
Mark Rasch, SecurityFocus, 2004.10.25:

“The latest tool in competition: hacking

“Your competitor has a wildly successful

Web-based tool which is being used by

many of your customers. Do you (A) give

up and get out of the business; (B) set

up a team of product developers to make

a competing product; or (C) hack into

the competitor’s website, steal the code,

and for good measure hire their critical

employees to develop an exact duplicate

of their website. If you answered (C) then

congratulations and welcome to the new

world of competitive hacking.



“On October 15, the United States

Court of Appeals for the Ninth Circuit in

Seattle, Washington had to deal with the

case of two competing websites geared

at helping long-distance truckers take

on additional revenue-producing load

to avoid the unprofitable practice of

‘dead-heading’—driving a truck that was

less than full. One company, Creative

Computing, created a successful website

called Truckstop.com to help match

truckers with loads. In the words of the

court, a second company, Getloaded.com,

‘decided to compete, but not honestly.’

“Getloaded.com used many mechanisms

to acquire data from the Truckstop.com



website. Initially, they just copied the

most current lists of unmatched drivers

and loads. When Truckstop started using

user IDs and passwords, Getloaded did the

same. Reasoning correctly that truckers

using both sites would create the same

userid’s and passwords, Getloaded officials

logged into Truckstop’s site using their

customers’ IDs. Then they registered

a defunct company as a subscriber as

another route to getting access to the

data.

“But this wasn’t enough. As the court

of appeals noted, ‘Getloaded’s officers

also hacked into the code Creative used

to operate its website. Microsoft had



distributed a patch to prevent a hack it

had discovered, but Creative Computing

had not yet installed the patch on

truckstop.com. Getloaded’s president

and vice-president hacked into Creative

Computing’s website through the back

door that this patch would have locked.’

�����

“Getloaded also ‘hired away a Creative

Computing employee who had given

Getloaded an unauthorized tour of the

truckstop.com website,’ the court noted.

‘This employee, while still working for

Creative, accessed confidential information

regarding several thousand of Creative’s

customers. He downloaded, and sent to



his home e-mail account, the confidential

address to truckstop.com’s server so that

he could access the server from home and

retrieve customer lists.’ ”



File descriptors

Each process has an array of

file descriptors inside system data.

Some important components of each fd:
� “readable”: 1 if the file is open for

reading, 0 otherwise;
� “writable”: 1 if the file is open for

writing, 0 otherwise;
� “type”: 1 for disk file, 2 for network

socket, 3 for pipe, etc.
� “inode number”: where the file is

located on disk, if it’s a disk file;
� “position”: location in file of next byte

to read or write; � ���

Details: /usr/include/sys/file.h,

/usr/include/sys/socket.h, et al.



Programs refer to file descriptors

through array indices: 0, 1, 2, 3, etc.

read(3,buf,10) syscall

reads 10 bytes from the file

that descriptor 3 refers to.

write(3,buf,10) syscall

write 10 bytes to the file.

close(3) syscall clears descriptor 3:

not readable, not writable, etc.

open("/etc/passwd",O_RDONLY) syscall

searches for first array index

where descriptor is closed;

sets up that descriptor

reading from /etc/passwd;

and returns the array index.



e.g. Process with no files open:

read write type inode pos
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

open("/etc/passwd",O_RDONLY)

returns 0:

read write type inode pos
0 1 0 1 3650113 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0



open("/home/joe/copy",O_WRONLY)

returns 1:

read write type inode pos
0 1 0 1 3650113 0
1 0 1 1 1647555 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

open("/home/joe/errorlog",O_WRONLY)

returns 2:

read write type inode pos
0 1 0 1 3650113 0
1 0 1 1 1647555 0
2 0 1 1 1647590 0
3 0 0 0 0 0
4 0 0 0 0 0



open("/home/joe/copystatus",O_RDWR)

returns 3:

read write type inode pos
0 1 0 1 3650113 0
1 0 1 1 1647555 0
2 0 1 1 1647590 0
3 1 1 1 1647584 0
4 0 0 0 0 0

read(0,buf,10) returns 10:

read write type inode pos
0 1 0 1 3650113 10
1 0 1 1 1647555 0
2 0 1 1 1647590 0
3 1 1 1 1647584 0
4 0 0 0 0 0



write(1,buf,7) returns 7:

read write type inode pos
0 1 0 1 3650113 10
1 0 1 1 1647555 7
2 0 1 1 1647590 0
3 1 1 1 1647584 0
4 0 0 0 0 0

read(0,buf,5) returns 5:

read write type inode pos
0 1 0 1 3650113 15
1 0 1 1 1647555 7
2 0 1 1 1647590 0
3 1 1 1 1647584 0
4 0 0 0 0 0



execve does not clear fds.

C library functions expect

program to be started with

descriptor 0 reading something,

descriptor 1 writing something,

descriptor 2 writing something.

0 is “standard input” (stdin);

1 is “standard output” (stdout);

2 is “standard error” (stderr).

Typical program reads from stdin,

writes to stdout, complains to stderr.

Can run program to read from user,

from a disk file, from network, etc.,

by setting stdin before execve.



e.g. UNIX sort program

reads lines of input

using read(0,...).

Prints same lines in order

using write(1,...).

Can run

sort < data.in > data.out

to have sort program

read data.in, write data.out.

/bin/sh opens data.in and data.out

before execve("/usr/bin/sort",...).

Can run

tcpserver 0 10000 sort

to have sort program

talk to network connections.


