
Algebraic Attacks on Combiners
with Memory and Several Outputs?

Nicolas T. Courtois
Axalto Cryptographic Research & Advanced Security, 36-38 rue de la Princesse

BP 45, F-78430 Louveciennes Cedex, France, courtois@minrank.org

Abstract. Algebraic attacks on stream ciphers [14] recover the key by
solving an overdefined system of multivariate equations. Such attacks
can break several interesting cases of LFSR-based stream ciphers, when
the output is obtained by a Boolean function, see [14–16]. Recently this
approach has been successfully extended also to combiners with memory,
provided the number of memory bits is small, see [1, 16, 2]. In [2] it is
shown that, for ciphers built with LFSRs and an arbitrary combiner
using a subset of k LFSR state bits, and with l inner state/memory bits,
a polynomial attack always do exist when k and l are fixed. Yet this
attack becomes very quickly impractical: already when k and l exceed
about 4.

In this paper we give a simpler proof of this result from [2], and prove
a more general theorem. We show that much faster algebraic attacks
exist for any cipher that (in order to be fast) outputs several bits at a
time. In practice our result substantially reduces the complexity of the
best attack known on four well known constructions of stream ciphers
when the number of outputs is increased. We present attacks on modified
versions of Snow, E0, LILI-128, Turing, and some other ciphers.

Note: This is an extended version of the paper published in ICISC 2004.

Key Words: algebraic attacks on stream ciphers, pseudo-random gener-
ators, multivariate equations, linearization, XL algorithm, Gröbner bases,
nonlinear filtering, Boolean functions, combiners with memory, LILI-128,
Turing cipher, Snow, Nessie, E0, Bluetooth.

1 Introduction

In this paper we study LFSR-based stream ciphers. In such ciphers there
is an inner state updated by an iterated linear function, and a stateful
or stateless nonlinear combiner that produces the output, given the inner
state of the first (linear) part. Our goal is to extend the recent very
powerful and very general algebraic attacks on stream ciphers to the case
of combiners with several outputs. Such constructions appear naturally if
we want to construct ciphers being fast in practice.

Up till recently, for stateless combiners - using a Boolean function -
most general attacks known were so called correlation attacks, see for ex-
ample [30, 23, 11, 8]. In order to resist such attacks, many authors focused

? Work supported by the French Ministry of Research RNRT Project “X-CRYPT”.



2 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

on proposing Boolean functions that will have no good linear approxi-
mation and that will be correlation immune with regard to a subset of
several input bits, see for example [11]. Unfortunately there is a tradeoff
between these two properties. One of the proposed remedies is to use a
stateful combiner. This idea is used in the Bluetooth wireless protocol
cipher E0 [6]. Yet the simplicity of E0 made it vulnerable to advanced
correlation attacks [25] and other attacks [2, 1, 16].

Recently the scope of application of the correlation attacks have been
extended to consider higher degree correlation attacks with respect to
non-linear low degree multivariate functions, or in other words, allowing
to exploit low degree approximations [14]. The paper [14], proposes an
algebraic approach to the cryptanalysis of stream ciphers. It will reduce
the problem of key recovery, to solving an overdefined system of algebraic
equations. Following [14] and [15], all LFSR-based stream ciphers are
(potentially) vulnerable to algebraic attacks. The argument says that, if
by some method, we are able to deduce from the output bit(s), only one
multivariate equation of low degree in the LFSR state bits, then the same
can (probably) be done for many other states. Each equation remains also
linear with respect to any other LFSR state, and given many keystream
bits, we inevitably obtain a very overdefined system of equations (i.e.
many equations). Then we may apply the XL algorithm from Eurocrypt
2000 [36], adapted for this purpose in [14], or the simple linearization as
in [15, 5], to efficiently solve the system.

In the paper [15], the scope of algebraic attacks is substantially ex-
tended, by showing new non-trivial methods to obtain low degree equa-
tions, that are not low degree approximations. This gives attacks that
are not correlation attacks anymore, and are purely algebraic attacks on
stream ciphers. The key ingredient is a simple but very powerful method
to reduce the degree of the equations: instead of considering outputs as
functions of inputs, one should rather study algebraic relations be-
tween the input and output bits. They turn out to have a substantially
lower degree. The general idea of using multivariate algebraic relations in
cryptanalysis of various public and secret key cryptosystems is not new
and have been proposed (for very different purposes) by Patarin’95 [34],
Jakobsen’98 [26], Courtois [13, 17, 18], and recently by Courtois-Pieprzyk
in attempt to break AES [19].

In stream ciphers, this type of attacks have been proposed first in [15]
and turn out to be quite powerful. In most cases, as already explained, due
to the recursive structure of the cipher, finding just one such multivariate
relation will give a polynomial attack on a stream cipher. Very surpris-



Algebraic Attacks on Combiners with Memory and Several Outputs 3

ingly, this ”multivariate relation” attack [15], extends also to combiners
with memory, in particular when the number of possible inner states is
small. This can be seen as an algebraic counterpart of previous results
by Meier, Staffelbach and Golic on correlation attacks on combiners with
one or a few memory bits [31, 24]. For algebraic attacks, the possibility of
eliminating memory bits has been first suggested by Courtois and Meier
in [15]. The heuristics of [15] only says that such attacks may exist, and
exhibits also a counter-example for which the current method will fail
to find a useful multivariate relation that would lead to an attack (cf.
Section 7 of [15]). Yet, considering relations that imply potentially many
output bits, seems very promising, except that finding useful relations
becomes a hard problem (how to know which outputs will be used in the
relation ?). The first attack of this type for a realistic stream cipher E0,
has been found by careful elimination by hand, done by Armknecht [1].
A substantial speed-up for this attack is called “Fast Algebraic Attack”:
[16, 3, 28].

Even more surprisingly, Krause and Armknecht have recently proven
a Theorem, to the effect that for any combiner with k inputs and l bits
of memory, an algebraic attack of this type will always exist [2]. More
precisely, they show that required multivariate relations do always exist
with degree at most dk(l + 1)/2e. It generalises an earlier theorem due to
Courtois and Meier, giving degree dk/2e for l = 0, published in [15].

With this bound on the degree from [2], starting from about l = 4
memory bits algebraic attacks will quickly become quite impractical. In
this paper we will give a new, much simpler proof of this theorem, and
we will present a much more general theorem, for combiners that use
several outputs instead of one. For correlation attacks, this issue has been
studied in [39, 8]. For algebraic attacks, we will show that having several
outputs allows to substantially lower the degree of the relations, which in
turn will dramatically decrease the complexity of an algebraic attack on
most LFSR-based stream ciphers. Our new theorem will also give new and
valuable results for combiners without memory (i.e. using just Boolean
functions).

2 Notation
We consider stream ciphers in which there is a state with a linear feed-
back function (for example composed of one or several LFSRs). Let K =
(K0, . . . ,Kn−1) be an n-bit secret key. Let s = K be the initial state of
the LFSR or the linear part of the cipher. At each clock t = 0, 1, 2, . . .,
the new state of the linear part is computed as s ← L(s), with L being
some multivariate linear transformation, for example corresponding to



4 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

the connection polynomial of an LFSR, a combination of several parallel
LFSRs, or a linear cellular automaton. We assume that L is public.

Only k out of n bits of the linear part of the cipher are used in the
next part of the cipher called the combiner. The combiner has k inputs,
m outputs and l internal memory bits. At each clock t = 0, 1, 2, . . ., the
combiner outputs m bits y

(t)
0 , . . . , y

(t)
m−1, for t = 0, 1, 2, . . .. These output

bits depend deterministically on the k input bits x
(t)
0 , . . . , x

(t)
k−1 and on

internal memory bits that before and at the time t are a
(t−1)
0 , . . . , a

(t−1)
l−1 .

In all generality, the second component is described as a pair of functions
F = (F1, F2) : GF (2)n+l → GF (2)m+l, that given the current state and
the input, compute the next state and the output:

F :

{
(y(t)

0 , . . . , y
(t)
m−1) = F1(x

(t)
0 , . . . , x

(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1 )

(a(t)
0 , . . . , a

(t)
l−1) = F2(x

(t)
0 , . . . , x

(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1 )

The initial inner state is a(−1), exists before t = 0, and can be anything
(it is and remains unknown, the goal of the attacks being to eliminate all
the monomials in the ai).

3 Algebraic Attacks on Stream Ciphers

This Section summarizes the general idea of algebraic attacks on stream
ciphers from [14], greatly extended and developed in [15].

We recall that the linear part of our cipher (a combination of one or
several binary LFSRs) is composed of n bits s0, . . . , sn−1. At the begin-
ning s = K (the initial LFSR state) and at each clock of the cipher, it is
updated as s← L(s), with L being some known multivariate linear trans-
formation. The general algebraic attack on such stream ciphers, following
closely [15] or [16], works as follows:

• Find (by some method that is very different for each cipher) one (at
least, but one is enough) multivariate relation Q of low degree d be-
tween the LFSR state bits and some M following outputs, for example:

Q(s0, s1, . . . , sn−1, y(0), . . . , y(M−1)) = 0

• The same equation will apply to all consecutive windows of M states

Q([Lt(K)]0, [Lt(K)]1, . . . , [Lt(K)]n−1, y(t), . . . , y(t+M−1)) = 0

• The y(t), . . . , y(t+M−1) are replaced by their values known from the
observed output of the cipher.
• For each keystream bit, we get a multivariate equation of degree k in

the xi.



Algebraic Attacks on Combiners with Memory and Several Outputs 5

• Due to the linearity of L, for any t, the degree of these equations is
still d.

• Given many keystream bits, we inevitably obtain a very overdefined
system of equations (i.e. great many multivariate equations of degree
d in the Ki).
• Then we may apply the XL algorithm from Eurocrypt 2000 [36],

adapted to equations of degree higher than 2 in [14]. Better results
should be obtained with modern Gröbner bases techniques, such as
the F5 algorithm [22].
• If we dispose of a sufficient amount of keystream, (which is frequently

not very big, see [15]), the XL algorithm is not necessary and may
be replaced by the so called linearization method that is particularly
simple. There are about T ≈

(
n
d

)
monomials of degree ≤ d in the n

variables Ki (assuming d ≤ n/2). We consider each of these monomi-
als as a new variable Vj . Given about

(
n
d

)
+ M keystream bits, and

therefore R =
(
n
d

)
equations on successive windows of M bits, we get

a system of R ≥ T linear equations with T =
(
n
d

)
variables Vi that can

be easily solved by Gaussian elimination on a linear system of size T .
• In theory, the Gaussian elimination takes time Tω with ω ≤ 2.376 [12].

However the fastest practical algorithm we are aware of, is Strassen’s
algorithm [38] that requires about 7 ·T log27 operations. Since our basic
operations are over GF (2), we expect that a careful bitslice imple-
mentation of this algorithm on a modern CPU can handle 64 such
operations in one single CPU clock. Thus, in all numerical complexity
results given in this paper we will give 7/64 · T log27 as an estimation
of the number of CPU clocks necessary in the attack.

4 The Proof Method

Our general Theorem 5.1, given later, considers arbitrary combiners with
k input bits, l memory bits, and m output bits and shows the existence of
equations of some degree that lead to an algebraic attack. It generalises
the main result of [2] for arbitrary combiners with one output, i.e. with
m = 1, which in turn generalises a result obtained in [15] for memory-
less combiners with single output, i.e. for m = 1 and l = 0. Our proof
technique is very different than in [2] and is very similar to one used in
[15].

In this section, in order to illustrate the simplicity of our proof tech-
nique, we will first prove the following theorem for combiners with m = 1
and l = 1, that is in fact a special case of both our general Theorem 5.1
given later, and of the main theorem of [2].



6 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

Theorem 4.1 (Special Case of Krause-Armknecht Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs xi,
one bit of memory a, and one output y. (The output and the next state
of the memory bit a, depend in an arbitrary way (but deterministically)
on the k inputs and the previous memory bit.)

Then, given M = 2 consecutive states (t, t+1), there is a multivariate
equation R of degree k in the x

(i)
j , that relates only the input and the

output bits, without any of the inner state/memory bits a(t−1), a(t), as
follows:

R
(
x

(t)
0 , . . . , x

(t)
k−1; x

(t+1)
0 , . . . , x

(t+1)
k−1 ; y(t), y(t+1)

)
= 0.

Remark: In this and later theorems, we will only limit the degree of
the equations in the x

(i)
j . The degree in the y

(i)
j is not important, as in an

attack these values will be fixed.
Proof: We consider 2k variables as follows: x

(t)
0 , . . . , x

(t)
k−1, x

(t+1)
0 , . . . , x

(t+1)
k−1 .

We know that the following two memory bits a(t) and a(t+1) and the two
outputs y(t), y(t+1), do depend only on these 2k variables, plus addition-
ally on the bit a(t−1) present in memory at the beginning. Thus, the four
values a(t), a(t+1), y(t) and y(t+1), do depend deterministically only on
the 2k +1 variables x

(t)
0 , . . . , x

(t+1)
k−1 and a(t−1). This is summarised on the

following picture:

1-a(t−1)

? ?

x
(t)
0 · · ·x(t)

k−1

?
y(t)

2-a(t)

? ?

x
(t+1)
0 · · ·x(t+1)

k−1

?
y(t+1)

-a(t+1)

Fig. 1. Two successive applications of a combiner with k inputs, 1 output and 1 memory
bit

We define the following set of monomials A: we consider all the mono-
mials of degree up to k in the following 2k variables: the x

(t)
i together with

the x
(t+1)
j . The size of A is exactly

∑k
i=0

(
2k
i

)
= 22k−1 + 1

2

(
2k
k

)
, which is

strictly greater than 22k−1.

Now we will create the following matrix:

– Lines are all the possible values for x
(t)
0 , . . . , x

(t)
k−1, x

(t+1)
0 , . . . , x

(t+1)
k−1

and for the memory bit a(t−1). There are 22k+1 lines.



Algebraic Attacks on Combiners with Memory and Several Outputs 7

– The columns correspond to products of successive monomials of A,
multiplied by any out of the 4 possible monomials in the two variables
y(t), y(t+1). There are 4 · |A| = 22k+1 + 2

(
2k
k

)
> 22k+1 columns.

– Each entry in the matrix is the value ∈ {0, 1} of the column monomial
in the case corresponding to the current line.
The number of columns is strictly greater than the number of lines.

Therefore one column must be a linear combination of other columns.
Since columns are products of monomials, and all the cases are treated,
this gives a multivariate equation, true with probability 1, for all possible
entries and whatever is the initial value of a(t−1). By construction, it does
not involve memory bits a(i). This ends the proof of Theorem 4.1. ut

Remark 1: It can be seen that there are at least 2
(
2k
k

)
− 1 such

equations, which could greatly reduce the keystream requirements of some
attacks. For simplicity we do not exploit this in the present paper.

Remark 2: In Appendix A, we give another proof of this Theorem, in
which the result will be a bit stronger: in the above theorem, there are ar-
bitrary products of degree k of the x

(t)
i and the x

(t+1)
j , that are multiplied

by one of the 4 possible monomials 1, y(t), y(t+1), y(t)y(t+1). Surprisingly,
it is sufficient to consider products that do not mix the input/output
variables for the first step t, with any of the variables for the second step
t + 1. This results in much less monomials being present.

5 New General Result on Combiners with Memory

In a very similar way, we will prove our main result, that extends the
main theorem of [2].
Theorem 5.1 (Our Key Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs xi, l
bits of memory ai, and m outputs yi. Let d and M be two integers such
that:

2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l (KE)

Then, considering M consecutive steps/states (t, . . . t + M − 1), there
is a multivariate equation (and relation) R of degree d in the x

(i)
j , relating

1 the input and the output bits for these states

R
(
x

(t)
0 , . . . , x

(t)
k−1, . . . , x

(t+M−1)
0 , . . . , x

(t+M−1)
k−1 ;

y
(t)
0 , . . . , y

(t)
m−1, . . . y

(t+M−1)
0 , . . . , y

(t+M−1)
m−1

)
= 0.

1 Again, without any of the inner state/memory bits a
(i)
j .



8 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

Proof: .
Our proof is very similar as in the special case above (Theorem 4.1),

and also gives a new, much simpler proof of the original (but less general)
result of [2].

We start with the following (cf. Fig. 2):

– We have M ·m output bits: y
(t)
0 , . . . , y

(t)
m−1; . . . ; y

(t+M−1)
0 , . . . , y

(t+M−1)
m−1

– The total of M ·k input bits, x
(t)
0 , . . . , x

(t)
k−1; . . . ;x

(t+M−1)
0 , . . . , x

(t+M−1)
k−1 .

– We have l initial memory bits, a
(t−1)
0 , . . . , a

(t−1)
l−1 .

– In all we have l + Mk input variables. The memory bits for second
and following inner states, a

(t+i)
j , 0 < i < M do depend only on these

l + Mk variables.
– Thus, for our M consecutive steps/states t, . . . , t + M − 1, all the

outputs y
(t+i)
j , i < M do depend deterministically only on the l+Mk

variables listed above.

1
-

-

a
(t−1)
0

...

a
(t−1)
l−1

? ?

x
(t)
0 · · ·x(t)

k−1

? ?
y
(t)
0 · · · y(t)

m−1

2
-

-

a
(t)
0

...

a
(t)
l−1

? ?

x
(t+1)
0 · · ·x(t+1)

k−1

? ?
y
(t+1)
0 · · · y(t+1)

m−1

-

-

a
(t+1)
0

...

a
(t+1)
l−1

· · · · · ·

· · · · · ·

M
-

-

a
(t+M−2)
0

...

a
(t+M−2)
l−1

? ?

x
(t+M−1)
0 · · ·x(t+M−1)

k−1

? ?
y
(t+M−1)
0 · · · y(t+M−1)

m−1

Fig. 2. M successive applications of a combiner with k inputs, m outputs and l bits of
memory

We define the following set of monomials A: we consider all the mono-
mials of degree up to d in all the Mk variables x

(t+i)
i . The size of A is

exactly
∑d

i=0

(
Mk

i

)
. Now we will create the following matrix:

– Lines are all the possibilities for the l+Mk input variables. There are
2Mk+l lines.

– The columns are all products of monomials of A, multiplied by any
of the possible monomials in the y

(t+i)
j . There are 2Mm · |A| = 2Mm ·∑d

i=0

(
Mk

i

)
columns.

– Each entry in the matrix is the value ∈ {0, 1} of the column monomial
in the case corresponding to the current line.



Algebraic Attacks on Combiners with Memory and Several Outputs 9

The key argument is the same as before. The number of columns in
our matrix should be strictly greater than the number of lines, and the
requirement to achieve this, is precisely our previous assumption:

2Mm · |A| = 2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l

Therefore we get at least one non-trivial linear combination of columns
(i.e. monomials) that is zero, for all possible entries and all possible initial
(memory) states. This multivariate equation is (with the monomials we
have chosen) exactly of the form required by our Theorem 5.1, and this
ends the proof. ut

Remark: It is easy to see that, if in the cipher we use LFSRs, there
should be common input bits between the M consecutive states. Then
Theorem 5.1 will be improved, replacing Mk by a corresponding lower
value, in the right side of the above inequality. For simplicity we do not
exploit this improvement in the present paper.

6 Application of Theorem 5.1 to Stream Cipher
Cryptanalysis

Theorem 5.1 and other results of this paper, allow to find equations and
execute the algebraic attack described in Section 3. In some cases this
Theorem would work even when d = 0, when other variables are such that
(KE) holds, but the equations of degree 0 in the x

(i)
j will only contain the

y
(i)
j , and cannot be used to recover the secret key of a cipher (though can

probably be exploited to predict the future keystream). For simplicity, in
this paper we will always apply Theorem 5.1 for d ≥ 1.

6.1 The Complexity of the Attacks based on Theorem 5.1
Our algebraic attack on stream ciphers has two main steps:

Step 1. Find the equations by Gaussian reduction on the matrix
given in the proof of the Theorem. This step requires about 2ω(Mk+l)

computations.
Step 2. From the Step 1. for each keystream bit, we get one equa-
tion of degree d in the x

(i)
j (with d ≥ 1). The x

(i)
j are known linear

combinations of the key bits Ki and these equations are also of degree
d in the key bits. When the x

(i)
j are replaced by their actual values

obtained from the keystream, we get multivariate equations that only
contain monomials of degree d in the key bits Ki. Then, given about
T =

(
n
d

)
keystream bits, we solve these equations by linearization in

about Tω ≈ 2ωd log n computations.



10 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

In some cases (when M is small), the complexity of the first step may be
negligible compared to the second step (cf. Section 7.5 and examples in
Table 2). In some cases the complexity of the first step may always be
very large (examples in Table 3). In other cases there will be a tradeoff
between the complexity of the two steps, see Section 7.6.

Remark: The complexity of replacing the x
(i)
j in the equations of

Step 1., by the relevant (known) linear combinations of the key bits Ki

(cf. Section 3) has been neglected for simplicity (it can be seen to be
smaller than the maximum of complexities given above).

6.2 Important Remark
It is important to understand that, in general, this Theorem 5.1 does not
show that the algebraic attack will always work. There are some (very
special) cases in which it will not work as well as expected from our
Theorem 5.1. We will see this on an example.

Assume that we have a component that has m = 10 outputs, and we
artificially add 10 more outputs computed as some 10 Boolean functions
of the ”real” outputs:

(y10, . . . , y19) = (F10(y0, . . . , y9), . . . , F19(y0, . . . , y9)) .

Now we have (in theory) l = 20, and from the formula (KE) we see
easily that in most cases our Theorem 5.1 will give for m = 20 equations of
substantially lower degree than for m = 10. These equations are real (their
existence is proven). Yet these equations will not be useful in an attack.
For example there will be equations such as y10 = F10(y0, . . . , y9), and
a great many of derived equations: different linear combinations of these
equations multiplied by many different monomials. All these equations
are in a sense ”artificial” and unfortunately they will all reduce to 0
later in the attack, after when the y0, . . . , y19 are replaced by their values
obtained from the output of the cipher.

This example shows that in some very special cases, the algebraic
attack will probably not work for the degree given by our Theorem 5.1.
Yet, it will probably work perfectly well for the degree corresponding to
the ”real” value of l = 10. It is conjectured that when the output bits are
fully independent and not related by some algebraic relation, and if the
output takes all the possible 2m values, the attack should always work,
for every equation obtained from the above Theorem 5.1. Moreover, in
practice, the difference between the number of lines and the number of
columns, in the matrix (the one we generated to prove the theorem) will
be big, and there will be not only one but, (for example) thousands of
equations obtained. The chances that the attack would not work for all
of them, are negligible.



Algebraic Attacks on Combiners with Memory and Several Outputs 11

7 How to Choose Parameters in Theorem 5.1

In the previous Section 6 we showed that it is straightforward to use
Theorem 5.1 to design an algebraic attack on stream ciphers following
Section 3. Another question is to choose parameters in such a way that
the complexity of the attack will be optimal. For this we need to study
the behaviour of the key inequality (KE): 2Mm ·

∑d
i=0

(
Mk

i

)
> 2Mk+l.

In order to minimise the complexity of Step 2. of the attack (cf. Section
6.1) we simply need to choose M that gives the smallest possible d. Yet,
as we will see later (in particular when m ≥ k, cf. Section 7.6) things are
not always as simple to optimise the Step 1.

7.1 Asymptotic Behaviour of (KE) and Theorem 5.1
In order choose (M,d) that satisfy (KE): 2Mm ·

∑d
i=0

(
Mk

i

)
> 2Mk+l we

have two cases:
A. If m < k, when M →∞ we have no hope to satisfy the key inequality

(KE). In this case we conjecture that the best attack (and the smallest
degree d) will be achieved taking M as small as possible (or close to
it). This case is studied in Section 7.5.

B. If m ≥ k then when M →∞ we can always satisfy the key inequality
(KE). In this case we should take M as big as possible, but not too big
because the complexity to find the equations required by the attack
(Step 1. cf. Section 6.1) could become bigger than the complexity of
the attack itself (Step 2.). This case is studied in Section 7.6.

Remark: For the (less general) theorem from [2], there is only the case
A., because m = 1.

7.2 Necessary Condition for (KE) and Theorem 5.1
We want to solve (KE) given the values m and l. Since one always has∑d

i=0

(
Mk

i

)
≤ 2Mk, we cannot have Mm ≤ l, and this gives a necessary

condition Mm > l, hence Mm ≥ l + 1 which gives
M ≥ d(l + 1)/me. (C)

7.3 Sufficient Conditions for (KE) and Theorem 5.1
Conversely, it is easy to see that, each time M ≥ d(l + 1)/me, we have
Mm ≥ l + 1, and the formula (KE) will be satisfied for some d ≤Mk.

Sufficient Condition 1: For any given values m and l, and for any
M ≥ d(l + 1)/me, the formula (KE) will be satisfied by some d being at
most d ≤Mk.

When the minimum M = d(l + 1)/me is chosen, we can use d =
k · d(l+1)/me, but in fact one can do better. A smaller d can be achieved
for this same (minimal) M . Indeed, since M is an integer, the minimal



12 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

value of M does not imply that we need to take a maximal value for d.
From (KE) we get the following condition:

d∑
i=0

(
Mk

i

)
> 2Mk · 2l−m·d(l+1)/me

It can be seen that d = dkM/2e = dkd(l + 1)/me/2e is always suffi-
cient. Indeed we always have:

d∑
i=0

(
Mk

i

)
> 2Mk/2.

And we also always have:
1
2
≥ 2l−m·d(l+1)/me.

Sufficient Condition 2: From the above, we get immediately the
following Theorem:

Theorem 7.4 (Generalised Krause-Armknecht Theorem).
Let F be an arbitrary fixed circuit/component with k binary inputs, l
bits of memory, and m outputs. Then, considering M = d(l + 1)/me
consecutive steps/states (t, . . . t+M −1), there is a multivariate relation,
involving only the input bits (the x

(i)
j ) and the output bits (the y

(i)
j ) for

these states, and with degree dkM/2e = dkd(l + 1)/me/2e in the x
(i)
j .

Remark: If we put m = 1 in this Theorem 7.4 (1 output bit), we
obtain exactly the main result of [2]. This in turn generalises the theorem
given in [15], which is exactly the above result with m = 1 and l = 0,
i.e. the case of Boolean functions that are memoryless combiners with 1
output bit.

7.5 How to Use Theorem 5.1 when m < k

All the remarks above are true both for m < k and for m ≥ k, however
we expect that (cf. Section 7.1) choosing the smallest possible M should
be optimal (or close to optimal) only when m < k. In some cases, the
choice of Theorem 7.4 above: M = d(l + 1)/me and d = dkM/2e will be
optimal for Theorem 5.1. However in most cases, there will be a non-zero
difference between M = d(l+1)/me = 1 and (l+1)/m that will imply that
1
2 � 2l−m·d(l+1)/me in the derivation of Theorem 7.4 above. In such cases,
it seems that the best method 2 is to take still M = d(l + 1)/me (or very
close to this) and try to the lowest d that satisfies the key requirement of
Theorem 5.1 which is 2Mm

∑d
i=0

(
Mk

i

)
> 2Mk+l.

2 Again when m < k, if in similar case m ≥ k, it could be even better to increase M ,
cf. Section 7.6.



Algebraic Attacks on Combiners with Memory and Several Outputs 13

The Complexity of the Attacks based on Theorem 7.4

Let d = dkd(l + 1)/me/2e be the degree obtained in Theorem 7.4. Follow-
ing Section 6.1, the complexity of the first step of the attack (to find the
equations) will be about 2ω(Mk+l) = 2ω(kd(l+1)/me+l) and this is roughly(
2ω(d/2+l)

)
. For the second step the complexity will be about

(
n
d

)ω ≈ ndω

(see Section 3). Though this d is not always the best degree we will get
and use in an attack, we expect that when m < k the complexity of the
first step of the attack will frequently be substantially smaller than for
the second step (cf. examples in Table 2).

7.6 How to Use Theorem 5.1 when m ≥ k

If m ≥ k, then when M → ∞ we can always satisfy the key inequality
(KE).

2Mm ·
d∑

i=0

(
Mk

i

)
> 2Mk+l (KE)

This fact is obvious when m > k and still true when m = k, because
then it is sufficient to take M = d(l + 1)/ke and d = Mk. (Remark:
here M cannot be smaller than d(l + 1)/ke because following Section 7.2,
M ≥ d(l + 1)/me and here it is equal to d(l + 1)/ke.)

It can be seen that in all cases when m ≥ k, when M → ∞, then d
may be an arbitrarily small integer > 0 (i.e. we will even get d = 1 when
M is large enough).

In practice, we should take M as big as possible, but not too big
because the complexity to find the equations (Step 1 of the attack) will
become too big: it is following Section 6.1 about 2ω(Mk+l) computations.
(While Step 2. requires about

(
n
d

)ω ≈ 2ω log2 nd/d! )
In order to get the best attack, we need to minimise 2ω(Mk+l) +

2ω log2 nd/d! under the condition
(
Mk
d

)
> 2M(k−m)+l. The behaviour of

these complexities is not simple, because M ≥ d(l+1)/me and must be an
integer. Our experience shows that sometimes M = d(l+1)/me is optimal,
sometimes it isn’t. Sometimes the best attack will be when both complex-
ities are about equal, sometimes the first step will always take much more
time than the second step (even for the minimal M = d(l+1)/me). Some
relevant examples are given in Table 3 and Table 2.

7.7 Summary or How To Design the Best Algebraic Attack

In order to find the fastest attack with Theorem 5.1, we recommend to
proceed as follows:

– First we try to apply Theorem 7.4, and get a (working) solution (M,d).



14 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

– Then with same M , take the lowest d such that the key condition
(KE) still holds.

– In addition, when m ≥ k, as long as the complexity of the first step
of the attack is less than the complexity of the second step, we may
try to increase M , compute the lower possible d, and see if we get a
better result (Cf. Section 7.6).

7.8 Addendum, Some Interesting Cases, Theorem 5.1 vs.
Theorem 7.4

Case when m = l: In this particular case, our Theorem 7.4 gives M = 2
and d = k. In Appendix we prove a slightly stronger Theorem A.2, with
the same M = 2 and d = k, but in which the variables from each of the
M = 2 consecutive steps do not mix, and therefore much less monomials
are used in the resulting equations (it is almost as if M = 1, yet two
states are used).

Case when m = l + 1: For m = l + 1, the Theorem 7.4 gives M = 1
and d = dk/2e. The value of M has decreased from M = 2 to M = 1,
and the value of d has decreased from d = k to d ≈ k/2. Since the
complexity of the whole attack is about

(
n
d

)ω, with 1 less memory bit
we gain about the square root in the attack complexity. Surprisingly,
the complexity of algebraic attacks decreases a lot, when the number
of outputs m increases from l to l + 1, see some examples in Table 3.
A similar phenomenon is observed for XL algorithm over finite fields of
large characteristic, see [36].

Remark: When m = l + 1 and m ≥ k, then in some cases, (following
Section 7.6) it may be more interesting to increase M here to get a lower
d. But it may also be bad idea, as we will show on an example taken
from Table 3. When k = 64, l = 64, k = l + 1 = 65, from Theorem
we get M = 1 and d = 32. With M = 1 we verify that the value of d
cannot be lowered. The complexity of first/second step of the attack is
then respectively about 2356 / 2471. Yet, for M = 2 we may still have
(KE) when d = 15. However with this (lower) degree we will not get a
faster attack, because now the first/second step takes respectively 2536 /
2262.

We see that though (since m ≥ k) with bigger M we get a lower d, the
complexity of the first step of the attack will become too big. This also
means that in some cases, much faster attacks may exist than showed in
the present paper, if there is a shortcut (due to the specific structure of
the cipher) that allows to find the initial equation faster (replacing the
Step 1 of the attack).



Algebraic Attacks on Combiners with Memory and Several Outputs 15

Cases when m > l + 1. In this case we can still have M = 1 and
d will decrease, and the attack will become better, with growing m. In
particular, from Theorem 5.1, we see that when M = 1 and m = k + l
the inequality (KE) 2Mm

∑d
i=0

(
Mk

i

)
> 2Mk+l will already be satisfied

for d = 1, and the Step 2. of the attack will be very fast. Moreover, from
Section 7.6 we see that m = k is already sufficient to achieve d = 1 for
bigger values of M . In both these cases however, the complexity of the
first step of the attack may become prohibitive (unless there is a special
method to find equations that comes from the structure of the cipher).

8 Application to Some Known Stream Cipher
Constructions

8.1 Application to modified LILI-128

Our attack can be applied to the second component of LILI-128 cipher
[37]: we have an LFSR with n = 89 bits, and a Boolean function with
k = 10 inputs. There is no memory bits (m = 0). In [15], a generic attack
on LILI-128 is given, that requires n5ω computations, (whatever is the
Boolean function used). From our Theorem 5.1 we see that if in LILI
we use simultaneously several Boolean functions, the complexity of the
generic attack will substantially decrease. It will be

(
n
d

)ω with d given by
Theorem 5.1. The resulting degree d quickly decreases with m:

m 1 2 3 5 7
d 5 4 3 2 1

Following closely [15], each of these attacks on the second component
of LILI-128 can be transformed into an attack on the whole LILI-128
cipher in two possible ways. Either (A:) the complexity is multiplied by 239

(one needs to guess the 39-bit state of LFSR in the clocking component),
or (B:) the keystream requirements are multiplied by about 239 (at each
step the first component is clocked 239−1 times). See [15] for more details.
This gives the following generic attack on modified LILI-128 with several
outputs:

Table 1. Generic attacks on modified LILI-128 with m outputs

m 1 2 3 5 7

M 1 1 1 1 1

d 5 4 3 2 1

keystream 225 264 221 260 217 256 212 251 26 245

time(Step 1.) 225 225 225 225 225 225 225 225 225 225

time(Step 2.) 2107 268 295 256 283 244 269 230 254 215



16 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

We see that for ciphers that combine LFSR and Boolean functions,
such as LILI-128, if we replace a Boolean function by a component that
outputs a few bits at a time, the security will be dramatically reduced,
and this for any component (worst case).

Note: There are attacks on LILI-128 itself, that are faster than the
generic attack given here for m = 1, see [15, 16]. However for some of the
modified versions of LILI-128 with many outputs, our attack will probably
be the fastest general attack known on such ciphers.

8.2 Stream Ciphers Proposed by Gregory L. Mayhew

In [29], the author proposes a LFSR-based stream cipher that, in order
to be fast, uses simultaneously several Boolean functions. These ciphers
are known to be very weak.

For example, the following parameters are proposed: n = 61, k = 6,
l = 0, m = 16 or n = 61, k = 8, l = 0, m = 8. We will apply our
Theorem 5.1 with M = 1. We need to have: 2m ·

∑d
i=0

(
k
i

)
> 2k+l. On

both examples we get that even d = 0 works. However we will put d = 1,
because equations that do not include key bits cannot be used to recover
the key (they should be useful for distinguishing attacks). We see that
these ciphers are indeed very weak: when d = 1 they are broken by a
simple algebraic attack in about

(
n
1

)ω ≈ 213 CPU clocks.
Moreover, with the results of our paper we can break much stronger

versions of these ciphers. For example, it is easy to see that, if we add up
to l = 24 memory bits to the cipher, for M = 1 from Theorem 5.1 we still
get d = 1 and the cipher is still easily broken within about

(
n
1

)ω ≈ 213

CPU clocks.
We also observe that:

1. If we have l = 15 memory bits in the combiner, for M = 1 as recom-
mended by Theorem 7.4, we get d = 3. Yet, for M = 2 we get d = 1.
Though M is smaller, the attack is faster (we know that the Theorem
7.4 is not always optimal).

2. For l = 16 the Theorem 7.4 gives d = 1 which is optimal and we could
not do better.

3. When l = 23, we get M = 2 and d = 1.
4. When l = 24 and M = 1 as recommended by Theorem 7.4, we get

d = 2. For M = 3 we get d = 1 which again is faster.
5. When d = 2 the attack is still quite fast, which means that we can

still break these ciphers quite efficiently, for even higher values of l.



Algebraic Attacks on Combiners with Memory and Several Outputs 17

8.3 Application to modified E0
For the basic component of the stream cipher E0, we have n = 128, k = 4,
l = 4, m = 1. The Krause-Armknecht theorem gives d = 10, see [2]. With
our Theorem 5.1 we get the following results:

Table 2. Generic attacks on modified E0 with m outputs

m

M

d

keystream

time(Step 1.)

time(Step 2.)

1 2 3 4 5 6

5 3 2 3 1 1

10 5 3 2 2 1

248 228 218 213 213 27

264 242 230 230 219 219

2131 276 249 233 233 216

We see that for ciphers that combine LFSRs and a combiner with 4
inputs, and 4 memory bits, such as E0, if one outputs several bits at a
time (computed in an arbitrary way), the complexity of the attack and
the keystream amount required dramatically decreases.

Note: Here we treat the worst case by a generic method, for E0 itself
there are attacks faster than what we get for m = 1, see [2, 1, 16]. However
most of modified versions of E0 with many outputs, our attack is probably
the fastest attack known.

8.4 Application to Snow and Modified Versions of Snow
We consider both Snow and Snow 2.0. that have an LFSR with n = 512
bits that is connected to a stateful combiner that outputs m = 32 bits at
a time. We obtain:
1. In Snow 1.0. we have k = 64, l = 64 and m = 32. With Theorem

7.4 we get M = d(l + 1)/me = 3 and d = dkM/2e = 96 that can be
lowered to d = 54 and still satisfies the requirements of the Theorem
5.1 (for reasons explained in Section 7.5).

2. Similarly, in Snow 2.0. we have k = 96, l = 64 and m = 32. With
Theorem 7.4 we get M = d(l + 1)/me = 3 and d = dkM/2e = 144
that can be lowered to d = 92.

These degrees are by far too large to give any hope for practical attacks
on Snow.

Algebraic Attacks on Modified Snow
We will look how the complexity of the attack on Snow 1.0. and 2.0.
when the number of output bits increases. This could arise if, in order to
build a faster cipher, we add to Snow some arbitrary S-boxes or Boolean
functions that derive some additional output bits, from the k inputs and
the l memory bits of Snow combiner.



18 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

Since the size of LFSR is 512 bits, an attack will be considered signif-
icant if it takes less than 2512. (We study academic attacks on modified
Snow, and do not claim to break the actual Snow in which the key is
expanded from a shorter key of 128 or 256 bits.)

Table 3. Generic attacks on modified Snow ciphers with m outputs

Snow 1.0.
n = 512, l = 64, k = 64

m 32 64 65 80 100 120

M 3 2 1 1 1 1

d 54 16 32 16 7 2

keystream 2245 299 2169 299 251 217

time(Step 1.) 2715 2536 2356 2356 2356 2356

time(Step 2.) 2684 2276 2471 2276 2139 245

Snow 2.0.
n = 512, l = 64, k = 96

m 32 64 65 120 150

M 3 2 1 1 1

d 92 35 48 9 2

keystream 2344 2352 2226 262 217

time(Step 1.) 2985 2715 2446 2446 2446

time(Step 2.) 2962 2503 2631 2172 245

We see that when the number of outputs increases, the security of
the cipher collapses. The complexity of the first step of the attack may
be < 2512 but remains very high. However, one should not think that
Snow with added outputs will be very secure: we only gave here the
complexity of the generic method to find a useful equation. For a specific
cipher, in many cases, there could be a much faster method that exploits
the description of the cipher, and will give one multivariate equation,
exploited by the main attack (Step 2.). The second step is already very
fast.

Note: Our attacks are very general. For the original cipher Snow 1.0.
itself, much faster attacks are known, see [10, 7, 27].

8.5 Application to a Modified Turing Cipher
Turing is a stream cipher proposed in 2003 by Rose and Hawkes [35]. It
is a new kind of stream cipher which outputs many bits at a time, and
in which the combiner is key-dependent. We have n = 17 ∗ 32 = 544,
m = 5 ∗ 32 = 160, l = 0 (no memory), k = 9 ∗ 32 = 288. These values are
very large and any attack faster than the exhaustive search of all possible
states 2n = 2544 should be considered as interesting.

We will study a modified version of Turing, in which the combiner is
NOT key-dependent. Then with Theorem 7.4 we get M = d(l+1)/me = 1
and d = dkM/2e = 160 that can be lowered to d = 37 and still satisfies
the requirements of the Theorem 5.1 (for reasons explained in Section
7.5). This degree d = 37 is still by far too large to give any hope for
practical attacks on Turing. We get an attack on modified Turing with
time(Step 1.) = 2805 and time(Step 2.) = 2534. The second step is faster
then the exhaustive search which would be in 2544. The first step can also
probably be improved to be faster than 2544.



Algebraic Attacks on Combiners with Memory and Several Outputs 19

9 Extension to Ciphers With Unknown or Key
Dependent Combiners

The results of this paper can be also applied to ciphers in which the
combiner is only partially known (or key dependent). For example, at
some place inside the combiner we XOR the data with the secret key. Or,
we use Boolean functions with some coefficients being unknown or key-
dependent. Let l′ be the total number of unknown bits in the combiner
with parameters (k, l,m). Then we may just consider this cipher as a
cipher in which the combiner is known with parameters (k, l + l′,m): we
just have l′ additional memory bits that are not updated, they remain the
same all the time. All the attacks described in the present paper will apply
and when l′ is not too big, or when m ≥ k, they should be (relatively)
efficient general attacks on stream ciphers.

10 Conclusion

In this paper we studied generic algebraic attacks on stream ciphers built
with an LFSR and a combiner having a small number of memory bits. Our
main result is that the complexity of algebraic attacks on stream ciphers
will substantially decrease if the cipher outputs more bits at a time. We
substantially extended and gave a much simpler proof of the important
Theorem of [2]. Our new Theorem can be applied to substantially decrease
the complexity of the best worse-case (generic) algebraic attack (whatever
is the internal structure of the combiner component) for modified versions
of four well known stream ciphers E0, LILI-128, Snow and Turing.

We demonstrated the existence of (yet another) very general tradeoff
between speed and security of stream ciphers with (and without) memory.

Acknowledgements

The authors wish to thank Willi Meier and the anonymous reviewers of
Crypto 2004, SAC 2004 and ICISC 2004, for careful reading and valuable
comments.



20 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

References

1. Frederik Armknecht: A Linearization Attack on the Bluetooth Key Stream Gen-
erator, Available on http://eprint.iacr.org/2002/191/. 13 December 2002

2. Frederik Armknecht, Matthias Krause: Algebraic Atacks on Combiners with Mem-
ory, Crypto 2003, LNCS 2729, pp. 162-176, Springer.

3. Frederik Armknecht: Improving Fast Algebraic Attacks, to appear in FSE 2004,
LNCS, Springer.

4. Ross Anderson: Searching for the Optimum Correlation Attack, FSE’94, LNCS
1008, Springer, pp 137-143.

5. Elad Barkan, Eli Biham, and Nathan Keller: Instant Ciphertext-Only Cryptanaly-
sis of GSM Encrypted Communication, In Crypto 2003, LNCS 2729, pp: 600-616,
Springer, 2003.

6. Bluetooth CIG, Specification of the Bluetooth system, Version 1.1, February 22
2001, available from www.bluetooth.com.

7. Christophe De Canniere, Guess and Determine Attack on SNOW,
Nessie public report, 12/11/2001, NES/DOC/KUL/WP5/011/a, available from
www.cryptonessie.org.

8. Claude Carlet, Emmanuel Prouff: On a new notion of Nonlinearity relevant to
multi-output pseudo-random generators, SAC 2003, LNCS 3006, pp. 291-305,
Springer 2004.

9. Will Meier, Enes Pasalic and Claude Carlet: Algebraic Attacks and Decomposition
of Boolean Functions, In Eurocrypt 2004, pp. 474-491, LNCS 3027, Springer, 2004.

10. Don Coppersmith, Shai Halevi and Charanjit Jutla, Cryptanalysis of stream ci-
phers with linear masking, Crypto 2002, LNCS 2442, Springer, 2002. Available at
http://eprint.iacr.org/2002/020/

11. Paul Camion, Claude Carlet, Pascale Charpin and Nicolas Sendrier, On
Correlation-immune Functions, Crypto’91, LNCS 576, Springer, pp. 86-100.

12. Don Coppersmith, Shmuel Winograd: Matrix multiplication via arithmetic pro-
gressions, J. Symbolic Computation (1990), 9, pp. 251-280.

13. Nicolas Courtois: The security of Hidden Field Equations (HFE), Cryptographers’
Track Rsa Conference 2001, LNCS 2020, Springer, pp. 266-281.

14. Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Cryptanal-
ysis of Toyocrypt, ICISC 2002, LNCS 2587, pp. 182-199, Springer.

15. Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ciphers with Linear
Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer.
An extended version is available at http://www.minrank.org/toyolili.pdf

16. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Crypto 2003, LNCS 2729, pp: 177-194, Springer.

17. Nicolas Courtois: The Inverse S-box, Non-linear Polynomial Relations and Crypt-
analysis of Block Ciphers, in AES 4 Conference, Bonn May 10-12 2004, LNCS,
Springer.

18. Nicolas Courtois: General Principles of Algebraic Attacks and New Design Criteria
for Components of Symmetric Ciphers, in AES 4 Conference, Bonn May 10-12
2004, LNCS, Springer.

19. Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287,
Springer, a preprint with a different version of the attack is available at
http://eprint.iacr.org/2002/044/.



Algebraic Attacks on Combiners with Memory and Several Outputs 21

20. Patrik Ekdahl, Thomas Johansson, SNOW - a new stream cipher, Proceedings of
First NESSIE Workshop, Heverlee, Belgium, 2000.

21. Patrik Ekdahl, Thomas Johansson, A new version of the stream cipher
SNOW, in SAC 2002, LNCS 2595, Springer, pp. 47-61. Available from
http://www.it.lth.se/cryptology/snow/

22. Jean-Charles Faugère: ”A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5)” Workshop on Applications of Commutative Alge-
bra, Catania, Italy, ACM Press, 2002.

23. Jovan Dj. Golic: On the Security of Nonlinear Filter Generators, FSE’96, LNCS
1039, Springer, pp. 173-188.

24. Jovan Dj. Golic: Correlation Properties of a General Binary Combiner with Mem-
ory. Journal of Cryptology vol. 9(2), pp. 111-126 (1996).

25. Jovan Dj. Golic, Vittorio Bagini, Guglielmo Morgari: Linear Cryptanalysis of Blue-
tooth Stream Cipher, Eurocrypt 2002, LNCS 2332, Springer, pp. 238-255.

26. Thomas Jakobsen: Cryptanalysis of Block Ciphers with Probabilistic Non-Linear
Relations of Low Degree, Crypto 98, LNCS 1462, Springer, pp. 212-222, 1998.

27. Philip Hawkes, Gregory Rose: Guess-and-determine attacks on SNOW, in SAC
2002, LNCS 2595, Springer, pp. 37-46.

28. Philip Hawkes, Gregory Rose: Rewriting Variables: the Complexity of Fast Al-
gebraic Attacks on Stream Ciphers, in Crypto 2004, LNCS 3152, pp. 390-406,
Springer, 2004. Available from eprint.iacr.org/2004/081/.

29. Gregory L. Mayhew: A Low cost high speed encryption system and method, Proc.
of 1994 IEEE Computer Society Press, pp. 147-154, 1994

30. Willi Meier and Othmar Staffelbach: Fast correlation attacks on certain stream
ciphers, Journal of Cryptology, 1(3):159-176, 1989.

31. Willi Meier and Othmar Staffelbach: Correlation Properties of Combiners with
Memory in Stream Ciphers, Journal of Cryptology 5(1): pp. 67-86 (1992).

32. Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone: Handbook of Applied
Cryptography, Chapter 6, CRC Press.

33. Nessie Security Report v2.0. or Nessie deliverable D20, available from
www.cryptonessie.org.

34. Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of
Eurocrypt’88, Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

35. Gregory G. Rose and Philip Hawkes: Turing: a Fast Stream Cipher, FSE 2003,
LNCS, Springer.

36. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Al-
gorithms for solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

37. L. Simpson, E. Dawson, J. Golic and W. Millan: LILI Keystream Generator,
SAC’2000, LNCS 2012, Springer, pp. 248-261,

38. Volker Strassen: Gaussian Elimination is Not Optimal, Numerische Mathematik,
vol 13, pp 354-356, 1969.

39. Muxiang Zhang, Agnes Chan: Maximum Correlation Analysis of Nonlinear S-boxes
in Stream Ciphers. In Crypto 2000, LNCS 1880, pp. 501-514, Springer 2000.



22 Nicolas Courtois, extended version of ICISC 2004 paper, October 18, 2004

A Another Proof of Theorem 4.1 in a Stronger Version

Theorem A.1 (Strong Version of the Special Case of Krause-
Armknecht Thm.). Let F be an arbitrary fixed circuit with k binary
inputs xi, one bit of memory a, and one output y. Then, given M = 2
consecutive states (t, t + 1), there is a multivariate relation of degree k in
the x

(i)
j , that relates only the input and the output bits, without any of

the inner state/memory bits a(t−1), a(t):

R
(
x

(t)
0 , . . . , x

(t)
k−1

)
+ y(t) · S

(
x

(t)
0 , . . . , x

(t)
k−1

)
+

+T
(
x

(t+1)
0 , . . . , x

(t+1)
k−1

)
+ y(t+1) · U

(
x

(t+1)
0 , . . . , x

(t+1)
k−1

)
= 0.

Proof: We have m = l = 1. To prove this result, we will prove that
basically the same type of result is true also for any m, provided that we
have m = l (or more).

This new theorem, will give the same M and the same d than our
most general Theorem 7.4. Yet it exhibits equations that use much less
monomials (and thus are easier to find).
Theorem A.2 (Strong Version of Theorem 5.1 when m = l).
Let F be an arbitrary component with k binary inputs xi, l bits of mem-
ory a, and m outputs yi with m = l. Then, given M = 2 consecutive
applications of the component (t, t + 1), there is a multivariate relation
(being of degree k in x

(i)
j ) of the form:

R
(
x

(t)
0 , . . . , x

(t)
k−1, y

(t)
0 , . . . , y

(t)
k−1

)
= S

(
x

(t+1)
0 , . . . , x

(t+1)
k−1 , y

(t+1)
0 , . . . , y

(t+1)
k−1

)
.

Proof: First we consider only one state, at time t. The output bits
y

(t)
i the next memory bits a

(t)
i do depend only on the previously exist-

ing memory bits a
(t−1)
i , and the k inputs

(
x

(t)
0 , . . . , x

(t)
k−1

)
. We have 2k+l

possibilities. We consider the following matrix: Line are all the 2k+l pos-
sibilities, and columns are all the 2k+l monomials of type

∏
x

(t)
i ·

∏
y

(t)
j .

We have now 2k+l lines and also 2k+m = 2k+l columns.
Let Q(x(t)

0 , . . . , x
(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1 ) be an arbitrary function. We

add one more column to the matrix, in which we put the values of Q().
We get the matrix with 2k+l lines and 2k+l + 1 columns, and we know
that a linear dependency must exist between the columns, whatever is
the function Q(). In this linear dependency the last column Q() may or
may not appear, which we denote by [Q(x(t)

0 , . . . , x
(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1 )].

By definition, all the other columns are monomials, and their linear com-
bination is a polynomial. Therefore, for every Boolean function Q, our



Algebraic Attacks on Combiners with Memory and Several Outputs 23

dependency means that there exist a multivariate polynomial RelQ such
that:

RelQ

(
x

(t)
0 , . . . , x

(t)
k−1, y

(t)
0 , . . . , y

(t)
k−1

)
=

[
Q

(
x

(t)
0 , . . . , x

(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1

)]
.

(As explained above, [Q(. . .)] means αQ (. . .) with α = 0 or 1).
For any Q, we may by Gaussian reduction explicitly compute this

polynomial RelQ for step t. We may put for example, for any i,

Q
(
x

(t)
0 , . . . , x

(t)
k−1, a

(t−1)
0 , . . . , a

(t−1)
l−1

)
= a

(t−1)
i but we are also free to have

Q (. . .) = a
(t)
j for any j. Indeed both the previous and the current mem-

ory bits are a deterministic function of these k + l variables. (Hence, for
example we may not put Q (. . .) = a

(t+1)
0 , as it depends on other vari-

ables.) Now, in our proof, for step t, we will use the first bit of the first
inner state: Q = a

(t)
0 . Then for t + 1, we are allowed to use the same bit,

since a
((t+1)−1)
0 = a

(t)
0 (but for the following step we cannot put Q = a

(t)
0

anymore). Thus we will eliminate a
(t)
0 .

More precisely, we do the following. Let Q (. . .) = a
(t)
0 , there exists

R = RelQ such that
R

(
x

(t)
0 , . . . , x

(t)
k−1, y

(t)
0 , . . . , y

(t)
k−1

)
=

[
a

(t)
0

]
(R)

Now, for the next step t+1, let Q′
(
x

(t+1)
0 , . . . , x

(t+1)
k−1 , a

(t)
0 , . . . , a

(t)
l−1

)
=

a
(t)
0 , and we know that there is another polynomial S = RelQ′ such that:

S
(
x

(t+1)
0 , . . . , x

(t+1)
k−1 , y

(t+1)
0 , . . . , y

(t+1)
k−1

)
=

[
a

(t)
0

]
(S)

With these two equations (R) and (S) we may always eliminate a
(t)
0

and we get the claimed result. ut


