
Yaakov Katz, Jerusalem Post, 2004.08.24:

“Police drill reveals security flaws in malls

“Tel Aviv District Police infiltrated dummy

bombs into two central shopping malls and

a hotel in the Kiryat Ono area on Aliyah

Tuesday without being detected by

security guards.

“Police, from the Mesubim Station in

conjunction with cadets from the Israel

Police officer’s course, carried out the drill

at the Kiryat Ono Mall, Yehud’s Savyonim

Mall and the Avia Hotel in the city. In all

three cases, an undercover police officer

succeeded in infiltrating a large dummy

explosives device inside a backpack into

the establishments.

“Mesubim Region Police cheif [sic]

Dep.-Cmdr. Ilan Mor said that police met

with security officers from the three

establishments Tuesday afternoon and

that they are considering filing charges

against them due to the ‘severe security

failures.’ ”

Assignment due today: read

foreword and preface of textbook.

Assignment due 2004.08.27: read

textbook Chapter 1 pages 1–14,

up to “The Trinity of Trouble.”

Some examples of bugs

Sendmail is a program that

accepts mail from local users,

accepts mail from the network,

delivers mail to local users,

delivers mail to the network.

1996.09.17 version: 14207 semicolons.

1999.02.04 version: 18085 semicolons.

2000.07.19 version: 26466 semicolons.

2001.09.08 version: 35171 semicolons.

2004.07.30 version: 38014 semicolons.

Sendmail’s change log

reports a huge number of bug fixes,

including 58 “SECURITY” bug fixes.

What are some of the “SECURITY” bugs?

Bug fixed 1994.03.14:

int first, last;

register int i;

...

i = 0;

while (isdigit(*s))

i = i * 10 + (*s++ - ’0’);

first = i;

...

if (first >= tTsize)

first = tTsize - 1;

tTvect[first] = i;

Impact: Any local user

can take over the machine.

How? We’ll study this later.

Sendmail FAQ editor Brad Knowles,

1996.02.08:

“Sendmail is actually one of the more

secure processes on the machine. In

fact, I understand that Eric has gotten a

lot of complaints about his tightening

security up too far, and breaking certain

bits of functionality that used to work

and that people liked.”

Bug fixed 1996.09.17:

while (*tz != ’\0’)

*q++ = *tz++;

Impact: Any local user

can take over the machine.

Bug sort-of-fixed 1996.09.17:

a->q_uid = ...;

a->q_gid = ...;

pw = getpwnam(user);

if (pw != NULL) {

a->q_uid = pw->pw_uid;

a->q_gid = pw->pw_gid;

}

Impact: Any local user

can read and modify messages

to local mailing lists.

What’s getpwnam?

What’s the bug?

We’ll see.

Bug fixed 1996.10.17:

h = res_search(host,...);

with Sendmail running setuid.

Impact: Any local user

can read and destroy local mail.

Bug allegedly fixed 1996.10.17:

m(...,char **x,...,int xlen)

{

int nchar = 0;

while (...) {

...

if (++nchar > xlen) break;

*(*x)++ = ...;

}

}

char obuf[MAXLINE + 1];

char *obp = obuf;

while (...)

m(...,&obp,...,MAXLINE);

Impact: Any user on the Internet

can take over the machine.

Bug fixed 1996.10.18:

char obuf[MAXLINE + 1];

char *obp = obuf;

while (...)

m(...,&obp,...,

&obp[MAXLINE] - obp);

Impact: Any user on the Internet

can take over the machine.

The fix:

m(...,&obp,...,

&obuf[MAXLINE] - obp);

Bug fixed 1996.11.17:

execv(argv[0],argv);

with Sendmail running setuid.

Impact: Any local user

can take over the machine.

bug-of-the-month club: n.

[from “book-of-the-month club”, a

time-honored mail-order-marketing

technique in the U.S.] A mythical club

which users of sendmail(8) (the Unix

mail daemon) belong to; this was

coined on the Usenet newsgroup

comp.security.unix at a time when

sendmail security holes, which allowed

outside crackers access to the system,

were being uncovered at an alarming rate,

forcing sysadmins to update very often.

Also, more completely, fatal security

bug-of-the-month club. See also

kernel-of-the-week club.

Source: The Jargon File

Bug fixed 2003.03.29:

#define NOCHAR -1

register int c;

for (;;) {

c = *p++;

if (...)

*q++ = ’\\’;

...

if (c != NOCHAR)

if (q > ...)

break;

}

Impact: Any local user, and

maybe any user on the Internet,

can take over the machine.

How a typical computer’s stack works

Each process (each running program)

has an array called the stack

and a variable called the stack pointer.

Stack stores function parameters,

other local variables, and return addresses.

When you call

zork(a,b,c);

the computer actually does

*--sp = c;

*--sp = b;

*--sp = a;

*--sp = target578;

goto zork;

target578: sp += 3;

When the zork function says

int x[10]; int y[10];

...

y[0] = x[8];

...

the computer actually does

sp -= 20;

...

sp[0] = sp[18];

...

sp += 20;

When the zork function says

return;

the computer actually does

goto *sp++;

Example:

void zork(void)

{

return;

}

int main(int argc,char **argv)

{

zork();

zork();

zork();

}

What computer actually does:

void zork(void)

{

goto *sp++;

}

int main(int argc,char **argv)

{

*--sp = t69; goto zork;

t69: ;

*--sp = t79; goto zork;

t79: ;

*--sp = t89; goto zork;

t89: ;

}

(Don’t try using sp and variable goto

in your code; compiler won’t allow it.)

Let’s trace what this program does.

Assume original sp is st+512.

st[510] st[511] sp

0 0 st+512 *--sp = t69;

0 t69 st+511 goto zork;

0 t69 st+511 goto *sp++;

0 t69 st+512 t69:

0 t69 st+512 *--sp = t79;

0 t79 st+511 goto zork;

0 t79 st+511 goto *sp++;

0 t79 st+512 t79:

0 t79 st+512 *--sp = t89;

0 t89 st+511 goto zork;

0 t89 st+511 goto *sp++;

0 t89 st+512 t89:

Example:

void zork(int a)

{

int b;

b = a + 5;

}

int main(int argc,char **argv)

{

zork(3);

}

What computer actually does:

void zork(void)

{

--sp;

sp[0] = sp[2] + 5;

++sp;

goto *sp++;

}

int main(int argc,char **argv)

{

*--sp = 3;

*--sp = t76;

goto zork;

t76: ++sp;

}

