instructions
	7.10.6 Floating-Point Execution Environment Instructions
	7.10.7 VIS Execution Environment Instructions
	7.10.8 Data Coherency Instructions
	7.10.9 Register-window Management Instructions
	7.10.10 Program Control Transfer Instructions
	7.10.11 Data Prefetch Instructions

	7.11 Instruction Formats and Fields
	7.12 Reserved Opcodes and Instruction Fields
	7.12.1 Summary of Unimplemented Instructions

	7.13 Big/Little-Endian Addressing
	7.13.1 Big-Endian Addressing Convention
	7.13.2 Little-Endian Addressing Convention

	Memory Models
	8.1 TSO Behavior
	8.2 Memory Location Identification
	8.3 Memory Accesses and Cacheability
	8.3.1 Coherence Domains
	8.3.1.1 Cacheable Accesses
	8.3.1.2 Non-Cacheable and Side-Effect Accesses

	8.3.2 Global Visibility
	8.3.3 Memory Ordering

	8.4 Memory Synchronization
	8.4.1 MEMBAR #Sync
	8.4.2 MEMBAR Rules
	8.4.3 FLUSH

	8.5 Atomic Operations
	8.6 Non-Faulting Load
	8.7 Prefetch Instructions
	8.8 Block Loads and Stores
	8.9 I/O and Accesses with Side-Effects
	8.9.1 Instruction Prefetch to Side-Effect Locations
	8.9.2 Instruction Prefetch Exiting Red State

	8.10 Internal ASIs
	8.11 Store Compression
	8.12 Read After Write (RAW) Bypassing
	8.12.1 RAW Bypassing Algorithm
	8.12.2 RAW Detection Algorithm

	Caches and Coherency
	9.1 Cache Organization
	9.1.1 Virtually Indexed, Physically Tagged Caches (VIPT)
	9.1.1.1 Data Cache (D-Cache)

	9.1.2 Bypassing the D-Cache
	9.1.2.1 Special Case 1
	9.1.2.2 Special Case 2

	9.1.3 Physically-Indexed, Physically-Tagged Caches (PIPT)
	9.1.3.1 Instruction Cache (I-Cache)
	9.1.3.2 Prefetch Cache (P-Cache)

	9.1.4 Second Level and Write Caches (L2�Cache, W-Cache)
	9.1.5 L2�Cache Replacement Policy
	9.1.6 L2�Cache Locking

	9.2 Cache Flushing
	9.2.1 Address Aliasing Flushing
	9.2.2 Committing Block Store Flushing
	9.2.3 L2-Cache Flushing

	9.3 Controlling P-Cache
	9.4 Translation Lookaside Buffers (TLBs)
	9.4.1 TLB Flushing
	9.4.2 TTE Format
	9.4.3 Synchronous Fault Status Register (SFSR) Extensions
	9.4.4 I/D Translation Storage Buffer Register
	9.4.5 TLB Data Access Register
	9.4.5.1 Special Case for Data TLBs
	9.4.5.2 Special Case for Instruction TLBs

	9.4.6 TLB Diagnostic Register

	Interrupt Handling
	10.1 Interrupt Vector Dispatch
	10.2 Interrupt Vector Receive
	10.3 Interrupt Global Registers
	10.4 Interrupt ASI Registers
	10.4.1 Outgoing Interrupt Vector Data<7:0> Register
	10.4.2 Interrupt Vector Dispatch Register
	10.4.3 Interrupt Vector Dispatch Status Register
	10.4.4 Incoming Interrupt Vector Data<7:0>
	10.4.5 Interrupt Vector Receive Register

	10.5 Software Interrupt Register (SOFTINT)
	10.5.1 Setting the Software Interrupt Register
	10.5.2 Clearing the Software Interrupt Register

	Performance Instrumentation
	11.1 Performance Control Register (PCR)
	11.2 Performance Instrumentation Counter (PIC) Register
	11.2.1 PIC Counter Overflow Trap Operation

	11.3 Performance Instrumentation Operation
	11.3.1 Gathering Data for More Than Two Events
	11.3.2 Gathering Data in Privileged and Non-Privileged Modes
	11.3.3 Performance Instrumentation Implementations
	11.3.4 Performance Instrumentation Accuracy

	11.4 Pipeline Counters
	11.4.1 Instruction Execution and Processor Clock Counts
	11.4.2 IIU Event Counts
	11.4.3 IIU Dispatch Stall Counts
	11.4.3.1 Dispatch Counter Considerations

	11.4.4 R-stage Stall Counts
	11.4.5 Recirculation Stall Counts

	11.5 Cache Access Counters
	11.5.1 Instruction Cache Events
	11.5.2 Data Cache Events
	11.5.3 Write Cache Events
	11.5.4 Prefetch Cache Events
	11.5.5 L2-Cache Events
	11.5.6 Separating D-cache Stall Cycle Counts

	11.6 Memory Controller Counters
	11.7 Miscellaneous Counters
	11.7.1 System Interface Events and Clock Cycles
	11.7.2 Software Events
	11.7.3 Floating-Point Operation Events

	11.8 PCR.SL and PCR.SU Encodings

	Reset and RED_state
	12.1 RED_state Characteristics
	12.2 Resets
	12.2.1 Power�On Reset
	12.2.2 System Reset
	12.2.3 Externally Initiated Reset (XIR)
	12.2.4 Watchdog Reset (WDR) and error_state
	12.2.5 Software-Initiated Reset (SIR)

	12.3 RED_state Trap Vector
	12.4 Initialization and Use of the Return Address Stack
	12.5 Machine States

	Instruction Definitions
	A.1 Add
	A.2 Alignment Instructions (VIS I)
	A.3 Three-Dimensional Array Addressing Instructions (VIS I)
	A.4 Block Load and Block Store (VIS�I)
	A.5 Byte Mask and Shuffle Instructions (VIS II)
	A.6 Branch on Integer Register with Prediction (BPr)
	A.7 Branch on Floating-Point Condition Codes with Prediction (FBPfcc)
	A.8 Branch on Integer Condition Codes with Prediction (BPcc)
	A.9 Call and Link
	A.10 Compare and Swap
	A.11 DONE and RETRY
	A.12 Edge Handling Instructions (VIS I, VIS II)
	A.13 Floating-Point Add and Subtract
	A.14 Floating-Point Compare
	A.15 Convert Floating-Point to Integer
	A.16 Convert Between Floating-Point Formats
	A.17 Convert Integer to Floating-Point
	A.18 Floating-Point Move
	A.19 Floating-Point Multiply and Divide
	A.20 Floating-Point Square Root
	A.21 Flush Instruction Memory
	A.22 Flush Register Windows
	A.23 Illegal Instruction Trap
	A.24 Jump and Link
	A.25 Load Floating-Point
	A.26 Load Floating-Point from Alternate Space
	A.27 Load Integer
	A.28 Load Integer from Alternate Space
	A.29 Load Quadword, Atomic (VIS I)
	A.30 Load-Store Unsigned Byte
	A.31 Load-Store Unsigned Byte to Alternate Space
	A.32 Logical Operate Instructions (VIS I)
	A.33 Logical Operations
	A.34 Memory Barrier
	A.35 Move Floating-Point Register on Condition (FMOVcc)
	A.36 Move Floating-Point Register on Integer Register Condition (FMOVr)
	A.37 Move Integer Register on Condition (MOVcc)
	A.38 Move Integer Register on Register Condition (MOVr)
	A.39 Multiply and Divide (64-bit)
	A.40 No Operation
	A.41 Partial Store (VIS I)
	A.42 Partitioned Add/Subtract Instructions (VIS I)
	A.43 Partitioned Multiply Instructions (VIS I)
	A.43.1 FMUL8x16 Instruction
	A.43.2 FMUL8x16AU Instruction
	A.43.3 FMUL8x16AL Instruction
	A.43.4 FMUL8SUx16 Instruction
	A.43.5 FMUL8ULx16 Instruction
	A.43.6 FMULD8SUx16 Instruction
	A.43.7 FMULD8ULx16 Instruction

	A.44 Pixel Compare (VIS�I)
	A.45 Pixel Component Distance (PDIST) (VIS I)
	A.46 Pixel Formatting (VIS I)
	A.46.1 FPACK16
	A.46.2 FPACK32
	A.46.3 FPACKFIX
	A.46.4 FEXPAND
	A.46.5 FPMERGE

	A.47 Population Count
	A.48 Prefetch Data
	A.48.1 Prefetch Instruction Variants
	A.48.2 New Error Handling of PREFETCH,2 and Other Prefetches

	A.49 Read Privileged Register
	A.50 Read State Register
	A.51 RETURN
	A.52 SAVE and RESTORE
	A.53 SAVED and RESTORED
	A.54 Set Interval Arithmetic Mode (VIS II)
	A.55 SETHI
	A.56 Shift
	A.57 Short Floating-Point Load and Store (VIS I)
	A.58 SHUTDOWN (VIS I)
	A.59 Software-Initiated Reset
	A.60 Store Floating-Point
	A.61 Store Floating-Point into Alternate Space
	A.62 Store Integer
	A.63 Store Integer into Alternate Space
	A.64 Subtract
	A.65 Tagged Add
	A.66 Tagged Subtract
	A.67 Trap on Integer Condition Codes (Tcc)
	A.68 Write Privileged Register
	A.69 Write State Register
	A.70 Deprecated Instructions
	A.70.1 Branch on Floating-Point Condition Codes (FBfcc)
	A.70.2 Branch on Integer Condition Codes (Bicc)
	A.70.3 Divide (64-bit / 32-bit)
	A.70.4 Load Floating-Point Status Register
	A.70.5 Load Integer Doubleword
	A.70.6 Load Integer Doubleword from Alternate Space
	A.70.7 Multiply (32-bit)
	A.70.8 Multiply Step
	A.70.9 Read Y Register
	A.70.10 Store Barrier
	A.70.11 Store Floating-Point Status Register Lower
	A.70.12 Store Integer Doubleword
	A.70.13 Store Integer Doubleword into Alternate Space
	A.70.14 Swap Register with Memory
	A.70.15 Swap Register with Alternate Space Memory
	A.70.16 Tagged Add and Trap on Overflow
	A.70.17 Tagged Subtract and Trap on Overflow
	A.70.18 Write Y Register

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

